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Abstract

We present a novel approach to the separability problem for Gaussian quantum states of bosonic
continuous variable systems. We derive a simplified necessary and sufficient separability criterion for
arbitrary Gaussian states of m versus n modes, which relies on convex optimisation over marginal
covariance matrices on one subsystem only. We further revisit the currently known results stating the
equivalence between separability and positive partial transposition (PPT) for specific classes of
Gaussian states. Using techniques based on matrix analysis, such as Schur complements and matrix
means, we then provide a unified treatment and compact proofs of all these results. In particular, we
recover the PPT-separability equivalence for: (i) Gaussian states of 1 versus # modes; and (ii) isotropic
Gaussian states. In passing, we also retrieve (iii) the recently established equivalence between
separability of a Gaussian state and and its complete Gaussian extendability. Our techniques are then
applied to progress beyond the state of the art. We prove that: (iv) Gaussian states that are invariant
under partial transposition are necessarily separable; (v) the PPT criterion is necessary and sufficient
for separability for Gaussian states of #1 versus n modes that are symmetric under the exchange of any
two modes belonging to one of the parties; and (vi) Gaussian states which remain PPT under passive
optical operations can not be entangled by them either. This is not a foregone conclusion per se (since
Gaussian bound entangled states do exist) and settles a question that had been left unanswered in the
existing literature on the subject. This paper, enjoyable by both the quantum optics and the matrix
analysis communities, overall delivers technical and conceptual advances which are likely to be useful
for further applications in continuous variable quantum information theory, beyond the separability
problem.

1. Introduction

Gaussian states have played a privileged role in quantum optics and bosonic field theories, essentially since the
very early steps of such theories, due to their ease of theoretical description and relevance to experimental
practice. Over the last twenty years, such a privilege has carried over to quantum information science, where
Gaussian states form the core of the ‘continuous variable’ toolbox [ 1-6]. The analysis of quantum Gaussian
states from the information theoretic standpoint brought up new subtle elements and much previously
unknown insight into their structure. For, while Gaussian dynamics may essentially be dealt with entirely at the
phase space level (typically by normal mode decomposition, so that Gaussian dynamics are often trivialised as
‘quasi-free’ in field theory), the analysis of quantum information properties requires one to confront the Hilbert
space description of the quantum states. Hence, while Gaussian dynamics might well be exactly solvable with
elementary tools, the properties of Gaussian states related to the Hilbert space and tensor product structures are
far from being equally transparent.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Figure 1. Mono-symmetric Gaussian states of two parties A (with m modes) and B (with # modes) are invariant under exchange of any
two modes within party A. By means of a suitable symplectic transformation on subsystem A, these states can be reduced to a 1 versus
n-mode Gaussian state and a collection of m — 1 uncorrelated single-mode states on A’s side. Since PPT is equivalent to separability
for 1 versus n-mode Gaussian states, it follows that PPT is necessary and sufficient for separability of all m versus n-mode mono-
symmetric Gaussian states. In the schematics, entanglement between pairs of modes from the same party is depicted as a single solid
(black) line, while entanglement across a mode from A and a mode from Bis depicted as a double (dark red) line.

The problem of Gaussian separability, that is, determining whether a bipartite Gaussian state is separable or
entangled [3], exemplifies such a situation very well. Necessary and sufficient conditions for Gaussian
separability in the general m versus n-mode case are available [7, 8], yet they are recast in terms of convex
optimisation problems whose solution (albeit numerically efficient) does not admit, in general, a closed
analytical form. For non-separable states, a closely related question is whether their entanglement is distillable or
bound [9]. In the case of arbitrary multimode bipartite Gaussian states, while entanglement can never be distilled
by Gaussian operations alone [10—12], it is known that entanglement distillability under general local operations
and classical communications is equivalent to violation of the positivity of the partial transposition (PPT)
criterion [8, 13]. In turn, the PPT criterion, which is as well efficiently computable at the level of covariance
matrices for Gaussian states, and is in general only necessary for separability [14], has been proven to be also
sufficient in some important cases, notably when the bipartite Gaussian state under examination pertainstoa 1
versus n-mode system [7, 15], when itis ‘bi-symmetric’ [16], i.e. invariant under local permutations of any two
modes within any of the two subsystems, and when it is ‘isotropic’, i.e. with a fully degenerate symplectic
spectrum of its covariance matrix [ 17—19]. Outside of these special families, bound entangled Gaussian states
can occur, as first shown in the 2 versus 2-mode case in [7].

In this paper we provide significant advances towards the characterisation of separability and entanglement
distillability in Gaussian quantum states. On one hand, we revisit the existing results, providing in particular a
new compact proof for the equivalence between PPT and separability in 1 versus #n-mode Gaussian states, which
encompasses the seminal 1 versus 1-mode case originally tackled by Simon [15] and its extension settled by
Werner and Wolf[7]. Key to our proof is the intensive use of Schur complements, which have enjoyed
applications in various areas of (Gaussian) quantum information theory [8, 10-12, 18, 20-23], and—as further
reinforced by this work—may be appreciated as a mathematical cornerstone for continuous variable quantum
technology.

On the other hand, we derive a number of novel results. In particular, a marginal extension of the techniques
applied in the aforementioned proof allow us to prove that Gaussian states invariant under partial transposition
are necessarily separable, a result previously known only for the partial transposition of qubit subsystems [24].
We then show that the 1 versus n-mode PPT-separability equivalence can be further extended to a class of
arbitrary bipartite multimode Gaussian states that we call ‘mono-symmetric’, i.e., invariant under local
exchanges of any two modes on one of the two subsystems (see figure 1). This result, which (to the best of our
knowledge) is observed and proven here for the first time, generalises the case of bi-symmetric states studied in
[16], providing as a byproduct a simplified proof for the latter as well.

As for isotropic Gaussian states, in the traditional approach the sufficiency of PPT for their separability
follows from a well known ‘mode-wise’ decomposition of pure-state covariance matrices [17-19], and from the
fact that the covariance matrix of an isotropic state is just a multiple of the covariance matrix of a pure Gaussian
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state. Here, we derive the sufficiency of the PPT criterion for isotropic Gaussian states following a completely
different and arguably more direct approach. Main ingredients of this novel proof are advanced matrix analysis
tools such as the operator geometric mean, already found to be useful in the context of quantum optics [23].

We also consider the well known class of Gaussian passive operations (i.e., the ones that preserve the average
number of excitations of the input state, such as beam splitters and phase shifters), which play a central role in
quantum optics [1, 5, 6], and we prove that a bipartite Gaussian state that always remains PPT under such a set of
operations must also always stay separable. This novel result complements the seminal study of [25], in that the
latter only considered the possibility of turning a PPT state into a non-PPT one through passive operations—
essentially, the question of generating distillable entanglement—which is not the same as the question of
generating inseparability, because Gaussian PPT bound entangled states do exist [7]. Here we settle the latter,
more general and fundamental question.

