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Abstract
Wepresent a novel approach to the separability problem forGaussian quantum states of bosonic
continuous variable systems.Wederive a simplified necessary and sufficient separability criterion for
arbitraryGaussian states ofm versus nmodes, which relies on convex optimisation overmarginal
covariancematrices on one subsystemonly.We further revisit the currently known results stating the
equivalence between separability and positive partial transposition (PPT) for specific classes of
Gaussian states. Using techniques based onmatrix analysis, such as Schur complements andmatrix
means, we then provide a unified treatment and compact proofs of all these results. In particular, we
recover the PPT-separability equivalence for: (i)Gaussian states of 1 versus nmodes; and (ii) isotropic
Gaussian states. In passing, we also retrieve (iii) the recently established equivalence between
separability of aGaussian state and and its completeGaussian extendability. Our techniques are then
applied to progress beyond the state of the art.We prove that: (iv)Gaussian states that are invariant
under partial transposition are necessarily separable; (v) the PPT criterion is necessary and sufficient
for separability forGaussian states ofm versus nmodes that are symmetric under the exchange of any
twomodes belonging to one of the parties; and (vi)Gaussian states which remain PPTunder passive
optical operations can not be entangled by them either. This is not a foregone conclusion per se (since
Gaussian bound entangled states do exist) and settles a question that had been left unanswered in the
existing literature on the subject. This paper, enjoyable by both the quantumoptics and thematrix
analysis communities, overall delivers technical and conceptual advances which are likely to be useful
for further applications in continuous variable quantum information theory, beyond the separability
problem.

1. Introduction

Gaussian states have played a privileged role in quantumoptics and bosonic field theories, essentially since the
very early steps of such theories, due to their ease of theoretical description and relevance to experimental
practice. Over the last twenty years, such a privilege has carried over to quantum information science, where
Gaussian states form the core of the ‘continuous variable’ toolbox [1–6]. The analysis of quantumGaussian
states from the information theoretic standpoint brought up new subtle elements andmuch previously
unknown insight into their structure. For, whileGaussian dynamicsmay essentially be dealt with entirely at the
phase space level (typically by normalmode decomposition, so that Gaussian dynamics are often trivialised as
‘quasi-free’ infield theory), the analysis of quantum information properties requires one to confront theHilbert
space description of the quantum states. Hence, whileGaussian dynamicsmight well be exactly solvable with
elementary tools, the properties of Gaussian states related to theHilbert space and tensor product structures are
far frombeing equally transparent.
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The problemofGaussian separability, that is, determining whether a bipartite Gaussian state is separable or
entangled [3], exemplifies such a situation verywell. Necessary and sufficient conditions forGaussian
separability in the generalm versus n-mode case are available [7, 8], yet they are recast in terms of convex
optimisation problemswhose solution (albeit numerically efficient) does not admit, in general, a closed
analytical form. For non-separable states, a closely related question is whether their entanglement is distillable or
bound [9]. In the case of arbitrarymultimode bipartite Gaussian states, while entanglement can never be distilled
byGaussian operations alone [10–12], it is known that entanglement distillability under general local operations
and classical communications is equivalent to violation of the positivity of the partial transposition (PPT)
criterion [8, 13]. In turn, the PPT criterion, which is as well efficiently computable at the level of covariance
matrices forGaussian states, and is in general only necessary for separability [14], has been proven to be also
sufficient in some important cases, notablywhen the bipartite Gaussian state under examination pertains to a 1
versus n-mode system [7, 15], when it is ‘bi-symmetric’ [16], i.e.invariant under local permutations of any two
modeswithin any of the two subsystems, andwhen it is ‘isotropic’, i.e.with a fully degenerate symplectic
spectrumof its covariancematrix [17–19]. Outside of these special families, bound entangledGaussian states
can occur, asfirst shown in the 2 versus 2-mode case in [7].

In this paperwe provide significant advances towards the characterisation of separability and entanglement
distillability inGaussian quantum states. On one hand, we revisit the existing results, providing in particular a
new compact proof for the equivalence between PPT and separability in 1 versus n-modeGaussian states, which
encompasses the seminal 1 versus 1-mode case originally tackled by Simon [15] and its extension settled by
Werner andWolf [7]. Key to our proof is the intensive use of Schur complements, which have enjoyed
applications in various areas of (Gaussian) quantum information theory [8, 10–12, 18, 20–23], and—as further
reinforced by this work—may be appreciated as amathematical cornerstone for continuous variable quantum
technology.

On the other hand, we derive a number of novel results. In particular, amarginal extension of the techniques
applied in the aforementioned proof allow us to prove that Gaussian states invariant under partial transposition
are necessarily separable, a result previously known only for the partial transposition of qubit subsystems [24].
We then show that the 1 versus n-mode PPT-separability equivalence can be further extended to a class of
arbitrary bipartitemultimodeGaussian states that we call ‘mono-symmetric’, i.e., invariant under local
exchanges of any twomodes on one of the two subsystems (seefigure 1). This result, which (to the best of our
knowledge) is observed and proven here for the first time, generalises the case of bi-symmetric states studied in
[16], providing as a byproduct a simplified proof for the latter as well.

As for isotropic Gaussian states, in the traditional approach the sufficiency of PPT for their separability
follows fromawell known ‘mode-wise’ decomposition of pure-state covariancematrices [17–19], and from the
fact that the covariancematrix of an isotropic state is just amultiple of the covariancematrix of a pureGaussian

Figure 1.Mono-symmetric Gaussian states of two partiesA (withmmodes) andB (with nmodes) are invariant under exchange of any
twomodes within partyA. Bymeans of a suitable symplectic transformation on subsystemA, these states can be reduced to a 1 versus
n-modeGaussian state and a collection ofm−1 uncorrelated single-mode states onA’s side. Since PPT is equivalent to separability
for 1 versus n-modeGaussian states, it follows that PPT is necessary and sufficient for separability of allm versus n-modemono-
symmetric Gaussian states. In the schematics, entanglement between pairs ofmodes from the same party is depicted as a single solid
(black) line, while entanglement across amode fromA and amode fromB is depicted as a double (dark red) line.
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state. Here, we derive the sufficiency of the PPT criterion for isotropicGaussian states following a completely
different and arguablymore direct approach.Main ingredients of this novel proof are advancedmatrix analysis
tools such as the operator geometricmean, already found to be useful in the context of quantumoptics [23].

We also consider thewell known class of Gaussian passive operations (i.e., the ones that preserve the average
number of excitations of the input state, such as beam splitters and phase shifters), which play a central role in
quantumoptics [1, 5, 6], andwe prove that a bipartite Gaussian state that always remains PPTunder such a set of
operationsmust also always stay separable. This novel result complements the seminal study of [25], in that the
latter only considered the possibility of turning a PPT state into a non-PPT one through passive operations—
essentially, the question of generating distillable entanglement—which is not the same as the question of
generating inseparability, because Gaussian PPT bound entangled states do exist [7]. Here we settle the latter,
more general and fundamental question.

