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The large-amplitude internal waves commonly observed in the coastal ocean often take
the form of unsteady undular bores. Hence, here we examine the long-time combined
effect of variable topography and background rotation on the propagation of internal
undular bores, using the framework of a variable-coefficient Ostrovsky equation. Since
the leading waves in an internal undular bore are close to solitary waves, we first
examine the evolution of a single solitary wave. Then we consider an internal undular
bore, for which two methods of generation are used. One method is the matured
undular bore developed from an initial shock box in the Korteweg-de Vries equation,
that is the Ostrovsky equation with the rotational term omitted, and the other method
is a modulated cnoidal wave solution of the same Korteweg-de Vries equation. It
transpires that in the long-time model simulations, the rotational effect disintegrates
the nonlinear waves into inertia-gravity waves, and then there emerge complicated
interactions between these inertia-gravity waves and the modulated periodic waves of
the undular bore, especially at the rear part of the undular bore. But, near the front
of the undular bore nonlinear effects further modulate these waves, with the eventual
emergence of nonlinear envelope wave packets.

1. Introduction

As demonstrated by the large amount of observational data, both in situ and from
satellites, large amplitude internal waves are commonly found in coastal oceans. How-
ever, due to the complex and variable oceanic background, such as the topography,
the background density distribution, and shear current, an isolated internal solitary
wave is rarely observed, and instead nonlinear wave trains in a form of unsteady un-
dular bores are more often recorded, see [1] and [2]. The typical internal undular
bore consists of a series of waves connecting two different basic states and exhibiting
a solitary wave train at the leading edge, see [3, 4]. In particular a shock, that is
an initial jump of fluid depth and/or velocity results in the generation of undular
bores, see [5] for instance, and indeed this method is used here in some simulations.
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An other generation mechanism is when a transcritical flow passes over a localised
bottom feature, such as an undersea ridge, see [6, 7, 8].

A large number of studies, see [9, 10, 11, 12] for instance, have found that the
effect of the earth’s rotation is significant for the propagation of internal waves over
long distances. In particular [13] showed that due to the rotation, an initial large-
amplitude solitary wave rapidly decays into inertia-gravity waves, and eventually the
leading disturbance forms into a coherent wave packet. Although the propagation of
undular bores over a topography has been widely studied, see for example [3, 4, 14],
the combined impact of rotation and variable topography on the evolution of internal
undular bores remains unclear, and hence this is the focus of this present paper.

In the weakly nonlinear long wave regime, the rotational effect can be described
by the Ostrovsky equation, first derived by Ostrovsky, see [9], and later for waves in
a channel by Grimshaw, see [15]. In the standard notation, it is

{At + cAx + αAAx + βAxxx}x = γA . (1)

The terms inside the bracket are the Korteweg-de Vries (KdV) terms, and the rota-
tional effect is represented by the non-local term on the right-hand side. Here A(x, t)
is the amplitude of the modal function φ(z), defined by{

ρ0 (c− u)2 φz
}
z

+ ρ0N
2φ = 0 , for − h < z < 0 , (2)

φ = 0 at z = −h , (c− u)2 φz = gφ at z = 0 , (3)

which also serves to define the linear phase speed c. Here the background density is
ρ0(z), ρ0N

2 = −gρ0z and u(z) is the background current. The coefficients are given
by the usual expressions as for the KdV equation

Iα = 3
∫ 0

−h
ρ0 (c− u)2 φ3

z dz , (4)

Iβ =
∫ 0

−h
ρ0 (c− u)2 φ2 dz , (5)

I = 2
∫ 0

−h
ρ0 (c− u)φ2

z dz . (6)

The rotational coefficient γ is given by γ = f2/2c (where f is the Coriolis frequency)
when there is no shear flow (u = 0), and then we have the normal case when γβ > 0.
In contrast, when there is a shear flow it is given by

Iγ = f2
∫ 0

−h
ρ0Φφz dz , ρ0(c− u)Φ = ρ0(c− u)φz − (ρ0u)zφ , (7)

and for sufficiently strong shear it is possible to have the anomalous case when γβ < 0.
This is unlikely in oceanic conditions, although that case has been looked at in [16, 17].
However, we assume here that the normal case holds, and we take β > 0, γ > 0 for
waves propagating in the positive x-direction.
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The Ostrovsky equation (1) can be written in an alternative form, convenient for
numerical simulations,