All the previous results enable us to substantially extend the range of equivalence between Gaussian
separability and PPT in contexts of strong practical relevance. Last but not the least—in fact, first and foremost
in the paper—we address the separability problem directly, and derive a simplified necessary and sufficient
condition for Gaussian separability. For a bipartite state, this requires convex optimisation over marginal
covariance matrices on one subsystem only, yielding a significant simplification over the existing criteria, which
instead require optimisation on both parties [7, 8, 20].

This paper is organised as follows: in section 2, the definition and basic properties of Schur complements and
matrix means that will be used in our derivations are recalled, and the Gaussian notation is set; section 3 contains
our main novel finding: a simplified necessary and sufficient condition for Gaussian separability in the general m
versus n-mode case; section 4 contains a new proof of the sufficiency of the PPT criterion for separability of 1
versus n-mode Gaussian states achieved in a few, swift Schur complements’ manipulation; section 5 shows that
invariance under partial transposition implies separability; in section 6 we prove that mono-symmetric states
can be reduced, under local unitary operations, to 1 versus n-mode states, which implies that the PPT condition
is sufficient for them too (see figure 1); in section 7 we provide the reader with a new proof of the sufficiency of
PPT for separability of isotropic Gaussian states, not relying on their mode-wise decomposition; section 8
contains our novel analysis of entanglement generation under passive operations. Section 9 concludes the paper
with a brief summary and some future perspectives related to this work.

2. The toolbox: Schur complements, matrix means and Gaussian states

One of the messages of the present paper is to lend further support to the fact that methods based on Schur
complements and matrix means can be successfully exmployed to derive fundamental results in continuous
variable quantum information, following a streak of applications to various contexts including separability,
distillability, steerability, entanglement monogamy, characterisation of Gaussian maps, and related problems [8,
10-12, 18,20-23]. Asa divertissement to set the stage, let us present a compact, essential compendium of such
methods.

2.1. Schur complements
Given a square matrix M partitioned into blocks as

)

the Schur complement of its (square, invertible) principal submatrix A, denoted by M/A, is defined as
M/A =B — YA'X. ()

A useful reference on Schur complements is the monograph [26]. Here we limit ourselves to stress some of the
properties we will make use of in the present paper. As it turns out, Schur complements are the answer [42] to a
number of questions that arise pretty naturally in matrix analysis. Many of these applications stem from the fact
that the positivity conditions of 2 x 2 Hermitian block matrices can be easily written in terms of Schur
complements.

Lemma 1. Consider a Hermitian matrix

X' B

Then H is strictly positive definite (H > 0) ifand onlyif A > 0 and H/A = B — XTA7'X > 0. Then, by taking
suitable limits, H is semidefinite positive (H > 0) ifand onlyif A > 0and B — X"(A + el)"'X > Oforalle > 0.

H:(A X) 3)

A consequence of this result that will be relevant to us is the following.
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Corollary 2. Let H be a Hermitian matrix partitioned asin (3). Then, if A > 0,
H/A =sup{B=B": H>0a B). 4)

Here we mean that the matrix set on the right-hand side has a supremum (i.e. a minimum upper bound) with respect
to the Lowner partial order (X > Y ifand only if X-Y is positive semidefinite), and that this supremum is given by
the Schur complement on the left-hand side.

We note in passing that from the above variational representation it follows immediately that H/A is
monotone and concavein H > 0.

2.2. Matrix means

Somehow related to Schur complements are the so-called matrix means. As one might expect from their name,
these are functions taking two positive matrices as inputs and yielding another positive matrix as output. For an
excellent introduction to this topic, we refer the reader to [27, chapter 4]. Here, we review only some basic facts
that we will find useful throughout the paper. Given two strictly positive matrices A, B > 0, the simplest mean
one can define is the arithmetic mean (A + B)/2, whose generalisation from scalars to matrices does not present
difficulties. Another easily defined object is the harmonic mean [28, 29], denoted by A!B and given by

©)

—1 —1\~1
AIB = (ﬂ) .

2

Incidentally, the harmonic mean can be also defined as a Schur complement, with the help of the identity

_ A A
B=A — 14 =
AB=A—-AA+B'A (AA+B
jointly concave in A and B, i.e. concave in the pair (A, B).
The least trivially defined among the elementary means is undoubtedly the geometric mean A# B between

strictly positive matrices A, B > 0[29, 30], which can be constructed as

) /(A + B),which immediately implies that A!B is monotone and

A#B =max{X=X": A > XB~'X}, (6)

where the above maximisation is with respect to the Loéwner partial order, and the fact that the particular set of
matrices we chose admits an absolute maximum is already non-trivial. With a bit of work one can show that A#
Bis explicitly given by

A#B :Al/2(A71/23A71/2)1/2A1/2' (7)

Having multiple expressions for a single matrix mean is always useful, as some properties that are not easy to
prove within one formulation may become apparent when a different approach is taken. For instance, the fact
that A# Bis covariant under congruences, i.e. (MAM")#(MBM") = M (A#B)M" for all invertible M, is far
from transparent if one looks at (7), while it becomes almost obvious when (6) is used. On the contrary, the fact
that A#B = (AB)!/2when [A, B] = 0isnot easily seen from (6), but itis readily verified employing (7).
As it happens with scalars, the inequality
A+ B
2
holds true for all A, B > 0. In view of the above inequality, it could be natural to wonder, how the geometric
mean between the leftmost and rightmost sides of (8) compares to A#B. That this could be a fruitful thought is
readily seen by asking the same question for real numbers. In fact, when 0 < a, b € R itis elementary to verify

AB < A#B <

®)

—1
that vab = \/ %b (W) . Our first result is a little lemma extending this to the non-commutative case.

We were not able to find a proof in the literature, so we provide one.

Lemma 3. For A, B > 0 strictly positive matrices, the identity

A+ B
2

A#B = ( )#(A!B) ©

holds true.

