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SUMMARY

Acoustic emission (AE) and active ultrasonic wave velocity monitoring are often performed
during laboratory rock deformation experiments, but are typically processed separately to yield
homogenized wave velocity measurements and approximate source locations. Here, [ present a
numerical method and its implementation in a free software to perform a joint inversion of AE
locations together with the 3-D, anisotropic P-wave structure of laboratory samples. The data
used are the P-wave first arrivals obtained from AEs and active ultrasonic measurements. The
model parameters are the source locations and the P-wave velocity and anisotropy parameter
(assuming transverse isotropy) at discrete points in the material. The forward problem is
solved using the fast marching method, and the inverse problem is solved by the quasi-Newton
method. The algorithms are implemented within an integrated free software package called
FaATSO (Fast Marching Acoustic Emission Tomography using Standard Optimisation). The
code is employed to study the formation of compaction bands in a porous sandstone. During
deformation, a front of AEs progresses from one end of the sample, associated with the
formation of a sequence of horizontal compaction bands. Behind the active front, only sparse
AEs are observed, but the tomography reveals that the P-wave velocity has dropped by up to
15 per cent, with an increase in anisotropy of up to 20 per cent. Compaction bands in sandstones
are therefore shown to produce sharp changes in seismic properties. This result highlights the
potential of the methodology to image temporal variations of elastic properties in complex
geomaterials, including the dramatic, localized changes associated with microcracking and
damage generation.

Key words: Fracture and flow; Microstructure; Tomography; Acoustic properties; Seismic
tomography; Dynamics and mechanics of faulting.

unique information on the development of seismic anisotropy (e.g.

I INTRODUCTION Gupta 1973; Lockner & Byerlee 1977) and on the evolution of mi-

In situ imaging of samples during laboratory rock deformation ex-
periments is crucial for our understanding of the physics of defor-
mation and strain localization in rocks. However, the elevated pres-
sures and temperatures required to perform relevant experiments
generally preclude direct observation techniques. Since the 1960s,
in situ acoustic emission (AE) monitoring techniques have been
developed to detect microfracture propagation and extract event lo-
cations, amplitudes and focal mechanisms (e.g. Mogi 1968; Scholz
1968; Nishizawa et al. 1984; Lockner 1993); such observations have
revealed unprecedented details about the dynamics of fault growth
(Lockner et al. 1992) and strain localization in crustal rocks (e.g.
Fortin et al. 2009). Passive AE monitoring is only able to record the
microcracks that propagate dynamically and generate elastic waves
within the frequency and amplitude range of the recording devices.
Therefore, passive AE monitoring can be usefully complemented
by active measurements of P- and S-wave velocities, which provide

crofracture density and orientation (e.g. Sayers & Kachanov 1995;
Schubnel ef al. 2003) during rock deformation experiments.
Despite the great advances in in situ imaging made possible
by AE and ultrasonic monitoring, both methods rely on the key
simplifying assumption that the elastic wave velocities remain ho-
mogeneous throughout the material. Indeed, AE locations are deter-
mined by assuming a homogeneous, possibly anisotropic velocity
structure and the active measurements of P- and S-wave veloci-
ties are made between pairs of sensors assuming straight ray paths,
effectively corresponding to path-averaged velocities. However, it
is well known that strong structural heterogeneities often develop
in rock samples during deformation experiments, especially in the
brittle regime where strain and microcrack damage localize along
a fault plane. We expect these strain and damage heterogeneities
to be associated with sharp local changes in elastic wave veloci-
ties and anisotropy, by up to several tens of percent (e.g. Schubnel
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et al. 2003; Fortin et al. 2006; Brantut et al. 2014). The develop-
ment of a complex wave velocity structure in the material has two
consequences. First, if not properly accounted for, it severely lim-
its the accuracy of AE locations. Secondly, and perhaps most im-
portantly, the wave velocity structure becomes a key signature of
the deformation processes operating in the material. It is therefore
tempting to aim to determine a tomographic picture of the velocity
structure, using AE and/or ultrasonic data.

In order to achieve this, the most natural starting point is to use
active measurements with known source positions. Using this type
of data, Yukutake (1989), Falls et al. (1992) and Jansen et al. (1993)
were able to retrieve 2-D tomographic sections of rock samples sub-
jected to shear, thermal and hydraulic stresses, respectively. In all
cases, the array of transducers was quite extensive, the rock samples
were quite large (more than 10 cm in width) and not positioned in-
side a pressure vessel. Furthermore, the tomographic reconstruction
algorithm assumed straight ray paths (Dines & Lytle 1979). In addi-
tion to the limitation imposed by the latter hypothesis when strong
(more than 10 per cent) velocity contrasts develop, the method used
by Falls et al. (1992) and Jansen et al. (1993) is not easily extendable
to 3-D tomography, which would require a much larger number of
sensors to provide a reasonable ray coverage of the samples. Due
to space and sample size limitations, typical triaxial deformation
apparatus are equipped with only 10-20 piezoelectric transducers,
thus making purely active tomography impossible in practice (see
Brantut 2010, section 8.9).

Here, I present a method that combines both active ultrasonics
and passive AE monitoring data to improve the ray coverage in lab-
oratory samples, and achieve jointly 3-D, anisotropic tomographic
reconstruction and improved AE event location. During brittle fail-
ure or cataclastic flow experiments, the number of AE events is
several orders of magnitude larger than the number of active trans-
ducers; furthermore, the AE locations are by definition more widely
distributed (even though they often become clustered when strain
localizes) than the fixed positions of the sensors. Therefore, the key
idea is to use the AE events as passive sources in order to increase
dramatically the ray coverage of the sample. Unfortunately, this ma-
jor advantage comes with a significant cost: the determination of the
AE source locations becomes coupled to the determination of the
velocity structure. In other words, one cannot simply assume that
the AE locations are known exactly, so that they become part of the
inverse problem. Translated into the language of inverse problems,
the observed data d are the arrival times measured from active and
passive recordings, and the model parameters m are the wave veloc-
ities and anisotropy parameters at discretized points in space within
the material, together with the source locations of all AE events.
The physical model employed to make predictions of d based on
known parameters m,

d = g(m), )

is an eikonal solver g.

The principle of this approach is not new. It is essentially simi-
lar to Local Earthquake Tomography, a method developed in seis-
mology to determine local velocity structures and accurate earth-
quake locations in seismically active regions (Aki & Lee 1976;
Thurber 1983). However, the use and implementation of the tech-
nique in a laboratory setting presents several important challenges.
The most prominent one is the efficient computation of theoretical
arrival times (the forward problem) in three dimensions, including
anisotropy and with the capability of handling strong contrasts. This
combination of features is rarely required in seismological studies,
and it was therefore deemed necessary to implement a specific
method that could handle it. The subsequent key step is to com-

pute the sensitivity of the arrival times with respect to the inversion
parameters: velocity and anisotropy in the material, as well as source
locations. Here again, a specific method using posterior ray tracing
and trilinear interpolation was developed to perform this step ef-
ficiently. One other specifics of the laboratory studies is that the
array of piezoelectric transducers is used for both passive and ac-
tive measurements (whereby they act as ultrasonic sources as well
as receivers). It is therefore important to include both types of data,
and to accurately include their different range of measurement er-
rors (i.e. variances and covariances on d and m). The very large
number of AE events typically observed during brittle failure or
cataclastic deformation of rocks (at least several thousand events)
is a great advantage in terms of data coverage, but imposes the need
to use automatic P-wave arrival time picking techniques which are
never perfect. The challenge here is to achieve accurate picking of
a majority of waveforms, while selectively rejecting bad picks to
avoid including outliers with large errors in the inversion scheme.

