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A B S T R A C T

Solid wall buildings account for a quarter of the UK building stock and need to be thermally upgraded to meet
national greenhouse gas emission targets. Internal wall insulation (IWI) is often the only option for the retrofit of
solid walls, especially when they are of architectural or historical interest. However, IWI can lead to moisture
accumulation within the existing wall, affecting the structural integrity of the building and the health of oc-
cupants. To avoid these issues, a thorough risk assessment is necessary.

This paper presents a method for developing predictive meta-models that can be used for a fast probabilistic
moisture risk assessment of IWI, considering both the uncertainty and variability of input variables. First, in a
Monte Carlo analysis, the uncertainty and variability of inputs were propagated through hygrothermal simu-
lations. Then, generalised additive models for location, scale and shape (GAMLSS) were used to describe the
relationship between inputs and response variables of the Monte Carlo analysis. The key input variables were
identified by a global sensitivity analysis - using the elementary effects method - and in model building. Two
types of response variable were considered for the models: variables based on percentage values (e.g. maximum
relative humidity) and dose-response relationships (e.g. mould index). The paper shows that both risk assess-
ment models had a good predictive power, highlighting the suitability of the developed method for the moisture
risk assessment of the internal insulation of solid walls.

1. Introduction

The impact of greenhouse gas (GHG) emissions on climate change is
of global concern; with the Paris Agreement, various countries agreed
to reduce GHG emissions in the first legally binding global climate deal.
In the UK, through the Climate Change Act, the Government has
committed to the reduction of GHG emissions by at least 80% by 2050
(from 1990 levels). In order to help meet the target, the energy effi-
ciency of existing buildings must be improved [1]. In the UK, solid wall
buildings account for around 20% of the housing stock. Energy effi-
ciency interventions on solid walls are less cost-effective than other
measures commonly installed in the UK; for this reason, properties with
solid walls are categorised as ”hard-to-treat” [2]. As of December 2016,
only 8% of UK's solid wall dwellings have been insulated [3]; this figure
reflects the challenges of solid wall insulation but also highlights the
potential of this intervention in contributing to the reduction of
greenhouse gas emissions pledged by the UK Government. Internal wall
insulation is one of the few solutions for the energy efficiency of solid
walls, especially if the façade is of special architectural or historic in-
terest. However, it can lead to moisture accumulation, which can be

detrimental to the health of occupants and the structural integrity of a
building. A moisture risk assessment aims at evaluating the likelihood
of building failures due to excessive moisture accumulation; it supports
decision making and allows designers to choose suitable insulation
systems based on information about the risk related to moisture.

2. Literature review

2.1. Moisture transfer in internally insulated walls

A suitable risk assessment must consider the relevant heat and
moisture transfer mechanisms that might lead to moisture risk in in-
ternally insulated walls. The main moisture transfer mechanisms oc-
curring in internally insulated solid walls are:

• capillary suction

• vapour diffusion

• solar-driven vapour diffusion.

Capillary suction can occur when open-porous materials are in
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contact with liquid water. Wind-driven rain can be absorbed by bricks
via capillary suction, having a considerable impact on the hygrothermal
performance of solid brick walls [4]. Also, groundwater can rise
through walls via capillary suction [5]. Capillary suction is contributing
to moisture accumulation within solid walls, in liquid phase, but also
allows redistribution of water in the wall, which can lower the moisture
risk [6].

Water vapour diffusion is driven by gradients of vapour pressure.
Vapour diffusion occurring from the indoor environment to the wall-
insulation interface can contribute to moisture accumulation.

Solar-driven vapour diffusion [7] occurs when a solid wall is ex-
posed to solar radiation and liquid water is present in the wall; water
evaporates and diffuses towards areas of lower vapour pressure. Solar-
driven vapour diffusion can be observed in solid walls in the UK,
especially in walls with dark, porous surfaces exposed to direct solar
radiation [8,9]. Solar-driven vapour diffusion can contribute to drying;
however, moisture can accumulate in constructions with vapour tight
interior finishes [10].

2.2. Moisture risk assessment methods

A number of methods for moisture risk assessment exist. The most
common method for moisture risk assessment for internal wall insula-
tion involves calculating the heat and moisture balance in building
components. The heat and moisture balance is calculated through hy-
grothermal simulation software validated according to EN 15026:2007
[11], which consider the relevant phenomena in case of internal wall
insulation, such as capillary suction and solar-driven vapour diffusion.

The moisture risk assessment of internal wall insulation is often
performed through parametric studies, using deterministic hygro-
thermal simulations that consider either average [12–14] or worst-case
[15–17] scenarios. A common worst-case scenario considers worst-case
orientation (e.g. selecting the prevailing wind direction to account for
worst-case wind-driven rain penetration) or worst-case occupancy le-
vels (e.g. considering high occupancy to account for worst-case vapour
diffusion). Sometimes, the severity of the scenario is itself a parameter
of the study (e.g. occupancy level [18].)

Another approach considers the introduction of a safety margin for
the risk assessment; an additional 1% of wind-driven rain was in-
troduced within the wall structure to analyse unwanted rainwater pe-
netration [19]. Although developed to assess risk related to poorly-in-
stalled external water-tight membranes in timber frame walls, this
approach was then extended to other structures [20] and applied to the
assessment of internal wall insulation [21].

However, the uncertainty and variability of inputs (e.g. the tem-
poral variability of climate and the variability of hygric properties for
traditional bricks) are not fully considered in the analysis, which can
lead to an underestimation of risk. On the other hand, a probabilistic
risk assessment can consider the influence of the uncertainty and
variability of inputs on the risk estimate.

Probabilistic risk assessment provides estimates of the range and
likelihood of a hazard or risk, rather than a single point estimate, and
can be used to support risk management and decision making by as-
sessing the impact of uncertainties on each of the potential options
[22].