Proof. We start by defining A := (A + B)"'/2A(A + B)" /2, B:= (A + B)"'/2B(A + B)'/2.Itiseasyto see
that[A, B] = 0, for instance because A + B = (A + B) '/2(A + B)(A + B) /2 = 1. Therefore, the identity
A#B = (AB)'/? holds. Now, on the one hand the congruence covariance of the geometric mean implies that

A#B = (A + By V2A(A + By /) #((A + B V/2B(A + By V/2) = (A + B V2(A#B)(A + B2,
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On the other hand,
AB =(A + B Y/2A(A + B)"'B(A + B)"1/2
=A+B B A+ BA YA+ B2 = %(A + B)"/2(AIB)(A + B)"'/2,

Putting all together, we see that
(A + By V2(A#B)(A + B)"\/2 = A#B = (AB)'/? = %((A + B)"Y/2(A!B)(A + B V/H)l/2,

Conjugatingby (A + B)!/2,we obtain

A#hf%m+mmm+HWWM®m+BW®WM+&W=(A;ﬂ#W&, (10)

where the last step is an application of (7). O

2.3. Gaussian states

In the remainder of this section, we provide a brief introduction to the main concepts of the Gaussian formalism.
Quantum continuous variables just describe quantum mechanics applied to an infinite-dimensional Hilbert
space equipped with position and momentum operators x;, p, (j,k = 1, ..., n) satisfying the so-called canonical
commutation relations [x;, p,] = i0; (in natural units, /z = 1). Such a Hilbert space describes, for instance, a
collection of n quantum harmonic oscillators, or modes of the electromagnetic radiation field. The operators

xj> py are often grouped together to form a single vector of 21 operators r := (x;, p;, ..., X, p,). The canonical
commutation relations then take the form

T — 3 — 1, bn — 0 1
[r, '] =1Q =1w%" w'_(—l 0). (11)

An important object one can form is the displacement operator. For any z € R?", we define
D, = eiz'0r, (12)

It turns out that Nature has a special preference for quadratic Hamiltonians. A prominent example is the
free-field Hamiltonian H, = %rTr. Not surprisingly, thermal states of quadratic Hamiltonians are extremely
easily produced in the lab, in fact so easily that they deserve a special name: Gaussian states [1-6]. As the name
suggests, they can be fully described by a real displacement vector w € R*"and areal, 2n x 2n quantum
covariance matrix (QCM) V, defined respectivelyas w = (r)and V = ({r — w, rT — w’}). ByQCM we meana
real, symmetric, strictly positive matrix V' > 0 that moreover satisfies the Heisenberg uncertainty relation [31]

V+iQ >o0. (13)

Note that (13) can equivalently be written as V' — i{2 > 0 upon applying transposition (as VT = V, QT = —Q).
The Gaussian state p&(V, w) with QCM V and displacement vector w admits the representation

fmm:fz

d*"u
@2m)"

which justifies the alternative definition of Gaussian states as the continuous variable states associated with a

Gaussian characteristic function.

Clearly, linear transformations r — Sr that preserve the commutation relations (11) play a special role
within this framework. Any such transformation is described by a symplectic matrix, i.e. a matrix S with the
property that SQST = Q. Symplectic matrices form a non-compact, connected Lie group that is additionally
closed under transposition, and is typically denoted by Sp(2n, R) [32]. The importance of these operations
arises from the fact that for any symplectic S there is a unitary evolution Ug on the Hilbert space such that
Ul rUs = Sr. Mostimportantly, such a unitary is the product of a finite number of factors ‘e, where H isa
quadratic Hamiltonian, and as such it can be easily implemented in laboratory. Under conjugation by Us,
Gaussian states transform as

1T T
e s VemWiDq,, (14)

Ul po(V, w)Us = pC(SVST, Sw). (15)

It turns out that all Gaussian states can be brought into a remarkably simple normal form via unitary
transformations induced by quadratic Hamiltonians. In fact, a theorem by Williamson [33, 34] implies that for
all strictly positive matrices V > 0 there is a symplectic transformation S and a diagonal matrix N > 0 such that

STWS™T = N := diag(vy, V1, «-vs Up» V). (16)

The diagonal elements v; > 0, each taken with multiplicity one, are called symplectic eigenvalues of V, and are
uniquely determined by V (up to their order, which can be assumed decreasing by convention with no loss of
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generality). Accordingly, we will refer to ¥ = (vy, v, ..., 1) as the symplectic spectrum of V. Notably, Heisenberg
uncertainty relation (13) can be conveniently restatedas N > 1, or equivalently v; > 1foralli = 1, ..., n.A
Gaussian state p°(V, w) can be shown to be pure if and only ifall of its symplectic eigenvalues are equal to 1,
which corresponds to the matrix equality VQ2V () = —1. Correspondingly,a QCM V'satisfying v; = 1 forall
j=1,...,n(orequivalently det V = 1) will be called a pure QCM. Note that pure QCMs V are themselves
symplectic matrices, V = (STS)"! € Sp(2n, R), and are the extremal elements in the convex set of QCMs.
Finally, note that displacement vector w is often irrelevant since it can be made to vanish by local unitaries,
resulting from the action of the displacement operator of (12) on each individual mode. Since all the physically
relevant informational properties such as purity and entanglement are invariant under local unitaries, all the
results we are going to present will not depend on the first moments. Therefore, in what follows, we will
completely specify any Gaussian state under our investigation as p¢ (V') in terms of its QCM V alone.

3. Simplified separability criterion for M versus N-mode Gaussian states

The QCM V5 of a Gaussian state piB pertaining to a (m + n)-mode bipartite system AB can be naturally
written in block form according to the splitting between the subsystems A and B:

T (17)
X )
According to the same splitting, the matrix {2 appearing in (11) takes the form
QB 0
Qup = = ® U, 1
AB ( 0 QB) A @ (g (18)

with Q = w®"and QO = W

The entanglement properties of a bipartite Gaussian state can thus be conveniently translated at the level of
QCMs. Recall that, in general, a bipartite quantum state p,p is separable if and only if it can be written as a convex
mixture of product states, p,; = > P, (0ka ® Tkp), with p; being probabilities [35]. For a Gaussian state pr of
abipartite continuous variable system, we have then the following.

Lemma 4 (Proposition 1 in [7]). A Gaussian state p(ZB (Vap) with (m + n)-mode QCM V, is separable if and only
if there exist an m-mode QCM +y, > iy and an n mode QCM y, > i€dp such that

Vag = Y4 @ 8. (19)

In view of the above result, a QCM Vg satisfying (19) for some marginal QCMs ,, v, willitself be called
separable from now on. The criterion in (19) is necessary and sufficient for separability of QCMs, and can be
evaluated numerically via convex optimisation [8, 20], however such optimisation runs over both marginal
QCM:s, hence scaling (polynomially) with both 1 and n.

The first main result of this paper is to show that the necessary and sufficient separability condition (19), for
any m and n, can be further simplified. This result is quite neat and of importance in its own right. In particular,
itallows us to recast the Gaussian separability problem as a convex optimisation over the marginal QCM of one
subsystem only (say A without loss of generality), resulting in an appreciable reduction of computational
resources, especially in case party A comprises a much smaller number of modes than party B.