At + cAx + αAAx + βAxxx = γB , Bx = A B = −
∫ ∞
x

Adx , (8)

where we assume that both A,B → 0 as x → ∞, since linear waves have negative
group velocity. This equation has two important conservation laws,∫ ∞

−∞
Adx = [B]∞−∞ = 0 , (9)

∂

∂t

∫ ∞
−∞

A2 dx = 0 , (10)

for solutions A(x, t) (and then likewise B(x, t)) localised (or periodic) in x, which
represent the conservation of mass and wave action flux respectively.

In section 2, we present the variable-coefficient Ostrovsky equation, which incorpo-
rates the effects of the slowly varying background, together with the usual rotational
term. Three initial conditions are described in section 2, followed by the corresponding
numerical simulations in section 3. We conclude in section 4.

2. Variable-coefficient Ostrovsky equation

2.1. Formulation

In the presence of a slowly varying background, specifically when the fluid depth h
and hydrography (if applicable) vary slowly with x, the Ostrovsky equation (1) is
replaced by {

At + cAx + cQx

2Q A+ αAAx + βAxxx

}
x

= γA , Q = c2I . (11)

For simplicity here we assume that the background density ρ0(z) and shear flow u(z)
do not vary with x. If they did then an extra term is needed in the KdV part of the
equation, see [18, 19]. The modal equation now depends also parametrically on x, that
is φ = φ(z;x), c = c(x), and hence the coefficients α, β, γ,Q also depend (slowly) on x.
Since the modal equations (2, 3) are homogeneous, φ can be non-dimensionalised with
the maximum value 1, and the linear magnification factor Q can be normalised to be
unity at the initial location. It is useful to express equation (11) in non-dimensional
variables based on a length scale h0 (a typical depth), and a velocity scale c0 (a typical
linear long wave speed), so that the time scale is t0 = h0/c0. For instance in an ocean
setting, h0 = 500m and c0 = 1ms−1 can be chosen as a typical scaling. If needed,
the density ρ0 can also be scaled with ρ00 = 1000 kg m−3. Then we have

A = h0Ã , x = h0x̃ , t = h0t̃

c0
, (c, u) = c0(c̃, ũ) ,

α = c0α̃

h0
, β = c0h

2
0β̃ , γ = c0

h2
0
γ̃ . (12)
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As a consequence, the Ostrovsky equation (11) is recovered in the˜variables, and also
all expressions (4 - 7) hold in the ˜ variables. Note that with f = 10−4 s−1 and in
the absence of a background shear flow, γ̃ ∼ f2h2

0/2c2
0 ∼ 10−3 � 1, while c̃, α̃, β̃ are

relatively order unity. As expected, in this oceanic application the rotational term
can be regarded as a small perturbation to the usual KdV equation.

Formally, in terms of a small parameter ε used in the asymptotic derivation of
equation (11), the coefficients depend on the slow variable x̂ = ε3x, and the corre-
sponding amplitude is ε2A(τ, ξ) where τ = εt, ξ = εx. It is clear that the first two
terms of equation (11) are dominant terms, and hence we can transform it to an
asymptotically equivalent “spatial” evolution form for A(X,T ),

X =
∫ x

x0

dx

c
− t , T =

∫ x

x0

dx

c
, (13)

{
AT + QT

2QA+ µAAX + λAXXX

}
X

= σA , (14)

µ = α

c
, λ = β

c3 , σ = cγ . (15)

All terms are now of the same order, that is, A ∼ ε2, ∂/∂X ∼ ε, ∂/∂T ∼ ε3 and
σ ∼ ε4. Here the coefficients µ, λ,Q, σ depend on T , but note that in the absence of a
background shear flow, σ = f2/2 is independent of T . A further exact transformation
is

U = Q1/2A , {Us + νUUX + UXXX}X = δU , (16)

where ν = µ

Q1/2λ
, δ = σ

λ
, s =

∫ T

0
λ(T ′) dT ′ . (17)

Again the Ostrovsky equation (16) can also be written in an alternative form,

Us + νUUX + UXXX = δV , VX = U , V = −
∫ ∞
X

U dx , (18)

which, analogous to (9, 10), has two conservation laws,∫ ∞
−∞

U dX = [V ]∞−∞ = 0 , (19)

∂

∂s

∫ ∞
−∞

U2 dx = 0 , (20)

for solutions U(X, s);V (X; s) localised (or periodic) in X.