A common method of probabilistic risk assessment is to use the
Monte Carlo analysis, which allows to propagate the uncertainty and
variability of the inputs through available deterministic models, such as
hygrothermal simulation models. Once the model and input distribu-
tions are specified, the Monte Carlo analysis allows for the estimation of
the model output by generating input data from random sampling of
the specified input distributions and performing deterministic simula-
tions using the generated inputs [23]. The output of this analysis is then
compared with failure criteria, in a process called risk evaluation.

The Monte Carlo analysis has been widely used for the probabilistic
moisture risk assessment of internally insulated walls. These examples

of Monte Carlo-based moisture risk assessment considered the influence
of the uncertainty and variability of various inputs on the moisture risk
[6,24–26]. The outputs obtained from the Monte Carlo analysis were
the distributions of mould index [24,25], number of hours above 80%
and 95% relative humidity and freeze-thaw cycles [6,26]; these outputs
were then compared with suitable failure criteria. Another Monte
Carlo-based moisture risk assessment considered the uncertainty of
mould growth models, as well as providing a stochastic representation
of the external climate [27].

Furthermore, a risk management framework based on the Monte
Carlo analysis was developed within the IEA Annex 55 on ”Reliability of
Energy Efficient Building Retrofitting - Probability Assessment of
Performance and Cost” [28]. Finally, a probabilistic approach to
moisture risk assessment was included in a conceptual reliability model
for mould safety in buildings [29].

The use of a Monte Carlo-based probabilistic risk assessment has
proven to be beneficial in assessing moisture risk taking into account
the uncertainty and variability of inputs. However, one of its dis-
advantages is the time required for the risk assessment. This can be
resolved with the development of meta-models.

Meta-models were developed within the IEA Annex 55 framework
for the risk assessment of energy efficient retrofit [30,31] and applied to
building energy simulations.

The aim of the current research is to develop statistical meta-models
for the reduction of computational time in moisture risk assessment. In
this paper, a statistical meta-model was built to describe the relation-
ship between input variables and a response variable calculated
through hygrothermal simulations, considering the case of internal wall
insulation. For the development of the meta-model, additional in-
formation on the input variables affecting the response variable the
most was required. This additional data was obtained through sensi-
tivity analysis, which has been used extensively to inform modelling in
building physics [32].

3. Methodology

The steps to develop a predictive model for probabilistic risk as-
sessment include a Monte Carlo analysis, followed by a sensitivity
analysis and the development of a statistical meta-model. In the first
step, response variables related to moisture accumulation (e.g. max-
imum relative humidity) were obtained from the Monte Carlo analysis;
the analysis considered the uncertainty and variability of the input
variables, which include the hygrothermal properties of building ma-
terials, the internal climate and the weather. The Monte Carlo analysis
consists of defining the probability density functions of input variables,
generating random samples from inputs distributions, performing a
deterministic simulation using the sampled inputs and aggregating the
results into one or more response variables.

The sensitivity analysis provides relevant information on the re-
lative importance of input variables on each response variable. Within
the scope of this paper, the sensitivity analysis allowed us to identify
some non-influential variables and reduce the number of variables for
the development of a meta-model.

The meta-model was developed to reduce the computational time of
numerical analyses; statistical models often require a reduced set of
input variables and therefore can benefit from the results of a sensitivity
analysis.

The steps required for the Monte Carlo analysis, the sensitivity
analysis and the development of the meta-model are explained in detail
in this paper, through the application of the procedure to an internally
insulated solid brick wall.

3.1. The case study - internally insulated wall

The cross-section of a solid brick wall with capillary active internal
insulation was analysed. The wall is formed by a layer of solid brick, a
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layer of plaster acting as a bonding coat, a layer of woodfibre insulation
and a second layer of plaster (outside to inside, see Fig. 1). In the first
layer, the wall is solely composed by solid brick; this can be a valid
assumption for a simplified analysis, as mortar has been found to have a
small impact on the hygrothermal behaviour of internally insulated
solid brick walls under realistic climate conditions [33]. Therefore, for
the purpose of the analysis, the simulation of the combined heat and
moisture transfer was simplified to one-dimensional, following the
horizontal axis of the wall. However, the same approach can be ex-
tended to two- or three-dimensional simulations.

The proposed probabilistic risk assessment considers the possible
variations of design parameters, which could change through inter-
ventions, and the uncertainty and variability of other parameters. In the
solid wall, the water vapour diffusion resistance of insulation was
treated as a design variable, while other hygrothermal properties of
insulation and the properties of brick and plaster were considered non-
design parameters.

The insulation thickness was treated as a design variable; the range
used for the insulation thickness (i.e. 40mm–120mm) represents the
thickness of woodfibre boards available in the market. A thickness of
215mm was considered for the brick in the analysis, since it has been
estimated that 70% of solid wall buildings in England have that
thickness [34]. The thickness used for the first and second layers of the
plaster was 5mm and 12.5mm respectively, according to building
practice.

The risk assessment considered the temporal variability of external
climate (i.e. using several years of climate data), and the spatio-tem-
poral variability of surface coefficients (i.e. considering the full range of
coefficients); the rain exposure coefficient was treated as design para-
meter. The indoor environment and internal surface coefficients were
not treated as design parameters, but their uncertainty and variability
were considered.

The probabilistic risk assessment considered risks related to
moisture accumulation, which can occur at the critical interface be-
tween the existing wall and the applied insulation system. Various
failure criteria can be used for the assessment, with the aim of avoiding
condensation, mould growth, wood rot and other issues.

3.2. Monte Carlo analysis

3.2.1. Input variables
A Monte Carlo analysis starts with the selection of probability

density functions for the input variables; in this paper, the distributions
were derived from literature and material databases.