Taken together, the specifics associated with using laboratory
data call for the development of a specialized computational
tool to perform what could be called ‘Local Acoustic Emission
Tomography’. In this paper, I present a set of methods and their
implementation into an integrated free software called FaATSO
(acronym for Fast Marching Acoustic Emission Tomography using
Standard Optimisation) that performs 3-D, anisotropic AE tomogra-
phy. The code is based on two key algorithms: (1) the fast marching
method (Sethian 1999), employed to solve the forward problem,
and (2) the quasi-Newton method (e.g. Tarantola 2005), used to
solve the inverse problem. The software package is written in C++
with Matlab wrappers, and released online (under a free license,
GNU GPL version 3) at https:/github.com/nbrantut/Faatso.git.
The performance and potential applications of the method are
demonstrated on experimental data obtained during compactant
deformation of a porous sandstone.

The paper is organized as follows. In Section 2, I describe the fast
marching method and its implementation for a simple case of el-
liptical anisotropy relevant to most rock deformation experiments.
Section 3 presents the quasi-Newton method to solve the inverse
problem, and a particular emphasis is placed on the subtleties asso-
ciated with the determination of ray paths and sensitivity kernels.
A complete application of the method for a sandstone compaction
experiment is given in Section 4. Conclusions and perspectives are
presented in Section 5.

2 FORWARD PROBLEM: 3-D FAST
MARCHING METHOD WITH
ELLIPTICAL ANISOTROPY

A wide variety of numerical methods exist to compute arrival times
of seismic (or acoustic) waves in complex media (e.g. Rawlin-
son & Sambridge 2003). Because of the strong heterogeneities ex-
pected in laboratory samples, a natural choice is to use methods
based on full wave front propagation rather than ray tracing. One
of the most computationally efficient algorithms to compute wave
fronts in strongly heterogeneous media is the fast marching method,
which has been developed to solve so-called ‘viscosity’ solutions of
Hamilton—Jacobi equations; a class of partial differential equations
that includes the eikonal equation for seismic traveltimes (see re-
view in Sethian 1999). The key benefit of the fast marching method
is its unconditional stability, regardless of the velocity heterogeneity
encountered by the wave front. Furthermore, wave front tracking is
also beneficial because a single computation yields arrival times
at many possible receivers from a given source. In this section, I
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briefly recall the principle of the method and explain the key imple-
mentation details for transversely isotropic media with vertical axis
of symmetry (VTI).

2.1 Principle

For an anisotropic medium, the eikonal equation reads:

v
\/(8Xu)2 + (Byu)2 +@uP?xV (X; ﬁ) =1, 2

where u is the wave front arrival time, x = (x, y, z) denotes Carte-
sian coordinates and V is the wave speed, which depends on the
position and the orientation of the wave front. For VTI materials,
the phase velocity is entirely determined by the phase angle 6, which
is the angle between the direction normal to the wave front and the
vertical direction.

A discretized version of eq. (2) using upwind first-order finite
differences on a regular Cartesian grid is due to Rouy & Tourin
(1992):

{maX(D,.;',fu, —DZu, 0)* + max(D

-y +y 2
ijk it —Dyjiu, 0)

1
+max(Dju, —D;iu, 07} x V,(0) = 1, 3)
where V;(0) is the wave velocity at node (7, j, k), and

Ujjk — Uitl, )k

- @
denote first-order finite-difference operators, where 4 is the (uni-
form) grid spacing.

The fast marching method consists in solving eq. (3) sequentially,
from small to large values of u, hence progressively advancing the
wave front. The use of upwind finite differences is absolutely key: it
allows the preservation of causality and ensures the unconditional
stability of the method (if first-order finite differences are used). A
discussion and proof of why this holds is given in Sethian (1999).
The method was originally developed for isotropic eikonal equa-
tions, but can also be applied for anisotropic equations without
modification in special cases (further details below). The algorithm
is the following:

+x
ijk” =

(i) Fix the starting source point at u = 0, and tag this point known,
all other points begin tagged as unknown.

(i) Update the neighbours of the newly known point by solving
eq. (3), and tag them frial and remove them from the unknown set.

(iii) Choose the point with minimum » among the #rial points,
tag it as known and remove it from the trial set.

(iv) Go back to (ii), until no points remain tagged as trial.

The key step is (iii), which ensures that points are updated with
increasing values of u (the information does not flow backwards).
The computational efficiency of the method relies on the storage of
the trial points in a so-called ‘min-heap’ data structure (in FAATSO,
a Fibonacci heap from the C++ Boost library is used), so that the tria/
point with minimum arrival time is always at the top of the heap, and
the addition of trial points and reordering of the heap is performed
more efficiently than with conventional sorting algorithms.

2.2 Anisotropy

In case of VTI materials, the velocity is only dependent on the angle
0 between the vertical axis and the direction of the normal to the
wave front. In this work, I use a simple elliptical anisotropy:

V(0) = Vo(1 + E cos 6), (5)
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parametrized with the horizontal wave velocity, ¥y, and the relative
excess in vertical wave velocity E. The parameter E is related to
Thomsen’s parameter €:
€
1+€’
assuming a model for weak anisotropy and § = € (Thomsen 1986).
In this model, /(0) is the phase velocity and 6 is the phase angle. The
cosine of 6 is related to the partial derivatives of u in the following
way:

E=-— (6)

_ o.u
@)+ @)+ @u)

Although the fast marching method requires some modifications
for general anisotropy (e.g. Sethian & Vladimirsky 2003), it can
be shown that the conventional method as outlined above is valid
when the direction of anisotropy is aligned with the grid and the
anisotropy is not too strong. This is the case here provided that
—1/2 < E < 1 (see Appendix A), which is largely in the remit of
the approximation of weak anisotropy.

In practice, the assumption of VTI geometry is particularly rel-
evant to initially isotropic rock samples subjected to triaxial com-
pression in the laboratory. Indeed, loading under triaxial conditions
tend to generate stress- and crack-induced anisotropies aligned with
the compression axis (Paterson & Wong 2005, see also Section 4).

cosf

(N

2.3 Second-order finite differences

The first-order finite-difference approximation of the eikonal equa-
tion is quite crude, and tends to generate large errors along diagonal
points of the grid (e.g. Rickett & Fomel 1999). This can be mitigated
by using a second-order (upwind) approximation, as described in
Sethian (1999). The discretized eikonal equation becomes:

—x —X y—2x +x +x y+2x 2
{max [D”.ku + 85Dy u, —Dipu + 85 D u, 0]

—y =2y ,
D V‘u,—D.ﬂu—{—s

2
+y 2y
ik ik ik 6 D; ”’0]

—y
+ max [Dijku—i—s e Dije

12
+ max [ D ju + s, D u, —Dju + 85D u, 0]2}
x V@) =1, 3)
where s; ; ; are switches defined by

1if w;ep; and u;4) ,;; are known

+
S[»[z = and Uitik < Uit j ks (9)
0 otherwise,
and
Ui jk — 21 jk + Uiso jk
D#qu — L) ! J 1x2,] . (10)

ijk 2h
One important fact to keep in mind when using a second-order
approximation is that the scheme may not be applicable when sharp
changes in wave speeds occur. In that case, the solution of u; ; x
might not exist (or would be a complex number), and we have to
revert to the first-order scheme [eq. (3)].