All the previous results enable us to substantially extend the range of equivalence betweenGaussian
separability and PPT in contexts of strong practical relevance. Last but not the least—in fact, first and foremost
in the paper—we address the separability problemdirectly, and derive a simplified necessary and sufficient
condition forGaussian separability. For a bipartite state, this requires convex optimisation overmarginal
covariancematrices on one subsystemonly, yielding a significant simplification over the existing criteria, which
instead require optimisation on both parties [7, 8, 20].

This paper is organised as follows: in section 2, the definition and basic properties of Schur complements and
matrixmeans that will be used in our derivations are recalled, and theGaussian notation is set; section 3 contains
ourmain novel finding: a simplified necessary and sufficient condition forGaussian separability in the generalm
versus n-mode case; section 4 contains a newproof of the sufficiency of the PPT criterion for separability of 1
versus n-modeGaussian states achieved in a few, swift Schur complements’manipulation; section 5 shows that
invariance under partial transposition implies separability; in section 6we prove thatmono-symmetric states
can be reduced, under local unitary operations, to 1 versus n-mode states, which implies that the PPT condition
is sufficient for them too (see figure 1); in section 7we provide the readerwith a new proof of the sufficiency of
PPT for separability of isotropicGaussian states, not relying on theirmode-wise decomposition; section 8
contains our novel analysis of entanglement generation under passive operations. Section 9 concludes the paper
with a brief summary and some future perspectives related to this work.

2. The toolbox: Schur complements,matrixmeans andGaussian states

One of themessages of the present paper is to lend further support to the fact thatmethods based on Schur
complements andmatrixmeans can be successfully exmployed to derive fundamental results in continuous
variable quantum information, following a streak of applications to various contexts including separability,
distillability, steerability, entanglementmonogamy, characterisation ofGaussianmaps, and related problems [8,
10–12, 18, 20–23]. As a divertissement to set the stage, let us present a compact, essential compendiumof such
methods.

2.1. Schur complements
Given a squarematrixM partitioned into blocks as

= ( ) ( )M A X
Y B

, 1

the Schur complement of its (square, invertible) principal submatrixA, denoted byM/A, is defined as

- -≔ ( )M A B YA X. 21

Auseful reference on Schur complements is themonograph [26]. Herewe limit ourselves to stress some of the
properties wewillmake use of in the present paper. As it turns out, Schur complements are the answer [42] to a
number of questions that arise pretty naturally inmatrix analysis.Many of these applications stem from the fact
that the positivity conditions of 2×2Hermitian blockmatrices can be easily written in terms of Schur
complements.

Lemma1.Consider aHermitianmatrix

= ⎜ ⎟⎛
⎝

⎞
⎠ ( )†H

A X
X B

. 3

Then H is strictly positive definite >( )H 0 if and only if >A 0 and = - >-†H A B X A X 01 . Then, by taking
suitable limits, H is semidefinite positive ( )H 0 if and only if A 0 and  e- + -( )†B X A X 01 for all e > 0.

A consequence of this result that will be relevant to us is the following.

3
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Corollary 2. Let H be aHermitianmatrix partitioned as in(3). Then, if >A 0,

= = > Å{ ˜ ˜ ˜} ( )†H A B B H Bsup : 0 . 4

Herewemean that thematrix set on the right-hand side has a supremum (i.e. aminimumupper bound)with respect
to the Löwner partial order ( X Y if and only if –X Y is positive semidefinite), and that this supremum is given by
the Schur complement on the left-hand side.

Wenote in passing that from the above variational representation it follows immediately thatH/A is
monotone and concave inH>0.

2.2.Matrixmeans
Somehow related to Schur complements are the so-calledmatrixmeans. As onemight expect from their name,
these are functions taking two positivematrices as inputs and yielding another positivematrix as output. For an
excellent introduction to this topic, we refer the reader to [27, chapter 4]. Here, we review only some basic facts
that wewillfinduseful throughout the paper. Given two strictly positivematricesA,B>0, the simplestmean
one can define is the arithmeticmean (A+B)/2, whose generalisation from scalars tomatrices does not present
difficulties. Another easily defined object is the harmonicmean [28, 29], denoted byA!B and given by

+- - -⎛
⎝⎜

⎞
⎠⎟! ≔ ( )A B

A B

2
. 5

1 1 1

Incidentally, the harmonicmean can be also defined as a Schur complement, with the help of the identity

= - + = + +- ⎜ ⎟
⎛
⎝

⎞
⎠! ( ) ( )A B A A A B A A A

A A B
A B1 , which immediately implies that !A B ismonotone and

jointly concave inA andB, i.e.concave in the pair (A,B).
The least trivially defined among the elementarymeans is undoubtedly the geometricmeanA#B between

strictly positivematricesA,B>0 [29, 30], which can be constructed as

# = -≔ { } ( )†A B X X A XB Xmax : , 61

where the abovemaximisation is with respect to the Löwner partial order, and the fact that the particular set of
matrices we chose admits an absolutemaximum is already non-trivial.With a bit of work one can show thatA#
B is explicitly given by

# = - -( ) ( )A B A A BA A . 71 2 1 2 1 2 1 2 1 2

Havingmultiple expressions for a singlematrixmean is always useful, as some properties that are not easy to
provewithin one formulationmay become apparent when a different approach is taken. For instance, the fact
thatA#B is covariant under congruences, i.e. # = #( ) ( ) ( )† † †MAM MBM M A B M for all invertibleM, is far
from transparent if one looks at(7), while it becomes almost obvious when(6) is used. On the contrary, the fact
that # = ( )A B AB 1 2 when [A,B]=0 is not easily seen from(6), but it is readily verified employing(7).

As it happens with scalars, the inequality

 #
+! ( )A B A B

A B

2
8

holds true for allA,B>0. In view of the above inequality, it could be natural towonder, how the geometric
mean between the leftmost and rightmost sides of(8) compares toA#B. That this could be a fruitful thought is
readily seen by asking the same question for real numbers. In fact, when < Îa b0 , it is elementary to verify

that = + + -( )ab a b a b

2

1 1

2

1
. Our first result is a little lemma extending this to the non-commutative case.

Wewere not able tofind a proof in the literature, sowe provide one.

Lemma3. For >A B, 0 strictly positivematrices, the identity

# =
+

#⎜ ⎟⎛
⎝

⎞
⎠ ( ! ) ( )A B

A B
A B

2
9

holds true.

Proof.We start by defining + + + +- - - -˜ ≔ ( ) ( ) ˜ ≔ ( ) ( )A A B A A B B A B B A B,1 2 1 2 1 2 1 2. It is easy to see
that =[ ˜ ˜]A B, 0, for instance because + = + + + =- -˜ ˜ ( ) ( )( )A B A B A B A B1 2 1 2 . Therefore, the identity
# =˜ ˜ ( ˜ ˜)A B AB 1 2 holds. Now, on the one hand the congruence covariance of the geometricmean implies that

# = + + # + + = + # +- - - - - -˜ ˜ (( ) ( ) ) (( ) ( ) ) ( ) ( )( )A B A B A A B A B B A B A B A B A B .1 2 1 2 1 2 1 2 1 2 1 2
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On the other hand,

= + + +

= + + + = + +

- - -

- - - - - - -

˜ ˜ ( ) ( ) ( )

( ) ( ( ) ) ( ) ( ) ( ! )( )

AB A B A A B B A B

A B B A B A A B A B A B A B
1

2
.