Material parameters for bricks were taken from the relevant aca-
demic literature [35,36], whereas the parameters for insulation and
plaster are from the material database of Delphin [37], the hygro-
thermal simulation software used for the analysis. For a good char-
acterization of building materials, it is advised to describe some hy-
grothermal properties as functions of other parameters (e.g. moisture
content and capillary pressure). These functions are affected by various
material parameters, as described by Zhao et al. [35] and shown in
Table 1.

In this paper, it was assumed that the hygric functions can be

described by the product of these material parameters and fixed relative
functions, which represent a type of brick, insulation or plaster.
Therefore, the sampling of hygric material properties will only consider
the material parameters identified.

The hygrothermal material parameters are described in Table 2. The
probability density functions describe types - or clusters - of materials,
as opposed to specific or general materials. In particular, the brick type
described is a historic brick made of clay, loam and sand [36]; wood-
fibre insulation and lime plaster were, respectively, the type of in-
sulation and plaster considered. The analysis considered the possibility
of having an insulation system with additional vapour resistance; this
has been implemented in the analysis having the vapour diffusion re-
sistance coefficient μi of a wider range than typical woodfibre insula-
tion.

Material properties of open-porous materials depend on the porous
structure of materials; therefore, in materials such as brick, stone and
plaster, there can be associations between material properties (e.g. open
porosity and density [38]). A rank correlation matrix of material
parameters of bricks [35] was integrated in the probabilistic risk as-
sessment through the Iman and Conover method [39], which is a rank
transformation commonly used to consider associations between vari-
ables in a model [40,41].

In order to characterise the climate variability, a collection of 22
years of weather data was considered in the analysis, as the existing
typical and near-extreme reference years do not necessarily represent
typical and near-extreme climates in relation to moisture risk [42].

For the development of the meta-model, all orientations were con-
sidered in the sensitivity analysis and model-building; therefore the
orientation was a uniform variable from 0° to 360°. The same applies to
the surface absorptivity of short-wave (solar) radiation, which is de-
termined by the colour of the external wall, and it is made to vary in its
whole range. During the moisture risk assessment, these values can be
set to describe the case under analysis, as shown in Section 4.4.

External surface parameters such as convective heat transfer coef-
ficient, ground emissivity of long-wave radiation and surface absorp-
tivity of short-wave radiation were taken from literature, as shown in
Table 3. For both the Monte Carlo and sensitivity analyses, the whole
range was considered for each parameter.

For the internal climate, temperature and vapour pressure excess
were determined. The internal temperature was kept constant at 20 °C.
The internal vapour pressure excess considered in the analysis was
derived from the results of the Warm Front research project [46]. The
research identified vapour pressure excess in UK living rooms and
bedrooms for dwellings in fuel poverty (values normalized at an ex-
ternal temperature of 5 °C).

Random samples of vapour pressure excess at 5 °C were extracted
from the vapour pressure excess distribution in UK bedrooms. The time
series for the vapour pressure was given by the interpolation of the
sampled value at different external temperatures, using the function in
BS EN ISO 13788 [47]. The resulting internal vapour pressure was
given by the sum of external vapour pressure and internal vapour
pressure excess.

Internal surface parameters were taken from literature, as shown in
Table 4.

Fig. 1. Case study wall cross-section.

Table 1
Material functions and related material parameters (from Zhao et al. [35]).

Material function Symbol Units Material parameters

Moisture retention function θ pC( ) −m m3 3 θeff

Water vapour permeability k θ( )v s θ μ,por

Liquid water conductivity k θ( )l s θ k,eff l eff,

Thermal conductivity λ θ( ) − −Wm K1 1 θeff
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3.2.2. Monte Carlo analysis: sampling
The replicated Latin Hypercube Sampling was used for the sampling

stage of the Monte Carlo analysis. Compared with the simple random
Monte Carlo sampling, the Latin Hypercube Sampling is a stratified
sampling method which is able to reduce the size of the necessary
sample while accurately depicting the probability density function of
the input random variables.

Variations of the standard Latin Hypercube sampling were used in
this paper, with the aims of improving the efficiency of the sampling,
implementing a stopping criterion and considering correlated variables.
First, the Latin Hypercube Sampling was optimised according to the
maximin space-filling criterion, which maximises the minimum dis-
tance between any two points.

Twenty mini Latin Hypercubes of sample size 100 were generated
(as opposed to one full Latin Hypercube of size 2000) to allow for a
stopping criterion for the Monte Carlo analysis [49]. Finally, The Iman
and Conover method of imposing rank correlations on pairs of input
factors was implemented in the sampling stage, as described by Zhao
[40].

Dynamic equilibrium in the simulation was ensured by performing
the simulation for various years until the last two years have a negli-
gible difference (assumed as lower than the accuracy of a relative hu-
midity sensor, = ±ε ϕ( ) 2.5%). For this application, two years are re-
quired. The simulations started in October, to consider complete
wetting and drying cycles.

3.2.3. Monte Carlo analysis: response variables
The input variables, described in Section 3.2.1 and sampled ac-

cording to Section 3.2.2, were used in deterministic simulations using
the hygrothermal simulation software Delphin. The results were ag-
gregated into response variables, which were selected according to the
failure criteria used in the risk assessment. More than one response
variable can be used for the assessment of moisture risk in internally
insulated walls. For example, with fully bonded woodfibre insulation
systems, the maximum relative humidity (in a year) at the wall-in-
sulation interface can be used to evaluate condensation risk [50] and

Table 2
Material parameters and probability density functions for hygrothermal simulations. A: first probability distribution parameter (i.e. mean for normal distribution,
minimum for uniform distribution), b: second probability distribution parameter (i.e. standard deviation for normal distribution, maximum for uniform distribution).