Theorem 5 (Simplified separability condition for an arbitrary QCM). A QCM V,g of m + n modes is separable
ifand only if there exists an m-mode QCM vy, > i§)4 such that

Vap 2 14 @ 1. (20)

In terms of the block form (17) of Vup, when Vg > 1§ the above condition is equivalent to the existence of a real
matrix -y, satisfying

iU << Va— X (Vg — Q) 1XT. (21)
If Vg — iQp is notinvertible, we require instead iy < v, < Vo — X(Vp + el — i) X" foralle > 0.
Proof. Since both sets of QCMs V,yz defined by (19) and (20) are clearly topologically closed, we can just show
without loss of generality that their interiors coincide. This latter condition can be rephrased as an equivalence
between the two following statements: (i) Va5 > v, ® -y for some QCMs 7, 5 and (ii) Vap > 7, @ i{2s for
some QCM v4.

Now, once v, < V, isfixed, the supremum of all the matrices y, satisfying V45 > 7, @ 7, is given by the
Schur complement (Vyg — (7, @ 0p))/(V4 — ,), as the variational characterisation (4) reveals. Therefore,
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statement (i) is equivalent to the existence of i€y < v, < Vjsuchthat (Vag — (v, ® 08)/(Va — 7,) > i€2s.
This is the same as to require Vyg > v, @ i€, as the positivity conditions of lemma 1 immediately show.

Until now, we have proven that the separability of Vs 5 can be restated as Vy5 > v, @ {23 for some
appropriate QCM 7,4. Employing lemma 1, we see that this is turn equivalent to (21), or to its e-modified version
when Vi — iQ)3 is not invertible. O

Remark 1. It has been recently observed [36] that condition (21) is equivalent to the corresponding Gaussian
state pg 5 (Vap) with QCM Vg being completely extendable with Gaussian extensions. We remind the reader
thata bipartite state p, is said to be completely extendable if for all k there existsastate p 45 . p thatis: (i)
symmetric under exchange of any two B; systems; and (ii) an extension of p, ; in the sense that

Trp,...B, P ap,...5, = Pap- When the original state pi » 1s Gaussian, it is natural to consider extensions pg BB, of
Gaussian form as well. Interestingly enough, the above theorem 5 provides a simple alternative proof of the
remarkable fact (also proven in [36]) that Gaussian states are separable if and only if completely extendable with
Gaussian extensions.

Remark 2. It is worth noticing that both lemma 4 and theorem 5 extend straightforwardly to encompass the case
of full separability of multipartite Gaussian states. In the case of lemma 4, this extension was already formulated
in[7, 37]. As for theorem 5, the corresponding necessary and sufficient condition for the full separability of a k-
partite QCM V.4, wouldread V..., > Ya ® - OV, D i€, for appropriate QCMs v, ..., Y.

4. PPT implies separability for 1 versus N-mode Gaussian states—revisited

We now focus on investigating known and new conditions under which separability becomes equivalent to PPT
for Gaussian states, so that the problem of deciding whether a given QCM is separable or not admits a handy
formulation.

For any bipartite state p4p, recall that the PPT criterion provides a useful necessary condition for separability
[14]:

pap 1s separable = p’5 >0, (22)

where the suffix T denotes transposition with respect to the degrees of freedom of subsystem B only. In finite-
dimensional systems, PPT is also a sufficient condition for separability when dim(A) - dim(B) < 6 [38].

In continuous variable systems, the PPT criterion turns out to be also sufficient for separability of QCMs
when either A or Bis composed of one mode only.

Theorem 6 (PPT is sufficient for Gaussian states of 1 versus n modes [7, 15]). Let V45 be a bipartite QCM such
that either A or B are composed of one mode only. Then Vg is separable if and only if
i

0
Vap = .
AB ( 0 :l:lQB

) =iy & (i), (23)
which amounts to the corresponding Gaussian state being PPT, pGIZ% > 0.

For completeness, we recall that the partial transpose of an (m + n)-mode QCM V43 (i.e., the covariance
matrix of the partially transposed density operator pGIZ%) is given by V12 = @V, 303, where with respect toa
mode-wise decomposition on the B subsystem the matrix ©p can be writtenas Op = 1, & (EB’J?ZIC ), with
(= ((1) _01) [15]. Accordingly, we can say that the QCM V5 is PPT if and only if V1% is a valid QCM
obeying (13), which is equivalent to (23).

The original proof of theorem 6 came in two steps. Firstly, Simon [15] proved it in the particular case when
both A and B are made of one mode only by performing an explicit analysis of the symplectic invariants of Vp;
this seminal analysis is quite straightforward to follow and particularly instructive, but eventually a bit
cumbersome, since it requires to distinguish between three cases, according to the sign of det X, where X is the
off-diagonal block of the QCM V4 partitioned as in (17). Later on, Werner and Wolf [7] reduced the problem
for the 1 versus n-mode case with arbitrary » to the 1 versus 1-mode case; the proof of this reduction is geometric
in nature and rather elegant, but also relatively difficult.

Our purpose in this section is to use Schur complements to provide the reader with a simple, direct proof of
theorem 6. Before coming to that, there is a preliminary lemma we want to discuss.

Lemma7.Let M, N be2 x 2 Hermitian matrices. There is a real symmetric matrix R satisfying M < R < N if
andonlyif M < N, N*, where * denotes complex conjugation.

7
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Proof. The only complex entryina2 x 2 Hermitian matrix is in the off-diagonal element. Suppose without loss
of generality that M, > 0 and JNj, < 0 (both conditions in the statement are in fact symmetric under
complex conjugation of M or N). Itis easy to verify thatapsuch that 0 < p < land IJ(pM + (1 — p)N), =0
always exists, and we see that R := pM + (1 — p)N isareal symmetric matrix. Moreover, since R belongs to the
segment joining Mand N > M we conclude that M << R < N. O

Remark 3. Lemma 7 admits an appealing physical interpretation which also leads to an intuitive proof. This
interpretation is based on the fact that 2 x 2 Hermitian matrices can be seen as events in four-dimensional
Minkowski space—time through the correspondence x¢l + X - & < (xg, X). Furthermore, M < N translates
in Minkowski space—time to ‘N is in the absolute future of M’, since the remarkable determinantal identity
det(xol + ¥ - &) = x5 — x> holds true. Now, the complex conjugation at the matrix level becomes nothing but
a spatial reflection with respect to a fixed spatial plane in Minkowski space—time. Thus, our original question is:
isit true that whenever both an event N and its spatial reflection N* are in the absolute future of a reference
event M then there is another event R which is: (i) in the absolute future of M; (ii) in the absolute past of both N
and N*; and (iii) lies right on the reflection plane? The answer is clearly yes, and there is a simple way to obtain it.
Start from M and shoot a photon to the location of that event between N and N* that will happen on the other
side of the reflection plane. After some time the photon hits the plane, and this event R clearly satisfies all
requirements.