1 2 1 1 2

1 2 1 1 1 1 2 1 2 1 2

Putting all together, we see that

+ # + = # = = + +- - - -( ) ( )( ) ˜ ˜ ( ˜ ˜) (( ) ( ! )( ) )A B A B A B A B AB A B A B A B
1

2
.1 2 1 2 1 2 1 2 1 2 1 2

Conjugating by +( )A B 1 2, we obtain

# = + + + + =
+

#- - ⎜ ⎟⎛
⎝

⎞
⎠( ) (( ) ( ! )( ) ) ( ) ( ! ) ( )A B A B A B A B A B A B

A B
A B

1

2 2
, 101 2 1 2 1 2 1 2 1 2

where the last step is an application of(7). ,

2.3. Gaussian states
In the remainder of this section, we provide a brief introduction to themain concepts of theGaussian formalism.
Quantumcontinuous variables just describe quantummechanics applied to an infinite-dimensional Hilbert
space equippedwith position andmomentumoperators x p,j k ( j, k=1,K, n) satisfying the so-called canonical
commutation relations d=[ ]x p, ij k jk (in natural units,  = 1). Such aHilbert space describes, for instance, a
collection of n quantumharmonic oscillators, ormodes of the electromagnetic radiationfield. The operators
x p,j k are often grouped together to form a single vector of 2n operators ¼≔ ( )r x p x p, , , ,n n1 1 . The canonical
commutation relations then take the form

w w= W
-

Å ( )[ ] ≔ ≔ ( )r r, i i , 0 1
1 0

. 11T n

An important object one can form is the displacement operator. For any Îz n2 , we define

W≔ ( )D e . 12z
z ri T

It turns out thatNature has a special preference for quadraticHamiltonians. A prominent example is the
free-fieldHamiltonian = r rT

0
1

2
. Not surprisingly, thermal states of quadraticHamiltonians are extremely

easily produced in the lab, in fact so easily that they deserve a special name:Gaussian states [1–6]. As the name
suggests, they can be fully described by a real displacement vector Îw n2 and a real, 2n×2n quantum
covariancematrix (QCM)V, defined respectively as = á ñw r and = á - - ñ{ }V r w r w, T T . ByQCMwemean a
real, symmetric, strictly positivematrixV>0 thatmoreover satisfies theHeisenberg uncertainty relation [31]

+ W ( )V i 0. 13

Note that (13) can equivalently bewritten as - WV i 0 upon applying transposition (as = W = -WV V ,T T ).
TheGaussian state r ( )V w,G withQCMV and displacement vectorw admits the representation

òr
p

= - -
W( )

( )
( )V w

u
D,

d

2
e , 14G

n

n
u Vu w r

r

2
iT T1

4

which justifies the alternative definition ofGaussian states as the continuous variable states associatedwith a
Gaussian characteristic function.

Clearly, linear transformations r Sr that preserve the commutation relations(11) play a special role
within this framework. Any such transformation is described by a symplecticmatrix, i.e.amatrix Swith the
property that W = WS ST . Symplecticmatrices form a non-compact, connected Lie group that is additionally
closed under transposition, and is typically denoted by ( )nSp 2 , [32]. The importance of these operations
arises from the fact that for any symplectic S there is a unitary evolutionUS on theHilbert space such that

=†U rU SrS S .Most importantly, such a unitary is the product of afinite number of factors ei Q, whereQ is a
quadraticHamiltonian, and as such it can be easily implemented in laboratory. Under conjugation byUS,
Gaussian states transform as

r r=( ) ( ) ( )†U V w U SVS Sw, , . 15S
G

S
G T

It turns out that all Gaussian states can be brought into a remarkably simple normal form via unitary
transformations induced by quadraticHamiltonians. In fact, a theorembyWilliamson [33, 34] implies that for
all strictly positivematricesV>0 there is a symplectic transformation S and a diagonalmatrixN>0 such that

n n n n= ¼- - ≔ ( ) ( )S VS N diag , , , , . 16T
n n

1
1 1

The diagonal elements n > 0i , each takenwithmultiplicity one, are called symplectic eigenvalues ofV, and are
uniquely determined byV (up to their order, which can be assumed decreasing by conventionwith no loss of

5
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generality). Accordingly, wewill refer to n n n n= ¼
 ( ), , , n1 2 as the symplectic spectrum ofV. Notably, Heisenberg

uncertainty relation(13) can be conveniently restated as N , or equivalently n 1i for all = ¼i n1, , .A
Gaussian state r ( )V w,G can be shown to be pure if and only if all of its symplectic eigenvalues are equal to 1,
which corresponds to thematrix equality W W = -V V . Correspondingly, aQCMV satisfying n = 1j for all
j= 1,K, n (or equivalently =Vdet 1)will be called a pureQCM.Note that pureQCMsV are themselves
symplecticmatrices, = Î-( ) ( )V S S nSp 2 ,T 1 , and are the extremal elements in the convex set ofQCMs.

Finally, note that displacement vectorw is often irrelevant since it can bemade to vanish by local unitaries,
resulting from the action of the displacement operator of (12) on each individualmode. Since all the physically
relevant informational properties such as purity and entanglement are invariant under local unitaries, all the
results we are going to present will not depend on thefirstmoments. Therefore, in what follows, wewill
completely specify anyGaussian state under our investigation as r ( )VG in terms of itsQCMV alone.

3. Simplified separability criterion forM versusN-modeGaussian states

TheQCMVAB of aGaussian state rAB
G pertaining to a (m+n)-mode bipartite systemAB can be naturally

written in block form according to the splitting between the subsystemsA andB:

=
⎛
⎝⎜

⎞
⎠⎟ ( )V

V X

X V
. 17AB

A

T
B

According to the same splitting, thematrixΩ appearing in (11) takes the form

W =
W

W
= W Å W

⎛
⎝⎜

⎞
⎠⎟ ( )0

0
, 18AB

A

B
A B

with wW = Å
A

m and wW = Å
B

n.
The entanglement properties of a bipartite Gaussian state can thus be conveniently translated at the level of

QCMs. Recall that, in general, a bipartite quantum state ρAB is separable if and only if it can bewritten as a convex
mixture of product states, r s t= å Ä( )pAB k k k A kB , with pk being probabilities [35]. For aGaussian state rAB

G of
a bipartite continuous variable system,we have then the following.

Lemma4 (Proposition 1 in [7]).AGaussian state r ( )VAB
G

AB with +( )m n -modeQCMVAB is separable if and only
if there exist an m-modeQCM g WiA A and an n modeQCM g WiB B such that

 g gÅ ( )V . 19AB A B

In view of the above result, aQCMVAB satisfying(19) for somemarginal QCMs g g,A B will itself be called
separable fromnowon. The criterion in (19) is necessary and sufficient for separability ofQCMs, and can be
evaluated numerically via convex optimisation [8, 20], however such optimisation runs over bothmarginal
QCMs, hence scaling (polynomially)with bothm and n.