No. Input Variable Symbol [Units] Distribution a b

1 Brick density −ρ kgm[ ]b
3 Normal 1730.0 108.5

2 Brick specific heat capacity − −c Jkg K[ ]e b, 1 1 Normal 874.41 63.05

3 Brick thermal conductivity − −λ Wm K[ ]b 1 1 Normal 0.497 0.102

4 Brick open porosity −θ m m[ ]por b, 3 3 Normal 0.347 0.041

5 Brick effective saturation moisture content −θ m m[ ]eff b, 3 3 Normal 0.314 0.0034

6 Brick water vapour resistance factor −μ [ ]b Normal 13.5 2.4
8 Brick liquid water conductivity at effective saturation k s[ ]l eff b, , Uniform 1.2E-9 2.4E-8

9 Insulation density −ρ kgm[ ]i
3 Uniform 120 300

10 Insulation specific heat capacity − −c Jkg K[ ]e i, 1 1 Uniform 1000 2100

11 Insulation thermal conductivity − −λ Wm K[ ]i 1 1 Uniform 0.039 0.063

12 Insulation open porosity −θ m m[ ]por i, 3 3 Uniform 0.40 0.99

13 Insulation effective saturation moisture content −θ m m[ ]eff i, 3 3 Uniform 0.30 0.89

14 Insulation water vapour resistance factor −μ [ ]i Uniform 3 225
15 Insulation liquid water conductivity at effective saturation k s[ ]l eff i, , Uniform 4.9E-9 2.2E-8

16 Plaster density −ρ kgm[ ]p
3 Uniform 1240 1800

17 Plaster specific heat capacity − −c Jkg K[ ]e p, 1 1 Uniform 800 1100

18 Plaster thermal conductivity − −λ Wm K[ ]p 1 1 Uniform 0.28 0.82

19 Plaster open porosity −θ m m[ ]por p, 3 3 Uniform 0.30 0.53

20 Plaster effective saturation moisture content −θ m m[ ]eff p, 3 3 Uniform 0.28 0.46

21 Plaster water vapour resistance factor −μ [ ]p Uniform 8 51

22 Plaster liquid water conductivity at effective saturation k s[ ]l eff p, , Uniform 8.7E-12 3.0E-9

34 Insulation thickness x m[ ]i Uniform 0.04 0.12

Table 3
External parameters and probability density functions for hygrothermal simulations.

No. Input Variable Symbol [Units] Distribution a b Ref.

24 External climate Cli Discrete Uniform 22 [42,43]
23 Orientation γ[°] Uniform 0 360
28 Convective heat transfer coefficient, external − −h Wm K[ ]c e, 2 1 Uniform 12.5 50 [44]

30 Short wave radiation - absorption coefficient −α [ ]sw Uniform 0.5 0.9
31 Short wave radiation - ground reflectivity (albedo) −A [ ] Uniform 0.05 0.56 [45]
32 Long wave radiation - ground emissivity −ε [ ]g Uniform 0.86 0.97 [45]

33 Rain exposure coefficient −k [ ]rain Uniform 0 1

Table 4
Internal parameters and probability density functions for hygrothermal simu-
lations.

No. Input Variable Symbol [Units] Distribution a b Ref.

25 Internal vapour
pressure excess
(bedroom)

p PaΔ [ ]v Normal 325.421 137.131 [46]

26 Combined heat
transfer
coefficient,
internal

− −h Wm K[ ]i 2 1 Uniform 3 15 [48]

27 Vapour transfer
coefficient,
internal

−v sm[ ]i 1 Uniform 0.1E-7 1E-7 [48]
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the maximum moisture content of woodfibre (in mass percent) can be
used to evaluate wood rot risk [51]; these criteria are based on per-
centage values. Other failure criteria used in moisture risk assessment
are more complex than the percentage-based criteria just described. If
there is risk of mould growth then this can be evaluated through dose-
response relationships and the related response variables (e.g. mould
index [52] or relative dose [53]). These variables derive from models
that describe mould growth as a function of substrate category and
different levels of exposure to certain environmental conditions.

In this work, both response variables based on percentage values
and those based on dose-response relationships were considered for the
development of predictive models for probabilistic moisture risk as-
sessment.

3.3. Sensitivity analysis

A sensitivity analysis was carried out to identify both the input
variables that have the highest effect on the output and those that do
not considerably affect the output and hence can be ignored, which is
useful as statistical models require a parsimonious set of variables.

The sensitivity analysis was carried out through scatter plots and the
elementary effects method. Scatter plots present each input variable
against the response variable; they help identifying relationships be-
tween variables by looking at the shape of the plot. However, they have
limited exploratory power when the input variables are related with
each other.

The elementary effects method is a model-independent screening
method, which provides a qualitative analysis of the input variables
that affect the response variable the most [54]. The method considers
the variation of one input variable at a time while the other variables
are fixed at a random value. This process is repeated N times, with a
different set of fixed values at each iteration; the fixed values are ob-
tained through a random sampling. This is a global sensitivity analysis
method, which considers interaction effects of input variables and non-
monotonic relationships.

In this paper, a radial design was implemented for =N 20 iterations.
For each iteration, the elementary effect related to one input variable is
the difference between the response variable Y considering the varia-
tion of the one input variable and the response variable considering the
baseline terms, divided by the sampling step for the radial design. The
sampled value xi of one input variable was uniformly distributed in the
interval [0,1]; at a later stage these values were converted into input
variables, and inverse cumulative distribution functions were used to
transform sampled values into non-uniformly distributed inputs. For the
jth iteration and the ith input variable, the elementary effect was com-
puted as:

=
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−
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x x
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i
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where u and v denote two rows of the radial sampling matrix for the jth

iteration, with u containing the baseline terms and v the auxiliary terms
of the radial design [55].

Latin Hypercube Sampling was used to obtain the random sampling
matrix. The sensitivity measures μ, ⋆μ and σ were extracted from the
response variable, applying the following equations:
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with EEi
j the elementary effect of the ith variable in the jth screening

path. The value ⋆μ allows for the identification of the overall influence
of an input variable on the response variable, considering non-mono-
tonic relationships; the mean μ has the same purpose but does not
consider non-monotonic relationships, which can be identified by the
comparison of ⋆μ and μ. Finally, σ considers interaction effects.

