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Abstract — Cognition applied to radar systems is a growing 

area of research. The majority of cognitive radar research is 

focused on theory and simulation with little experimental 

validation. Prior research proposed the application of anticipation 

within a cognitive radar, demonstrating by simulation that this can 

provide significant improvements in tracking performance, when 

compared to non-cognitive radar tracking methods. The approach 

applied a POMDP algorithm to control the timing of track updates 

for a target while anticipating the loss of measurements within a 

known time period/region. This work aims to expand on this 

concept by using data from a real radar, NetRAD, in order to 

validate the application of anticipation when tracking a human 

target. 

Keywords— Cognitive Radar; Tracking; Anticipation. 

I.  INTRODUCTION 

Cognitive radar is a relatively new field of research, which 
has received significant attention in recent years. This interest is 
due to the potential benefits offered by the addition of cognitive 
capabilities to radar systems, enabling those systems to 
dynamically exploit the advanced radar hardware and signal 
processing now available. The potential benefits include, but are 
not limited to, resilience to RF interference, interoperability of 
systems via intelligent spectrum sharing and more efficient use 
of available resources, and are a direct consequence of the 
increased adaptability of the overall system given the addition of 
flexibility in the transmitter subsystem. 

 The fundamental concept underlying cognitive radar is the 
capability to sense an environment, learn salient features of the 
environment, and to intelligently adapt the behavior of the 
sensor and/or the supporting platform, possibly in terms of intra-
pulse characteristics of the transmitted waveform, transmit 
antenna beamshape, the target revisit or dwell time, or the 
location of the sensor, and then to re-sense the environment with 
the aim of improving performance cycle by cycle. As part of this 
processing both short-term online memory and longer term 
potentially offline prior knowledge is utilized. This simple 
perception-action cycle which was first applied to radar systems 
by Haykin [1], is at the heart of all cognitive radar research, 
providing a closed loop feedback system round the transmitter, 
environment and receiver. 

Very little research has been published which experimentally 
validates the benefits of cognitive radar. One reason for this, at 
least if a real-time demonstration of cognition is the goal, are the 
requirements for very capable hardware platforms offering 
flexible control of radar operating parameters, and the 
computing power to exploit the capabilities. Developments over 

the last several years provide for both requirements with systems 
such as the Ohio State University (OSU) radar testbed CREW 
[2] becoming available. The work reported in [2] demonstrates 
encouraging results in applying highly flexible RF and 
processing capabilities to the real-time cognitive radar problem. 

The purpose of the work described in this paper is to 
experimentally validate the simulation results reported in [3] 
concerning the improvement in tracking performance achieved 
when a known obstruction between sensor and target is 
anticipated such that extra resources can be expended on 
improving track accuracy prior to the loss of returns. The 
experimental layout is illustrated in Fig 1. The improved track 
accuracy, prior to entering the obscuration, allows for better 
track prediction during the obscuration with the aim of 
reacquiring the target, without track loss, on the termination of 
the obstruction. Fundemental metrics of track performance are 
successful track association and reduction of loss of track. This 
cognitive processing technique allows for improvement of both 
of these. 

 

Figure 1: Experimental setup 

II. ANTICIPATION 

A number of characteristics/properties have been identified 
[1] as being required for a radar to be considered as cognitive. 
These include memory, intelligence, attention and the 
perception-action cycle. Learning is also central to the concept 
of cognition. The capability of anticipation has recently been 
proposed as a cognitive ability as argued in [3]. Anticipation 
can be regarded as the use of experience, or previously gained 
knowledge, plus a perception of current conditions, to predict a 
future condition or situation. The work reported in [3] 
demonstrates the theoretical benefit gained from using 
anticipation within a cognitive radar tracking application, and 
this research paper aims to provide experimental validation of 
this concept. 



The premise of the work described in [3] is that the 
knowledge of the future loss of radar performance at a known 
time (or location) might allow a cognitive radar system to 
anticipate the consequences of that loss, and for it to 
compensate in some way in advance of the loss of target 
detection. One possible scenario is illustrated in Figure 2. In this 
scenario an electronically steered radar on the sensor platform 
tracks a target. The loss of target detections is caused by the 
target passing behind a physical obstruction at a known point in 
time, for a known period of time. Other scenarios might be 
envisaged such as the reallocation of the sensor to alternative 
tasks such as SAR imaging, or weapons control. A further 
possible scenario is the sensor is a secondary user of the RF 
spectrum, and must yield the spectrum to the primary function. 
The challenge is to modify the operation of the radar sensor 
prior to the loss of detections, such that satisfactory tracking 
performance is maintained through the period of obstruction at 
the least possible cost in terms of sensor resourse usage. In this 
case the revisit interval used by the sensor to track the target is 
the controlled radar parameter which allows the track quality to 
be controlled. 

