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Abstract 7 

Landslide displacement prediction is an essential component for developing landslide early warning systems. 8 

In the Three Gorges Reservoir area (TGRA), landslides experience step-like deformations (i.e. periods of stability 9 

interrupted by abrupt accelerations) generally from April to September due to the influence of precipitation and 10 

reservoir scheduled level variations. With respect to many traditional machine learning techniques, two issues exist 11 

relative to displacement prediction, namely the random fluctuation of prediction results and inaccurate prediction 12 

when step-like deformations take place. In this study, a novel and original prediction method was proposed by 13 

combining the Wavelet Transform (WT) and Particle Swarm Optimization-Kernel Extreme Learning Machine 14 

(PSO-KELM) methods, and considering the landslide causal factors. A typical landslide with a step-like behavior, 15 

the Baishuihe landslide in TGRA, was taken as a case study. The cumulated total displacement was decomposed 16 

into trend displacement, periodic displacement (controlled by internal geological conditions and external triggering 17 

factors respectively), and noise. The displacement items were predicted separately by multi-factor PSO-KELM 18 

considering various causal factors, and the total displacement was obtained by summing them up. An accurate 19 

prediction was achieved by the proposed method, including the step-like deformation period. The performance of 20 

the proposed method was compared with the multi-factor Extreme Learning Machine (ELM), Support Vector 21 

Regression (SVR), Backward Propagation Neural Network (BPNN), and single-factor PSO-KELM. Results show 22 

that the PSO-KELM outperforms other models, and the prediction accuracy can be improved by considering causal 23 

factors.  24 
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1. Introduction 27 

Landslides are a common natural hazard, which cause fatalities and economic damages worldwide (Petley 28 

2012). In the Three Gorges Reservoir Area (TGRA) of China, thousands of landslides are threatening the 29 

surrounding environment. It is timely and significant to carry out accurate landslide displacement prediction, which 30 

is an essential component of develoing early warning systems for landslides (Casagli et al. 2010; Intrieri et al. 31 

2013). 32 

Since Saito proposed the empirical formula for landslide prediction (Saito 1965), numerous landslide 33 

prediction models have been developed (Fukuzono 1985; An et al. 2016; Carlà et al. 2016; Carlà et al. 2017; Conte 34 

et al. 2017; Zhou et al. 2017). They can be grouped into two categories: physical models and data-based models. 35 

The data-based models are more popular than physical models (Corominaset al. 2005) because of simple process 36 

and accurate prediction. Recently, a variety of Machine Learning (ML) models have been applied in landslide 37 

spatial and temporal prediction, such as Artifical Neural Network (ANN) (Du et al. 2013; Liu et al. 2016), Support 38 

Vector Machine (SVM) (Wu et al. 2016; Zhu et al. 2017), Decision Tree (Krkač et al. 2017; Ma et al. 2017), 39 

Extreme Learning Machine (ELM) (Cao et al. 2016; Vasu and Lee 2016; Huang et al. 2017), and so on.  40 

Previous studies suggest that the ML models have achieved good performances in landslide displacement 41 

prediction. However, two deficiencies may limit its application: i.e. the fluctuation of prediction results and the 42 

inaccurate prediction in strong deformation period. For example, ELM randomly generates the connection weight 43 

between the input and hidden layers, which leads to the varied outputs, even if the inputs are totally the same 44 

(Huang et al. 2004; Yang et al. 2017). To address these limitations and improve the stability and accuracy of 45 

prediction, the Kernel Extreme Learning Machine (KELM) model, proposed by Huang et al in 2012, is applied to 46 

predict landslide displacement in this study. Simultaneously, the Particle Swarm Optimization (PSO) algorithm 47 

was utilized to optimize the parameters of KELM. The combination of these two methods are expected to increase 48 

the prediction accuray. 49 

Landslide displacement is controlled by many factors and can be considered being constituted by several 50 

components. For example, the long-term deformation trend is controlled by the internal geological conditions, 51 

while the short-term deformation fluctuation is caused by external triggering factors (Glade et al. 2005; Du et al. 52 