2.4 Ray tracing

Once the arrival times have been computed at all points, it is rela-
tively easy to compute ray paths a posteriori. In the isotropic case,
ray tracing is straightforward because the ray angle at every point
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Figure 1. Illustration of the difference between the phase (red) and group
(blue) angles for a wave front propagating in a homogeneous material with

E=0.25.

is perpendicular to the wave front (i.e. following the gradient of the
arrival time field). In the anisotropic case, the situation is somewhat
different because the rays are no longer perpendicular to the wave
front: the phase angle is not the same as the group angle. So, at
every point, one needs to compute the group angle (from the phase
angle, given by the gradient of the arrival time field) in order to

obtain the ray orientation.

The relationship between group velocity Vgroup and phase velocity

V'is (Thomsen 1986):

av\?
V2@ = V2(0) + (%> :

(11)

where ¢ is the group angle and 6 is the phase angle. The relationship

between the group and the phase angles is:

_tan6 + (1/V)(dV/do)

BN = an0, V)V /o)’

Here, the phase velocity is given by

V(0) = Vo(1 + E cos®H).

(a)

5 10 15 20
x (mm)

Therefore, the group angle is then given by

1—E +tan’0
tan ¢ = tan6 , (14)
1+ E+(1+2E)tan’0
and the group velocity is (as a function of the phase angle )
Varowp[#(0)] = Vo x F (0, E), (15)
where
F(O,E) = {1+ 2E cos’6 + E*cos’ 0 (1 +3sin>0)} > (16)

Fig. 1 provides an illustration of the differences between group
and phase angles for an anisotropy parameter of £ = 0.25. In prac-
tice, the rays are traced from the receivers to the source by suc-
cessively generating piecewise linear segments oriented according
to the local group angle as computed from eq. (14). The segment
length is chosen to be equal to the grid spacing.

2.5 Accuracy

Strictly speaking, the finite-difference scheme is not globally
second-order accurate, because the conditions for the switches are
not always met. This is usually quite benign, except for the points
immediately surrounding the source node: this is where the error
is the largest, especially along the diagonals, because there is no
way to use a second-order scheme around the source. Therefore, if
used as is, the large first-order error generated around the source
node will be ‘dragged’ along throughout the grid, even if second-
order approximations are made after that. This is illustrated in
Figs 2 (a) and (b), which show a very large error of the fast marching
method results (up to 20 per cent) along the diagonal points near the
source region. A way around this issue can be found in Rickett &
Fomel (1999), and consists of computing arrival times immediately
around the source node analytically, assuming a constant velocity
(and anisotropy) there. This ‘source box’ is made large enough to
include all the eight nearest points within a cube surrounding the
source, and especially includes all the first diagonal points. The im-
provement resulting from this technique is illustrated in Fig. 2(c),
which shows a significant reduction of the error near the source

12
(12) region and throughout the medium (less than 5 per cent) when the
source box is used compared to when it is not.
The overall accuracy of the numerical scheme is explored in
(13) Fig. 3, where a complex heterogeneous and anisotropic velocity
(b) ©
20 20
20
15 15
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g g
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Figure 2. Accuracy of the second-order finite-difference scheme used in the fast marching method for a homogeneous, anisotropic case. (a) Contours of
computed arrival times using the analytical solution (black) and the fast marching method with (red) and without (blue) a source box. The horizontal wave

velocity is Vg = 1 mm us™!

the case without (b) and with (c) the source box.

Downl oaded from https://acadeni c.oup.com gji/article-abstract/213/3/2177/4893717

by University Col |l ege London user
on 10 July 2018

and the anisotropy parameter is £ = 0.25. The medium is discretized in an array of 21 x 21 nodes. Relative errors are shown for



5
4
e
g 3
N
2
1
X (mm)
10' :
I
S
5
=
i ~1
10
107 ‘
1 0

10 10
grid spacing (mm)

Figure 3. Accuracy and convergence of the fast marching method in a
complex heterogeneous and anisotropic medium. The top panel shows the
heterogeneity in ¥y (horizontal wave speed) and E (anisotropy). The direc-
tion and intensity of anisotropy is displayed as thin black lines. The position
of the source is given by the black diamond, and the successive wave front
positions are shown as black contours. The bottom panel shows the average
relative error in arrival times recorded at virtual stations (shown as black
dots in the top panel) as a function of grid spacing, where a model with a
grid spacing of 0.02 mm was used as reference.

structure is used. Due to the strong heterogeneities, with ¥, ranging
from 0.5 to 5.5 mm ps~! and E ranging from —0.32 to +0.40, the
wave front deviates from circularity and becomes cuspate in the
low-velocity zone. The relative error in arrival time at receivers
positioned on the boundary of the model (displayed as black dots)
is computed as a function of grid spacing from 0.05 to 1 mm (i.e.
from 401 to 21 gridpoints in each direction). In the absence of a
true analytical solution for this velocity structure, a model with
grid spacing of 0.02 mm (1001 points) is used for reference. The
average error ranges from around 2 percent in the coarsest grid,
down to 0.03 per cent in the finest grid. The error decreases linearly
with decreasing step size, indicating that the numerical method is
globally of first order; this is not surprising considering that switches
(eq. 8) are not always activated.

The computation times are remarkably short, from around 0.001 s
in the 21 x 21 grid to 1.75 s in the 1001 x 1001 grid on a laptop
using a single core of a 2.8 GHz Intel i7 processor. The speed of
computation does not depend on the model complexity, but com-
putations are moderately faster in the absence of anisotropy. As
explained below, a grid made of around 1 million nodes is a con-
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venient choice in practice to achieve computations in a reasonable
timescale.

2.6 Applicability and limitations

The computation of arrival times is performed by solving the eikonal
equation, which is a high-frequency approximation of the wave
equation. Therefore, there are several limitations to bear in mind
regarding the applicability and physical resolution expected when
using this technique to simulate laboratory observations.

In laboratory studies, AEs and ultrasonic data are often recorded
using uncalibrated, resonant piezoelectric transducers the charac-
teristics of which are given by the piezoelectric properties and di-
mensions of the transducer and casing. The resonant frequency of
typical transducers is of the order of 1 MHz, which is characteristic
of lead—zirconate—titanate ceramic discs of 1-2 mm in thickness and
4-5 mm in diameter. In a rock where the P-wave velocity is 5 mm
us~!, the wavelength of the signals is of the order of 5 mm. The
eikonal approximation is only valid if spatial variations in velocity
occur over length scales significantly larger than the wavelength,
which imposes a physical lower bound on the spatial resolution of
the velocity model. Any wave velocity variations occurring over
length scales smaller than the signal wavelength, that is, around
5 mm, will be averaged out, and may produce scattering.

In practice, AE and ultrasonic monitoring is typically performed
using laboratory samples of 4-10 cm in diameter and 8-20 cm in
length, so that the high-frequency approximation is often justified.