2.2. Solitary wave extinction

The linear dispersion relation of the constant-coefficient Ostrovsky equation (16) for
sinusoidal waves sin (kX − ωs) is,

ω = δ

k
− k3 , (21)
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and hence the phase speed and the group velocity are given by

phase speed : c = ω

k
= δ

k2 − k
2 ; (22)

group velocity : cg = dω

dk
= − δ

k2 − 3k2 . (23)

This dispersion relation plotted in figure 1 shows that the Ostrovsky equation is
not able to support a steady solitary wave solution, as there is no gap in the linear
spectrum for the phase speed c. This is in stark contrast to the KdV equation (that
is, δ = 0) when there is a spectral gap in c > 0 and steady solitary waves can bifurcate
from k = 0. This heuristic argument was confirmed with rigorous proofs, see [20, 21].

A KdV solitary wave with initial amplitude a is extinguished in a finite time due
to the radiation of inertia-gravity waves, [22], and the extinction time is given by

se = 1
δ

(aν12 )1/2 , (24)

Later [13] showed that this initial KdV solitary wave is replaced by an envelope wave
packet steadily propagating with a speed close to the maximum group velocity, and
with the associated carrier wave number. This was confirmed experimentally, see
[21, 23], and in further numerical simulations, see for instance [16]. These results
are all for the constant-coefficient Ostrovsky equation, but recently [12] examined
the combined effect of topography and rotation using a variable-coefficient Ostrovsky
equation. They showed that again there is an extinction time similar to (24), but
their simulations of a South China Sea transect, using both a variable-coefficient
Ostrovsky equation and an ocean circulation model, were not long enough to see a
total extinction. [24] examined the effects of rotation in numerical simulations of
a two-layer fluid using a fully nonlinear, weakly nonhydrostatic model, and found
that due to the rotation, an initial KdV-type solitary wave decays into inertia-gravity
waves, which then steepen due to nonlinearity, leading to a secondary solitary wave
at the expense of the s parent wave, and this new solitary wave then experiences a
similar decay. The decay and re-emergence process repeats and eventually a nearly
localised wave packet emerges. A similar cycle of decay and recurrence was seen in the
numerical simulations of the Ostrovsky equation ([22]), but these early simulations
were not carried out for a long enough time to see the emerging wave packet.

2.3. Undular bore asymptotic theory

In this paper our concern is with the combined effect of topography and rotation
on an undular bore, and so here we re-examine the well-known theory for a KdV
undular bore. In the absence of rotation (that is δ = 0), the Ostrovsky equation (16)
reduces to the KdV equation, and for a constant nonlinear coefficient ν, this has the
well-known periodic travelling wave solution, the cnoidal wave,

U = a {b(m) + cn2(κθ;m)}+ d , θ = k(X − vs) , (25)

where νa = 12mκ2k2 , b(m) = 1−m
m

− E(m)
mK(m) , (26)
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v − νd = νa

3

{2−m
m

− 3E(m)
mK(m)

}
= 4κ2k2

{
2−m− 3E(m)

K(m)

}
. (27)

Here cn is the Jacobi elliptic function of modulus m (0 < m < 1), v is the wave speed
in the transformed space and K(m), E(m) are the elliptic integrals of the first and
second kind respectively, defined by

cn(ϑ;m) = cos (χ) , ϑ =
∫ χ

0

dχ′

(1−m sin2 χ′)1/2 , 0 ≤ χ ≤ π

2 , (28)

K(m) =
∫ π/2

0

dχ

(1−m sin2 χ)1/2 , E(m) =
∫ π/2

0
(1−m sin2 χ)1/2 dχ . (29)