Thefirstmain result of this paper is to show that the necessary and sufficient separability condition(19), for
anym and n, can be further simplified. This result is quite neat and of importance in its own right. In particular,
it allows us to recast theGaussian separability problem as a convex optimisation over themarginal QCMof one
subsystemonly (sayAwithout loss of generality), resulting in an appreciable reduction of computational
resources, especially in case partyA comprises amuch smaller number ofmodes than partyB.

Theorem5 (Simplified separability condition for an arbitraryQCM).AQCMVAB of +m n modes is separable
if and only if there exists an m-modeQCM g WiA A such that

 g Å W ( )V i . 20AB A B

In terms of the block form (17) ofVAB, when > WV iB B the above condition is equivalent to the existence of a real
matrix gA satisfying

 gW - - W -( ) ( )V X V Xi i . 21A A A B B
T1

If - WV iB B is not invertible, we require instead  g eW - + - W -( )V X V Xi iA A A B B B
T1 for all e > 0.

Proof. Since both sets ofQCMsVABdefined by(19) and(20) are clearly topologically closed, we can just show
without loss of generality that their interiors coincide. This latter condition can be rephrased as an equivalence
between the two following statements: (i) g g> ÅVAB A B for someQCMs g g, ;A B and (ii) g> Å WV iAB A B for
someQCM γA.

Now, once g < VA A isfixed, the supremumof all thematrices gB satisfying g g> ÅVAB A B is given by the
Schur complement g g- Å -( ( )) ( )V V0AB A B A A , as the variational characterisation(4) reveals. Therefore,

6
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statement (i) is equivalent to the existence of  gW < Vi A A A such that g g- Å - > W( ( )) ( )V V i0AB A B A A B.
This is the same as to require g> Å WV iAB A B, as the positivity conditions of lemma 1 immediately show.

Until now,we have proven that the separability ofVAB can be restated as  g Å WV iAB A B for some
appropriateQCM γA. Employing lemma 1, we see that this is turn equivalent to(21), or to its ε-modified version
when - WV iB B is not invertible. ,

Remark 1. It has been recently observed [36] that condition(21) is equivalent to the correspondingGaussian
state r ( )VAB

G
AB withQCMVAB being completely extendable withGaussian extensions.We remind the reader

that a bipartite state rAB is said to be completely extendable if for all k there exists a state r AB Bk1
that is: (i)

symmetric under exchange of any two Bi systems; and (ii) an extension of rAB in the sense that

r r= TrB B AB B ABk k2 1
.When the original state rAB

G is Gaussian, it is natural to consider extensions r AB B
G

k1
of

Gaussian form aswell. Interestingly enough, the above theorem5 provides a simple alternative proof of the
remarkable fact (also proven in [36]) thatGaussian states are separable if and only if completely extendable with
Gaussian extensions.

Remark 2. It is worth noticing that both lemma 4 and theorem5 extend straightforwardly to encompass the case
of full separability ofmultipartite Gaussian states. In the case of lemma 4, this extensionwas already formulated
in [7, 37]. As for theorem 5, the corresponding necessary and sufficient condition for the full separability of a k-
partiteQCM VA Ak1

would read  g gÅ ¼ Å Å W
-V iA A A A Ak k k1 1 1

for appropriateQCMs g g¼ -, , k1 1.

4. PPT implies separability for 1 versusN-modeGaussian states—revisited

Wenow focus on investigating known and new conditions under which separability becomes equivalent to PPT
forGaussian states, so that the problemof decidingwhether a givenQCM is separable or not admits a handy
formulation.

For any bipartite state ρAB, recall that the PPT criterion provides a useful necessary condition for separability
[14]:

r r ( )is separable 0, 22AB AB
TB

where the suffixTB denotes transpositionwith respect to the degrees of freedomof subsystemB only. Infinite-
dimensional systems, PPT is also a sufficient condition for separability when ( ) · ( )A Bdim dim 6 [38].

In continuous variable systems, the PPT criterion turns out to be also sufficient for separability ofQCMs
when eitherA orB is composed of onemode only.

Theorem6 (PPT is sufficient forGaussian states of 1 versus nmodes [7, 15]). LetVAB be a bipartite QCM such
that either A or B are composed of onemode only. ThenVAB is separable if and only if

 W
 W

= W Å  W
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )V

i 0
0 i

i i , 23AB
A

B
A B

which amounts to the corresponding Gaussian state being PPT, r 0G
AB
TB .

For completeness, we recall that the partial transpose of an (m+n)-modeQCMVAB (i.e., the covariance
matrix of the partially transposed density operator rG

AB
TB ) is given by = Q QV VAB

T
B AB B

B , wherewith respect to a
mode-wise decomposition on theB subsystem thematrixQB can bewritten as  zQ Å =≔ (⨁ )B A j

n
B1 , with

z
-( )≔ 1 0

0 1
[15]. Accordingly, we can say that theQCMVAB is PPT if and only ifVAB

TB is a validQCM

obeying(13), which is equivalent to(23).
The original proof of theorem6 came in two steps. Firstly, Simon [15] proved it in the particular case when

bothA andB aremade of onemode only by performing an explicit analysis of the symplectic invariants ofVAB;
this seminal analysis is quite straightforward to follow and particularly instructive, but eventually a bit
cumbersome, since it requires to distinguish between three cases, according to the sign of Xdet , whereX is the
off-diagonal block of theQCMVAB partitioned as in (17). Later on,Werner andWolf [7] reduced the problem
for the 1 versus n-mode case with arbitrary n to the 1 versus 1-mode case; the proof of this reduction is geometric
in nature and rather elegant, but also relatively difficult.

Our purpose in this section is to use Schur complements to provide the readerwith a simple, direct proof of
theorem6. Before coming to that, there is a preliminary lemmawewant to discuss.

Lemma7. Let M N, be ´2 2Hermitianmatrices. There is a real symmetric matrix R satisfying  M R N if
and only if *M N N, , where * denotes complex conjugation.
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Proof.The only complex entry in a 2×2Hermitianmatrix is in the off-diagonal element. Supposewithout loss
of generality that IM 012 and IN 012 (both conditions in the statement are in fact symmetric under
complex conjugation ofM orN). It is easy to verify that a p such that  p0 1and + - =( ( ) )I pM p N1 012

always exists, andwe see that + -≔ ( )R pM p N1 is a real symmetricmatrix.Moreover, sinceR belongs to the
segment joiningM andN�Mwe conclude thatM�R�N. ,

Remark 3. Lemma 7 admits an appealing physical interpretationwhich also leads to an intuitive proof. This
interpretation is based on the fact that ´2 2Hermitianmatrices can be seen as events in four-dimensional
Minkowski space–time through the correspondence  s+ «

  · ( )x x x x,0 0 . Furthermore, M N translates
inMinkowski space–time to ‘N is in the absolute future of M ’, since the remarkable determinantal identity

 s+ = -
  ( · )x x x xdet 0 0

2 2 holds true. Now, the complex conjugation at thematrix level becomes nothing but
a spatial reflectionwith respect to afixed spatial plane inMinkowski space–time. Thus, our original question is:
is it true thatwhenever both an event N and its spatial reflection *N are in the absolute future of a reference
event M then there is another event R which is: (i) in the absolute future of M ; (ii) in the absolute past of both N
and *N ; and (iii) lies right on the reflection plane? The answer is clearly yes, and there is a simpleway to obtain it.
Start from M and shoot a photon to the location of that event between N and *N that will happen on the other
side of the reflection plane. After some time the photon hits the plane, and this event R clearly satisfies all
requirements.