Now we are ready to give our direct proof of the equivalence between PPT and separability for 1 versus n-
mode Gaussian states, leveraging the simplified separability condition of theorem 5.

Proof of theorem 6. Suppose without loss of generality that A is composed of one mode only. As in the proof of
theorem 5, since both sets of QCMs V5 defined by (19) and (23) are topologically closed, we can assume that
Vap isin the interior of the PPT set, i.e. that Vg > i @ (Zi€2p). Our goal will be to show that in this case Vyp
belongs to the separable set, as characterised by theorem 5. Since Vi — i{)g is taken to be invertible, the PPT
condition reads

Vi — X(Vs 7 i) X7 > iy,

Now, define M = iy and N = V, — X (V5 + i) 'X7, and observe that N* = V, — X(V — iQp)'XT.
Thanks tolemma 7, we can find a real matrix -, such that

Vi — X(Vp F i) X7 > 4 > Q4.

Choosing the negative sign in the above inequality, we see that the second condition (21) in theorem 5 is met,
and therefore V, is separable. O

5. Gaussian states that are invariant under partial transpose are separable

As a further example of application of theorem 5, we study here the separability of a special class of PPT Gaussian
states, i.e. those that are invariant under partial transposition of one of the subsystems. This problem has an
analogue in finite-dimensional quantum information, already studied in [24], where it was shown that bipartite
states on C2 @ C that are invariant under partial transpose on the first system are necessarily separable”. Here
we show that for Gaussian states an even stronger statement holds, in that invariance under partial transposition
implies separability for any number of local modes.

Corollary 8. A bipartite Gaussian state pg  that is invariant under partial transposition of one of the two subsystems
is necessarily separable.

4 . . . . .
The proof reported in [24] is rather long, so here we provide a shorter one, again based on Schur complements. A state on C> @ C¥ that is

invariant under partial transposition on the first subsystem can be represented in block formas p = (?( )lg) By a continuity argument, we
A X e
+ 1)1 B — XA~'X). Both terms are positive by lemma 1.
X XA,lx) e ( ) p Y

can suppose without loss of generality that A > 0. Rewrite p = (
Since the second one is explicitly separable, let us deal only with the first one, call it . Wehave p = 1, @ A'/? 1 YZ L, ® A'/2, where

Y := A"Y/2XA"1/2 is Hermitian. Denoting by Y = 7, y1le;) (el its spectral decomposition, we obtain the following manifestly separable

representation of j:

) Ly
p=LoA Z[Z[y yz] ® le) <e,—|]12 ® A2,

i i
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Proof. Without loss of generality, we can assume that the partial transpose on the B system leaves the state
invariant. We now show that under the this assumption the separability condition (21) is immediately satisfied,
since the rightmost side is already a real, symmetric matrix. In fact, equating the original QCM (17) with the one
obtained after partial transpose on the B system, we get the identities X = X©p and V3 = O V3 Op, where, as

previously set, O = (P]_; ¢ according to a mode-wise decomposition of the B system, and ¢ = ((1) _01) Asa

consequence,

X (Vs — i)' X" = XOp(Vp — i) 'OpX" = X (Op(V5 — i) Op) ' X" = X (V5 + i) ~'X",

where we used also O30 = —Qp. This shows that X (V3 — i)~ !XT is equal to its complex conjugate, and
is therefore (despite appearances) a real symmetric matrix. Hence the separability condition (21) is satisfied with

Y = Va — X(V — iQp)1XT, which is a legitimate QCM as follows from the bonafide condition (13) together
with lemma 1. O

6. PPT implies separability for multimode mono-symmetric Gaussian states

Throughout this section, we show how the PPT criterion is also necessary and sufficient for deciding the
separability of bipartite Gaussian states of 1 versus n modes that are symmetric under the exchange of any two
among the first m modes. These states will be referred to as mono-symmetric (with respect to the first party A). As
can be easily seen, this novel result (see figure 1 for a graphical visualisation) is a generalisation of both theorem 6
and of one of the main results in [16], where the subclass of bi-symmetric states was considered instead, bi-
symmetric meaning that they are invariant under swapping any two modes either within the first 7 or within the
last 2 (that is, they are mono-symmetric in both A and B).

Theorem 9 (Symplecticlocalisation of mono-symmetric states). Let pg 5 (Vap) be a mono-symmetric Gaussian
stateof m + n modes, i.e. specified by a QCM Vg that is symmetric under the exchange of any two of the m modes of
subsystem A. Then there exists a local unitary operation on A corresponding to a symplectic transformation
Sa € Sp(2 m, R) that transforms pr into the tensor product of m — 1 uncorrelated single-mode Gaussian states
ﬁfv (\7A].) (j = 2, ..., m) and a bipartite Gaussian state ﬁle (\A/}“B) of 1 versus n modes. At the QCM level, this

7
reads

(Sy @ 1p) Vap(St @ 1p) = (@VA,-] @ Vs (24)
=2

The separability properties of Vap and \7A] p are equivalent, in particular < ,(Vag) is separable if and only if it is PPT.

Proof. We will prove (24) directly at the QCM level, by constructing a suitable local symplectic S4. By virtue of
the symmetry under the exchange of any two modes of subsystem A, if we decompose Vg asin (17), the
submatrices V4 and X have the following structure:

a & ... € Rl R2 ... Ry
: Ky ...
= o x=|T"m o (25)
: o€ : :
g ... & « Rl R ... Ry
where each one of the blocks v, €, x;in(25)isa2 x 2 real matrix, with @ and £ symmetric [39].
We can now decompose the real space of the first m modes as R?" = R @ R2. According to this
decomposition, we may rewrite V, and X as follows:
n
Va=1,® (@—¢) + m+)(+| ®e¢, X=vym > |+){jl ® k), (26)

j=1

where |[+) = %Z:”: i), with {]4) } I~ | denoting the standard basis for R™. Observe that the symplectic form €2,
on subsystem A decomposes accordinglyas {24 = 1,, ® w.IfOisanm x m orthogonal matrix such that