The cnoidal wave U(θ) (25) is periodic both spatially and temporally, manifested
by requiring that it be periodic in θ with a period of 2π. Then the wavenumber
κ = K(m)/π, while the spatial period is 2π/k. The (trough-to-crest) amplitude
is a and the mean value of U over one period is d. This solution family has three
independent parameters, say k,m, d. There are two important limiting cases. One is
when the modulus m → 1, and then this becomes a solitary wave train, since then
b→ 0 and cn(ϑ)→ sech(ϑ), while κ →∞, k → 0 with κk = $ fixed. The other case
is when m→ 0, b→ −1/2, κ → 1/2, cn(ϑ)→ cos (ϑ), and it reduces to a sinusoidal
wave (a/2) cos (θ) of small amplitude a ∼ m and wavenumber k.

Whitham modulation theory can now be used to construct an undular bore by
allowing this cnoidal wave to vary slowly with s,X, that is the wavenumber k, modulus
m and mean level d vary slowly with s,X. The Whitham modulation equations
describing this variation can be obtained by averaging conservation laws, see [25, 26],
or by exploiting the integrability of the constant-coefficient KdV equation, see [27]
for example. When nonlinear coefficient ν in (16) is a constant, we note especially a
similarity solution to the Whitham modulation equations which describes an undular
bore evolving from an initial step of height U0 where νU0 > 0, see [25, 28],

X

s
= νU0

3

{
1 +m− 2m(1−m)K(m)

E(m)− (1−m)K(m)

}
, −νU0 <

X

s
<

2νU0

3 , (30)

a = 2U0m, d = U0

{
m− 1 + 2E(m)

Km

}
, νU0 = 6κ2k2 , v = νU0

3 {1+m} . (31)

Note that

X − vs = νU0s

3

{
− 2m(1−m)K(m)
E(m)− (1−m)K(m)

}
(32)

is negative for all X, s. This describes a wave train connecting a zero level at the
front where m → 1 to a mean level U0 at the rear where m → 0. At the front the
leading wave is a solitary wave of amplitude 2U0, while at the rear the waves are linear
sinusoidal waves with a very small amplitude, and some intermediate waves whose
nonlinearity (indicated by m) is decreasing from the front to rear exist between these
two edges. Note that with the evolution, the whole undular bore is expanding with
“time” s, but nevertheless it is always confined in a range −νU0s < X < 2νU0s/3.
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Following [4, 14, 29] it is now useful to examine the solitary wave train at the
leading edge of the undular bore, formally obtained by taking the limit m → 1. In
this limit, the three Whitham modulation equations uncouple and can be explicitly
solved. Then it is found that the deformation of a solitary wave train in a non-rotating
variable medium ν = ν(s), δ = 0 can be classified into two scenarios, depending on
whether there is a polarity change, that is ν changes sign, or not. Each of these are
now well understood, see the reviews in [7, 23, 30]. The outcome for a solitary wave
train is that the amplitude a of the leading wave in the solitary wave train varies
according to the law a3 ∝ ν, while the amplitudes in the solitary wave train, relative
to this adiabatic deformation, have a similarity structure proportional to X/s. This
scenario holds provided ν 6= 0. But if there is a change of polarity, that is there
is a critical point where ν passes through zero and changes sign. After the critical
point a rarefaction wave with a similarity structure and of opposite polarity to the
solitary waves emerges, terminated by an undular bore. For an undular bore, these
descriptions can be applied to the leading solitary wave train in an undular bore, but
a full description using Whitham modulation theory in a variable medium cannot be
obtained, due to the development of non-adiabatic behaviour in the region between
the quasi-periodic undular bore wave train, and the solitary wave train emitted ahead
of this structure, see [4]. Taking rotation into account as well would seem to be beyond
current theoretical capacity, but we note that [17] derived the Whitham modulation
equations for the Ostrovsky equation, albeit for constant coefficients and in the weak
rotation limit (two orders smaller).

