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ABSTRACT 25 

Gentamicin is a common antibiotic used in neonates and infants. A recently published population 26 

pharmacokinetic (PK) model was developed using data from multiple studies, and the objective 27 

of our analyses is to evaluate the feasibility of using a national electronic health record (EHR) 28 

database to further externally evaluate this model. Our results suggest that with proper data 29 

capture procedures, EHR data can serve as a potential data source for external evaluation of PK 30 

models. 31 
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Gentamicin is one of the most commonly used antibiotics prescribed for treatment or prophylaxis 32 

of Gram-negative infections in infants (1–3). Nephrotoxicity and ototoxicity are major adverse 33 

reactions that are associated with supratherapeutic gentamicin concentrations (4). Due to its 34 

narrow therapeutic index and wide pharmacokinetic (PK) variability, therapeutic drug 35 

monitoring of gentamicin is required (5, 6). Target peak concentrations of gentamicin should 36 

range from 5 to 10 mg/L, and trough levels should be <2 mg/L (7). 37 

Gentamicin population PK models have been developed for infants in previous studies. 38 

Both 2- and 3-compartment models were used to characterize gentamicin’s disposition in infants 39 

(8–12). Since gentamicin is almost entirely renally eliminated, age, weight, and serum creatinine 40 

(SCR) concentration were commonly identified as important covariates on gentamicin clearance. 41 

These publications either did not perform an external evaluation or performed an evaluation 42 

using an external dataset consisting of 70 to ~160 subjects (7-11). 43 

Unlike the traditional clinical trials that are challenging to perform in children due to the 44 

ethical, logistical and financial factors, electronic health record (EHR) data allow researchers to 45 

access large volumes of clinical data easily and efficiently (13). The large sample size and 46 

widely distributed profiles in EHR data make it an ideal data source for evaluation of PK models. 47 

In previous studies, EHR data had been used to develop PK models or assess the relationship 48 

between drug exposure and safety (14, 15). However, to date we are not aware of any studies that 49 

have used a national EHR database data to externally evaluate a population PK model. The 50 

objective of this paper is to use gentamicin as a case study to explore the potential use of EHR 51 

data in the evaluation of population PK models. 52 

In this study, EHR data from 348 Pediatrix Medical Group neonatal intensive care units 53 

from 1997 to 2014 was used to evaluate a previously reported gentamicin population PK model. 54 
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Information in the EHR included age, weight, sex, dose records, SCR concentrations, and 55 

peak/trough plasma concentrations of gentamicin. The population PK model developed by 56 

Germovsek et al. is a 3-compartment model with weight, postmenstrual and postnatal age, and 57 

SCR concentration as covariates for clearance. This model was developed based on 1325 58 

gentamicin serum concentrations from 205 infants, and evaluated using 483 gentamicin serum 59 

measurements from 163 infants (8).  60 

The following assumptions and criteria were used to extract relevant and reliable EHR 61 

data: (1) only infants receiving intravenous (IV) injections were included; (2) the infusion time 62 

was assumed to be 30 min; (3) only concentrations ranging from 4 to 20 mg/L (peaks) and 0.3 to 63 

10 mg/L (trough) were included; (4) peak samples were assumed to be collected 1 hour after 64 

dosing and trough samples 2 min before dosing; (5) observations collected from infants with a 65 

SCR concentration >10 mg/dL were excluded; (6) infants with postnatal age (PNA) >60 days 66 

and gestational age (GA) <23 weeks were excluded; (7) observations with doses >6 mg/kg/day 67 

were excluded; (8) to avoid model misspecification caused by data entry error when there is a 68 

regimen switch, only observations taken during the first dosing regimen were included; and (9) 69 

an occasion was defined as a dose with subsequent gentamicin samples taken. These assumptions 70 

and criteria were made based on common clinical practice and infant demographics in the model-71 

building dataset. A summary of demographics and dosing for the model-building dataset and 72 

filtered EHR data is shown in Table 1 (8).  73 

To assess the predictive performance of the model, population predicted concentrations 74 

versus observations plots for peak and trough concentrations were generated. Parameters were 75 

fixed to the final estimates reported in the original publication. The relationship between relevant 76 

covariates (body weight [WT, kg], measured serum creatinine concentration [MSCr, μmol/liter], 77 
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typical value of serum creatinine concentration [TSCr (μmol/liter) = - 2.849 * PMA (weeks) + 78 

