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Cardiac fibrosis can be attenuated by
blocking the activity of transglutaminase 2
using a selective small-molecule inhibitor
Zhuo Wang1, Daniel J. Stuckey2, Colin E. Murdoch3, Patrizia Camelliti4, Gregory Y. H. Lip5 and Martin Griffin1

Abstract
Cardiac fibrosis is implicit in all forms of heart disease but there are no effective treatments. In this report, we
investigate the role of the multi-functional enzyme Transglutaminase 2 (TG2) in cardiac fibrosis and assess its potential
as a therapeutic target. Here we describe the use a highly selective TG2 small-molecule inhibitor to test the efficacy of
TG2 inhibition as an anti-fibrotic therapy for heart failure employing two different in vivo models of cardiac fibrosis:
Progressively induced interstitial cardiac fibrosis by pressure overload using angiotensin II infusion: Acutely induced
focal cardiac fibrosis through myocardial infarction by ligation of the left anterior descending coronary artery (AMI
model). In the AMI model, in vivo MRI showed that the TG2 inhibitor 1–155 significantly reduced infarct size by over
50% and reduced post-infarct remodelling at 20 days post insult. In both models, Sirius red staining for collagen
deposition and levels of the TG2-mediated protein crosslink ε(γ-glutamyl)lysine were significantly reduced. No cardiac
rupture or obvious signs of toxicity were observed. To provide a molecular mechanism for TG2 involvement in cardiac
fibrosis, we show that both TGFβ1-induced transition of cardiofibroblasts into myofibroblast-like cells and TGFβ1-
induced EndMT, together with matrix deposition, can be attenuated by the TG2 selective inhibitor 1–155, suggesting a
new role for TG2 in regulating TGFβ1 signalling in addition to its role in latent TGFβ1 activation. In conclusion, TG2 has
a role in cardiac fibrosis through activation of myofibroblasts and matrix deposition. TG2 inhibition using a selective
small-molecule inhibitor can attenuate cardiac fibrosis.

Introduction
Heart disease remains the leading cause of death world-

wide and its prevalence is likely to increase further with
changes in lifestyle and as the population ages. Therefore,
there is an urgent need for new drugs that are effective in
treating heart disease patients. Cardiac fibrosis is implicit in
all forms of heart disease. Fibrosis is a scarring process
characterised by myofibroblast accumulation and excessive
deposition of extracellular matrix (ECM) proteins, in

particular collagen I and III. This can lead to loss of organ
architecture and compliance, induction of pathological
signalling in cardiomyocytes and eventual heart failure. The
fibrotic process is similar in many organs, including lung,
liver and kidneys, making it an attractive target for ther-
apeutic intervention. However, targeted therapy is compli-
cated, as the fibrosis causing myofibroblasts can originate
from multiple cell types including endothelial cells (ECs)
(known as endothelial–mesenchymal transition, EndMT)1,
pericytes2, epithelial cells (epithelial–mesenchymal transi-
tion, EMT)3 and fibroblasts4. During cardiac fibrosis,
genetic lineage studies indicate that the majority of myofi-
broblasts result from resident cardiofibroblasts5. However,
EndMT-derived myofibroblasts may also play an important
role1,6, particularly in the loss of resident blood vessels, in
the area of tissue damage via capillary rarefaction7.
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The transforming growth factor β (TGFβ) family of
growth factors are pivotal in driving the transition of
fibroblasts, endothelial cells, pericytes and epithelial cells
into active myofibroblast in response to fibrotic stimuli8–10.
The most documented member associated with fibrosis
development is TGFβ1. Mature TGFβ1 is part of a latent
complex consisting of a TGFβ1 dimer non-covalently
bound to its latency-associated peptide (LAP), which is
associated to a large TGFβ-binding protein (LTBP). Once
activated, TGFβ1 binds to its ubiquitously expressed cell
surface TGFβ1 type I and type II receptors, leading to the
activation of a downstream signalling cascade involving
both canonical, e.g., phosphorylation of Smad proteins and
non-canonical signalling. This leads to the transcriptional
regulation of a range of genes involved in the transition of
cells into myofibroblasts leading to increased matrix
deposition and fibrosis.
Transglutaminase 2 (TG2) is a multi-functional