O|+) = |1), we easily see thaton the onehand O ® 1, 4 OT ® 1, = Qy,i.e. O ® L, is symplectic, while on
the other hand
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OLV,0T®L =[1)(1] ® ( + (m — 1e) + >_|i) (il ® (o — &)

i=2

a+ (m— e 0 0
I @
0 0 a—¢
. Jmory moky .o WKy,
OeLX =vm Y)(jleor=[ ° 0 0 (28)
= 0 0 .. 0

Therefore, the initial QCM V4 has been decomposed as a direct sum of m — 1 one-mode QCMs VAj =a— ¢,
and of one (1 4+ m)-mode QCM \7,41 B> via alocal symplectic operation on subsystem A, given precisely by

Sa = O ® L. This proves (24) constructively. Applying theorem 6, one then gets immediately that the PPT
condition is necessary and sufficient for separability in this case. O

Remark 4. This original result yields a substantial enlargement to the domain of validity of PPT as a necessary
and sufficient criterion for separability of multimode Gaussian states, reaching beyond any existing literature. In
practice, theorem 9 tells us that, in any mono-symmetric Gaussian state, all the correlations (including and
beyond entanglement) shared among the whole 71 modes of A and the whole # modes of B can belocalised onto
correlations between a single mode A; of A versus the whole B, by means of alocal unitary (symplectic at the
QCM level) operation at A’s side only. Being unitary, this operation is fully reversible, meaning that the
correlations with B can be redistributed back and forth between A; and the whole set of A modes with no
information loss. This also means that quantitative results on any measure of such correlations between A and B
encoded in V5 can be conveniently evaluated in the much simpler 1 versus n-mode normal form ‘,\/;h B
constructed in the proof theorem 9, ignoring the m — 1 uncorrelated modes.

In the special case of V5 being the QCM of a bi-symmetric state, i.e. with full permutation symmetry within
both A and B, it is immediate to observe that applying a similar construction by means of a local unitary at B's
side as well fully reduces V5 to a two-mode QCM \721 ,» with equivalent entanglement properties as the original
Vap, plusa collection of m + n — 2 uncorrelated single modes. This reproduces the findings of [ 16].

Similarly to what discussed in remark 2, the results of theorem 9 can also be straightforwardly extended to
characterise full separability and, conversely, multipartite entanglement of arbitrary multimode Gaussian states
which are partitioned into k subsystems, with the requirement of local permutation invariance within some of
these subsystems. It is clear that, by suitable local symplectic transformations, each of those locally symmetric
parties can be localised onto a single mode correlated with the remaining parties, thus removing the redundancy
in the QCM. Gaussian states of this sort generalise the so-called multi-symmetric states studied in [40], where
local permutation invariance was enforced within all of the subsystems, resulting in a direct multipartite
analogue of bi-symmetric states.

7. PPT implies separability for multimode isotropic Gaussian states—revisited

Itis well known that the PPT criterion is in general sufficient, as well as obviously necessary, for pure bipartite
states to be separable [14]. This may be seen by a direct inspection of the Schmidt decomposition of a pure state.
Let us note, incidentally, that a stronger statement holds, namely any bound entangled state (in any dimension)
must have atleastrank 4 [41].

The Schmidt decomposition theorem is in fact so important that a Gaussian version of it, that is, the
determination of a normal form of pure QCMs under local symplectic operations, is of central importance in
continuous variable quantum information. As can be shown at the covariance matrix level [17, 18] or at the
density operator level [19], every pure bipartite Gaussian state pﬁ 5 (Vap) can be brought into a tensor product of
two-mode squeezed vacuum states and single-mode vacuum states by means of local unitaries with respect to
the A versus B partition. In particular, by acting correspondingly with local symplectic transformations, any pure
QCM V3 (where pure means det V43 = 1) can be transformed into a direct sum of (pure) two-mode squeezed
vacuum QCMs and (pure) single-mode vacuum QCMs. More precisely, at the level of QCMs, one can formulate
this fundamental result as follows.

Theorem 10 (Mode-wise decomposition of pure Gaussian states [17-19]). Let V be a bipartite QCM of

m + nmodes Ay, ..., Ay, By, ..., By, assuming m < n (with no loss of generality). If Vap is a pure QCM, i.e. allits
symplectic eigenvalues are equal to 1 (which amounts to det Vg = 1), then there exist local symplectic
transformations Sy € Sp(2 m, R), S € Sp(2n, R) mapping V,p into the following normal form:

10



10P Publishing

New J. Phys. 20 (2018) 023030 L Lamietal

(Sy @ Sp)Van(Si @ S5) = D Va () & D 1, (29)
j=1 k=m+1
Cj]l SjC
5;¢ ¢l
QCM of a two-mode squeezed vacuum state of modes A; and B;, and 1, is the pure QCM of the single-mode vacuum
state of mode By. In particular, with respect to the block form (17), for any pure QCM Vg the marginal QCMs V4
and Vg have matching symplectic spectra, given by Uy = (¢, ..., ) and Vg = (qy <., Cpp 1, .05 1).

where Vy p, = ( ] with ¢; = cosh(2rj) and s; = sinh(2r;), for a real squeezing parameter r;, is the pure

n—m

Leaving apart its far-reaching applications, in the context of the present paper this result is mainly
instrumental for assessing the separability of so-called isotropic multimode Gaussian states. The QCM of any
such state of m + n modes is characterised by the property of having a completely degenerate symplectic
spectrum, i.e. formed of only one distinct symplectic eigenvalue v > 1 (repeated m + n times). This means that
the QCM V4 of any isotropic state is proportional by a factor v to a pure QCM. Hence, theorem 10 tells us that
Vg can be brought into a direct sum of two-mode QCMs via a local symplectic congruence (local with respect to
any partition into groups of modes A and B), as first observed in [17]. Thanks to theorem 6, this guarantees the
following.

Theorem 11. The PPT criterion is necessary and sufficient for separability of all isotropic Gaussian states of an
arbitrary number of modes.

However, notwithstanding the importance of theorem 7 per se, one could strive to seek a more direct way to
obtain theorem 11. Our purpose in this section is in fact to provide an alternative proof of this result, which does
not appeal to the mode-wise decomposition theorem at all, and uses directly lemma 4 instead, leveraging matrix
analysis tools such as the notions of matrix means introduced in section 2.2.

Note that, in almost all the remainder of this section, for a single system of n modes, we will find it more

convenient to reorder the vector of canonical operatorsas r := (xi, ..., X, py5 --., p,), corresponding to a
position-momentum block structure. The symplectic form 2 appearingin (11)is accordingly rewritten as
01
Q= . 30
(%)) (30)

We will then write any QCM V, as well as any symplectic operation S acting on it, with respect to this alternative
block structure, unless explicitly stated otherwise.

Let us start with a preliminary result, equivalent to proposition 12 of [43] or lemma 13 of [23]. We include a
proof for the sake of completeness.