166.48], postmenstrual age [PMA, weeks] and postnatal age [PNA, days]) and PK parameters 79 

are described as follows: CL (L/h) = 6.2 × PMA
3.33 

/ (PMA
3.33 

+ 55.4
3.33

) × (WT / 70)
0.632

 × 80 

(MSCr / TSCr)
-0.13 

× (PNA / (1.70 + PNA)); V1 (L) = 26.5 × (WT / 70); V2 (L) = 21.2 × (WT / 81 

70); V3 (L) = 147.9 × (WT / 70); Q1 (L/h) = 2.2 × (WT / 70) 
0.75

; and Q2 (L/h) = 0.3 × (WT / 82 

70)
0.75

 (CL: clearance; V: volume of distribution; Q: intercompartmental clearance). Analyses 83 

were performed using the NONMEM (version 7.3, Icon Development Solutions, Ellicott City, 84 

MD, USA). The first-order conditional estimation method with interaction was used. Data 85 

manipulation was performed in the software R (version 3.3.2) and RStudio (version 1.0.136). 86 

The packages xpose4 and lattice packages in R and RStudio were used for data visualization 87 

(16–18). Visual predictive checks (VPC) were performed based on 1000 simulations using Perl-88 

speaks-NONMEM (version 4.6.0). The bias and precision of the model was evaluated by 89 

calculating the jth prediction error (PEj) and relative prediction error (RPEj), mean prediction 90 

error (MPE), and mean absolute predicted error (MAPE) (Equations 1-4).  91 

PEj = (PREDj - OBSERVATIONj)                                                                                               Eq. 1 92 

RPEj = 
PEj ×100

OBSERVATIONj
                                                                                                                    Eq. 2 93 

MPE = Mean (
PEj ×100

OBSERVATIONj
)                                                                                                       Eq. 3 94 

MAPE = Mean (
|PEj| ×100

OBSERVATIONj
)                                                                                                    Eq. 4 95 

Filtered EHR data contained 6753 measurements with 2580 peak concentrations and 96 

4173 trough concentrations from 4519 infants. The EHR population has similar age range 97 

compared to the model-building dataset (Table 1). Figure 1 shows box plot of prediction error 98 

and relative prediction error for peak and trough concentrations. In the VPC (Figure 2), 27.7% 99 

of observations were below and 8.2% were above the 80% prediction interval. There was a trend 100 
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towards gentamicin concentrations plateauing after 24 h (Figure 2), which may be related to 101 

large variation in gentamicin trough concentrations due to timing of sample collection and 102 

varying degrees of renal dysfunction in these infants. The median (2.5
th

 to 97.5
th

 percentile) 103 

prediction errors were 3.43 (-6.20, 12.95) mg/L and 0.35 (-2.03, 1.78) mg/L for peak and trough, 104 

respectively. The median (2.5
th

 to 97.5
th

 percentile) relative prediction errors (%) were 40.82 (-105 

49.72, 213.55) and 47.14 (-73.22, 344.92) for peak and trough concentrations, respectively 106 

(negative values indicate under-prediction of concentrations). The mean prediction errors from 107 

predictions of peak and trough concentrations were 51.0% and 71.0%, respectively. The 108 

precision (measured by mean absolute predicted error) for peak and trough concentrations were 109 

62.9% and 92.3%, respectively.  110 

Our results demonstrate that the model developed by Germovsek et al. successfully 111 

captured the central tendency of the gentamicin concentrations in the EHR database (Figure 2), 112 

with some notable overprediction (i.e., the distribution of relative prediction errors was skewed 113 

to the right) of peak and trough concentrations (Figure 1). Peak concentrations were predicted 114 

with greater accuracy and precision compared to trough concentrations, which is consistent with 115 

the findings from the original analysis. Overall, the model appears to have less accuracy and 116 

precision when evaluated with the EHR data compared to the initial external database (8). This 117 

may be explained by assumptions we made in modeling the EHR data, particularly the lack of 118 

exact sampling times which may lead to misspecification. There are variations in clinical practice 119 

for when peak concentrations are obtained, and if a significant number of samples were drawn at 120 