The extension of the method to finite frequencies would require
the computation of the full wavefield to solve the forward prob-
lem, which is dramatically more computationally expensive than
the computation of high-frequency wave fronts. Recent advances to-
wards understanding waveform records from active measurements
(e.g. Fukushima et al. 2009; Yoshimitsu et al. 2016) show that the
radiation patterns from piezoelectric transducers (see Tang et al.
1994) and the cylindrical geometry introduce significant complex-
ity in the transmitted signals and enhance the measurement errors.
Such measurement errors, as well as the imperfection of the for-
ward problem itself, can be accounted for in the formulation of the
inverse problem (see below).

3 INVERSE PROBLEM

3.1 Assumptions and prior information

The fast marching method is an efficient tool to compute arrival
times throughout a material based on a known velocity structure and
source position. The data set used for tomography consists of arrival
times from both active and passive sources. In typical laboratory
experiments, the number of AE events (hereafter denoted #e,) is
much larger than the number of transducers (denoted 7y, ). Taking
advantage of the reciprocity of the wave equation, it is sufficient to
compute arrival times using the transducers as sources and collect
the arrival times at the positions of the events. The same set of
transducers is often used as sources in the active measurements,
so that there are up to 7ghan X (Fehan — 1 + #eyt) arrival times. In
practice, not all arrivals can be accurately picked on all channels,
so that the actual quantity of data is somewhat reduced.

As stated previously, the model parameters are the values of V)
and E throughout the material, and the source locations. The ma-
terial is discretized into nodes along an orthonormal grid, with the
z—axis being the vertical direction. The choice of the number of
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nodes is dictated by several constraints. From a physical point of
view, the size of heterogeneities sensed by elastic waves is limited
by their wavelength. In laboratory rock deformation experiments,
the signal frequency is of the order of 0.5-1 MHz, so that the
wavelength is of the order of several millimetres. Instead of using a
relatively coarse discretization with independent nodes, here a much
finer grid is used but with a correlation between neighbouring nodes
over a fixed length scale. This length scale is at least commensu-
rate to the wavelength of the signal used to probe the system, but
can be adapted to the known type of heterogeneity of the material
(Tarantola 2005). Furthermore, the use of a fine grid would also en-
hance the accuracy of the forward model computations. However, it
is also desirable to limit the quantity of unknowns (especially since
they are correlated) in order to ease the numerical computation and
linear algebra involved in the determination of the solution (see
the details below). Here, these contradictory requirements are met
by using a relatively coarse grid to define the model parameters,
and by refining it with trilinear interpolation when computing the
forward problem. This approach allows us to minimize the number
of parameters while retaining good accuracy in the computation of
arrival times.

Typical cylindrical laboratory samples of 40 mm in diameter and
100 mm in length are discretized with an initial grid spacing of
5 mm and a refinement factor of 8, thus yielding around 2800 nodes
(including additional grid steps outside the region of interest) in the
coarse grid and more than 1.4 million nodes in the refined grid.

Due to the large number of unknowns (several thousands) and the
computational cost of forward modeling, the inverse problem is not
easily solved by grid search or Monte Carlo sampling methods, and
we have to resort to least-squares optimization techniques. In this
context, all observational errors and a priori information on model
parameters are assumed to be described by Gaussian statistics.

The observed data (arrival times) vector is denoted dg,s. The
covariance matrix on the data, Cp, is assumed to be diagonal (i.e.
the observations are independent from each other). The diagonal
elements of Cp, correspond to the variances on the observed arrival
times. These variances are effectively the estimated errors on the
observations. The passive and active measurements do not have
the same errors, and two distinct variances are introduced: one for
active survey data o2, and one for the passive AE arrival time
data 62, The latter is typically larger than the former, since the
active survey arrival times can be picked very accurately using
cross-correlation methods on very clear waveforms, whereas AE
arrival times are picked automatically and just manually checked.
In general, it would be preferable to associate each arrival time
with a specific error, for instance using the information provided
by the autopicking algorithm. Such a method would require further
developments that are beyond the scope of this work, so here I have
used a single value of o, for all measurements.

In the framework of probabilistic inverse problems, the intrinsic
error on the theory (here the ray approximation) can also be ac-
counted for (Tarantola 2005, section 1.3). In practice, this is done
by adding an additional variance on the data, that is, increasing
the observational errors to include the possibility that systematic
errors can be made due to the imperfection of the theory even if the
observations are perfect.

The vector of a priori model parameters is denoted myyo,. The
prior information is also assumed to be Gaussian. Because the wave
velocity is a strictly positive parameter [or a so-called Jeffreys pa-
rameter, see Tarantola (2005)], the logarithm of V; is used as the cor-
responding Cartesian parameter. All other parameters (anisotropy
and source positions) are Cartesian. The covariance matrix in the

model space Cy; is determined by: the variance o> and covariances
on In (V}), the variance crr?_ and covariances on E and the variances
07, 0;,0; and o on source locations (I assume no covariance be-
tween source location parameters). The covariances on In (V) and
E between two nodes of indices i and j follow a 3-D exponential

covariance:

Cij = olexp (_ V@ =x)P + i =)+ G - Zf)2> , 17

A

where (x;, y;, z;) are the coordinates of node i, o? is the variance
on either In (V)) or £ and A is a correlation length. Essentially, the
length A provides a smoothness of the velocity structure, preventing
(statistically) heterogeneities over length scales smaller than A.

In summary, the covariance matrix Cy; is block diagonal, the first
block being the c;; for the logarithm of the velocity, the second block
is the ¢; for the anisotropy parameter and the remaining block is
a simple diagonal containing the sequence of variances on source
locations.

The inverse problem is non-linear: the function g(m) in eq. (1)
effectively contains integrals of slownesses over ray paths between
sources and receiver. The tomographic problem is only weakly non-
linear, while the source location problem is strongly non-linear.
Because a Gaussian model is assumed for all parameters, it is es-
sential that the a priori source locations are not too far from the
true ones. In practice, initial source locations are determined using
straight ray paths and an average P-wave velocity model (possibly
anisotropic if needed).

3.2 Quasi-Newton algorithm

The method chosen to determine the mean posterior model param-
eters (i.e. the ‘best” model in the sense of the least-squares norm) is
the quasi-Newton method. It is an iterative quadratic minimization
method, described in detail in Tarantola (2005, p. 78). The model
parameters m are updated at each iteration » as

m,,, =m, — Mn(G;CBIGn + CKAI)_I (G;Cgl(dn - dubs)
+ CK/l] (mn - mprior))7 (18)

where d, = g(m,,) and u, =~ 1 is the step size. The matrix G,
contains the derivatives of g:

9
(Gn>,-,~=(aj) - (19
J/ my,

In terms of implementation, the linear algebra operations in
eq. (18) are performed using the C++ Armadillo package
(Sanderson & Curtin 2016). Only the inverse of Cy; and Cp are
found explicitly, and a linear system is solved at every step instead
of computing the inverse of (G',C;'G, + Cy').

The key difficulty in the inversion procedure is computing G,,.