Ca2+-dependent protein crosslinking enzyme, which is
regulated by TGFβ1 and also involved in the activation of
matrix-bound latent TGFβ11. Proof-of-concept studies
using animal models indicate TG2 is involved in lung12 and
kidney fibrosis13, where it has a role in matrix deposition
and accumulation, and in latent TGFβ1 activation. How-
ever, transglutaminase inhibitors were only used in kidney
fibrosis models and the inhibitors used in these studies were
not selective for TG213. We have now developed via the aid
of in silico modelling highly potent TG2 selective inhibitors
capable of reducing angiotensin II (AngII)-induced
nephrosclerosis in mice14. We demonstrated a mechanism
for the highly potent cell permeable compound 1–155
whereby the inhibitor reduced both TG2 activity and export
of TG2 into the ECM by blocking its cell surface interaction
with its binding partner syndecan-413, which is required for
TG2 secretion15.
Given our earlier preliminary data suggesting the

importance of TG2 in kidney fibrosis14, we sought to
clarify its role in the development of cardiac fibrosis using
for the first time an inhibitor that is selective for TG2. Our
data obtained from both cell models and two well-
characterised in vivo models indicate a role for TG2 in the
development of cardiac fibrosis. We demonstrate that the
TG2 selective inhibitor 1–155 reduces fibrosis in vitro and
in two clinically relevant mouse models of cardiac fibrosis,
making TG2 an attractive drug target for anti-fibrotic
therapies.

Results
The effects of TG2 inhibition in mouse models of cardiac
fibrosis
Angiotensin II model of progressive interstitial cardiac
fibrosis
To demonstrate the importance of TG2 crosslinking

activity in cardiac fibrosis and to validate TG2 as a

potential therapeutic target, we first looked at a pro-
gressive diffuse model of cardiac fibrosis, where hyper-
tension was induced by chronic infusion of angiotensin II
(AngII), which provides an example of reactive fibrosis.
AngII and TG2 inhibitor 1–155 were delivered over
14 days using a subcutaneously implanted osmotic pump.
Histological staining using Picro-Sirius Red indicated
mice receiving AngII plus vehicle control showed collagen
deposition around the arterioles and in the heart inter-
stitium (Fig. 1a). In contrast, animals receiving AngII plus
TG2 inhibitor 1–155 showed significantly less (~50%)
collagen deposition in all heart regions (Fig. 1a, b). Proof-
of-target engagement by the TG2 inhibitor 1–155 was
shown by a significant (~50%) reduction in the TG2-
mediated crosslink ε-(γ-glutamyl)-lysine (Fig. 1c) when
compared to the AngII control mice. TG2 inhibitor 1–155
was deemed to be directly targeting cardiac fibrosis since
AngII plus TG2 inhibitor 1–155 had no effect on systolic
blood pressure (Fig. 1d), heart rate (Fig. 1e) and heart
weight body weight ratio (Fig. 1f) compared to AngII plus
vehicle after 14 days of treatment.

Acute myocardial infarction model of focal cardiac fibrosis
The effects of TG2 inhibition on cardiac fibrosis were