2013), such as seasonal weather variations. The key of prediction, especially in strong deformation periods, is to 53 

establish accurate response relationship between causal factors and landslide deformation. Consequently, 54 

displacement time series should be decomposed and predicted separately with consideration of different causal 55 

factors in modelling. 56 

In this study, a hybrid ML model for landslide displacement prediction was proposed with the consideration of 57 

causal factors. The Baishuihe landslide in the TGRA was taken as a case study. It has a typical step-like kinematic 58 

behavior, which means that long stable periods are interrupted by periodic abrupt accelerations. Based on the 59 

analysis of landslide step-like deformation, its displacement was decomposed into trend component, periodic 60 

component and noise by wavelet transform (WT). The precipitation, reservoir level and previous displacements 61 

were adopted as the causal factors of periodic displacement, while the previous displacements were used as the 62 

causal factors of trend displacement. The PSO-KELM was applied to predict both the trend and periodic 63 

displacements with respective to causal factors, and the total forecast displacement was the summation of the 64 

predicted displacements. To verify the performance of the proposed model (multi-factor PSO-KELM), the 65 

single-factor PSO-KELM and multi-factor Extreme Learning Machine (ELM), Support Vector Regression (SVR), 66 

and Backward Propagation Neural Network (BPNN) models were executed and compared. 67 

2. Displacement analysis of step-like landslides  68 

According to the creep deformation theory (Saito 1969), landslides approaching failures experience three 69 

consecutive stages (Fig. 1a): an initial deceleration (primary creep), a steady deformation (secondary creep) and 70 

eventually a hyperbolic acceleration which can lead to collapse. However, because of the influence of external 71 

triggering factors, landslides often show different deformation patterns. In the TGRA, under the influence of 72 

periodic precipitation and reservoir water level oscillations (Fig. 2), most landslides deform sharply from April to 73 

September every year. Then, when the triggers cease, typically from October to April, they become steady again 74 

(Miao et al. 2014). Consequently, the resulting cumulated displacement against time shows a step-like curve (Fig. 75 

1b). 76 



 77 
Fig. 1: (a) Standard creep curve of landslide (I: decelerating creep stage; II: steady-state creep 78 

stage, and III: accelerating creep stage); and (b) Step-like landslide evolution curve 79 

  80 

Fig. 2 Monthly precipitation and reservoir water level variation in the TGRA (2012) 81 

The deformation evolution of step-like landslide is jointly affected by internal geological conditions and 82 

external triggering factors. The displacement controlled by internal geological conditions shows approximately 83 

monotonically increase in larger time scale (Fig. 1a), while the displacement induced by periodic rainfall and 84 

reservoir scheduling shows sudden increases in small time scale (Fig. 1b). These two components of the total 85 

displacement are defined as trend displacement and periodic displacement, respectively. At the same time, the 86 

system error always exists during deformation monitoring process. The cumulated displacement time series can be 87 

decomposed as follows: 88 

  D T P N                                            (1) 
89 

Where D is the original total cumulated displacement, T is the trend displacement, P is the periodic 90 

displacement and N is the noise from system error of monitoring. 91 



3. Displacement prediction model and methodology 92 

3.1. Wavelet Transform 93 

Wavelet Transform (WT) is an effective analysis method for the signal process, which provides good 94 

localization in both time and frequency domains (Daubechies 1990). The WT can be divided into two classes, 95 

continuous wavelet transformation (CWT) and discrete wavelet transformation (DWT). Compared to the CWT, 96 

which requires complex computation and massive data, the DWT requires less time and is easy to be implemented, 97 

the definition is shown as follows: 98 

2( , ) 2 ( ) (2 )
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Where m  is the scaling constant and n  is the translating constant which is an integer; ( )s t is a signal time 100 

series and ( )x


 is the complex conjugate function. 101 

The DWT algorithm proposed by Mallat (1989) has been widely used. It applies high-pass and low-pass filters 102 

to extract approximation and detail sequence from the original signal. The approximation sequence represents the 103 

low-frequency component, which contains trend information. The detail sequence represents the high-frequency 104 

component, which contains periodic information. In addition, a proper wavelet function is also important for WT. 105 

There are many wavelet functions, such as the Haar (1910), Meyer (1990), Daubechies (1992) and so on. In this 106 

study, Daubechies, which is smooth, orthogonal and compactly supported, was adopted to decompose landslide 107 

displacement time series. 108 

3.2. Kernel extreme learning machine 109 

Extreme learning machine (ELM) (Huang et al. 2006) is a novel ML model with feed-forward neural network 110 

training. Because of the excellent generalization ability and fast learning speed, ELM has been adopted in various 111 

fields recently (Lima et al. 2015; Barzegar et al. 2016; Yang et al. 2017). The main characteristic of ELM is that 112 

some parameters, such as the connection weight between the input and hidden layers, are generated randomly. The 113 

basic network structure of ELM is shown in Fig. 3. 114 



 115 

Fig. 3 The network structure of ELM 116 
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Where N is the number of hidden neurons; 
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is the output weight connecting the hidden 120 

nodes and the output nodes; 
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is the weight vector connecting the hidden nodes and the input 121 

nodes; 
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is the threshold of the hidden nodes; ( )h x

 
is a future mapping of hidden nodes. As the 122 

input weight w  and the hidden layer threshold b  are determined randomly, the goal of network training is to 123 

find the best output weight  , which can be calculated by the least square method: 124 