3.3 Computing the matrix of derivatives

The (vector) function g maps the velocity structure and source
locations to the arrival times at each receiver. If we denote #;, the
arrival time at receiver j from source 7, the mapping d = g(m) can

be written as
i =ty +/ (1/ Varoup)ds, (20)
Rij

where t is the origin time of the source, R;; is the ray path between
source and receiver, s is the curvilinear coordinate along the ray
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Figure 4. Ray tracing and interpolation procedure. The initial coarse velocity structure is shown in panel (a). This model is refined by trilinear interpolation
(here by a factor 10), and the arrival times are computed [thin black lines in panel (b)]. The ray is traced in this refined grid [thick line in panel (b)], and the
derivatives are computed with respect to the parameters as defined in the refined grid. In a final step [panel (c)], the derivatives with respect to the parameters
defined in the coarse grid are determined by using the grid interpolation coefficients [eq. (37)].

path and V. is the group velocity along the ray. The medium we
are dealing with is VTI, so that the group velocity depends on the
local group angle ¢ between the ray and the vertical axis. The group
velocity is expressed as

Vgroup[¢(9)] =Wy x F(Q, E)’ (21)

where 6 is the phase angle, easily computed and stored during the
ray tracing process, and £ is given by eq. (16). Denoting v = In (V)),
Eq. (20) is rewritten as

Ly =t + / e "/F[0(9), Elds, (22)
Rij
and its discretized form is then
N
ty ~to+ Y e /F(Or. Ex)As;. 23)
k=0

where the summation is performed over all the indices k=0, ...,
N of the segments of length As; forming the ray R;;.
The derivatives are therefore:

8tl"

YA = (24)
ot;; Vk
R (25)
vy F(6, Ex)

ot Uk oF

IR AN (26)
8Ek F[ek, Ek]2 8Ek
dt;; _ e % 9As @n
ax;  F[6k, Ei] 0x;
dt;; _ e % dAs (28)
9y;  Fl6 Ex] 9y,
dt;; _ e % 9As (29)
0z; B F6, Et] 0z;
where
oF _ 1 {2cos? 6 + 2E cos® (1 + 3 sin® 0)} (30)
— = —{2cos cos sin ,
0E 2F
and
dAs, XX 31)
ax; Asy
dA 0 — Vi

So V0T (32)

ay; - As

dAs Zvo — Zi

9z, Asy
correspond to the orientation of the tangent to the ray at the source
point, (X9, ¥:0, Zr0) being the coordinates of the first point along the
ray originating from the source.

As stated previously, the model parameters for the velocity struc-
ture are defined on a relatively coarse grid (Fig. 4a), which is refined
by trilinear interpolation during the computation of the forward
model (Fig. 4b). Rays are traced between sources and receivers in
the refined grid, where ray segment lengths are uniform and equal
to the (refined) grid spacing. The wave velocity, anisotropy, phase
angle and ray point coordinates are stored, and the derivatives are
computed with respect to the interpolated parameters. In order to
access the derivatives in the initial coarse grid, which correspond to
the elements of G, the derivatives obtained on the refined grid are
combined using the linear interpolation coefficients used in the grid
interpolation procedure (Fig. 4c). For any model parameter on the
coarse grid m; (either the horizontal wave velocity or the anisotropy
parameter), we have

0g; dg; 0
L (34)
om; — Opi Im;

(33)

where p; are the model parameters on the refined grid obtained from
trilinear interpolation:

Pk = Zak,-m/, (33)
J

where ay; are the interpolation coefficients, so that

apr

— = qay; 36

9 m; kj (36)

and we obtain

g agi
= E - 37
om; - U Pk 37

3.4 Synthetic examples

In order to assess the efficiency and accuracy of the inversion
method, it is first used on synthetic data sets for which the true
model parameters are known. The synthetic data are generated
from a 2-D heterogeneous velocity field with an average of 7, =
3 mm ps~! and up to 15 per cent spatial variation (from around 2.8
to 3.2 mm pus~"). The full grid size is 5 x 5 mm?, and the velocity is
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Figure 5. Synthetic example in a purely isotropic case. The initial, prior model is homogeneous and the initial AE event locations (red dots) are erroneous
(a) compared to their true positions (black dots). The sensors are shown as black triangles. The true velocity model is heterogeneous with up to 15 per cent
variations (b). The inverted model (c) recovered the key features of the heterogeneities as well as the even locations. Inversion parameters are reported in
Table 1.

Table 1. Inversion parameters used for the 2-D synthetic test
in a purely isotropic case (*) and anisotropic case (7).

Parameter Symbol Value
Grid refinement factor - 10
Error on survey picks (us) O shot 0.01
Error on event picks (us) O evt 0.2
Step size In 1.0
Error on In (Vp) oy 0.3
Error on E OE 0.001%, 0.3"
Correlation length (mm) A 1.0
Error on x position (mm) O 0.2
Error on y position (mm) oy 0.2
Error on z position (mm) oy 0.2
Error on ¢ position (s) e 0.2

set to 0 outside a circular domain of 5 mm in diameter. The nominal
grid spacing is 0.2 mm, and a refinement factor of 10 (grid spacing
of 0.02 mm) is used in the forward computations. A set of 40 AE
events are randomly positioned in the material, and eight sensors
are located on the circular edge of the material. The exact arrival
times are computed with the fast marching method, and a random
error (%5 per cent) is added to simulate measurement uncertainty.
The prior velocity structure is assumed constant, and the prior AE
event locations are given by the true ones plus a random error of
+0.2 mm.

A first example is computed in a purely isotropic case, as shown
in Fig. 5. The parameters used in the inversion are summarized in
Table 1, and the homogeneous prior model is shown in Fig. 5(a).
The quasi-Newton algorithm converges after five iterations, and
least-squares residual drops by a factor of around 23 between the
initial and final iterations. The result of the inversion is the ‘best’
solution in the sense of the least-squares norm, shown in Fig. 5(c),
and corresponds to the average of all likely models once the in-
formation contained in the observations is used (Tarantola 2005).
The comparison of the true model (panel b) and inverted model
(panel c) reveals that the inversion procedure allows us to retrieve
the main features of the true model, even though the prior model is
uniform. The roughness of the inversion result is controlled by the
combination of the variance o, and the correlation length A. Increas-
ing A or decreasing o, reduces both the amplitude of the changes in
Vi and the length scale over which the changes are observed. In all
cases, the AE event locations are retrieved almost exactly after a few
iterations, despite erroneous initial locations. The average relative
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error between the true and inverted locations is around 6 per cent.
The improvement in the AE event locations is quite modest, and the
inversion method stops converging if the a priori locations become
too different from the true ones. This is a clear limitation of the
method and limits its applicability regarding AE locations alone.
However, the key benefit provided by the inversion is that we can
retrieve the main features of the velocity structure.

Another example is shown in Fig. 6, where heterogeneities in
both V and E are implemented. The same geometrical pattern
is used for velocity and anisotropy. The parameters used in the
inversion are summarized in Table 1, and the homogeneous prior
models are shown in Figs 6(a) and (d). Similarly to the isotropic
case, the quasi-Newton algorithm converges after five iterations,
and least-squares residuals drop by a factor of around 93 between
the initial and final iterations. The average models resulting from
the inversion procedure are shown in Figs 6(c) and (f). Again, the
main features of the true model are recovered by the inversion.
Because now both V; and E are inverted, it is important to determine
whether the inversion results are correlated; in other words, it might
be that jointly changing ¥, and E allows us to fit the observation
equally well, in which case there would be a trade-off between these
parameters. In order to estimate the posterior correlations between
model parameters, we compute the posterior covariance matrix as
(Tarantola 2005)

Cu=(GCcy'G+cy)! (38)
and the correlation matrix as
("j‘["/.
= (39)

Pij = "
\/C{\ZC{V’[

The elements of p corresponding to the correlations between the
velocity ¥y and the anisotropy E at the same node are shown graphi-
cally in Fig. 7. All the correlations are negative, and their magnitude
isrelatively large (down to —0.5) where the ray coverage is poor, typ-
ically between pairs of sensors where no AE events occur. Overall,
the correlations are quite small (—0.1 to —0.2), where the number
of AE events is significant, such as at the centre of the model.