3. Numerical simulations

3.1. Set-up and initial conditions

Since there is no satisfactory theory which can describe the combined effects of topog-
raphy and rotation on internal undular bores, we resort here to numerical simulations
of the variable-coefficient Ostrovsky equation. The numerical simulations are carried
out in the transformed space, using the Ostrovsky equation (16). A pseudo-spectral
method based on a Fourier interpolant is used in the spatial domain, while a classical
Runge-Kutta fourth-order method, together with a very fine time step, provides an
accurate iteration in the time domain. By construction, the solution in X direction is
periodic, thus two sponge layers are implemented at two ends of the domain to avoid
the radiated waves re-entering the calculation area.

As already mentioned, under real oceanic circumstances, normally the effect of
background rotation is quite weak, thus only when waves propagate a long distance,
or equivalently, with a time scale exceeding several inertial periods, it does become po-
tentially significant. Thus. to obtain a long time solution to the Ostrovsky equation,
a scaling transformation is used,

s = s0s̄ , X = X0X̄ , U = U0Ū , s0 = X3
0 , δX4

0 = δ̄ , νU0X
2
0 = ν̄ , (33)

where two independent parameters X0 and U0 can be chosen to scale both the new
nonlinear coefficient ν̄ and new rotation coefficient δ̄ to be of order unity. The Os-
trovsky equation (16) and (18) retain their expressions in the new ¯ variables and
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henceforth the˜symbols are omitted. Note that then the rescaled initial condition Ū
needs to be quite large, as U0 =

√
δ/ν is typically quite small. In terms of the origi-

nal coefficients in (11), U0 =
√
γβ/α and further using the non-dimensional analysis

introduced by the expression (12), U0 = h0
√
γ̃β̃/α̃ ∼ 10−1.

Since the available theory and the simulations are to be applied to real oceanic
conditions, in practice we should evaluate all coefficients of the Ostrovsky equation
through the expressions (2 - 7), and then use the series of transformations described
in section 1 to achieve the convenient form of (16), together with the corresponding
new coefficients, and finally the scaling transformation (33) is used to facilitate the
attainment of a long-time solution. However, since the goal of this paper is to detect
the underlying dynamics of internal undular bores propagating over a variable bottom
topography under the influence of rotation, it is sufficient to use an idealised process
model. Hence, we choose the nonlinear coefficient ν = ν(s) as a function of s only
varying monotonically from ν = 1 at s = 0 to some constant value ν = νa for s ≥ sa.
Specifically,

ν = 1 + (νa − 1) tanh (Ks) , (34)

where K, sa, Ksa � 1 are chosen so that ν varies smoothly and slowly from 1 at s = 0
to νa at s = sa. There are two main scenarios, either νa > 0 for propagation up a
slope, or νa < 0 for propagation up a slope and through a point of polarity change.
Likewise, the rotation coefficient δ = δ(s) should be chosen to be initially quite small,
δ = 0.5 here, corresponding to the strong dispersion in deep water, and then increase
to a constant value δa > 0.5, corresponding to propagation up a slope. A suitable
choice is

δ = 0.5 + (δa − 0.5) tanh (Ks) , (35)

so that δ increases from 0.5 to a constant value δa for s ≥ sa.
The initial condition is U(X, s = 0) = Uic(X)+D(X) where D(X) (see (42) below)

is a pedestal needed to ensure that the mass constraint (19) is satisfied at the initial
value s = 0 and Uic(X) is either (1) a KdV solitary wave, or (2) a box of height U0 > 0
which in the absence of rotation and variable topography would generate an undular
bore followed by a rarefaction wave, or (3) a modulated cnoidal wave representation
of an undular bore in the constant coefficient KdV equation evolving from a step of
height U0 > 0 at time s = −s1, given by (30 - 32) with s replaced by (s + s1) and
then evaluated at s = 0 when ν = 1,

(1) : Uic(X) = a sech2(κX) , a = 12κ2 , (36)
(2) : Uic(X) = U0 ENV(X) ,

ENV(X) = 1
2{tanh Γ(X + L)− tanh Γ(X − L)} , (37)

(3) : Uic(X) = U0 ENV(X){2mcn2(κ(X − vs1);m) + 1−m} ,

−U0s1 < X <
2U0s1

3 , U0 = 6κ2k2 , v = U0

3 {1 +m} ,

X = U0s1

3

{
1 +m− 2m(1−m)K(m)