Nowwe are ready to give our direct proof of the equivalence between PPT and separability for 1 versus n-
modeGaussian states, leveraging the simplified separability condition of theorem5.

Proof of theorem6. Supposewithout loss of generality that A is composed of onemode only. As in the proof of
theorem5, since both sets ofQCMsVAB defined by(19) and(23) are topologically closed, we can assume that
VAB is in the interior of the PPT set, i.e.that > W Å  W( )V i iAB A B . Our goal will be to show that in this caseVAB

belongs to the separable set, as characterised by theorem 5. Since - WV iB B is taken to be invertible, the PPT
condition reads

- W W-( )V X V Xi i .A B B
T

A
1

Now, define = WM i A and = - + W -( )N V X V XiA B B
T1 , and observe that * = - - W -( )N V X V XiA B B

T1 .
Thanks to lemma 7, we can find a realmatrix gA such that

 g- W W-( )V X V Xi i .A B B
T

A A
1

Choosing the negative sign in the above inequality, we see that the second condition(21) in theorem5 ismet,
and thereforeVAB is separable. ,

5.Gaussian states that are invariant under partial transpose are separable

As a further example of application of theorem5,we study here the separability of a special class of PPTGaussian
states, i.e.those that are invariant under partial transposition of one of the subsystems. This problemhas an
analogue infinite-dimensional quantum information, already studied in [24], where it was shown that bipartite
states on  Ä d2 that are invariant under partial transpose on the first system are necessarily separable4.Here
we show that forGaussian states an even stronger statement holds, in that invariance under partial transposition
implies separability for any number of localmodes.

Corollary 8.Abipartite Gaussian state rAB
G that is invariant under partial transposition of one of the two subsystems

is necessarily separable.

4
The proof reported in [24] is rather long, so herewe provide a shorter one, again based on Schur complements. A state on  Ä d2 that is

invariant under partial transposition on thefirst subsystem can be represented in block form as r = ( )A X
X B

. By a continuity argument, we

can suppose without loss of generality thatA>0. Rewrite r = + ñá Ä --
-⎜ ⎟

⎛
⎝

⎞
⎠ ∣ ∣ ( )A X

X XA X
B XA X1 11

1 . Both terms are positive by lemma 1.

Since the second one is explicitly separable, let us deal onlywith thefirst one, call it r̃.We have 


r = Ä Ä⎜ ⎟⎛
⎝

⎞
⎠˜ A Y

Y Y
A2

1 2
2 2

1 2, where
- -≔Y A XA1 2 1 2 is Hermitian. Denoting by = å ñá∣ ∣Y y e ei i i i its spectral decomposition, we obtain the followingmanifestly separable

representation of r̃ :

 år = Ä Ä ñá Ä
⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟˜ ∣ ∣A

y

y y
e e A

1
.

i

i

i i
i i2

1 2
2 2

1 2
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Proof.Without loss of generality, we can assume that the partial transpose on theB system leaves the state
invariant.We now show that under the this assumption the separability condition(21) is immediately satisfied,
since the rightmost side is already a real, symmetricmatrix. In fact, equating the originalQCM(17)with the one
obtained after partial transpose on theB system, we get the identities = QX X B and = Q QV VB B B B, where, as

previously set, zQ = =⨁B j
n

1 according to amode-wise decomposition of theB system, and z =
-( )1 0

0 1
. As a

consequence,

- W = Q - W Q = Q - W Q = + W- - - -( ) ( ) ( ( ) ) ( )X V X X V X X V X X V Xi i i i ,B B
T

B B B B
T

B B B B
T

B B
T1 1 1 1

wherewe used alsoQ W Q = -WB B B B. This shows that - W -( )X V XiB B
T1 is equal to its complex conjugate, and

is therefore (despite appearances) a real symmetricmatrix. Hence the separability condition(21) is satisfiedwith
g = - - W -( )V X V XiA A B B

T1 , which is a legitimateQCMas follows from the bonafide condition(13) together
with lemma 1. ,

6. PPT implies separability formultimodemono-symmetric Gaussian states

Throughout this section, we showhow the PPT criterion is also necessary and sufficient for deciding the
separability of bipartite Gaussian states ofm versus nmodes that are symmetric under the exchange of any two
among thefirstmmodes. These states will be referred to asmono-symmetric (with respect to thefirst partyA). As
can be easily seen, this novel result (see figure 1 for a graphical visualisation) is a generalisation of both theorem6
and of one of themain results in [16], where the subclass of bi-symmetric states was considered instead, bi-
symmetricmeaning that they are invariant under swapping any twomodes either within the firstm orwithin the
last n (that is, they aremono-symmetric in bothA andB).

Theorem9 (Symplectic localisation ofmono-symmetric states). Let r ( )VAB
G

AB be amono-symmetric Gaussian
state of +m n modes, i.e.specified by aQCMVAB that is symmetric under the exchange of any two of the m modes of
subsystem A. Then there exists a local unitary operation on A corresponding to a symplectic transformation

Î ( )S mSp 2 ,A that transforms rAB
G into the tensor product of -m 1uncorrelated single-modeGaussian states

r ~˜ ( )VA
G

A
j j

= ¼( )j m2, , and a bipartite Gaussian state r ~˜ ( )VA B
G

A B
1 1

of 1 versus n modes. At theQCM level, this

reads

 Å Å = Å ~

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ⨁ ˜ ( )S V S V V . 24A B AB A

T
B

j

m

A A B
2

j 1

The separability properties ofVAB and
~
VA B1

are equivalent, in particular r ( )VAB
G

AB is separable if and only if it is PPT.

Proof.Wewill prove(24) directly at theQCM level, by constructing a suitable local symplectic SA. By virtue of
the symmetry under the exchange of any twomodes of subsystemA, if we decomposeVAB as in(17), the
submatricesVA andX have the following structure:

a e e
e a

e
e e a

k k k
k k k

k k k

=

¼

¼

=

¼
¼

¼


   

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ ( )V X, , 25A

n

n

n

1 2

1 2

1 2

where each one of the blocks a e k, , j in (25) is a 2×2 realmatrix, withα and ε symmetric [39].
We can nowdecompose the real space of thefirstmmodes as   = Äm m2 2. According to this

decomposition, wemay rewriteVA andX as follows:

 åa e e k= Ä - + +ñá+ Ä = +ñá Ä
=

( ) ∣ ∣ ∣ ∣ ( )V m X m j, , 26A m
j

n

j
1

where +ñ = å ñ=∣ ∣i
m i

m1
1 , with ñ ={∣ }i i

m
1denoting the standard basis for m. Observe that the symplectic formΩA

on subsystemA decomposes accordingly as  wW = ÄA m . IfO is anm×m orthogonalmatrix such that
+ñ = ñ∣ ∣O 1 , we easily see that on the one hand  Ä W Ä = WO OA

T
A2 2 , i.e. ÄO 2 is symplectic, while on

the other hand
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  åa e a e

a e
a e

a e

Ä Ä = ñá Ä + - + ñá Ä -

=

+ - ¼
-

¼ -

=


 