The synthetic tests shown here are not intended to cover all pos-
sible situations and there are known caveats associated with this
exercise (Tarantola 2005; Igel 2017). Nevertheless, the overall very
good match between the inversion results and the known true mod-
els gives us confidence that the method is able to retrieve the main
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Figure 6. Synthetic example in an anisotropic case. The initial, prior model is homogeneous and the initial AE event locations (red dots) are erroneous (a)
and (c) compared to their true positions (black dots). (b) and (d) The sensors are shown as black triangles. The true velocity model is heterogeneous with up to
15 per cent variation in both Vj and E. The inverted model (c) and (f) recovered the key features of the heterogeneities as well as the even locations. Inversion

parameters are reported in Table 1.
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Figure 7. Correlation coefficients between the velocity Vp and the
anisotropy parameter £ at each position in space.

features of the velocity structure based on AE and active measure-
ments. The output (mean) models are spatially smooth, a feature
that is entirely controlled by the variances o, and o and the corre-
lation length A. The true models used here are also smooth, and the
good performance of the inversion method strongly depends on the
a priori knowledge of that smoothness, so that the variances and
correlation length can be tuned to the expected variations. In prac-
tice, when working with real data, this tuning is left to the user, and
any useful prior knowledge (including: signal wavelength, sample
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geometry, macro- and microstructural observations and initial AE
event locations) should be used to constrain the covariance matrix.

4 APPLICATION TO COMPACTION
OF POROUS SANDSTONE

In order to test the tomographic method on real data and demonstrate
its potential for laboratory rock deformation experiments, I perform
a sequential inversion of AE and ultrasonic data obtained during a
triaxial deformation experiment conducted on a porous sandstone.
Sandstone is probably the ideal rock type for such an analysis be-
cause of the very large number of AE events and strong variations
in wave velocity typically observed during its deformation (e.g.
Fortin et al. 2006). Furthermore, since ultrasonic measurements
can be performed repeatedly during a single experiment, if enough
AE events are recorded during the time window around each ac-
tive measurement, the inversion is expected to provide a complete
sequence of wave velocity evolution throughout the deformation
process.

In porous sandstones, the mode of deformation transitions from
brittle to ductile with increasing confining pressure. Ductile de-
formation is initially compactant and proceeds by cataclastic flow,
which is driven by microscale fracturing. While brittle deforma-
tion is always associated with localized faulting, the occurrence of
strain localization during ductile deformation depends on both the
initial microstructure of the rock and the stress state at which the
rock is deformed (Paterson & Wong 2005; Wong & Baud 2012).
In particular, a regime of compaction localization is observed at
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Figure 8. Sensor array geometry shown as inverted triangles as a function
of angular and depth position around the sample (left) and a 3-D rendering
of straight ray paths connecting all possible pairs of sensors (right).

elevated confining pressures in some high porosity sandstones (e.g.
Klein ef al. 2001; Baud et al. 2004, 2006). The formation of com-
paction bands in sandstone was analysed in detail by Fortin et al.
(2006) using AE monitoring and ultrasonic measurements, which
revealed that the growth of the bands coincides with clusters of AE
events and is accompanied by a progressive drop in the average
wave velocity in the material. Here, I performed a triaxial defor-
mation experiment on a sandstone similar to that used by Fortin
et al. (2006), in the compaction banding regime. As explained in
detail below, the use of AE tomography in this experiment allows
us to resolve the Jocal changes in wave velocity associated with the
propagation of compaction bands, which was previously beyond our
capabilities.

4.1 Experimental method

The rock chosen for this study is a 22 per cent porosity sandstone
from Bleurville (Vosges, France). This material is composed of a
majority of quartz and K-feldspar, and comes from the same area as
the Bleurswiller sandstone used by Fortin ef al. (2006). A cylinder
of 40 mm in diameter was cored perpendicular to bedding, and was
then cut and precision ground to 100 mm in length. The sample
was inserted in a viton jacket and positioned between two steel end
caps within the triaxial rock physics apparatus of the Rock and Ice
Physics Laboratory at University College London (see description
in Eccles et al. 2005).

The sample was saturated with distilled water. The confining
pressure and pore pressure were set to 90 and 10 MPa, respec-
tively, and maintained constant throughout the test by the use of
servo-controlled intensifiers. The Terzaghi effective pressure was
therefore equal to 80 MPa, which is well within the compactant
regime for Bleurville sandstone. The pore volume change in the
sample was monitored by measuring the change of fluid volume in
the pore pressure intensifier with an LVDT (Linear Variable Differ-
ential Transformer) attached to the moving actuator. The axial load
was measured with an external load cell and the sample shorten-
ing was measured with an external LVDT, corrected for the elastic
compliance of the loading column and sample assembly. The defor-
mation test was run at a constant strain rate of 1075 s7!.

The viton jacket positioned around the sample was equipped with
an array of 16 piezoelectric transducers arranged in the geometry
shown in Fig. 8. The piezoelectric elements of the transducers are
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Figure 9. Differential stress (black), porosity reduction (grey) and AE rate
(green) as a function of axial strain during triaxial deformation of Bleurville
sandstone at 80 MPa effective confining pressure. Black diamonds indicate
the points where active ultrasonic measurements were performed.

discs of lead—zirconate—titanate ceramic (material reference PIc255
purchased from Physik Instrumente GmbH) of 2 mm in thickness
and 5 mm in diameter. These discs are mounted on top of 12 mm long
aluminium inserts which act as waveguides; the additional travel-
time within the waveguides was calibrated using a plain aluminium
rod of known properties as the sample.

The signals from the transducers were amplified by 40 dB and
recorded at 50 MHz with a digital oscilloscope (12-bit dynamic
range). Passive AE monitoring was performed by recording and
storing 4096 point waveforms on all channels each time a signal
with an amplitude higher than 120 mV was detected on at least two
channels, up to a maximum of around four events per second. The
background noise level was around 20 mV. In addition, repeatedly
during the experiment, active ultrasonic monitoring of the sample
was performed by sending a high-frequency (1 MHz) high voltage
(250 V) pulse to each transducer (then used as a source), and using
the other sensors in the array to record the waveforms. Each shot
was performed six times and the resulting waveforms were stacked
to enhance the signal-to-noise ratio.

The waveform and amplitude spectrums of a typical AE event is
shown in Fig. B1, where we observe that most of the signal is at a
frequency of around 0.4 MHz. The P-wave velocity of the sample
is of the order of 4 mm us™', so that the wavelength of the signal
is of around 1 cm. This value is four times lower than the sample
diameter, and 10 times lower than the sample length.