 

Figure 2: Obscuration scenario 
 

The cognitive function of anticipation is realized in [3] by 

using a rollout based approach [4] to approximate the solution to 

a partially observable Markov decision process (POMDP), 

which is a framework for sequential decision making in an 

uncertain environment. It differs from a Markov decision 

process (MDP) in that the true state of the system is not fully 

observable, any measurements of the state being subject to 

corruption by noise. The POMDP solution attempts to maximise 

the value of some reward function over the period of assessment 

by selecting system actions (revisit intervals) which provide the 

highest probability of high reward balanced against the total 

resource use. 

In this rollout based method the future evolution of a system 

is approximated by assuming the controller follows a base 

policy, which enables the future expected reward to be 

approximated. An approximation of reward is justified as the 

actual value of the reward is less important than the relative 

ranking of rewards for the selection of the optimum actions.  

This paper continues the use of the POMDP approach to 

anticipation, but differs from [3] in that the POMDP solution is 

approximated using the Monte Carlo Tree Search (MCTS) 

algorithm in place of the policy rollout approach. MCTS has 

been used with a very high degree of success in applications such 

as the game Go [5]. MCTS is a Monte Carlo simulation approach 

in which the simulation is focused on areas where good levels of 

reward have previously been observed, while still allowing 

unexplored regions of the search space to be visited in search of 

more profitable reward paths. In this work the assessment is 

based on receeding horizon control, in which a limited 

assessment horizon length is used. 

The reward achieved within this POMDP is based on the 

combination of the predicted positional root mean square error 

(RMSE), by way of a utility function, and the resource expended 

to achieve that result. At each decision point, the controller 

selects the action that provides the largest expected future 

reward. The POMDP is described further in Section V. 

III. RADAR SYSTEM AND EXPERIMENTS 

The nature of the experimental radar system used to capture 
the data, and therefore the nature of the available data for 
processing is of fundamental importance, so will be described 
next.  

The radar platform used as part of this research is the 
University College London (UCL) developed NetRAD 
multistatic radar system. This is an experimental coherent pulse 
radar system operating in S-Band at 2.4 GHz. The data 
collection trials were carried out during July 2015, with the 
system deployed in an open sports field to the north of London. 
The data capture was performed using the commonly employed 
NetRAD radar parameters of a 600 ns pulse width, with a 45 
MHz up-ramp chirp. Antennas with 10 degree beam widths in 
elevation and azimuth were used, these having a gain of 24 dBi, 
and configured for horizontal polarization. The system is often 
employed with a PRF of 1 kHz and collecting many range 
samples, however, due to the restricted range extent available on 
the experiment site, data was recorded over a limited range, 
specifically 256 range bins sampled at 100 MHz, and at 5 kHz 
PRF. These parameters resulted in the ability to record data over 
an extended period of 2 mins. The 5 kHz PRF provides for the 
capture of returns from a large number of pulses such that 
various processing regimes might be implemented in post 
processing using a subset of pulses, by decimating the original 
complete dataset to a reduced sample rate equivalent. This offers 
the ability, for example, for the net PRF and numbers of pulses 
integrated to be selected based on cognitive algorithms used. 

It is important to note that NetRAD has fixed antennas which 
point in a fixed direction, so no bearing information is available. 
The lack of bearing information means that the scenario 
described in [3] can be only partially replicated by the captured 
real radar data. The selection of revisit interval will be made on 
the basis of range-only measurements. 

 

 
 

Figure 3: Trials Site Layout 
 

The experimental layout showing the three NetRAD radar 
nodes used to capture data is illustrated in Figure 3. The green 
pin shows the nominal minimum range of the target. The target 



traverses a path between this point and a point short of the tree 
line. Data was gathered at all three NetRAD nodes allowing for 
multistatic processing to be considered within the intersection 
region of the beams, although the work reported in this paper 
only employs monostatic data. The target must stay within the 
fixed antenna beam width for it to be visible in the captured data. 

Another restriction imposed by the use of NetRAD is that 
there is no facility to change any radar parameter within a single 
data capture period. All parameters are pre-set for use in a trials 
run, and can only be changed after data capture is complete. 
Cognitive capabilities can therefore only be shown in off-line 
post processing. 

No physical obstruction is included in the captured data. A 
virtual loss of detections was simulated within the processing 
software framework, which allows the loss of returns to be 
configured in terms of duration and time as desired. 

An example Range Time Intensity (RTI) plot from a human 
target moving towards/away from the sensor can be seen in 
Figure 4. The figure shows 600,000 PRIs of data post Hilbert 
transform and pulse compression. The target starts at short range 
(~range bin 38), walks to long range (~range bin 90) and returns. 
The constant line at range bin 16 is the direct coupling between 
the transmit and receive antennas, and the signals at ranges 101-
105 were produced by returns from the tree line at the end of the 
field. 