E(m)− (1−m)K(m)

}
. (38)
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In case (1) the evolving solitary wave has a time scale of (κV )−1 where the speed
V = 4κ2, and so to be slowly varying we choose K � κV = 4κ3 in expression
(34) and (35). In case (2) the envelope ENV(X) is chosen to be very close to a box
of height 1, and of very long length 2L, that is to say K−1 � 1 � 2L. With a
constant ν = 1 and U0 > 0 in the KdV regime, the front end of the box is then
expected to generate an undular bore in the subsequent evolution. Since the leading
wave in the undular bore is a solitary wave of amplitude 2U0, so again K should be
small enough to warrant K � 4κ3, where here U0 = 6κ2. At the same time, the
rear end of the box will generate a rarefaction wave, and some model time later, the
calculation will be cut off and the matured undular bore is now ready to be put into
the Ostrovsky equation. In case (3) the asymptotic solution is similar to the undular
bore generated in case (2), but we can now control the parameters more effectively.
The initial undular bore at s = 0 occupies the domain −U0s1 < X < 2U0s1/3. We
choose s1 to make sure this domain has length Lub = 5U0s1/3 � 1. The envelope
ENV(X) has a similar structure as that in case (2), but a constraint is put on, that
is the front end of the box is placed precisely at the front end of the undular bore
X = 2U0s1/3, while the rear end is chosen far away from the rear end of the bore,
which means the initial undular bore is contained in the box with L > Lub. Analogous
to case (2), the leading wave is a solitary wave of amplitude 2U0 and thus again K
should be small, K � 4κ3 where here U0 = 6κ2k2. Note that the wavelength 2π/k
is a free parameter. The pedestal D(X) is represented in these three respective cases
as

(1) :
∫ ∞
−∞

D(X) dX = −
∫ ∞
−∞

a sech2(κX) dX = −2a
κ

= −24κ , (39)

(2) :
∫ ∞
−∞

D(X) dX = −a
∫ ∞
−∞

ENV(X) dX = −2aL , (40)

(3) :
∫ ∞
−∞

D(X) dX ≈ −aL , (41)

such that the initial mass is zero. In case (3) we have estimated the integral as
approximately half that of case (2) since the initial step is located at the halfway
point of the envelope ENV(X). For a numerical domain of total length 2Ln, a simple
choice is (1) D = −12κ/Ln, (2) D = −L/Ln and (3) D = −0.5L/Ln. However a
better choice to avoid end effects is

D(X) = D0

2

{
tanh

(
X + Le
Lw

)
− tanh

(
X − Le
Lw

)}
,

∫ ∞
−∞

D(X) dX = 2D0Le ,

(42)
where Le = Ln/2, Lw = Ln/4. To keep the pedestal small, we need |D0| � a, or
D0 � U0, that is, κLe � 1 or Le � L.

3.2. Numerical results

First we examine the evolution of an initial KdV solitary wave, case (1), the same as
that considered in [13] for a constant environment, but now for a variable medium
with ν = ν(s) and δ = δ(s). The outcome is shown in figure 2 and we see that
the outcome is quite similar to the constant-coefficient case of [13]. Eventually the
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initial solitary wave is replaced by a wave packet followed by trailing waves. The
rotational effect appears to be dominant in this circumstance, with the nonlinear
effect partly suppressed, as the variation of the nonlinear coefficient ν, specifically the
occurrence of a polarity change or not, does not seem to make much impact on the
subsequent evolution. Moreover in both cases (see the middle and right panels) the
amplitude of the resultant wave packet is almost the same, although when νa = −1
(polarity change), the envelope tends to lie below the zero level more than when
νa = 0.2 (no polarity change), which indicates some small influence of nonlinearity.
We recall that in the KdV regime, see [7, 14, 30], when there is no polarity change
(ν changes from 1 to 0.2), then to conserve the wave action flux, the adiabatic law
shows that the amplitude of the leading solitary wave a behaves as a ∝ ν1/3, but at
the same time, conservation of mass results in a trailing shelf which has an amplitude
at the solitary wave location proportional to ν−8/3νs (normally it is approximately
one order smaller than ν1/3). In contrast, the situation is different in the case with a
polarity change, where the leading solitary wave and the trailing shelf have comparable
amplitudes near the critical point where ν = 0, and normally they both are smaller
than their counterparts without a polarity change. Hence, in the Ostrovsky equation,
the combined effect of rotation and nonlinearity is exerted over the solitary wave, and
one of expected evolution scenarios is that when νa = 0.2, the outcome is characterised
by a larger amplitude of the envelope and a smaller number of waves contained in
the trailing shelf, in contrast to the case with νa = −1. Note that here the extinction
time se (24) is order unity. Since the the model run-time is sa = 100, then se ∼ 1
is relatively too short to take the variation of the nonlinear term into account, and
hence leads to the dominant rotational effect.