4.2 Data analysis

The resulting mechanical data are presented in Fig. 9. The dif-
ferential stress on the sample (Q) initially increases linearly with
increasing axial strain, while the porosity also decreases. The onset
of inelastic compaction is at around 45 MPa differential stress (i.e.
0.36 per cent axial strain). Beyond that point, the porosity decreases
non-linearly with increasing stress. At around 1 per cent axial strain,
the differential stress deviates significantly from linearity and stabi-
lizes at around 105 MPa. The stress remains approximately constant
between 1.2 and 2.2 per cent axial strain, and linear strain harden-
ing is observed beyond that point, with the stress reaching around
120 MPa at 5.5percent axial strain. This mechanical behaviour
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Table 2. Inversion parameters used for the sandstone com-
paction experiment.

Parameter Symbol Value
Initial grid spacing (mm) - 5
Grid refinement factor - 8
Error on survey picks (us) O shot 1
Error on event picks (pts) Oevt 2
Step size In 0.5
Error on In (Vp) oy 0.12
Error on £ OE 0.1
Correlation length (mm) A 50.0
Error on x position (mm) Ox 2
Error on y position (mm) oy 2
Error on z position (mm) oy 2
Error on fy position (us) o2t 2

is typical of the ductile, compactant regime in porous sandstone
(Wong & Baud 2012).

A total of 10163 AE events were recorded during deformation.
The AE rate as a function of axial strain is shown in green in Fig. 9.
Based on their high amplitude and the clarity of the first arrivals,
a subset of 97 740 waveforms from 6458 AE events was selected
to be used in the tomographic inversion. The arrival times were
initially picked automatically using a method based on an autore-
gressive time-series model, in which the number of autoregression
coefficients was determined by the Akaike Information Criterion
(Sleeman & van Eck 1999). All picks were then individually
checked and corrected manually.

In addition to the AE events, active ultrasonic surveys were per-
formed at the times marked by black diamonds in Fig. 9. The wave-
forms associated with an initial survey prior to deformation were
picked manually, and the changes in arrival time for all subse-
quent surveys were computed automatically using waveform cross-
correlation with subsampling at 100 MHz (Brantut et al. 2011;
Brantut 2015). This procedure yielded a set of 147 accurate relative
picks for each survey (with redundant information considering that
each transducer is used as both a source and receiver sequentially).

The time-series of AE and survey data is split into 16 sequences
centred around the time of each survey (labeled ‘a’ to ‘p’ in Fig. 9),
leading to 16 individual data sets each containing 1 survey and from
50 (step ‘a’) to 625 (step ‘c’) AE events. The first two surveys (before
‘a’) were not used due to the lack of high-quality AE events. A
tomographic inversion is performed for each of these data sets. The
parameters used in the inversion method are summarized in Table 2.
The inversion of the first data set (‘a’) is performed by assuming
an a priori velocity structure that is homogeneous, anisotropic with
Vo =3.9mm ps~! and E = 0.01. These values correspond to the
average velocity model as measured by the active ultrasonic survey.
The inversion of data sets ‘b’ to ‘p’ was then performed sequentially,
by using the output velocity structure of the previous set as the a
priori model for the current set. The a priori covariance matrix
was left unchanged. In each set, the prior AE locations were set to
those found with a grid search approach (with least-absolute value
minimization) in the homogeneous, anisotropic velocity model as
determined with the ultrasonic surveys.

4.3 Inversion results

The results of the sequential inversion procedure are summarized
in Figs 10 and 11. Fig. 10 shows the spatial evolution of the relative
change in horizontal velocity, computed as (Vy — ¥.”)/V?, in a
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vertical slice cutting through the centre of the sample along the
x-direction. AE hypocentre locations for each data subset are also
shown on each subplot. During step (b), AEs appear quite scattered
throughout the upper part of the sample, and the velocity structure
is relatively homogeneous, except from a very slight anisotropy also
localized at the top of the sample. By contrast, during step (c), the
AE locations form a clear subhorizontal band located near the top
of the sample. This clustering of AE hypocentres is accompanied
with a drop of the wave velocity and an increase in anisotropy
around the AE cluster. During each subsequent step from (d) to
(n), the AE hypocentres form a subhorizontal front that gradually
propagates from the top to the bottom of the sample. Behind the
AE front, the wave velocity drops quite abruptly by 5—15 per cent
and the anisotropy increases by 5—15 percent as well, indicating
that the vertical P-wave velocity remains almost unchanged, while
the horizontal wave speed is strongly affected. During steps (o) and
(p), the AEs appear less clustered and the wave velocity structure
becomes more homogeneous, albeit with some scattered patches of
slightly higher velocity.

As explained from the synthetic tests, the overall smoothness
of the velocity structure is controlled by the combination of the
variances o, and o and the correlation length L. The choice of
a rather large A (50 mm) was made to overconstrain the model
and ensure relatively small changes between each step. Despite
imposing this level of smoothness, relatively sharp transitions are
observed, for instance during steps (g) and (h). This is because the
inversion is performed sequentially, using the successive outputs as
a priori models for the following steps.

Obviously, changing the a priori variances or correlation length
would modify quantitatively the outcome of the inversion. An ex-
ploration of all possible outputs is beyond the scope of this work,
but a number of tests were performed with a range of parameters
(o from0.12 t0 0.3, o from 0.02 to 0.1 and A from 20 to 200 mm),
revealing that the pattern observed here, that is, the propagation of
a front of AEs behind which the velocity drops, is retrieved system-
atically.

The reality of the patches of higher velocity imaged in the cen-
tre of the sample in steps (o) and (p) is difficult to confirm. The
ray coverage is very poor in these areas, since all the AEs are lo-
cated at the bottom of the sample and the sensors are on the sides.
Hence, the active surveys do not provide enough coverage on their
own to robustly determine the structure in the central part of the
sample.

4.4 Significance

The combined AE locations and tomography produce an unprece-
dented insight into the mechanics of compaction in porous sand-
stone. The AE hypocentres delineate a succession of compaction
bands starting at one end of the sample and systematically progress-
ing towards the other end. Behind the compaction front, a small
number of diffuse AEs are recorded. However, the tomography re-
veals that the material has been intensely damaged and cracked, as
evidenced by the inferred large drop in horizontal wave velocity (up
to 15 per cent). Here, the AEs occurring at the front have been used
to image the whole sample, even in regions where little or no AE
activity was recorded.

More diffuse AE activity is recorded in the last steps of deforma-
tion (0) and (p), and the tomography seems to produce a more ho-
mogeneous (anisotropic) velocity structure. The structure inferred
from the last deformation step compares well with the macroscopic
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Figure 10. Sequential evolution of the horizontal P-wave velocity change (Vo(a) - Véa))/ Véa) as inferred from the inversion of each dataset (« from ‘b’ to ‘p’).
The reference velocity field is taken at step (a). All slices correspond to north—south cross-sections ((x, z) plane) running through the centre of the sample. Each
slice is 40 mm in width and 100 mm in height, which matches the initial sample dimensions. The black dots correspond to the AE event hypocentres located

within |y| < 2.5 mm of the central section of the sample.

picture of the deformed sample recovered after unloading and de-
compression, as well as with the total number of AEs recorded in
the sample, shown in Fig. 12.