further tested in a mouse model of acute myocardial
infarction, where replacement fibrosis occurs in the
infarct region and interstitial fibrosis in the remote
myocardium. Baseline cardiac function and infarct size
was assessed after 6 h using in vivo MRI. These data were
used to match cardiac impairment in the treated and
control groups at baseline, prior to therapy (Fig. 2a). TG2
inhibitor 1–155 or vehicle control was delivered over
14 days, using subcutaneously implanted osmotic pumps
inserted at 24 h after infarction. MRI was repeated at
20 days and followed by histology and analysis of the
TG2-mediated crosslink ε-(γ-glutamyl)-lysine in heart
tissue. Baseline cardiac structure, function and infarct size
were similar between groups (Fig. 2a, b). During the
follow-up period, one animal died in each group and no
evidence of cardiac rupture was identified upon autopsy.
From day 0 to day 20 the left ventricular masses, end
diastolic volumes and end systolic volumes increased in
the control group as is expected in this model, but there
was no significant increase in these parameters in the
group treated with TG2 inhibitor 1–155 (Fig. 2b). Ejection
fraction was higher in the group treated with TG2 inhi-
bitor 1–155 compared with controls at 20 days, but this
difference was not significant (Fig. 2b). Total infarct size
and infarct size as a percentage of left ventricular mass
was significantly lower in the group treated with TG2
inhibitor 1–155 compared with vehicle controls at
20 days. Histological staining using Picro-Sirius Red
identified significantly less interstitial collagen deposition
in the remote myocardium of the mice treated with 1–155
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(Fig. 3a), confirming the compound’s ability to reduce
collagen deposition in vivo (Fig. 3b). Similarly, measure-
ment of TG2-mediated crosslink ε-(γ-glutamyl)-lysine in
the remote myocardial tissue of the mice treated with
1–155 indicated a comparable and significant reduction
confirming target engagement of the TG2 inhibitor
(Fig. 3c).

TG2 in the TGFβ1-induced transition of cardiofibroblasts
into myofibroblasts
Cardiofibroblasts are the major source of myofibroblasts

during the development of cardiac fibrosis; therefore, in
order to provide a molecular mechanism for the invol-
vement of TG2 in cardiac fibrosis we first looked at the
importance of TG2 in TGFβ1-treated human

Fig. 1 In vivo assessment of TG2 inhibition on AngII-induced cardiac fibrosis. AngII 1.1 mg/kg/day in 50% DMSO in PBS pH 7.4 was used to
induce cardiac fibrosis for 2 weeks with or without TG2 inhibitor (25 mg/kg/day) via a subcutaneously implanted mini-pump (Alzet1002).
a Representative images of heart sections from the inhibitor and non-inhibitor-treated animals showing collagen staining using Picro-Sirius red. Bar
= 100 µm. b Averaged data of Picro-Sirius red/collagen staining in heart sections from control and TG2 inhibitor 1–155 treated animals. c TG2-
mediated ε(γ-glutamyl)lysine crosslink (XL) formation in the AngII and AngII+ 1–155 treated animals. d–f Systolic blood pressure (SBP) (d), heart rate
(e), and heart weight (HW, wet weight, mg) against body weight (BW, g). f were obtained after 2 weeks of treatment with 1–155. Data are means ±
SE. n= 5/4. *p < 0.05

Wang et al. Cell Death and Disease  (2018) 9:613 Page 3 of 12

Official journal of the Cell Death Differentiation Association



Fig. 2 In vivo assessment of cardiac structure, function and viability in a mouse AMI model following TG2 inhibition. MRI was performed 6 h
after myocardial infarction, prior to mini-pump implantation, and again at 20 days. a Representative end systolic frames of cine-MRI acquisitions along
with matching late gadolinium-enhanced MRI (LGE) acquisitions used for assessment of infarct size. Red lines define the edges of the hyper-
enhanced infarct region. b Left ventricular masses, end diastolic volumes and end systolic volumes increased from day 0 to day 20 in the control
group, but there was no significant increase in these parameters in the treatment group. Total infarct size and infarct size as a percentage of left
ventricular mass was significantly lower in the treatment group compared with controls at 20 days. *P < 0.05 compared with day 0; #P < 0.05
compared with control. Bar= 2 mm
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cardiofibroblasts. Treatment of human cardiofibroblasts
with TGFβ1 led to the activation of the Smad2/3 signal-
ling, resulting in a significant increase in fibronectin
expression and matrix deposition, and a significant
increase in expression of myofibroblast marker SMAα,
indicating their transition into activated fibroblasts
(Fig. 4a and Supplementary Figure S1). When cells were
incubated with the TG2 selective inhibitor 1–155 (which