1 hour after dosing rather than 30 minutes, this may lead to overprediction in gentamicin 121 

concentrations. Additionally, differences in the gentamicin assay used across centers may 122 

introduce measurement error, especially for trough concentrations falling near the lower limit of 123 
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quantification. Since therapeutic hypothermia is associated with alterations in gentamicin PK and 124 

we cannot capture this from the current dataset, this may also explain some of the observed 125 

misspecification (19). Therefore, it is likely that model misspecification we observed in our 126 

analyses is related to the assumptions we made in developing our gentamicin EHR database for 127 

external evaluation. Given that this model has performed well in previous external evaluation 128 

(8), further study focused on clinical implementation and evaluation of this model’s use in 129 

facilitating dose individualization is justified. 130 

While the use of EHR databases can significantly enhance the quantity of clinical data, 131 

ensuring that data is of high quality is still crucially important. The major challenge we 132 

encountered in performing population PK modeling of EHR data was the lack of accurate 133 

documentation of sampling times and appropriate format of clinical data. This required us to 134 

apply reasonable assumptions to estimate missing information as well as significant effort to 135 

prepare analysis-ready datasets. As a result, the misspecification we identified may result from 136 

either model error or data inaccuracy, which makes the evaluation of PK models more 137 

challenging. To maximize the use of EHR in building and evaluating population PK models, 138 

more studies are needed to identify efficient procedures for extracting high volumes of accurate 139 

clinical data from EHR databases. In addition, the widespread use of EHR databases in model 140 

evaluation could benefit from improvements to protocols for clinical data collection, particularly 141 

timing of dosing and PK measurements. 142 

In conclusion, a national EHR database was used to externally evaluate a published 143 

population PK model for gentamicin in infants. Despite notable misspecifications, the model 144 

captured the central tendency of the gentamicin concentrations in the EHR database. 145 
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Improvements to EHR data collection are still required to maximize the robustness of EHR 146 

databases in population PK model evaluation. 147 
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Figure Legends 225 

Figure 1. Box plot of (A) prediction error (mg/L) and (B) relative prediction error (%) for peak 226 

and trough concentrations. The bottom and top of the box are the 25
th

 and 75
th

 percentile and the 227 

band in the middle of the box is the 50
th

 percentile. The length of the box is the interquartile 228 

range (IQR). Upper whisker = 75
th

 percentile + 1.5*IQR; Lower whisker = 25
th

 percentile - 229 

1.5*IQR. 230 

Figure 2. Visual predictive check plot of gentamicin concentrations versus time after last dose. 231 

The shaded regions denote the 95% prediction interval around the 10
th

, 50
th

, and 90
th

 percentiles 232 

of simulated concentrations. The dashed lines represent the 10
th

, 50
th

, and 90
th

 percentiles for the 233 

observed data. The solid lines represent the 10
th

, 50
th

, and 90
th

 percentiles for the predicted data. 234 

Open circles are the observed values.235 

 on July 17, 2018 by U
C

 London Library S
ervices

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


13 

 

Table 1. Population demographics for model-building and EHR data.  236 

* Data were presented as median (range). GA: gestational age; PNA: postnatal age; WT: body weight. 237 

** Reference (8) 238 

 

Participants 

(N) 

Number of 

measurements 
GA (weeks)* PNA (days)* WT (kg)* Dose 

Model-

building 

dataset** 

205 1325 34 (23.3 – 42.1) 5.4 (1 – 66) 2.12 (0.53 – 5.05) 

Initial dose of 2-3 mg/kg 

(twice daily) or 4 mg/kg 

(every 24 hours) 

EHR 4519 6753 29 (23 - 42) 1 (1 - 59) 1.26 (0.31 - 4.79) 
3.50 (0.49 - 6.00) 

mg/kg/day 
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