' H Y


                                        (4) 125 

Where H

is the Moore-Penrose generalized inverse of the hidden layer output matrix H (Huang et al. 2006). 126 

In order to overcome the randomness of ELM, and improve its generalization capability and stability, Huang 127 

et al. (2012) extended ELM into kernel learning and proposed kernel-based ELM. Based on orthogonal projection 128 

method and ridge regression theory, the output weight 
 
can be calculated by adding a positive constant1 C as: 129 
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Hence, the output function of ELM is expressed as follows: 131 
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The kernel matrix for the ELM can be utilized to replace ( )h x . Then, the output function of KELM can be 133 



written as follows: 134 
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Where ( , )iK x x
 
is the kernel function. In this study, the radial basis function was applied as the kernel 136 

function. 137 

3.3. Particle Swarm Optimization 138 

The particle swarm optimization (PSO) algorithm was proposed by Eberhart and Kennedy (1995). It is a 139 

population-based stochastic optimization method and has been developed rapidly in recent years. Inspired by the 140 

feeding behavior characteristic of bird flock, PSO was applied to solve the optimization problem. In PSO algorithm, 141 

the particle is described by three basic features, namely position, speed and fitness value. Each particle represents a 142 

solution for the target problem. PSO achieves the search of optimal solution through the pursuit of optimal fitness 143 

value, which is obtained by calculating the objective function of target problem. In addition, the motion direction 144 

and the distance of the particles are determined by the speed feature. The search process of PSO is implemented 145 

through a loop iteration. In the loop iteration, PSO seeks the global best solution by adjusting the trajectory of each 146 

individual toward its own best location and the best particle of the entire swarm (Eberhart and Kennedy 1995). 147 

Considering that the performance of KELM will be affected by its parameters, PSO was adopted to seek 148 

appropriate parameters. 149 

3.4. The proposed model and performance evaluation 150 

As analyzed in Section 2, the step-like displacement of the studied landslide is composed of trend 151 

displacement, periodic displacement and noise. The displacement components are affected by different factors. In 152 

this proposed model, the noise was removed from the original total displacement at first; then, the total 153 

displacement (after denoising) was decomposed into two displacement components (see Section 4.3 for details). 154 

Considering the different mechanisms of trend and periodic displacements, they were separately modeled using the 155 

PSO-KELM, and the total displacement was obtained by adding them together. The flowchart of the proposed 156 

method is shown in Fig. 4. 157 



 158 

Fig. 4 The proposed prediction method for the step-like landslide displacements 159 

In order to assess the model performance, four statistical indices were used, namely the root mean square error 160 

(RMSE), absolute percentage error (APE), mean absolute percentage error (MAPE) and relation coefficient (R). 161 

Larger R and smaller RMSE, APE and MAPE indicate higher prediction performance. The formulas of the four 162 

indices are shown as follows: 163 
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where N  is the number of cumulated displacement values; iD  is the observed cumulated displacement 168 

values; ˆ
iD  is the predicted cumulated displacement values; D  is the mean of observed values; D̂  is the mean of 169 

predicted values. 170 

4. Case study: the Baishuihe landslide 171 

4.1. Geological conditions 172 

Baishuihe is located in the county of Zigui, Hubei province (31°01'34"N, 110°32'09"E), 56 kilometers away 173 

from the Three Gorges Dam (Fig. 5). The landslide is fan-shaped in plane with a main sliding direction of 20° NE. 174 

The area of Baishuihe is about 0.42km2, with the maximum length and width of 780m and 700m, respectively (Fig. 175 

6). The average depth of sliding mass is approximately 30m with an estimated volume of 12,600m3. The landslide 176 

elevation extends from 75m to 390m, and the slope is gentle in the middle part and steep in both the front and rear 177 

part (Fig. 7). 178 

 179 
Fig. 5 The location of Baishuihe landslide (Satellite image from Google Earth) 180 



  181 
Fig. 6 Topographical map of the Baishuihe landslide (modified from Li et al. 2010) 182 

The main materials of Baishuihe landslide are quaternary deposits, which contain silty clay and fragmented 183 

rubble with a loose and chaotic structure. The bedrock underlying the landslide is composed of silty mudstone sand 184 

muddy siltstones of the Jurassic Xiangxi Formation (Chen et al. 2010; Miao et al. 2014; Yabe and Hayasaka 1920), 185 

with the dip direction ranging from 15° to 20° and the dip angle from 32° to 36° (Fig. 7).  186 