3.4. Predictive meta-models

A predictive model was created for each type of response variable;
the models were built to describe the relationship between the input
variables and the response. The data used were generated with the
Monte Carlo analysis described in Sections 3.2.1 to 3.2.3.

The models were built using generalised additive models (GAM)
[56] and generalised additive models for location scale and shape
(GAMLSS), as introduced by Rigby and Stasinopoulos [57] and im-
plemented by Marra and Radice [58]. The GAM and GAMLSS models
were implemented using the gam() function from the mgcv R package
and gamlss() from the GJRM R package [67,68]. Both models can deal
with many types of inputs including categorical and continuous vari-
ables. The input variables for the model, described in 3.2.1, were
considered continuous in most cases. The only variable which entered
the model as categorical was the external climate.

The choice of appropriate model depends on the distribution of the
response variable. Many relevant response variables were found for the
moisture risk assessment of internal wall insulation, as mentioned in
Section 3.2.3. They were divided into two groups: the variables based
on percentage values (e.g. maximum relative humidity, moisture con-
tent) and the variables based on a dose-response relationship (e.g.
mould index, dose). Maximum relative humidity was the response
variable used in this paper to describe model building for percentage-
based response variables; the mould index [59–61], considering kiln-
dried spruce as substrate category, was the response variable used to
describe model building in case of dose-response relationships.

3.4.1. Response variables and distributions
For the selected statistical methods, the first step consists of finding

a distribution that fits the response variable. The goodness of fit of these
distributions was assessed using Q-Q plots of normalized quantile re-
siduals [57].

The response variables based on percentage values are continuous
variables that vary from 0 to 1. In such cases, the beta distribution is an
appropriate choice. It has the probability density function (pdf)

= −− −
f y( ) y y

B α α
(1 )
( , )

α α1 1 2 1

1 2
where = −α μ σ

σ1
(1 )2

2 , = − −α μ σ
σ2

(1 )(1 )2

2 and ⋅ ⋅B ( , ) is
the beta function. The expectation of Y according to this distribution's
parametrisation is =E Y μ( ) whereas the variance is

= −V Y σ μ μ( ) (1 )2 . Both the mean μ and standard deviation σ need to
fall within the interval [0, 1]. This is the distribution that was chosen to
develop the predictive model for percentage-based response variables.

The response variables based on a dose-response relationship are
either null or positive, because mould won't develop at all if the en-
vironmental conditions are below a critical value. Therefore, a two-part
model was developed as a combination of a binary regression, to de-
scribe instances when the response variable is zero or not (binary
variable), and a GAMLSS to describe the behaviour of the response
variable for values higher than zero (continuous, positive variable). The
binary part of the response variable is described by a Bernoulli dis-
tribution with probability mass function equal to p if =y 1 and − p1 if

=y 0. In this case, the expectation and variance are given by =E Y p( )
and = −V Y p p( ) (1 ). Parameter p describes the probability that the
response is equal to 1 and must take values in the interval [0, 1]. The
model used for the binary part was a binary regression implemented
using the GAM method, which considers the Bernoulli distribution.
Positive variables can be described by a gamma or a Weibull distribu-
tion. For example, the pdf of a Weibull distribution can be written as
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⎣
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2 2 1 2
, ⋅ ⋅Γ( , ) is the gamma function, and μ

and σ have to be positive.

3.4.2. Link function
When building a model, the constraints on the parameters' spaces

must be satisfied. In particular, every distribution is described by
parameters that can be bounded. Link functions are used to ensure that
the bounds of the distribution fitting the response variable are met [56].

Link functions that are commonly used for response variables that
lie in the interval [0, 1] are the probit, logit and complementary log-log
link functions. For positive response variables, a common link function
is the log link, based on the natural logarithm.1

3.4.3. Input variables and splines
These statistical methods allowed us to account for the possible

presence of non-linear effects of the input variables, or covariates. This
was achieved by using smooth functions of continuous covariates (e.g.
s x( ) where x is a generic covariate) that were represented using a pe-
nalised spline approach. The main idea behind this method is to let the
data determine the shape of the effects that covariates have on the
response of interest without making a priori assumptions [56]. Input
variables are included in the meta-models by specifying the parameters
of the distributions described above as functions of them.

3.4.4. Variable selection
Many input variables were considered for the Monte Carlo analysis.

However, the predictive model needs to have a balance between par-
simony and complexity; hence, starting with a full model of 34 vari-
ables was not ideal. The information from the sensitivity analysis was
used to identify the input variables having limited influence on the
response and the model-building started with an arbitrary full model of
16 variables.

Then, the variable selection was done during model-building. The
most influential covariates in the models were chosen using backward
selection, with the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC), as well as the statistical significance of the
model terms (to favour more parsimonious models). Variables were
discarded one by one and a new model fitted at each step; this process
was repeated until the model fits worsened.

4. Probabilistic risk assessment

4.1. Monte Carlo analysis results

The response variables, maximum relative humidity and mould
index, were obtained from the Monte Carlo analysis (see Fig. 2).

It is important to note that, while the mould index is typically in the
interval [0,6], in this paper the upper limit for mould growth was re-
moved to reveal the whole response distribution. As the removed
function describes the mould behaviour for a mould index higher than 4
[62], the risk assessment can consider only the mould index in the in-
terval [0,4]; nevertheless, this interval is satisfactory for the assessment
of mould growth at interfaces [63].

4.2. Sensitivity analysis of input variables

Scatter plots were generated for all the input variables, plotting each
variable against the response variables maximum relative humidity and
mould index. Considering the scatter plots, only three input variables

showed influence on the response variable: the effective moisture
content of insulation, the rain exposure coefficient and the wall or-
ientation. However, scatter plots do not consider association between
input variables, therefore they could not reveal much in our case. A
screening according to the elementary effects method was performed to
help unveil input variables with limited influence on the response
variable.