 
Figure 4: RTI plot of walking human target 

IV. TRACKING 

The target is tracked in range and range rate using the 
monostatic measurement information. A Kalman filter is used to 
perform the tracking function, using a continuous white noise 
acceleration motion model. Track performance is assessed using 
the filter calculated position uncertainty, in this one dimensional 
case, this equates to the square root of the range element of the 
error covariance matrix. 

 
Figure 5: Radar pulses 

Figure 5(a) illustrates the track revisit behaviour without 
anticipation where the red pulses represent tracking pulses, and 
blue the potential pulses not employed, and with anticipation 
Figure 5(b) where extra pulses are used to improve the track 

accuracy prior to the obstruction, shown as the green hashed area 
where no target returns are available. 

 
The effects of these two cases on track RMSE is shown 

within Figure 6. The graphs illustrate the evolution of the track 
error over time. During the obscuration, marked by the vertical 
dashed lines, the track error covariance becomes large and the 
track is dropped Figure 6(a). However if the track gets 
sufficiently sharpened before the obscuration, the covariance 
stays below the limit for dropping the track, allowing the track 
to be maintained Figure 6(b). 

 

Figure 6: Expected track RMSE 

(a) Without Anticipation  (b) With Anticipation 

V. SIGNAL AND COGNITIVE PROCESSING 

A. Target Detection 

Target detection is achieved using the radar signal 

processing chain shown in Figure 7. Hanning windowing is 

applied to the data prior to a 256 point FFT being carried out on 

each range cell. Each Doppler filter channel has CA-CFAR 

processing applied followed by second thresholding and 

centroid detection to isolate any detection to a single range bin. 

 

 
 

Figure 7: Signal Processing Chain 

 

 
Figure 8: RTI - post signal processing chain 

Figure 8 shows the RTI corresponding to the detections 

realised by the signal processing chain when applied to the data 

from Figure 4. 

 



B. Partially Observable Markov Decision Process 

The use of a POMDP problem formulation as an effective 
tool for anticipation of the consequences of actions taken by a 
system is shown in [3] via a simulated tracking example.  

The essence of the POMDP is to select an action to be taken 
which maximizes the reward which could be achieved over 
some horizon given that optimal actions are selected over the 
remainder of the horizon. The reward may be defined as: 

 𝑉𝐻 = 𝐸 [∑𝑅(𝑥𝑘 , 𝑎𝑘)

𝐻−1

𝑘=0

] (1) 

where 𝑉𝐻 = reward 

𝐸[∙] = expectation operator 

𝐻 = horizon 

𝑅(𝑥𝑘 , 𝑎𝑘) = reward function given state 𝑥𝑘 and action 

𝑎𝑘 at time 𝑘 

However, in a POMDP the state isn’t known, and instead the 
reward must be based on a belief state, which is a probability 
distribution over all possible model states. The reward R(∙) based 
on the state must be modified for use in the belief state: 

 𝑟(𝑏, 𝑎) = ∑𝑏(𝑥)𝑅(𝑥, 𝑎 )

𝑥∈𝑋

 
(2) 

where 𝑟(𝑏, 𝑎) = reward in belief state 𝑏 given action 𝑎 
 𝑏(𝑥) = the probability belief state 𝑏 assigns to state 𝑥 

In this work the belief state is estimated by the Kalman filter 
tracker, and the reward is based on a utility function of the 
predicted range error calculated by the filter, in a similar 
arrangement to [3]. The utility function is: 

𝑢(𝑃𝑘+1|𝑘) =

{
 
 

 
 
0.0                            𝑖𝑓 𝑃𝑘+1|𝑘  ≥ 1.0

1.0                            𝑖𝑓 𝑃𝑘+1|𝑘 ≤ 0.3

(
1 − √𝑃𝑘+1|𝑘/𝜈

0.7
)

𝜂

   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (3) 

where 𝑃𝑘+1|𝑘 is the filter predicted mean square error  

 𝜈 is a constant 
 𝜂 is a sensitivity parameter 

As in [3], the reward available in belief state 𝑏𝑘 is then a function 
of the utility and the amount of resource required to generate this 
utility: 

 𝑟(𝑏, 𝑎) =
𝑢(𝑃𝑘+1|𝑘) . 𝑡𝑟

𝑟𝑙
 (4) 

where 𝑡𝑟 is the revisit interval 
 𝑟𝑙 is the resource loading 

The formulation of the problem is based on [3], where a more 
complete derivation can be found. 

C. Monte Carlo Tree Search 

The solution method selected for this work is the MCTS. 