 187 
Fig. 7 Geological profile I-I' of the Baishuihe landslide (modified from Li et al. 2010) 188 

4.2. Deformation characteristic analysis 189 

The depth of the sliding zone was identified through boreholes and inclinometers. As shown in Fig.7, there are 190 

two sliding surfaces, namely initial sliding surface and secondary sliding surface, occurring at different depths. The 191 



depth of the secondary sliding surface varies from 12m to 21.5m, while the initial sliding surface is deeper than 192 

30m. A possible explanation for the formation of the secondary sliding surface is that a complete failure along the initial 193 

sliding surface would have required much more energy due to the large volume and complex geological conditions of the 194 

Baishuihe landslide. 195 

According to field investigation and monitoring data analyses, the Baishuihe landslide can be divided into two 196 

blocks, the active block and the relatively stable block. The cumulated displacement of the active block is found as 197 

much as 3,500mm from the year 2003 to 2014 (Fig. 8). The stable block is deforming very slowly and the 198 

cumulated displacement is approximately 20mm. Apparently, the deformation velocity varies spatially. The 199 

deformation of the eastern part is stronger than the western part, while the front part experiences larger deformation 200 

than the rear part. 201 

 202 
Fig. 8 The monitoring data of the Baishuihe landslide 203 

Since the first impoundment of the Three Gorges Reservoir in June 2003, there were many deformation 204 

indications found on Baishuihe landslide. In the early stage of impoundment, the reservoir water level rose from 205 

75m to 145m, the Baishuihe landslide deformed gradually and several cracks developed in the front part of the 206 

landslide (Table 1, Fig. 6 and 8). In 2007, when the reservoir level firstly reached 156m and dropped from 156m to 207 

145m from February to August, combining the influence of the heavy precipitation of 518.2mm in July, the 208 



landslide deformed greatly and the cumulated displacement reached 1711.4mm (Fig. 8).  209 

Table 1 The main macroscopic deformation phenomena in the Baishuihe landslide 210 
Time Rainfall 

(mm) 

Reservoir  
Water level(m) 

Deformation 
velocity (mm/d) 

Description of main deformation indications 
Year Month 

2003 7~9 228.8 135(±0.2) 1.8~2.1 Generated the tensile crack L1 with direction of 

320°,width of 5~20mm and length of 5~300m (Fig. 9a); 

generated the shear crack L2 with direction of 

10°~40°,width of 5~15mm and length of 5~20m (Fig. 

9b). 

2005 8~10 178.4 135.5(±0.5) 1.8~3.0 Generated the shear crack L3 with direction of 50°,length 

of 50m and width of 10~20mm (Fig. 9c); generated the 

tensile crack L4 with direction of 300°, length of 50m and 

width of 10~20mm (Fig. 9d); 

2007 5~8 518.2 148.5~146 0.3~50.9 The landslide deformed the most in this year. All the 

cracks developed greatly (Fig. 9); a series of cracks 

developed in the rear and formed the landslide boundary. 

Some small cracks developed in the west part of the 

landslide. 

2009 5~7 120.2 155.9~145.5 2.2~6.7 The cracks kept developing, especially in the eastern and 

front part of the landslide. 

 211 
Fig. 9 Deformation indications on Baishuihe landslide 212 

As a typical landslide with step-like deformation, the displacement of Baishuihe was increasing from April to 213 

September each year under the joint influence of heavy precipitation and drawdown of the reservoir water level. 214 

However, from October to April in the following year, while the reservoir level was stable (175m) and the 215 

precipitation was gentle, the landslide was in a stable state, experiencing small displacement. 216 



4.3. Decomposition of displacement time series 217 

The step-like deformation of landslide is a complex, dynamic and nonlinear system (Eid 2014). According to 218 

the deformation analysis in Section 4.2, Baishuihe landslide is a retrogressive landslide under combined influence 219 

of precipitation and reservoir level. The GPS monitoring station XD-01 in the front part was selected to establish 220 

the landslide forecasting model, since its monitoring data showed the highest cumulated displacement (Fig. 8). In 221 

the TGRA, the reservoir level has been regularly fluctuating between 145m and 175m since 2009 (Fig. 8). Hence, 222 

the monitoring data after 2009 was adopted for modelling. 223 

Noise is unavoidable for the surface deformation monitoring by GPS and should be removed at first. Wavelet 224 

transform is an effective denoising method, and the automatic one-dimensional denoising method in the wavelet 225 

toolbox of MATLAB was used to remove the system noises from the original displacement sequence. In the 226 

frequency domain, the low-frequency component represents the trend displacement, while the high-frequency 227 

component represents the periodic displacement. The DWT with the function of Daubechies 4 was applied to 228 

divide the total cumulated displacement into the trend and periodic displacement (Fig. 10). The DWT process is 229 

performed in the wavelet toolbox of MATLAB as well. 230 

 231 
Fig. 10 Displacement decomposition result of XD-01 232 

In addition, the ML models are more sensitive to the data ranging from 0 to 1. Therefore, all the data should be 233 

normalized into the desired range using the following formula before modelling: 234 
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max min

x x
x

x x


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                                      (12) 235 