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

∣ ∣ ( ( ) ) ∣ ∣ ( )

( )

( )

O V O m i i

m

1 1 1

1 0 0

0
0

0 0

, 27

A
T

i

m

2 2
2

 å k

k k k

Ä = ñá Ä =

¼
¼

¼
=  

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
∣ ∣ ( )O X m j

m m m

1 0 0 0

0 0 0

. 28
j

n

j

n

2
1

1 2

Therefore, the initial QCMVAB has been decomposed as a direct sumofm−1 one-modeQCMs a e= -ṼAj
,

and of one (1+m)-modeQCM
~
VA B1

, via a local symplectic operation on subsystemA, given precisely by
= ÄS OA 2. This proves (24) constructively. Applying theorem 6, one then gets immediately that the PPT

condition is necessary and sufficient for separability in this case. ,

Remark 4.This original result yields a substantial enlargement to the domain of validity of PPT as a necessary
and sufficient criterion for separability ofmultimodeGaussian states, reaching beyond any existing literature. In
practice, theorem9 tells us that, in anymono-symmetric Gaussian state, all the correlations (including and
beyond entanglement) shared among thewhole m modes of A and thewhole n modes of B can be localised onto
correlations between a singlemode A1of A versus thewhole B, bymeans of a local unitary (symplectic at the
QCM level) operation at ¢A s side only. Being unitary, this operation is fully reversible, meaning that the
correlationswith B can be redistributed back and forth between A1 and thewhole set of A modes with no
information loss. This alsomeans that quantitative results on anymeasure of such correlations between A and B
encoded inVAB can be conveniently evaluated in themuch simpler 1 versus n-mode normal form

~
VA B1

constructed in the proof theorem9, ignoring them−1 uncorrelatedmodes.
In the special case ofVAB being theQCMof a bi-symmetric state, i.e.with full permutation symmetry within

both A and B, it is immediate to observe that applying a similar construction bymeans of a local unitary at ¢B s
side aswell fully reducesVAB to a two-modeQCM

~
VA B1 1

, with equivalent entanglement properties as the original
VAB, plus a collection of + -m n 2 uncorrelated singlemodes. This reproduces the findings of [16].

Similarly towhat discussed in remark 2, the results of theorem9 can also be straightforwardly extended to
characterise full separability and, conversely,multipartite entanglement of arbitrarymultimodeGaussian states
which are partitioned into k subsystems, with the requirement of local permutation invariance within some of
these subsystems. It is clear that, by suitable local symplectic transformations, each of those locally symmetric
parties can be localised onto a singlemode correlated with the remaining parties, thus removing the redundancy
in theQCM.Gaussian states of this sort generalise the so-calledmulti-symmetric states studied in [40], where
local permutation invariance was enforcedwithin all of the subsystems, resulting in a directmultipartite
analogue of bi-symmetric states.

7. PPT implies separability formultimode isotropic Gaussian states—revisited

It is well known that the PPT criterion is in general sufficient, as well as obviously necessary, for pure bipartite
states to be separable [14]. Thismay be seen by a direct inspection of the Schmidt decomposition of a pure state.
Let us note, incidentally, that a stronger statement holds, namely any bound entangled state (in any dimension)
must have at least rank 4 [41].

The Schmidt decomposition theorem is in fact so important that aGaussian version of it, that is, the
determination of a normal formof pureQCMs under local symplectic operations, is of central importance in
continuous variable quantum information. As can be shown at the covariancematrix level [17, 18] or at the
density operator level [19], every pure bipartite Gaussian state r ( )VAB

G
AB can be brought into a tensor product of

two-mode squeezed vacuum states and single-mode vacuum states bymeans of local unitaries with respect to
theA versusB partition. In particular, by acting correspondingly with local symplectic transformations, any pure
QCMVAB (where puremeans =Vdet 1AB ) can be transformed into a direct sumof (pure) two-mode squeezed
vacuumQCMs and (pure) single-mode vacuumQCMs.More precisely, at the level ofQCMs, one can formulate
this fundamental result as follows.

Theorem10 (Mode-wise decomposition of pureGaussian states [17–19]). LetVAB be a bipartite QCMof
+m n modes ¼ ¼A A B B, , , , ,m n1 1 , assuming m n (with no loss of generality). IfVAB is a pureQCM, i.e.all its

symplectic eigenvalues are equal to 1 (which amounts to =Vdet 1AB ), then there exist local symplectic
transformations  Î Î( ) ( )S m S nSp 2 , , Sp 2 ,A B mappingVAB into the following normal form:

10
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Å Å = Å
= = +

( ) ( ) ⨁ – ( ) ⨁ ( )S S V S S V r , 29A B AB A
T

B
T

j

m

A B j
k m

n

B
1 1

j j k

where




z
z

=
⎛
⎝⎜

⎞
⎠⎟

–V
c s

s cA B
j j

j j
j j

with = ( )c rcosh 2j j and = ( )s rsinh 2j j , for a real squeezing parameter rj, is the pure

QCMof a two-mode squeezed vacuum state ofmodes Aj and Bj, and Bk
is the pureQCMof the single-mode vacuum

state ofmode Bk. In particular, with respect to the block form(17), for any pureQCMVAB themarginal QCMsVA

andVB havematching symplectic spectra, given by n = ¼
 ( )c c, ,A m1 and n = ¼ ¼

-


  ( )c c, , , 1, , 1B m

n m

1 .

Leaving apart its far-reaching applications, in the context of the present paper this result ismainly
instrumental for assessing the separability of so-called isotropicmultimodeGaussian states. TheQCMof any
such state ofm+nmodes is characterised by the property of having a completely degenerate symplectic
spectrum, i.e.formed of only one distinct symplectic eigenvalue ν�1 (repeatedm+ n times). Thismeans that
theQCMVAB of any isotropic state is proportional by a factor ν to a pureQCM.Hence, theorem 10 tells us that
VAB can be brought into a direct sumof two-modeQCMs via a local symplectic congruence (local with respect to
any partition into groups ofmodesA andB), asfirst observed in [17]. Thanks to theorem6, this guarantees the
following.

Theorem11.The PPT criterion is necessary and sufficient for separability of all isotropic Gaussian states of an
arbitrary number ofmodes.

However, notwithstanding the importance of theorem 7per se, one could strive to seek amore direct way to
obtain theorem 11.Our purpose in this section is in fact to provide an alternative proof of this result, which does
not appeal to themode-wise decomposition theorem at all, and uses directly lemma 4 instead, leveragingmatrix
analysis tools such as the notions ofmatrixmeans introduced in section 2.2.

Note that, in almost all the remainder of this section, for a single systemof nmodes, wewillfind itmore
convenient to reorder the vector of canonical operators as ¼ ¼≔ ( )r x x p p, , , , ,n n1 1 , corresponding to a
position-momentumblock structure. The symplectic formΩ appearing in(11) is accordingly rewritten as




W
-( )≔ ( )0

0
. 30

Wewill thenwrite anyQCMV, as well as any symplectic operation S acting on it, with respect to this alternative
block structure, unless explicitly stated otherwise.