Lemma 12. Let V > 0 be a positive matrix. Then V isa pure QCM ifand only if V. = QV~1QT, and it obeys (13) if
and only if

V > VH#QVIQD). (31)

Proof. Let the Williamson form of V'be given by (16), where (in the convention of this section) N = A @ A,
with A = (v, ... 1,). Then we can write

QVIOT = QS TN @ ANSTIQT = SQATT @ ANQTST = S @ AHQOTST = S @ AHST,

where we used in order: (i) the identities QST = 5, S71QT = QTST, all consequences of the defining
symplecticidentity SQST = ; (ii) the fact that 2 commutes with A~! @ A~'; and (iii) the orthogonality relation
QQOT = 1. Now the first claim becomes obvious, since A = A~! = 1ifand onlyif Vis a pure QCM. In general, as
it can be seen from the above expression, Vand QV~1Q" are brought in Williamson form by simultaneous
congruences with the same symplectic matrix (i.e. S71, in the convention of (16)). Hence, the covariance of the
geometric mean under congruence ensures that

_ A O Ao A 0) (AT O
VH#QVION) =[S ST|#|S s'l=s ST = ss7,
i ) ( (0 A) )#( ( 0 Al) ) ((0 A)#( 0 Al))
where the last passage is an easy consequence of the fact that A#A~! = Lforall A > 0. Bycomparison

with (16), we see that the Heisenberg uncertainty relation A > 1 can be rephrased as
V=S8 ® MNST > ST = VH#(QV~IQT), which reproduces (31), proving the second claim. O

Remark 5. From the above proofit is also apparent how, for any positive A > 0, the matrix A#(QA'Q7)isa
pure QCM (independently of the nature of A).

11
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Now we are ready to explain our direct argument to show separability of PPT isotropic Gaussian states,
alternative to the use of the mode-wise decomposition.

Proof of theorem 11. We start by rewriting the PPT condition (23) foraQCM Vg as
OpV0OR, =i,

1 0
0 -1
OpVOp > (OpVOR)#(NOV10507)

where in the convention of this section O = 1, & ( ) . Thanks to lemma 12, this becomes in turn
B

and finally

V > V#0500V 10507 0p) = V)F#(ZQ V)1 Q'2)

after conjugating by ©, applying once more the covariance of the geometric mean under congruences,
introducing a real parameter g > 0 (to be fixed later), and defining Z := 1, @ (—1p) = ©300507. Now, we
applylemma 3 to the above expression, obtaining
1T
Vs (gV+ZQ(gV) Oz
2

)#((gV)!(ZQ ) ' z)).

Although it is not yet transparent, we are done, as the right-hand side of the above inequality is exactly of the
form ~y, ® v, when Vis the QCM of an isotropic Gaussian state. In fact, let g > 0 be such that gVis a pure QCM,

satisfying gV = Q (gV) ' QT = pY ), where we have now reverted to a block decomposition with respect

YT Q
to the A versus B splitting. Then on the one hand since Z = 1, @& (—1p) we find
gV +ZQ@EV)y 'z (p 0 )

2 o Qp

while on the other hand
@NNZQ @V ' QTZ2) =2(gV) ' + ZQ (gV)QTZ) ! = 20(QgV) QT + Z(gV)Z) 1O

QP17 0 )

— —-107T —
=20(gV + Z(gV)2)'Q) _( o qoar

where we used the definition (5) of harmonic mean and the fact that [Z, Q2] = 0. Puttingall together, we find

P o), [erQ" o0 _(P#OPTIQT 0 _
v 2(0 Q)#[ 0 QQIQT)_[ 0 Q#QQ@T]_%@%'

Since we already observed that P#QP QT isa QCM for any P > 0 (and analogously for Q), a direct invocation
oflemma 4 allows us to conclude the proof. O

8. Entangling Gaussian states via passive optical operations

Throughout this section, we finally complete the solution of a problem posed in [25] and there addressed under
some additional constraints. Let us start by recalling that symplectic operations can be divided into two main
categories, namely those such as squeezers that require an exchange of energy between the system and the
apparatus, called active, and those that can be implemented using only beam splitters and phase plates, called
passive. A symplectic matrix K represents a passive transformation if and only if it is also orthogonal, meaning
that KK = 1 (it may be worth adding that symplectic orthogonal transformations form the maximal compact
subgroup of the symplectic group). As it turns out, symplectic orthogonal matrices can be represented in an
especially simple form if we resort to a position-momentum block decomposition. Namely, one has the
parametrisation [6]

U
K= WT( U*)W’ (32)
where

and Uisageneric, n X n unitary matrix, with U” denoting its complex conjugate.
Since the implementation of passive operations is so inexpensive in quantum optics and entangled states so
useful for quantum technologies, the question first posed in [25] was a natural one: ‘What bipartite Gaussian

12
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states are such that they can be entangled via a global, passive operation?” However, in this full generality the
problem was left unanswered in [25]. Instead, another related question was investigated and answered there,
namely whether distillable Gaussian entanglement can be produced in the same fashion. For Gaussian states, as
mentioned in the Introduction, distillability is well known to be equivalent to non-positivity of the partial
transpose [8, 13], so the authors of [25] proceeded to identify the class of Gaussian states that can be made to
violate the PPT condition with a passive transformation. However, it is important to realise that since PPT and
separability are not the same for general multimode Gaussian states, the two questions are a priori different. Here
we show that the answer to the original question above turns out to be yet another situation where the PPT
condition is necessary and sufficient to ensure separability of Gaussian states. In other words, we will prove thata
bipartite Gaussian state that can not be made distillable (i.e.non-PPT) via passive operations is necessarily
separable, and thus it stays separable under the application of said passive operations. Let us start with a technical
lemma that we deduce from recent results obtained in [44].

Lemma 13. Let A > 0 beastrictly positive 2n X 2n matrix. Let v;(A) and \;(A) denote its symplectic and ordinary
(orthogonal) eigenvalues, respectively, arranged in non-decreasing order. Then

(A = M(A) Ay (A). (33)

In particular, every positive matrix whose two smallest eigenvalues satisfy \ A, > 1is automatically a

legitimate QCM.

Proof. From [44, equation (71)] we deduce H']le U, ,jH(A)Z < H?il Xon—jr1(A) forallk=1, ..., n, with
equality for k = n, when both terms equal the determinant of A. We can use this observation to deduce that
H’;zl 1z (A)? > H?il Aj(A)forallk=1, ..., n. The special case k = 1yields the claim. 0

Now, we are ready to present our strengthening of [25, proposition 1].
Theorem 14. Let V be a bipartite QCM of an n-mode system. Then the following are equivalent:

(i) KVKT isseparable for all Gaussian passive transformations K;
(ii) KVK? is PPT for all Gaussian passive transformations K; and

(iii) the two smallest eigenvalues of V satisfy (V) (V) > 1.