Where, x are the normalized values, x are the original values, maxx  is the maximum value of a sequence, 236 

minx  is the minimum value of a sequence. 237 

4.4. Prediction of trend displacement 238 

The trend displacement is controlled by internal geological conditions. As shown in Fig. 10, the trend 239 

displacement of the landslide is a smooth and monotonically increasing sequence, which is similar to the secondary 240 

stage of the standard creep curve (Fig. 1a). Therefore, we can infer that Baishuihe landslide is in a steady 241 

deformation state in large time scale. The PSO-KELM was applied to predict the trend displacement of Baishuihe 242 

landslide. In the modelling of trend displacemetn, the monthly displacement from January 2009 to December 2012 243 

was used to train, while the monthly displacement from January to December in 2013 was used for testing. The 244 

trend displacement over the past 1, 2, 3 months was used as inputs (Zhou and Yin 2014; Cao et al. 2016). Some 245 

samples of the data used in the modelling are shown in Table 2. The optimal parameters of KELM were searched 246 

with PSO, whose results were 133.5672C   and 49.8025 , where C  is the regularization coefficient and   247 

is the parameter of Kernel function. As shown in Fig. 11, the PSO-KELM achieved a good performance in trend 248 

displacement; the results of RMSE, MAPE and R were 2.397, 0.001 and 0.998, respectively. 249 

 250 
Fig. 11 The predicted and measured values of the trend displacement 251 

Table 2 Some data samples used in the modelling of trend displacement 252 

Time Input 1 Input 2 Input 3 Output Notes 

Jan 2013 0.8332  0.8477  0.8626  0.8770  Inputs 1-3 are the trend displacement over 

the past 1, 2 and 3 month respectively. 

Output is the trend displacement of the 

current month; 

The displacement data is normalized into 

the range of [0,1]; 

Feb 2013 0.8477  0.8626  0.8770  0.8914  

Mar 2013 0.8626  0.8770  0.8914  0.9042  

Apr 2013 0.8770  0.8914  0.9042  0.9152  

May 2013 0.8914  0.9042  0.9152  0.9256  

Jun 2013 0.9042  0.9152  0.9256  0.9351  



4.5. Prediction of periodic displacement 253 

4.5.1 Causal factor analysis and input decision 254 

For the periodic displacement component, which shows small-scale fluctuations, external triggering factors 255 

are considered. As stated in Section 4.2, heavy precipitation and fluctuation of reservoir level are the main factors 256 

triggering the deformation of Baishuihe landslide from April to September. 257 

The Baishuihe landslide is located in a rainy area where landslide deformation easily occurs. Rainfall 258 

infiltration may increase the sliding force which promotes landslide evolution: on the one hand, rainfall infiltration 259 

in landslides will increase the weight of the sliding mass; on the other hand, the accumulation of rainwater on 260 

thesliding surface will reduce the shear strength of sliding soil. Previous studies suggest the cumulated precipitation 261 

over the previous two months has a close relationship with landslide deformation (Keefer et al. 1987; Cao et al. 2013; 262 

Cao et al. 2016; Krkač et al. 2017; Bogaard and Greco 2018). In this study, the shapes of the precipitation of the 263 

one-month and two-months antecedent rainfall were coincident with the monthly displacement in general (Fig. 12). 264 

Therefore, the one-month and two-months antecedent rainfall were adopted as inputs to reflect the effect of 265 

precipitation (Table 3).  266 

 267 
Fig. 12 The relationship between antecedent rainfall and the displacement of XD-01 268 

 The macroscopic deformation of the Baishuihe landslide occurred at the beginning of the TGRA 269 

impounding in 2003 (Table 1 and Fig. 8). The influence of the reservoir level fluctuation on landslide deformation 270 

mainly took place during the water level decline period (Fig. 13); the faster the reservoir level was descending, the 271 

greater the landslide deformed (Tang et al. 2015; Sun et al. 2017). For example, in May 2009, the landslide 272 



deformed 36mm when the reservoir level dropped 5.3m; under the similar precipitation condition in June 2009, the 273 

landslide displacement was 218mm when the reservoir level dropped 8.7m (Fig. 13). Moreover, landslide 274 

deformation varies with different elevations of reservoir level as well (Ren et al. 2015; Zhou et al. 2016). Hence, 275 

the variation rate and average elevation of reservoir level in the current month were applied as inputs to represent 276 

the effect of reservoir scheduling on landslide deformation (Table 3). 277 

 278 

Fig. 13 Relationship between the displacement and reservoir water level variation  279 