Tables 5 and 6 describe the ranking of input variables according to
the response variables of maximum relative humidity and mould index,
respectively. The ranking was performed according to the sensitivity
measure μ*. The other sensitivity variables were used to identify non-
monotonic relationships and interaction effects.

The most important input variables for the maximum relative hu-
midity were found to be the rain exposure coefficient krain, the vapour
diffusion resistance coefficient of the insulation μi and the orientation γ.
They are followed by the external climate Cli, the effective saturation
moisture content of insulation θeff i, and the insulation thickness xi. The
sensitivity measure μ showed that orientation and climate have a non-
monotonic relationship with the response variable. Finally, the sensi-
tivity measure σ showed that the aforementioned variables and the
vapour diffusion resistance coefficient present high interaction effects.

The porosity θpor , specific heat capacity ce and density ρ of materials
do not have a considerable influence on the response variable. Little
influence was found for the emissivity of the surrounding ground εg, the
thermal conductivity of the plaster λp and the indoor vapour pressure
excess pΔ v.

The design variables were among the inputs having the highest in-
fluence on the maximum relative humidity; for the development of the
meta-model, these variables were made to vary in their whole possible
range. From a building physics perspective, the sensitivity analysis
shows that the selection of correct design options can influence the
maximum relative humidity considerably. Of the non-design variables,
the external climate had the greatest influence on the maximum re-
lative humidity; the only way to reduce this influence is to protect the
wall from the external climate (i.e. modifying the external surface
parameters). With existing buildings, some parameters must be set to
describe the wall assessed, such as the wall orientation and the short-
wave absorption coefficient, associated with the surface colour. For
model-building, these two parameters were made to vary in their whole
range, so that the developed model can be used for the assessment of all
215mm-thick brick walls in one location, considering all orientations
and surface colours.

For the mould index, the orientation γ, the rain exposure coefficient
krain and the effective saturation moisture content of insulation θeff i,
were found to be the most important input variables, followed by the
external climate Cli, the insulation liquid water conductivity kl eff i, , , the
insulation thickness xi and the vapour diffusion resistance coefficient of
the insulation μi. Again, orientation and climate have a non-monotonic
relationship with the response variable. Finally, the sensitivity measure
σ showed that the above mentioned variables have high interaction
effects. The lowest ranked variables are consistent with the previous
case.

Overall, the sensitivity analysis for the two response variables
showed a fairly consistent ranking. Again, the ranking showed that
design variables have the highest influence on the response variable;
therefore, the selection of appropriate design interventions might have
a considerable influence on the mould index. The ranking identified by
the screening exercise was consistent with their importance from a
building physics perspective. It was interesting to note that vapour
pressure excess did not have a high impact on the response variable,
being on the lower half of the ranking for both cases.

This information was used for building the predictive meta-model.
Specifically, this made it possible to build models with input variables
that are important from both the statistical and building physics points
of view.

1 According to the notations in this paper, the inverse of the link function is applied to
the right-hand side of the model equation. For example, an exponential function is ap-
plied when the log link is considered.
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4.3. The statistical meta-models

Two different meta-models were built considering different types of
response variables. The first meta-model considers a response variable
based on percentage values (here represented by the maximum relative
humidity), and the second model considers a response based on a dose-
response relationship (here represented by the mould index).

Maximum relative humidity takes values within the interval [0, 1].
According to the analysis of quantile residuals (see Fig. 3), the beta

distribution was considered appropriate in this case.
Based on the ranking provided by the sensitivity analysis, the

variable selection started with a full model of 16 covariates (i.e. fol-
lowing the ranking in Table 5). The final model (after variable selec-
tion) contains 10 covariates. Prediction was performed through trans-
forming the model output according to the link function chosen for this
case. In particular the cumulative logistic distribution function was
employed (here called plogis), so that the values were all in the interval
[0, 1]; this is the inverse of the logit link function. Given that the ex-
pectation for a beta distribution is equal to the mean, μ, the equation of

Fig. 2. Histograms of response variables.

Table 5
Elementary effects, considering maximum relative humidity as response vari-
able.

μ* σ μ Variable symbol No.

37.640 64.554 37.640 krain 33
28.060 123.153 28.060 μi 14
16.866 42.618 −3.017 γ 23
9.563 33.186 2.470 Cli 24
8.733 11.052 −8.730 θeff i, 13

6.857 9.486 6.857 xi 34
2.647 7.117 2.459 kl eff b, , 8

1.835 2.972 −1.835 kl eff i, , 15

1.619 2.763 −1.619 αsw 30
1.117 4.401 1.092 λb 3
1.089 3.044 −0.127 μb 6
0.964 2.522 −0.400 hc e, 28
0.957 2.939 −0.672 θeff p, 20

0.912 1.341 −0.912 A 31
0.629 1.039 −0.629 λi 11
0.485 1.291 −0.230 kl eff p, , 22

0.249 0.403 −0.249 hi 26
0.128 0.278 0.097 θeff b, 5

0.023 0.058 −0.021 vi 27
0.023 0.055 −0.018 λp 18
0.021 0.051 −0.010 ce b, 2
0.020 0.144 0.020 pΔ v 25
0.012 0.028 −0.011 ρb 1
0.012 0.034 0.010 εg 31
0.010 0.031 −0.002 ρi 9
0.006 0.018 0.004 ρp 16

0.006 0.018 0.003 θpor i, 12

0.006 0.013 0.004 ce i, 10
0.004 0.013 −0.001 ce p, 17
0.003 0.007 0.001 θpor b, 4

Table 6
Elementary effects, considering mould index as response variable.

μ* σ μ Variable symbol No.