Proof. The implication (i) =- (ii) is obvious, while (iii) = (ii) already follows from lemma 13 together with the
fact that the partial transpose at the level of QCMs is a congruence by orthogonal transformation and thus does
not change the ordinary spectrum. One of the main contributions of [25] is the proof that (ii) and (iii) are in fact
equivalent. In view of this discussion, we have just to show that (iii) = (i). To this end, we will assume that V
satisfies \; (V) A2(V) > 1and construct two local QCMs v,, ~;, that satisfy the hypothesis of the original
separability criterion given bylemma 4. Call \; (V) = k and observe thatifk > 1then V > 1 =1, & lzand we
are done. Otherwise, assume k < 1and denote by |x) the normalised eigenvector corresponding to the minimal
eigenvalue of V,i.e. V|x) = k|x)and (x[x) = 1.Since \,(V) > % and a fortiori \;(V) > % forall i > 2,wecan
write

V> kix) (x| + %(11 — %) ().

Now, decompose the vector |x) into its A and B components as |x) =

( ﬁ|)’>A
mlzh

],whereO < p < land
{(yly) = 1 = (z|]z). Then, lemma 13 guarantees that the matrices
1
W=yl + A= 1) D

s = Kj2) (2] + %(n — 12) (2

are legitimate QCMs. Then showing V5 — 7, @ 7 > 0 would complete our proof. By direct computation, we
find

13



I0OP Publishing New J. Phys. 20 (2018) 023030 L Lamietal

1 ) P VPP | 1 (11 0)

VAB—VA@VBZ—(——IC

k Jr@=p)l2)(yl (1= p)lz){al K\o 1
(G- 0
0 *(% - k)lz) (2] + %]l

[ it TP
—Jp(1 = p)lz) (¥l plz) (2|

(3 =T - FE (TR )
0.

Remark 6. In some sense, one can think of the question posed in [25] and answered here in theorem 14 asa
continuous variable analogue of the absolute separability problem in finite-dimensional quantum information,
which asks for the characterisation of those spectra 0 = (A, ..., Agy) such that every bipartite quantum state on
C? ® C* with spectrum o is separable [45]. For a recent review of the state of the art, we refer the reader to [46].
A suggestive argument concerning this analogy goes as follows. An arbitrary unitary transformation p +— UpUT
corresponds to an internal time evolution according to some unknown Hamiltonian. Then, the absolutely
separable states are exactly those bipartite states whose correlations are so weak that they can not be made
entangled by any internal evolution. In the case of continuous variable quantum systems, one may hold the free-
field Hamiltonian H = %rTr as the privileged one, so that it makes sense to restrict oneself to those unitary
evolutions that preserve this particular Hamiltonian. If the original state is Gaussian and the unitaries are
generated by quadratic Hamiltonians, so that they are represented by symplectic matrices, preserving the free-
field Hamiltonian is the defining feature of passive transformations, and one obtains exactly the problem we
solved here.

As is often the case, the technical details and the nature of the solution are simpler in the Gaussian realm. We
found that the condition for being ‘absolutely separable’ in the Gaussian sense is expressed by a simple inequality
involving only the two smallest ordinary eigenvalues of the QCM, and that there are no ‘absolutely PPT’ states
that are not ‘absolutely separable’ too. This latter equivalence has been conjectured to hold for the original
problem in discrete-variable systems as well, but so far only partial answers are available. Namely, the conditions
for absolute PPT-ness can be written explicitly [47], but whether or not they imply absolute separability is in
general unknown. However, the answer to this latter question has been shown to be affirmative for the case of
two qubits [48] and more recently for qubit-qudit systems [49].

9. Summary and outlook

In this work we advanced the mathematical and physical study of separability and entanglement distillability in
Gaussian states of continuous variable quantum systems. Based on the properties of Schur complements and
other matrix analysis tools, we obtained a simplified necessary and sufficient condition for the separability of all
multimode Gaussian states, requiring optimisation over the set of local covariance matrices of one subsystem
only. Exploiting this result, we presented a compact proof of the equivalence between PPT and separability for 1
versus n-mode Gaussian states, a seminal result in continuous variable quantum information theory[7, 15], as
well as extended the criterion to multimode classes of so-called mono-symmetric and isotropic Gaussian states,
through novel derivations. Furthermore, we completed the investigation of entanglement generation under
passive operations by extending seminal results [25] to consider the generation of any, possibly PPT, Gaussian
entangled state: in this context we showed that, if passive operations can not turn an initial Gaussian state into a
non-PPT one, then no PPT entanglement can be generated through them either. This can be interpreted as
establishing the equivalence between absolute separability and absolute PPT-ness in the Gaussian world. Side
results of our analysis include a novel proof that Gaussian states invariant under partial transposition are
separable, as well as an independent proof of the equivalence between Gaussian separability and complete
extendability with Gaussian extensions [36].

In the context of this paper, and with the methods illustrated in this study, it would be interesting to research
more general combinations of symmetries and conditions on the symplectic spectra of quantum covariance
matrices whereby the sufficiency of the PPT separability criterion might be further extended. For instance, is it
possible to obtain a Gaussian analogue of the results in [41], whereby bound entangled Gaussian states can only
exist given some simple condition on their symplectic rank? In our studies, both for mono-symmetric and
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isotropic states, large degeneracies in their symplectic spectra (for the marginal covariance matrix of one
subsystem, and for the global covariance matrix of the bipartite system, respectively) played a key role in proving
the sufficiency of PPT for separability. It would be desirable to provide a full systematic characterisation of such
requirements, possibly drawing inspiration from and/or shedding new insight on the Gaussian quantum
marginal problem [50].

Finally, let us stress how matrix analysis tools such as those heavily hammered in this paper have already been
proven useful for qualitative and quantitative analysis of entanglement and other correlations, including
Einstein—Podolsky—Rosen steering, in general states of continuous variable systems [8, 10-12, 18, 20-23, 51-53].
Aside from the fact that very powerful analytical results can be proven with relative simplicity using these tools, it
is important to remark once more that the characterisations we provided of the separability problem, as well as
the variational characterisation of the Schur complement and related problems, can be straightforwardly recast
as semidefinite programms [20], thus leading to efficient numerical methods to witness inseparability and
entanglement distillability in general multimode Gaussian or non-Gaussian states based on covariance matrices.
We will explore these and other applications in further studies.
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