The current kinematic state of a landslide is another important factor for its dependence from external factors 280 

(Crozier 1986). Under varied evolution states, the response of landslide deformation to external triggering factors is 281 

totally different. For example, when the landslide is under stable conditions, even a strong precipitation may only 282 

cause slight deformation. In contrast, when the landslide is under an unstable evolution state, a slight precipitation 283 

may break the equilibrium of the original system and cause a sharp acceleration (Glade et al. 2005). Therefore, the 284 

displacement over the past 1, 2 and 3 months were adopted as inputs to represent the current evolution state (Zhou 285 

and Yin 2014) (Table 3).  286 

Table 3. Inputs for periodic displacement modelling 287 

Factors Inputs 1-7 

Precipitation Input 1: the one-month antecedent rainfall 

Input 2: the two-months antecedent rainfall 

Reservoir level Input 3: the variation speed of reservoir level of the current month 

Input 4: the average elevation of reservoir level in the current month 

Evolution state Input 5: the displacement over the past 1 month 

Input 6: the displacement over the past 2 month 

Input 7: the displacement over the past 3 month 



4.5.2 Modelling and prediction of periodic displacement  288 

Based on the deformation analysis of Baishuihe landslide, seven causal factors were taken as inputs, and the 289 

periodic displacement was considered as the output. As with the modelling of trend displacement, the monthly 290 

displacement from January 2009 to December 2012 was used to train, and the monthly displacement from January 291 

to December in 2013 was used for testing. Some samples of the data used in the modelling of periodic 292 

displacement are shown in Table 4. The forecasting model of periodic displacement was established with the 293 

application of PSO and KELM. Furthermore, in order to compare the prediction performance of multi-factor 294 

PSO-KELM, four other methods were adopted to predict the periodic displacement, namely the single-factor 295 

PSO-KELM, multi-factor ELM, multi-factor SVR, and multi-factor BPNN. The parameters and inputs of these 296 

methods are shown in Table 5. 297 

Table 4 Some data samples used in the modelling of periodic displacement 298 

Time Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Output Notes 

Jan 2013 0.0274  0.9248  0.2519  0.0251  0.5960  0.5450  0.4890  0.4480  The detail information of inputs is 

shown in Table 3;  

Output is the periodic displacement 

of the current month;  

The data was normalized into the 

range of [0,1]. 

Feb 2013 0.0411  0.7715  0.1822  0.0274  0.5450  0.4890  0.4480  0.4240  

Mar 2013 0.1578  0.6259  0.2370  0.0411  0.4890  0.4480  0.4240  0.3830  

Apr 2013 0.1898  0.5674  0.3019  0.1578  0.4480  0.4240  0.3830  0.3640  

May 2013 0.3729  0.4058  0.0548  0.1898  0.4240  0.3830  0.3640  0.4080  

Jun 2013 0.5683  0.0556  0.1745  0.3729  0.3830  0.3640  0.4080  0.7520  

Table 5 The description and parameters of the five methods 299 

Model Description Parameter Notes 

Multi-factor 

PSO-KELM 

PSO-KELM model with consideration of causal factors. 

Inputs: input 1 ~ 7. 

c = 985.4135 

γ =0.6240 

c is the regularization coeffcient; γ is 

the parameter of Kernel function. 

Single-factor 

PSO-KELM 

PSO-KELM model without consideration of triggering factors. 

Inputs: input 5 ~ 7. 

c = 133.5672 

γ = 49.8052
 

Multi-factor 

ELM 

ELM model with consideration of causal factors. 

Inputs: input 1 ~ 7. 

n = 15 n is the number of neurons in hidden 

layer. 

Multi-factor 

SVM 

SVM model with consideration of causal factors. 

Inputs: input 1 ~ 7. 

p = 115.0016 

g = 0.0281 

p is the penalty factor; g is the 

parameter of kernel function. 

Multi-factor 

BPNN 

BPNN model with consideration of causal factors. 

Inputs: input 1 ~ 7. 

m = 20 

a = 0.9 

r = 0.05 

m is the number of neurons in hidden 

layer; a is the momentum; r is the 

learning rate. 