Let us start with a preliminary result, equivalent to proposition 12 of [43] or lemma 13 of [23].We include a
proof for the sake of completeness.

Lemma12. Let >V 0 be a positivematrix. ThenV is a pureQCM if and only if = W W-V V T1 , and it obeys(13) if
and only if

 # W W-( ) ( )V V V . 31T1

Proof. Let theWilliamson formofV be given by(16), where (in the convention of this section) = L Å LN ,
with n nL ¼≔ ( ), n1 . Thenwe canwrite

W W = W L Å L W = W L Å L W = L Å L WW = L Å L- - - - - - - - - - -( ) ( ) ( ) ( )V S S S S S S S S ,T T T T T T T T1 1 1 1 1 1 1 1 1 1

wherewe used in order: (i) the identities W = W W = W- -S S S S,T T T T1 , all consequences of the defining
symplectic identity W = WS S ;T (ii) the fact thatΩ commutes with L Å L- - ;1 1 and (iii) the orthogonality relation

WW =T . Now the first claim becomes obvious, since L = L =-1 if and only ifV is a pureQCM. In general, as
it can be seen from the above expression,V and W W-V T1 are brought inWilliamson formby simultaneous
congruences with the same symplecticmatrix (i.e. -S 1, in the convention of(16)). Hence, the covariance of the
geometricmean under congruence ensures that

# W W = L
L

# L
L

= L
L

# L
L

=-
-

-

-

-
⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟( )V V S S S S S S SS0

0
0

0
0

0
0

0
,T T T T T1

1

1

1

1

where the last passage is an easy consequence of the fact that # =-A A 1 for all >A 0. By comparison
with(16), we see that theHeisenberg uncertainty relation L can be rephrased as

= L Å L = # W W-( ) ( )V S S SS V VT T T1 , which reproduces(31), proving the second claim. ,

Remark 5. From the above proof it is also apparent how, for any positive >A 0, thematrix # W W-( )A A T1 is a
pureQCM (independently of the nature of A).
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Nowwe are ready to explain our direct argument to show separability of PPT isotropic Gaussian states,
alternative to the use of themode-wise decomposition.

Proof of theorem11.We start by rewriting the PPT condition(23) for aQCMVAB as

Q Q WV , i ,B B

where in the convention of this section  


Q = Å
-

⎜ ⎟
⎛
⎝

⎞
⎠

0
0B A

B

. Thanks to lemma 12, this becomes in turn

Q Q Q Q # WQ Q W-( ) ( )V V VB B B B B B
T1

andfinally

 # Q WQ Q W Q = # W W- -( ) ( ) ( ( ) )V V V gV Z gV ZB B B
T

B
T1 1

after conjugating byΘB, applying oncemore the covariance of the geometricmean under congruences,
introducing a real parameter g>0 (to befixed later), and defining  Å - = Q WQ W≔ ( )Z A B B B

T . Now,we
apply lemma 3 to the above expression, obtaining

 + W W
# W W

-
-

⎛
⎝⎜

⎞
⎠⎟

( ) (( )!( ( ) ))V
gV Z gV Z

gV Z gV Z
2

.
T

T
1

1

Although it is not yet transparent, we are done, as the right-hand side of the above inequality is exactly of the
form g gÅA B whenV is theQCMof an isotropicGaussian state. In fact, let g>0 be such that gV is a pureQCM,

satisfying = W W =-
⎛
⎝⎜

⎞
⎠⎟( )gV gV

P Y
Y Q

T
T

1 , wherewe have now reverted to a block decompositionwith respect

to theA versusB splitting. Then on the one hand since  = Å -( )Z A B wefind

+ W W
=

-
⎜ ⎟⎛
⎝

⎞
⎠

( )gV Z gV Z P
Q2

0
0

,
T1

while on the other hand

W W = + W W = W W W + W

= W + W = W W
W W

- - - - -

-
-

-

⎛
⎝⎜

⎞
⎠⎟

( )!( ( ) ) (( ) ( ) ) ( ( ) ( ) )

( ( ) )

gV Z gV Z gV Z gV Z gV Z gV Z

gV Z gV Z
P

Q

2 2

2
0

0
,

T T T T

T
T

T

1 1 1 1 1

1
1

1

wherewe used the definition(5) of harmonicmean and the fact that W =[ ]Z , 0. Putting all together, wefind

 g g# W W
W W

=
#W W

#W W
= Å

-

-

-

-
⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟V

P
Q

P
Q

P P

Q Q

0
0

0
0

0

0
.

T

T

T

T A B

1

1

1

1

Sincewe already observed that #W W-P P T1 is aQCM for anyP>0 (and analogously forQ), a direct invocation
of lemma 4 allows us to conclude the proof. ,

8. EntanglingGaussian states via passive optical operations

Throughout this section, wefinally complete the solution of a problemposed in [25] and there addressed under
some additional constraints. Let us start by recalling that symplectic operations can be divided into twomain
categories, namely those such as squeezers that require an exchange of energy between the system and the
apparatus, called active, and those that can be implemented using only beam splitters and phase plates, called
passive. A symplecticmatrixK represents a passive transformation if and only if it is also orthogonal, meaning
that =KKT (itmay beworth adding that symplectic orthogonal transformations form themaximal compact
subgroup of the symplectic group). As it turns out, symplectic orthogonalmatrices can be represented in an
especially simple form if we resort to a position-momentumblock decomposition. Namely, one has the
parametrisation [6]

*
= ⎜ ⎟⎛

⎝
⎞
⎠ ( )†K W

U
U

W , 32

where

 
 -( )≔W

1

2
i
i

andU is a generic, n×n unitarymatrix, withU* denoting its complex conjugate.
Since the implementation of passive operations is so inexpensive in quantumoptics and entangled states so

useful for quantum technologies, the questionfirst posed in [25]was a natural one: ‘What bipartite Gaussian
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states are such that they can be entangled via a global, passive operation?’However, in this full generality the
problemwas left unanswered in [25]. Instead, another related questionwas investigated and answered there,
namelywhether distillableGaussian entanglement can be produced in the same fashion. ForGaussian states, as
mentioned in the Introduction, distillability is well known to be equivalent to non-positivity of the partial
transpose [8, 13], so the authors of [25] proceeded to identify the class of Gaussian states that can bemade to
violate the PPT conditionwith a passive transformation.However, it is important to realise that since PPT and
separability are not the same for generalmultimodeGaussian states, the two questions are a priori different. Here
we show that the answer to the original question above turns out to be yet another situationwhere the PPT
condition is necessary and sufficient to ensure separability of Gaussian states. In other words, wewill prove that a
bipartite Gaussian state that can not bemade distillable (i.e.non-PPT) via passive operations is necessarily
separable, and thus it stays separable under the application of said passive operations. Let us start with a technical
lemma that we deduce from recent results obtained in [44].

Lemma13. Let >A 0 be a strictly positive ´n n2 2 matrix. Let n ( )Ai and l ( )Ai denote its symplectic and ordinary
(orthogonal) eigenvalues, respectively, arranged in non-decreasing order. Then

n l l( ) ( ) ( ) ( )A A A . 331
2

1 2

In particular, every positivematrix whose two smallest eigenvalues satisfy l l 11 2 is automatically a
legitimateQCM.