gave rise to no obvious signs of cell toxicity, Supple-
mentary Figure S2), there was a significant reduction in
these myofibroblast markers (Fig. 4a and Supplementary
Figure S1). We have previously shown that in NIH3T3
fibroblasts, TG2 externalisation is dependent on its direct
interaction with the cell surface heparan sulphate pro-
teoglycan syndecan-4, a process which can be blocked by
the cell permeable selective TG2 inhibitor 1–15513. Here,

Fig. 3 Assessment of collagen and TG2-mediated ε-(γ-glutamyl)-lysine in the AMI mouse model following TG2 inhibition. a Representative
images of Picro-Sirius red/collagen-stained heart sections from the AMI mouse model following treatment with or without TG2 inhibitor 1–155. b
Averaged data of Picro-Sirius red/collagen staining in the remote myocardium showing interstitial collagen deposition is significantly reduced by 1–155.
c 1–155 reduces the TG2-mediated ε-(γ-glutamyl)-lysine crosslink (XL) in the 1–155 treated mice. Data are means ± SE. n= 5/7. *p < 0.05. **p < 0.005
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we next studied TG2 secretion in cardiofibroblasts and
showed that TGFβ1 treatment led to a significant increase
in TG2 expression and externalisation to the cell surface
and ECM, which could be significantly reduced by 1–155
(Fig. 4b and Supplementary Figure S3). The TG2 selective
inhibitor 1–155 was able to block TG2 expression and
externalisation after TGFβ1 treatment by reducing TG2
interaction with syndecan-4 (Fig. 4c and Supplementary
Figure S4). Importantly, inhibition of TG2 activity and its
deposition into the matrix by 1–155 led to a significant
reduction of the amount of collagen I deposited by

cardiofibroblasts following treatment with TGFβ1 (Fig. 4d
and Supplementary Figure S5).

The induction of EndMT by TGFβ1 and its reversal by TG2
inhibitor 1–155
We next looked at the role of TG2 in myofibroblast

formation through TGFβ1-induced EndMT. The well-
characterised human umbilical vein endothelial cells
(HUVECs) and primary TG2 knockout (TG2−/−) and
wild-type (TG2+/+) mouse microvascular ECs isolated
from the lungs were used in our experiments. Addition of

Fig. 4 The effect of TG2 inhibition on TGFβ1-induced cardiofibroblast to myofibroblast transition and collagen deposition in human
cardiofibroblasts. a Representative western blots (n= 3) showing p-Smad2/3 activation, αSMA and FN and FN deposition and the inhibition of
these parameters using TG2 inhibitor 1–155 (2.5 µM) in 72 h TGFβ1-treated cardiofibroblasts at the concentrations shown. Matrix FN was measured
according to the procedures described in the 'Materials and methods'. b Representative western blot (n= 3) showing the effect of 72 h TGFβ1
treatment in cardiofibroblasts showing increased TG2 expression and increased TG2 at the cell surface and ECM and inhibition of this by TG2 inhibitor
1–155. c Representative western blot (n= 3) of TG2 in the syndecan-4 immunocomplex from co-IP carried out as described in 'Materials and
methods'. d Immunofluorescence detection of collagen I in cardiofibroblasts treated with 1 ng/ml TGFβ1 over 5 days with and without the TG2
inhibitor at 2.5 µM undertaken as described in the 'Materials and methods'. Bar= 25 µm
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TGFβ1 at 1 ng/ml to HUVECs led to an increase in
Smad2/3 signalling with significant increases in fibro-
nectin (FN) expression and matrix deposition, a small
increase in TG2 expression and a significant reduction in
the endothelial marker VE-cadherin, indicating the
induction of EndMT. Addition of TG2 inhibitor 1–155,
which is not toxic to HUVECs at the concentrations
used13, reversed the effects of exogenous TGFβ1 as indi-
cated by a significant reduction in p-Smad signalling, FN
expression and deposition and the return of the endo-
thelial cell marker VE-cadherin (Fig. 5a and Supplemen-
tary Figure S6). The addition of TGFβ1 to HUVECs also
led to a parallel loss of endothelial tubule formation
(Fig. 5b and Supplementary Table S2). Confirmation of
the requirement for TG2 in TGFβ1 signalling needed for
the induction of EndMT was indicated by use of mouse
lung TG2−/− ECs. Stimulation of the TG2+/+ ECs with
mouse TGFβ1 resulted in induction of Smad2/3 signal-
ling, which was significantly reduced in the TG2−/− ECs