As shown in Fig. 14 and Table 6, the predicted values of the five models show high agreement with the 300 

measured values. However, the single-factor PSO-KELM, multi-factor ELM, SVR, and BPNN did not perform 301 

well during the step-like deformation period. The performance criteria indicates that the multi-factor PSO-KELM 302 

achieved the best performance with RMSE, MAPE and R values of 18.104, 0.083 and 0.983, respectively. 303 



 304 
Fig. 14 The predicted and measured values of periodic displacement (M-factor means multi-factor, and S-factor 305 

means single-factor) 306 

Table 6 The prediction accuracy of periodic displacement 307 

Models  RMSE MAPE R 

Multi-factor PSO-KELM 18.104 0.083 0.983 

Single-factor PSO-KELM 29.572 0.095 0.918 

Multi-factor ELM 22.761 0.096 0.958 

Multi-factor SVR 32.087 0.125 0.906 

Multi-factor BPNN 34.515 0.147 0.943 

4.6. Prediction of total displacement 308 

The predicted total displacement was obtained by adding the predicted trend and periodic displacements 309 

together. As stated in Section 4.4, the time series of trend displacement is smooth and can be easily predicted, so it 310 

was predicted applying the same model of PSO-KELM. As shown in Fig. 15, the predicted total displacement of 311 

multi-factor PSO-KELM shows the best agreement with the measured total displacement, while the RMSE, MAPE 312 

and R are 18.418, 0.494% and 0.991, respectively (Table 7). Furthermore, during the step-like deformation, 313 

multi-factor PSO-KELM shows excellent prediction performance as well. For example, jointly affected by heavy 314 

precipitation and decreasing of reservoir level, Baishuihe landslide deformed sharply in June 2013, and the 315 

multi-factor PSO-KELM achieved precise prediction by establishing the accurate response relationship between 316 

triggering factors and deformation, the APE of the predicted value is only 0.670% (Fig. 16). The four compared 317 

methods also performed well most of the time, but all of them achieved less accurate prediction in the crucial 318 



period of step-like deformation. For the predicted displacement of June, the APE of signal-factor PSO-KELM and 319 

multi-factor ELM, SVR, BPNN are 2.511%, 1.463%, 2.448% and 2.323%, respectively (Fig. 16).  320 

 321 
Fig. 15 The predicted and measured values of total displacement (M-factor means multi-factor, and 322 

S-factor means single-factor)  323 

Table 7 The prediction accuracy of total displacement 324 

Models RMSE MAPE R 

Multi-factor PSO-KELM 18.418 0.494% 0.991 

Single-factor PSO-KELM 29.125 0.626% 0.969 

Multi-factor ELM 22.709 0.574% 0.984 

Multi-factor SVR 31.910 0.777% 0.965 

Multi-factor BPNN 35.628 0.899% 0.971 

 325 
Fig. 16 The error comparison of the five methods 326 



5. Discussion 327 

5.1. Early warning application 328 

Landslide prediction is an important component of early warning system which is essential for landslide 329 

prevention and mitigation (Sassa et al. 2009; Intrieri et al., 2013; Mazzanti et al., 2015; Intrieriand Gigli 2016). ML 330 

methods and in general all data-based predictive models (such as those cited in the introduction section) use past 331 

monitoring data as the foundation for their forecast. To monitor a phenomenon’s parameter, a longer time series 332 

(preferably at least 1 year) allows to better express its whole variability and complete range of behaviors, such as 333 

seasonal oscillations, level of noise and trend. A slope collapse is usually an unprecedented event characterized by 334 

peaks in deformation rate and acceleration. It typically represented by the maximum values in the time series. If 335 

ML methods do not have a precedent history of such events to train with, it is not possible to forecast them and 336 

therefore to provide a time of failure. Furthermore, the output of such models is not a time (of failure) but a 337 

displacement value, underlying that their purpose is not directly to provide an estimation of the moment of collapse 338 

of a landslide. 339 

Nonetheless, the predictive capacities of models such as the PSO-KELM can still be useful in an early 340 

warning perspective. In fact, predicted displacements can be used to set warning thresholds (Crosta and Agliardi 341 

2012) and to recognize when the landslide undergoes an unpredicted acceleration that can therefore be considered 342 

anomalous and trigger the necessary early warning procedures. For example, such models can detect anomalous 343 

displacements relatable with the initiation of the tertiary creep stage (Fig. 1a). At that point, time of failure 344 

forecasting methods (Saito, 1969; Fukuzono, 1985; Mufundirwa et al., 2010) could be run in parallel until either 345 

the collapse occurs or the landslide reaches a new equilibrium. The same application was envisaged by Carlà et al. 346 