MCTS differs from pure Monte Carlo methods, using just a 

random selection of next action, by attempting to balance the 

exploitation-exploration choice. The MCTS focuses attention 

on paths which appear likely to offer high rewards, whilst still 

allowing alternative paths to be explored which might hold the 

potential for greater rewards. The mechanism used is called 

Upper Confidence Bounds on Trees (UCT), which selects 

which action to investigate based on the maximum value of the 

following formula: 

 Xi + C √
log(N)

ni
 (5) 

where  𝑋𝑖 is the reward currently available from action i 

 𝑁 is the total number of simulations run 

 𝑛𝑖 is the number of simulations selecting action i 

 𝐶 determines the exploration/exploitation balance 

 

The second element of Eqn. (5) increases for action i as the total 

number of simulations increases with action i not selected, such 

that after sufficient simulations the action i will be investigated 

again. 
A significant characteristic of MCTS is that it is an ‘anytime’ 

algorithm, meaning that a good solution is achieved even if the 
search is shortened. 

VI. RESULTS 

This section will describe the parameters chosen within the 
processing and the results obtained. 

Revisit times of between 1s and 6s, with 1s intervals 

Receeding horizon of 10s 

Process noise standard deviation = 0.5m/s 

Measurement noise standard deviation = 0.95m 

Obscuration duration = 5s 
Obscuration points = Case 1 : 19s & Case 2 : 22s 

The measurement noise standard deviation can be calculated [7]: 

 𝜎𝑅 =
𝛥𝑅

𝑘√(2 ∗ 𝑆𝑁𝑅)
 (6) 

where 𝛥𝑅 is the range bin size 
  𝑘 is a constant 
  𝑆𝑁𝑅 is the signal to noise ratio 

The value used is based on a 13 dB SNR. In the radar data the 
SNR varies with range and for the most part is significantly 
higher than 13 dB. A future development of this work will be to 
control the SNR by selecting an appropriate integration time. 

 
Figure 9: Track performance – Anticipation (19sec) 

 

Figures 9-11 show the track errors calculated by the Kalman 

filter (top plot in each figure) and the sample points selected 

(lower plot) for various configurations. Figure 9 and Figure 10 

use an obscuration point of 19 & 22 seconds respectively, each 

with a duration of 5 seconds, using the anticipation processing. 



The steady state condition is the maximum revisit time of 6 

seconds. 

 
The result of anticipating the obscuration is that a sample is 

taken just prior to the detection loss in each case, at 18s and 21s 
respectively. The effect seen in [3] whereby a number a samples 
are taken just prior to the obscuration is not evident as a single 
sample reduces the tracking error to a suitably small value due 
to the small measurement noise in this range-only scenario. 

 
Figure 10: Track performance – Anticipation (22sec) 

 
Figure 11 shows the case where no anticipation is employed. 

The missing sample at 19sec allows the tracking error to increase 
beyond the usual values, and could result in track loss. The 
second peak is due to actual missing detections for which the 
addition of anticipation could not provide any improvement. 

VII. DISCUSSION AND FUTURE WORK 

The use of range-only measurements as provided by the 
NetRAD data capture restricts the verification of the technique 
described in [3] as range errors are by the nature of the system 
very small. The use of a radar system capable of providing range 
and bearing measurements would afford a more complete 
investigation. 

With the data collected, only off-line processing is possible. 
The ability to modify radar operating parameters in real time, 
possibly between successive pulses or pulse bursts will provide 
the ability to demonstrate action selection ‘on-the-fly’. UCL’s 
latest experimental radar system, NeXtRAD will provide such 
facilities. Initial monostatic trials using the new system will be 
conducted towards the end of 2016 in South Africa. 

Further extensions to this work include control of signal to 
noise ratio by varying the number of pulses integrated at the 
revisit point, and modification of the measurement noise 
standard deviation based on the SNR. As well as data from 
human walking targets, data was also captured from flights of a 
small drone and of a car traversing the course. Processing of this 
data is also planned. 

The control achieved using the ‘cognitive’ approach could 
equally have been generated by hard coding the revisit time 
response, or by a rule based approach, however, a balance 
between perfomance and resource usage has been demonstrated 
which provides a step towards verifying more complex 
cognititve systems. 

 

 
Figure 11: Track performance – No Anticipation 
 

The scenario employed in this work relies on the availability 
of prior information regarding the timing of the obscuration, 
what might be called the knowledge aided approach. Scenarios 
could be made more ‘cognitive’ given learning of where the 
obscuration occurs over multiple targets or multiple missions. 

VIII. CONCLUSIONS 

In this paper the cognitive characteristic of anticipation has 
been investigated using real radar data from the UCL NetRAD 
system, providing range-only measurements. Monte Carlo Tree 
Search techniques have been employed to solve a POMDP for 
the control of the tracking revisit interval in a scenario where 
anticipating the loss of radar coverage due to an impending 
obstruction allows the system to compensate such that tracking 
performance may be maintained despite the signal loss.  
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