14.161 8.724 36.434 γ 23
13.14 13.14 20.881 krain 33
11.738 −11.738 19.95 θeff i, 13

3.765 1.339 14.128 Cli 24
2.925 −2.925 7.589 kl eff i, , 15

2.435 2.43 4.815 xi 34
2.422 2.422 6.687 μi 14
1.371 −1.299 4.266 θeff p, 20

1.155 −1.155 2.263 hc e, 28
0.963 0.646 2.388 kl eff b, , 8

0.757 −0.662 2.191 kl eff p, , 22

0.412 −0.298 0.863 λb 3
0.269 0.269 0.527 μb 6
0.267 −0.165 0.602 αsw 30
0.204 −0.108 0.447 A 31
0.15 0.046 0.352 λi 11
0.118 0.081 0.321 hi 26
0.053 −0.019 0.137 θeff b, 5

0.036 0.036 0.256 pΔ v 25
0.014 −0.003 0.048 λp 18
0.011 −0.01 0.029 ce b, 2
0.008 −0.007 0.018 ρb 1
0.007 0.003 0.026 θpor i, 12

0.006 −0.002 0.019 vi 27
0.006 0.003 0.026 ρi 9
0.004 0 0.013 ce p, 17
0.003 0.002 0.012 ce i, 10
0.003 −0.002 0.008 εg 31
0.003 0.002 0.008 ρp 16

0.002 0.001 0.008 θpor b, 4
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interest is

= + + + + + +

+ + + +

μ plogis α s γ s Cli s θ s x s k s k

s α s λ s k s λ

{ ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )},

eff i i l eff b l eff i

sw b rain i

1 2 3 , 4 5 , , 6 , ,

7 8 9 10 (5)

where smooth functions of continuous variables (implemented using
cubic regression splines) were considered as well as a smoothed and
parsimonious version of the categorical variable.

Fig. 4 shows the predicted values of maximum relative humidity
(obtained with the developed model) against the real value of the re-
sponse variable, which it is assumed to be the maximum relative hu-
midity obtained with the Monte Carlo analysis and shown in Section
4.1. This plot shows the relationship between prediction and real value;
the model captures the overall behaviour of the response variable if the
predicted and real values are aligned.

The reference red line indicates the case in which the prediction
would be the same as the response. The data-points are overall aligned
with the red line, suggesting that the model can predict the mean values
for the response reasonably well. In terms of variability, there was a
high spread at lower values of maximum relative humidity and a lower
spread at higher values. For the moisture risk assessment, the behaviour
of relative humidity at high values is of more interest; for example, to
avoid condensation, the maximum relative humidity must be below 95%
[50]. At these values, variability is lower which makes the prediction
task more precise.

The approach also allows other response variables, such as mean
relative humidity or maximum moisture content, to be treated simi-
larly.

A response variable based on a dose-response relationship has either
null or positive values. In this case, if the exposure to favourable en-
vironmental conditions is insufficient for the development of mould,
the mould index would be zero. When mould develops, the mould index
would be a positive value; this value can be used to evaluate the extent
of mould growth.

Therefore, the response variable was divided in a binary part and a
continuous positive part. As a result, a two-part model was developed
where the predicted values are given by the product of the predictions
from the binary GAM and GAMLSS models. From a building physics
perspective, the binary model describes the occurrence of mould
growth, whereas the GAMLSS describes the extent of mould growth
when it occurs.

Variables that determine the occurrence of mould growth might not
be the same variables as the ones influencing the extent of mould
growth. Therefore, the variable selection was done independently, al-
though it started in both cases with a full model determined by the
ranking identified through the sensitivity analysis. The backward se-
lection approach was performed, starting with a full model of 16
variables.

The binary part of the response variable was described by a
Bernoulli distribution, where the expectation is equal to the mean or
probability p. For the binary model, the best link function identified for
this data was the complementary log-log function, an asymmetric link
function. The inverse of the link function for the expectation p is shown
in equation (7). Regarding variable selection, the backward selection
led to the following model, with 11 significant variables:

Fig. 3. Analysis of quantile residuals using the beta distribution, for the response variable maximum relative humidity.

Fig. 4. Comparison of response variable and prediction, for the response vari-
able maximum relative humidity.
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= + + + + + +

+ + + + +

η α s γ s θ s Cli s μ s k s x

s k s λ s k s α s λ

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ),

eff i i l eff b i

l eff i b rain sw i

1 2 , 3 4 5 , , 6

7 , , 8 9 10 11 (6)

= −p η1 exp{exp( )} (7)

For the GAMLSS model, the distribution that best fitted the response
variable was the Weibull distribution. Using variable selection, the final
model contains 12 covariates. Predictions were obtained using the log
link function and a set of smooth functions of input variables. Given
that the expectation of a Weibull distribution depends on both its
parameters, the equations used were

= + + + + + +

+ + + + + +

μ α s γ s θ s Cli s μ s k s x

s k s θ s k s μ s k s α

exp{ ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )},

eff i i l eff b i

l eff i eff p l eff p b rain sw

1 2 , 3 4 5 , , 6

7 , , 8 , 9 , , 10 11 12

(8)

and

= + + + + +σ α s γ s θ s Cli s μ s kexp{ ( ) ( ) ( ) ( ) ( )}eff i i l eff b1 2 , 3 4 5 , , (9)

To ease the computational effort, the variables in equation (9) were
selected via forward selection, based on the knowledge of the physical
mechanisms that influence the variability of the response variable.
Having obtained the individual models, the final prediction was given
by the product of the prediction of the two models.

Fig. 5 shows the predicted values for the mould index, obtained with
the two-part model, against the response variable obtained with the
Monte Carlo analysis.

In the range of the response variable [5,18], the predicted values are
slightly lower than the values of the response variable. This suggests an
underestimation of the risk. On the other hand, there is an over-
estimation when the response variable mould index is above 18.
However, we are mainly interested in the occurrence of mould growth,
described by the binary part of the model and in the range (0,3] of the
continuous response variable; criteria for the avoidance of mould
growth usually require the mould index at interfaces to be below 3
[63], which corresponds to visible mould growth. Therefore, we are
interested in having a good prediction at lower values for the mould
index, where the prediction is reasonably good.