The initial internal undular bore is generated for convenience from the evolution
of a long box (37) in the framework of KdV equation, see figure 3. Moreover, in
the full Euler equations, this initial box can also be used to generate an undular
bore (not shown here). This resultant undular bore can be theoretically described
by the modulated cnoidal wave (38). The behaviour of undular bores propagating
over a variable topography was studied in [4] in a water wave context and [14] in
a variable-coefficient KdV model. The effect of the slowly varying topography is
the generation of a solitary wave train ahead of the main undular bore, and these
two parts are connected where the rear of the solitary wave train interacts with the
main undular bore, forming a two-phase modulated wave train. When there is a
polarity change, on passage through the critical point (nonlinear coeffcient ν = 0),
the leading solitary wave train in the undular bore is not able to retain its shape and
is gradually replaced by developing rarefaction waves supporting emerging solitary
waves of the opposite polarity, while the rear near-linear periodic waves hold their
shapes, but with a rotational effect is jointly taken into account, the outcome becomes
more complicated, see figures 3-5. In general the internal undular bore decays into
several wave packets, accompanied by a few residual waves. More specifically and
heuristically, the leading nonlinear waves behave like solitary waves, as shown in figure
2, but note that then this is followed by inevitable complicated interactions between
the radiated inertial-gravity waves and also with the original rear periodic waves,
some of which form wave packets propagating coherently. Eventually, some nearly
localized wave packets emerge, each one consisting of a long-wave envelope through
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which shorter, faster waves propagate. Furthermore, depending on the parameter s1
in the initial condition, which determines the number of waves contained in the initial
bore, a different number of wave packets finally appear after a long-time evolution. It
seems that the more waves there are in the initial bore, then more wave packets are
formed, see figure 4 and 5 (cf. figure 3). Unlike the aforementioned cases of a solitary
wave, for an undular bore, the variation of nonlinear effect plays a crucial role in the
evolution. Comparing the cases of νa = 0.2 with that of νa = −1 in figures 3-5, it
is clear that the value of νa can influence the formation of eventual wave packets to
some finite degree. First, when νa = −1, the amplitude of the wave envelope, is larger
than that when νa = 0.2, and also it tends to lie further below the zero level, which
can be partially attributed to the nonlinear steepening. The number of wave packets
eventually formed and the length scale of each wave packet are related to nonlinear
effects, that is, there are more wave packets but each with a shorter length scale when
νa = −1 than when νa = 0.2.

4. Conclusion

Our focus on this paper is how an internal undular bore behaves in a long-time limit
when the combined effect of topography and background rotation are both taken into
account. Since the leading part of an undular bore is composed of a solitary wave
train, an initial condition consisting of a single solitary wave is first examined. As
found in previous studies, such as [13, 21], due to the rotation, the initial solitary wave
decays through the generation of inertia-gravity waves and is completely extinguished
on a time scale of se =

√
aν/12/δ. In our long-time model simulation, eventually a

coherent envelope wave packet emerges to replace the initial wave. Compared with the
set-up of a constant environment in [13, 21], here we consider a variable background
environment to simulate internal waves propagating shorewards. We find that the
rotational effect is dominant, while nonlinear effects slightly modulate the waveform
and amplitude. We note that [12] investigated a similar problem, where they applied
the variable-coefficient Ostrovsky equation to a transect in the South China Sea. They
showed that the combined effect of shoaling and rotation is to induce a secondary
trailing wave packet. Because their model-run time was not very long, the difference
with our presented results can be attributed to our much longer model run-time, as
here the extinction time se ∼ 1, while we run the model for sa = 100� se.