(2016) and Miao et al. (2018) using similar approaches. Such method permits to overcome the setting of thresholds 347 

based only on expert judgement but has a major drawback of requiring a long time series of monitoring data. 348 

5.2. Performance of PSO-KELM and future developments 349 

By comparing the multi-factor ELM, SVR and BPNN, it is found that the prediction capacity of ELM is better 350 

than SVR and BPNN, that is agreed with the previous scientific literature (Lian et al. 2014; Cao et al. 2016; Huang 351 

et al. 2017). However, in the application on landslide displacement prediction, one drawback of the ELM is that the 352 

prediction results vary with its random connection weight between the input and the hidden layer. As shown in Fig. 353 



17, although the inputs and parameter of the ELM are the same, 4 sets of predicted periodic displacements are 354 

different, especially in the step-like deformation period. ELM can achieve accurate predictions, but inaccurate 355 

predictions occur sometimes, with the risk of misleading the decisions of disaster managers. In order to avoid the 356 

random factor within the prediction process, kernel learning was introduced into ELM, and the KELM was 357 

proposed. In this study, the hybrid model of PSO-KELM was applied in landslide displacement prediction. 358 

Moreover, compared the prediction results of the multi-factor PSO-KELM and ELM (Fig. 15 and 16), we can find 359 

that the PSO-KELM has a stronger prediciton capacity. 360 

 361 

Fig. 17 The prediction accuracy comparisons between different trials of ELM  362 

As shown in Fig. 15 and 16, compared with the multi-factor PSO-KELM, the single-factor PSO-KELM 363 

performed worse in the step-like deformation period. The sharp increase of the displacement plays a significant role 364 

in the evolution process of the step-like landslide, the speed and increase of which are controlled by the triggers 365 

(the precipitation and the reservoir fluctuation). The single-factor PSO-KELM method cannot simulate the 366 

relationship between the deformation and the triggers, that is the reason why the large difference exists. Hence, in 367 

order to achieve accurate prediction in the step-like deformation period, the triggering factors should be considered. 368 

Landslide displacement prediction can be implemented accurately by integrating the application of ML 369 

technique and engineering geology. However, the cost of some professional monitoring devices, such as GPS, 370 

clinometers et al. may limit the application of the proposed model. The development of satellite radar 371 

interferometry provides effective methods to solve this tough problem. In future studies, open-access satellite data 372 

(such as Sentinel-1) and advanced InSAR time series processing techniques will be applied to extract landslide 373 

deformation information, which can be used as basic data to achieve economic and effective landslide prediction. 374 



6. Conclusions 375 

The Baishuihe landslide in the TGRA has a typical step-like deformation behavior. It experiences sudden 376 

accelerations from April to September under the combined influence of precipitation and reservoir water level 377 

variation, while it is almost stable during the rest of the year. The landslide is under a steady deformation state in 378 

large time scale and deforms retrogressively with the stronger deformation in the eastern and front part.  379 

The sequence of the total cumulated displacement can be decomposed into trend displacement and periodic 380 

displacement by wavelet transform, while the noise component was eliminated. The trend displacement shows 381 

approximately monotonically increasing controlled by geological conditions, while the periodic displacement 382 

shows periodic fluctuations induced by triggering factors. The two displacement items were predicted by the 383 

PSO-KELM model with different inputs separately; and the predicted total displacement was obtained from the 384 

summation. The REMS, MAPE and R of the predicted result are calculated as 18.418, 0.494% and 0.991, 385 

respectively. It indicates that the proposed method can achieve excellent performance in displacement prediction. 386 

The accurate prediction of periodic displacement is the key to landslide displacement prediction. In this 387 

process, the causal factors (rainfall, reservoir level and landslide evolution state) enable to simulate the response 388 

relationship between the triggering factors and landslide deformation. The prediction accuracy can be improved by 389 

considering the causal factors, especially in case of step-like deformation. 390 

The PSO-KELM integrated both the advantages of PSO and KELM algorithm, where KELM has high 391 

prediction performance, and PSO can seek appropriate parameters of KELM. The multi-factor PSO-KELM can 392 

simulate the response relationship between triggering factors and landslide deformation better than the methods of 393 

multi-factor ELM, SVR and BPNN. In addition, the prediction of the PSO-KELM is found stable, that is crucial for 394 

developing a landslide early warning system. 395 

Overall, the proposed method, which applies the ML techniques and landslide evolution theory, can achieve 396 

accurate and stable prediction in case of the slow and step-like deformation period. This novel method can be 397 

recommended to conduct landslide displacement prediction in the TGRA and other landslide-prone regions. 398 
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