4.4. Prediction

To show the intended use of the developed method, the maximum
relative humidity was predicted for various possible scenarios.

In this paper, two input variables were set to describe the analysed
wall: orientation γ and short-wave absorption coefficient αsw describe
the orientation and the colour of the external surface of the wall; this
means that the developed models can be used to assess the moisture risk
for the whole range of orientation and colour of the external surface.

Other input variables represent design options that can be evaluated
during a moisture risk assessment; in this example the design variables
are insulation thickness xi and rain exposure coefficient krain. It is
therefore possible to assess moisture risk at different levels of insulation
thickness, but also to consider the influence of design interventions that
can reduce rainwater penetration (e.g. external render, hydrophobic
impregnation). The remaining input variables varied according to the
distributions identified for the Monte Carlo analysis.

Fig. 6 shows the predicted maximum relative humidity for six pos-
sible scenarios. The scenarios represent walls with south-west or north-
east orientation, different thickness of woodfibre insulation, xi, with
two levels of rain exposure coefficient ( =k 0.7rain and =k 0.3rain [18]).
In all scenarios, the short-wave absorption coefficient was =α 0.9sw ,
representing dark red surfaces.

The south-west orientation coincides with the prevailing wind di-
rection and high direct solar radiation; a north-east oriented wall is still
subject to some wind-driven rain but receives a very limited amount of
direct solar radiation.

The data shown in Fig. 6 are the results of a probabilistic analysis
performed with the first of the statistical meta-models presented in this
paper, considering maximum relative humidity as response variable.
For each scenario, a distribution of maximum relative humidity was
found by performing a prediction with the developed statistical meta-
model. Scenario 1 shows that, for a wall with 120mm of woodfibre
insulation, the maximum relative humidity is higher for the south-west
orientation than for the north-east orientation. Scenario 2 shows the
results for a thinner layer of woodfibre insulation, where the maximum
relative humidity is higher for the north-east orientation.

Scenarios 3 and 4 represent the same walls with lower exposure to
rain, provided by interventions that can reduce rainwater absorption of
a surface; a 40% reduction of rain exposure leads to a considerable
reduction of maximum relative humidity for the north-east orientation
with an insulation thickness of 120mm, some reduction in the south-
west wall and no change in the north-east wall with 40mm insulation.
Comparing the insulation thicknesses, a thinner insulation leads to an
increase of maximum relative humidity for the wall with north-east
orientation and a decrease of maximum relative humidity for the south-
west orientation.

In practical terms, if the moisture risk assessment considered 95%
maximum relative humidity as failure criterion, the assessment suggests
that a 120mm-thick woodfibre insulation is preferred to a thinner in-
sulation for the north-east wall. The risk can be further reduced with
interventions that reduce the surface rainwater absorption. This sug-
gests that indoor and outdoor moisture sources play a similar role in the
moisture balance of a north-east wall for the location assessed; a
moderate rainwater absorption reduces the influence of external
moisture sources and a thicker insulation leads to a slightly higher
vapour resistance of the system, reducing vapour accumulation from
indoor sources.

The moisture risk assessment for the south-west wall suggests that a
40mm-thick insulation leads to lower moisture risk than thicker in-
sulation, combined with interventions to reduce the surface rainwater
absorption; however, the influence of insulation thickness on the
moisture risk is lower than at the previous orientation. This suggests
that outdoor moisture sources might have a higher influence on the
moisture risk than indoor sources. Also, it is important to note that the
location selected for the analysis is one of the most extreme wind-driven

Fig. 5. Comparison of response variable and prediction, for the response vari-
able mould index.
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rain exposure areas in the UK [64]. This location was selected to show
the influence of orientation on moisture risk. However, in areas with
extremely high exposure to wind-driven rain, one can find external
surface materials that allow low water absorption, such as slate or tiles
[65].

Other studies have identified and confirmed the influence of rain
exposure on the moisture risk of internally insulated solid walls, in
areas exposed to wind-driven rain [14,15,18,66]; some authors have
also concluded that under moderate rain, the performance of capillary
active systems is satisfactory [14,18]. Moreover, studies have con-
firmed that the insulation thickness, which affects the vapour diffusion
resistance of insulation, can have a significant influence on the hygro-
thermal performance of a wall insulated with a capillary active system
[26].

5. Conclusion

This paper presents an approach to build statistical models for the
probabilistic risk assessment of moisture accumulation, when solid wall
buildings are insulated. The risks related to moisture accumulation at
the interface between existing wall and insulation were assessed.
Various criteria can be considered for the analysis, including percen-
tage-based criteria (e.g. maximum relative humidity) and dose-response
criteria (e.g. mould index).

The process included a Monte Carlo analysis for obtaining the re-
sponse variables, a sensitivity analysis to identify non-influential input
variables (with respect to the response variable), followed by the con-
struction of two statistical models, one for the prediction of maximum
relative humidity and another for the prediction of the mould index.

It was found that both risk assessment models had a good predictive
power, hence highlighting the advantages of using GAM and GAMLSS.
The models can be improved considering interactions among covariates
in which case bigger sample sizes would have to be considered.

Following the proposed method, it is possible to build predictive
models considering different wall thickness, types of masonry and in-
sulation.

These predictive models can be developed to be used by profes-
sionals for a fast moisture risk assessment of solid walls when subject to

internal insulation retrofit. They can replace computationally intensive
simulations and provide additional information related to the spread of
the response variable in a few seconds. Multiple criteria can be used
simultaneously in the process of risk assessment; further work will ex-
plore the use of predictive models to allow for this. This process, now
confined to one location, can be extended to consider a regional area, or
more.
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