These results imply that the accumulated AE density is correlated
with the horizontal P-wave velocity drop. This is consistent with the
idea that each AE corresponds to the propagation of one or several
subvertical microcracks, which in turn are known to dramatically
affect the wave velocity of the material (e.g. Sayers & Kachanov
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1995). The correlation between the local cumulative AE number and
the change in wave velocity is shown graphically in Fig. 13. There is
a clear proportionality between the maximum AE number in a given
location and the corresponding velocity change at that location.
However, for a given velocity change, the cumulative AE number
can be significantly less than the potential maximum, as evidenced
by the spreading of the points along the y-axis in Fig. 13. The lack
of direct proportionality between wave velocity change and AE
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Figure 11. Evolution of the anisotropy parameter £ during deformation, as inferred from the inversion of data sets (a)—(p). All slices correspond to north—south
cross-sections ((x, z) plane) running through the centre of the sample. Each slice is 40 mm in width and 100 mm in height, which matches the initial sample
dimensions. The black dots correspond to the AE event hypocentres located within |y| < 2.5 mm of the central section of the sample.

count—the correlation being only with the maximum AE count—
is maybe an artefact arising from the AE detection and selection
thresholds, but clearly highlights the potential of the tomographic
method to image areas where no AEs are recorded but are still
heavily microcracked.

The progression of the compaction front imaged by AE tomog-
raphy is a key element to understand the mechanical behaviour of
the rock. Throughout the propagation of the front, from steps (b)

to (h), the applied differential stress remains constant (Fig. 9). The
front seems to stagnate from steps (h) to (1), which corresponds to
a period of slight strain hardening. Beyond step (1), the front seems
to propagate further while losing its coherence, which corresponds
to a decrease in strain hardening. During this stage, the whole sam-
ple becomes cracked and the wave velocity becomes again more
homogeneous. During steps (h)—(1), the rock is effectively a bima-
terial, with the top half heavily cracked and mostly incohesive, and
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Figure 12. AE hypocentres observed during the full deformation process
(left), and photograph of the deformed sample, jacketed in a transparent
heatshrink sleeve (right). The arrow indicates the direction of propagation
of the compaction front.
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Figure 13. Cumulative AE number as a function of the relative change in
horizontal P-wave velocity. Each dot corresponds to the AE count and the
average velocity change in a cubic volume of 10 x 10 x 10 mm?>. Colours
from dark to light green correspond to time windows (b)—(0).

the bottom half more or less intact. The period of strain hardening
indicates that the deformation of the top half requires progressively
more stress to proceed [strain hardening is a common observation
in the ductile cataclastic flow regime, see Wong et al. (1997)]. The
subsequent progression of the compaction front in the bottom half
of the sample, together with the slight decrease in strain hardening,
shows that it becomes more energetically favourable to start com-
pacting the intact part of the rock rather than continue deforming
part the damaged part of the sample.

Overall, the tomographic imaging reveals a close relationship
between AE locations and density, changes in P-wave velocity and
compaction localization in the sample. In a previous study by Fortin
et al. (2006) on a similar rock, AE locations were used to image the
growth of compaction bands and the relationships between com-
paction bands and pre-existing heterogeneities in the sample. In
that study, compaction bands initiated at various locations within
the sample and did not start specifically at one end of the sample.

By contrast, here we find that compaction bands successively form
next to each other from the top to the bottom of the sample. This
key difference in deformation mode might be associated with the
lack of pre-existing heterogeneities in our sample compared to that
used by Fortin ef al. (2006). This explanation is consistent with the
initiation of compaction near the end of the sample, where the stress
state is slightly more compressive due to frictional effects between
the sample and the end-caps: this stress heterogeneity is the dom-
inant one compared to other microstructural heterogeneities in the
sample.

S CONCLUSIONS

In this paper, I have presented a method that combines active ultra-
sonic monitoring and passive AE recording in laboratory samples
to perform 3-D, anisotropic wave velocity tomography. The method
is analogous to Local Earthquake Tomography, pioneered by Aki &
Lee (1976) and Thurber (1983). The data used are arrival times from
both active sources with known positions and passive sources with
unknown positions. The model parameters are the wave velocities
at regular gridpoints within the sample (a horizontal P-wave speed
Vo and an anisotropy parameter E, in an elliptic VTI model) and
AE event locations. The forward problem is solved efficiently by
the fast marching method (e.g. Sethian 1999). The inverse problem
is solved with the quasi-Newton method (Tarantola 2005).

Tests performed using synthetic data with noise indicate a good
performance of the method, with rapid convergence and good
agreement between the inversion results and the true input model.
The results are somewhat less accurate when performing inver-
sion with anisotropy, and there are small negative correlations be-
tween the inverted wave velocity and anisotropy parameters. These
problems are inherent to all tomographic methods and can only
be circumvented by using better constraints on prior models and
covariances.

The application of the method to experimental data obtained dur-
ing compaction of a porous sandstone reveal unprecedented infor-
mation on the relationships between strain localization, AE density
and changes in wave velocity. The tomographic imaging shows very
clearly the propagation of a compaction front, highlighted by clus-
ters of AE events, and leaving a heavily damaged material behind
(with drops in horizontal P-wave velocity of up to 15 percent).
These results are consistent with the post-mortem structure of the
sample.

The largest source of error in the approach is, by far, the lack of
accuracy of the P-wave arrival picks on passive AE records. Here,
all the picks were manually checked, but this task would be near
impossible on very large data sets (or, rather, not considered a good
use of people’s time). One way to improve this crucial step would
be to use machine learning techniques to automate the picking and
provide individual measures of picking errors for each arrival time.
These individual errors could then be used to fill the data covariance
matrix and obtain more robust inversion results.

The overall good performance of the method on real labora-
tory data demonstrates the potential of AE tomography as a rou-
tine in sifu imaging technique. Indeed, the method requires only
arrival time data from AE transducers, which are already rou-
tinely collected in several laboratories. It is therefore imaginable
to revisit pre-existing data sets and produce new complementary
results with AE tomography. To this end, I provide the full soft-
ware suite FAATSO online with the required documentation and
manuals (https://github.com/nbrantut/FaATSO.git), with the hope of
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encouraging the development and use of improved AE tomography
techniques.
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APPENDIX A: ANISOTROPY AND THE 0.1

FAST MARCHING METHOD

0.05
The fast marching method was developed to solve a general class

of Hamilton—Jacobi equations:

H(x, p) = s(x), (A1)

amplitude (V)
=

where H is a Hamiltonian operator and p a vector of its arguments.
The eikonal equation is a special case of (A1) where p = Vu and -0.1 . . . .
s is the slowness. The conventional algorithm of the fast marching 0 20 40 60 80
method outlined in Section 2 applies when the Hamiltonian H sat- time (Ls)

isfies the so-called Osher’s criterion (see for instance a description

in Tsai et al. 2003): 10

oH
>0, (A2)
api

where the p; denote the elements of the vector p. In the case of a
VTI material with elliptical anisotropy, as described by eq. (5), the
Hamiltonian is of the form:

H(p1, p2. p3)=Voy/ pi+p3+P3(1 + Ep3 /(pi+p3+p3)), (A3)

and satisfies Osher’s condition provided that —1/2 < E < 1.
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Figure B1. Representative example of a raw AE waveform (top) and its
APPENDIX B: EXAMPLE AE amplitude spectrum (bottom).

WAVEFORM AND SPECTRUM

Fig. B1 shows a representative example of the raw waveform (top)
and the amplitude spectrum (bottom) of an AE event recorded dur-
ing the sandstone compaction experiment. The spectrum shows that
the signal is dominated by frequencies up to 0.4 MHz, which cor-
responds to a wavelength of the order of 1 cm.
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