If only the topographic effect is considered, then depending on whether the waves
pass through a critical point (the nonlinear coefficient ν = 0) or not, the evolution
scenarios of an undular bore can be quite different, see [4, 14] for details. But,
when the rotational effect is also included, the evolution of inertia-gravity waves,
resulting in a complicated interactions between these radiated waves with each other,
and with the rear part of the undular bore, while at the front of the undular bore
a few envelope wave packets form and propagate coherently. The nonlinear effects
can influence the eventual emergence of these wave packets, manifested with a larger
envelope amplitude, more wave packets and a shorter envelope length scale when
there is a passage through the critical point (νa = −1) than when there is no polarity
change (νa = 0.2).
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We emphasise that the present simulations are for a process model, using the
transformed variable-coefficient Ostrovsky equation (16). To apply our results to
actual oceanic states requires a transformation back to the physical variables using
the expressions in (13, 16, 17). However, these change only the amplitude and time
scales, and do not change the essential dynamics revealed here. But we caution that,
as in the study in [2] of several SAR images, and in the MITgcm simulations in [12] of
a South China Sea (SCS) transect, in order for rotational effects to become evident,
the actual time scale for the evolution of internal solitary waves from the source to
the continental shelf should be at least comparable with the extinction time (24). For
instance in [2] there is an examination of two different transects of the SCS where
there have been many observations and much research on internal waves. They found
extinction times in the range 3 − 6 days with corresponding linear phase speeds of
the order of 2.5ms−1. With a propagation distance of order 1000 km this implies a
propagation time of the order of 4.5 days, comparable with the estimated extinction
times. This is in agreement with the observational studies in [31, 32] of the evolution
of the internal tide into internal solitary waves in the deep basin of the SCS, where
they found that rotational effects were quite significant.
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Figure 1. The phase speed c and group velocity cg in (22, 23) are shown by solid
and dashed lines respectively. The Ostrovksy equation (δ = 1 in equation (16)) is in
dark, whereas the KdV equation (δ = 0 in (16)) is in grey.
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Figure 2. A simulation of the Ostrovsky equation (16) for the internal solitary wave
initial condition (36). The left panel is at s = 0 with a = 8 when ν = 1 and δ = 0.5;
the middle panel is the case without a polarity change at sa = 100 when νa = 0.2 and
δa = 1.5; the right panel is for the case of polarity change, at sa = 100 when νa = −1
and δa = 1.5. In both cases, K = 0.05 in (34) and (35), so that Ksa = 5.
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Figure 3. A simulation of the Ostrovsky equation (16) for the box initial condition
(37). The left panel is the matured undular bore developed in the KdV equation with
a constant coefficient ν = 1 starting from the initial box with U0 = 8 for a run-time
duration s = 20. Then afterwards, this undular bore is used as the input to the
Ostrovsky equation in which a combined effect of varying rotation and nonlinearity
is considered, as given in (34) and (35). The middle panel is at sa = 120 (the origin
s = 0 of time domain is reset in the Ostrovsky equation) when νa = 0.2 and δa = 1.5;
the right panel is for the case of polarity change, at sa = 120 when νa = −1 and
δa = 1.5. In both cases, K = 0.03 in (34) and (35), so that Ksa = 3.6.
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Figure 4. A simulation of the Ostrovsky equation (16) for the initial condition (38).
The left panel is at s = 0 with U0 = 6, s1 = 20 and wavenumber k = 1 when ν = 1
and δ = 0.5; the middle panel is the case without a polarity change at sa = 120 when
νa = 0.2 and δa = 1.5; the right panel is for the case of polarity change, at sa = 120
when νa = −1 and δa = 1.5. In both cases, K = 0.03 in (34) and (35), so that
Ksa = 3.6.
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Figure 5. The same as in figure 4, apart from that s1 = 5.