Proof. From [44, equation (71)]we deduce n l = - + = - +( ) ( )A Aj
k

n j j
k

n j1 1
2

1
2

2 1 for all k= 1,K, n, with
equality for k=n, when both terms equal the determinant ofA.We can use this observation to deduce that

n l = =( ) ( )A Aj
k

j j
k

j1
2

1
2 for all k= 1,K, n. The special case k=1 yields the claim. ,

Now,we are ready to present our strengthening of [25, proposition 1].

Theorem14. LetV be a bipartite QCMof an n-mode system. Then the following are equivalent:

(i) KVKT is separable for all Gaussian passive transformations K ;

(ii) KVKT is PPT for all Gaussian passive transformations K ; and

(iii) the two smallest eigenvalues ofV satisfy l l( ) ( )V V 11 2 .

Proof.The implication ( ) ( )i ii is obvious, while ( ) ( )iii ii already follows from lemma 13 togetherwith the
fact that the partial transpose at the level ofQCMs is a congruence by orthogonal transformation and thus does
not change the ordinary spectrum.One of themain contributions of [25] is the proof that (ii) and (iii) are in fact
equivalent. In view of this discussion, we have just to show that ( ) ( )iii i . To this end, wewill assume thatV
satisfies l l( ) ( )V V 11 2 and construct two localQCMs g g,A B that satisfy the hypothesis of the original
separability criterion given by lemma 4. Call l =( )V k1 and observe that if k 1 then    = ÅV A B andwe
are done. Otherwise, assume <k 1and denote by ñ∣x the normalised eigenvector corresponding to theminimal

eigenvalue ofV, i.e. ñ = ñ∣ ∣V x k x and á ñ =∣x x 1. Since l ( )V
k2
1 and a fortiori l ( )Vi k

1 for all i 2, we can
write

 ñá + - ñá∣ ∣ ( ∣ ∣)V k x x
k

x x
1

.

Now, decompose the vector ñ∣x into itsA andB components as ñ =
ñ

- ñ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣

∣
∣

x
p y

p z1

A

B

, where  p0 1and

á ñ = = á ñ∣ ∣y y z z1 . Then, lemma 13 guarantees that thematrices





g

g

ñá + - ñá

ñá + - ñá

≔ ∣ ∣ ( ∣ ∣)

≔ ∣ ∣ ( ∣ ∣)

k y y
k

y y

k z z
k

z z

1

1

A

B

are legitimateQCMs. Then showing g g- ÅV 0AB A B would complete our proof. By direct computation, we
find
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,

Remark 6. In some sense, one can think of the question posed in [25] and answered here in theorem14 as a
continuous variable analogue of the absolute separability problem infinite-dimensional quantum information,
which asks for the characterisation of those spectra s l l= ¼ ¢( ), , dd1 such that every bipartite quantum state on
 Ä ¢d d with spectrum s is separable [45]. For a recent review of the state of the art, we refer the reader to [46].
A suggestive argument concerning this analogy goes as follows. An arbitrary unitary transformation r r †U U
corresponds to an internal time evolution according to some unknownHamiltonian. Then, the absolutely
separable states are exactly those bipartite states whose correlations are soweak that they can not bemade
entangled by any internal evolution. In the case of continuous variable quantum systems, onemay hold the free-
fieldHamiltonian = r rT1

2
as the privileged one, so that itmakes sense to restrict oneself to those unitary

evolutions that preserve this particularHamiltonian. If the original state is Gaussian and the unitaries are
generated by quadraticHamiltonians, so that they are represented by symplecticmatrices, preserving the free-
fieldHamiltonian is the defining feature of passive transformations, and one obtains exactly the problemwe
solved here.

As is often the case, the technical details and the nature of the solution are simpler in theGaussian realm.We
found that the condition for being ‘absolutely separable’ in theGaussian sense is expressed by a simple inequality
involving only the two smallest ordinary eigenvalues of theQCM, and that there are no ‘absolutely PPT’ states
that are not ‘absolutely separable’ too. This latter equivalence has been conjectured to hold for the original
problem in discrete-variable systems as well, but so far only partial answers are available. Namely, the conditions
for absolute PPT-ness can bewritten explicitly [47], but whether or not they imply absolute separability is in
general unknown.However, the answer to this latter question has been shown to be affirmative for the case of
two qubits [48] andmore recently for qubit-qudit systems [49].

9. Summary and outlook

In this workwe advanced themathematical and physical study of separability and entanglement distillability in
Gaussian states of continuous variable quantum systems. Based on the properties of Schur complements and
othermatrix analysis tools, we obtained a simplified necessary and sufficient condition for the separability of all
multimodeGaussian states, requiring optimisation over the set of local covariancematrices of one subsystem
only. Exploiting this result, we presented a compact proof of the equivalence between PPT and separability for 1
versus n-modeGaussian states, a seminal result in continuous variable quantum information theory [7, 15], as
well as extended the criterion tomultimode classes of so-calledmono-symmetric and isotropicGaussian states,
through novel derivations. Furthermore, we completed the investigation of entanglement generation under
passive operations by extending seminal results [25] to consider the generation of any, possibly PPT,Gaussian
entangled state: in this context we showed that, if passive operations can not turn an initial Gaussian state into a
non-PPTone, then no PPT entanglement can be generated through them either. This can be interpreted as
establishing the equivalence between absolute separability and absolute PPT-ness in theGaussianworld. Side
results of our analysis include a novel proof that Gaussian states invariant under partial transposition are
separable, as well as an independent proof of the equivalence betweenGaussian separability and complete
extendability withGaussian extensions [36].

In the context of this paper, andwith themethods illustrated in this study, it would be interesting to research
more general combinations of symmetries and conditions on the symplectic spectra of quantum covariance
matrices whereby the sufficiency of the PPT separability criterionmight be further extended. For instance, is it
possible to obtain aGaussian analogue of the results in [41], whereby bound entangledGaussian states can only
exist given some simple condition on their symplectic rank? In our studies, both formono-symmetric and
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isotropic states, large degeneracies in their symplectic spectra (for themarginal covariancematrix of one
subsystem, and for the global covariancematrix of the bipartite system, respectively)played a key role in proving
the sufficiency of PPT for separability. It would be desirable to provide a full systematic characterisation of such
requirements, possibly drawing inspiration fromand/or shedding new insight on theGaussian quantum
marginal problem [50].

Finally, let us stress howmatrix analysis tools such as those heavily hammered in this paper have already been
proven useful for qualitative and quantitative analysis of entanglement and other correlations, including
Einstein–Podolsky–Rosen steering, in general states of continuous variable systems [8, 10–12, 18, 20–23, 51–53].
Aside from the fact that very powerful analytical results can be provenwith relative simplicity using these tools, it
is important to remark oncemore that the characterisationswe provided of the separability problem, aswell as
the variational characterisation of the Schur complement and related problems, can be straightforwardly recast
as semidefinite programms [20], thus leading to efficient numericalmethods towitness inseparability and
entanglement distillability in generalmultimodeGaussian or non-Gaussian states based on covariancematrices.
Wewill explore these and other applications in further studies.
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