even at high TGFβ1 concentration of 10 ng/ml (Fig. 5c
and Supplementary Figure S7).
Recent evidence has indicated the importance of

thioredoxin in the activation of matrix-bound latent-oxi-
dised TG2 during tissue injury and wound healing16. We
show that exogenous addition of thioredoxin to HUVEC
cells leads to the activation of TGFβ1-mediated Smad2/
3 signalling with a significant increase in FN deposition,
TG2 and decreased expression of VE-cadherin indicative
of EndMT (Fig. 5d and Supplementary Figure S8).

Discussion
Despite continuous progress towards risk factor

reduction, heart disease remains the leading cause of
death in the industrialised world. Present treatments do
little to prevent the underlying development of fibrosis
and mainly aim at preventing adverse long-term seque-
lae17. Moreover, there are few drugs presently undergoing
clinical trials for attenuation of cardiac fibrosis.

Fig. 5 The importance of TG2 on TGFβ1-mediated EndMT. a Representative western blot (n= 3) showing p-Smad2/3 activation, VE-cadherin and
FN expression, and FN deposition into the matrix in HUVECs treated with TGFβ1 in the presence or absence of t TG2 inhibitor 1–155. b The V2a
AngioKit co-culture model was used as described in the 'Materials and methods' to study the effects of TGFβ1 on endothelial tubule formation.
Representative images show the inhibitory effects of TGFβ1 on tubule formation at the concentration shown over 12 days. c Representative western
blot (n= 3) showing Smad2/3 activation in mouse TG2+/+ and TG2−/− microvascular ECs following TGFβ1 treatment for 72 h at the concentrations
shown. d Representative western blot (n= 3) showing the effects of thioredoxin treatment on HUVECs showing Smad2/3 activation, expression of
FN, VE-Cadherin and TG2
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The multi-functional protein crosslinking enzyme TG2
has been reported to have a role in lung and kidney
fibrosis, but its function in cardiac fibrosis is still unex-
plored. Compared to lung and kidney, the cell composi-
tion of heart is unique being composed mainly of
cardiomyocytes with respect to volume, fibroblasts,
endothelial cells and a smaller number of pericytes18.
Cardiac fibrosis can manifest itself in two different forms,
reactive fibrosis and replacement fibrosis19. For example,
hypertension and pressure overload in the heart from
clinical aortic stenosis or preclinical administration of
angiotensin II gives rise to reactive fibrosis, which pro-
gresses without significant loss of cardiomyocytes20. In
contrast in acute myocardial infarction (AMI), ischaemia
leads to initial cell death, followed by an inflammatory
reaction with replacement fibrosis in the infarct region
and progressive reactive fibrosis in the remote myo-
cardium21. In both cases, the major sources of myofi-
broblasts are the resident cardiofibroblasts with ECs also
making a contribution4.
In this report, we have explored the promise of TG2 as a

potential therapeutic target in the treatment of cardiac
fibrosis with a highly selective TG2 inhibitor14, using two
different preclinical models representative of the reactive
and replacement fibrosis that is most frequently found in
heart disease. In addition, in order to understand why
TG2 might be a good therapeutic target in cardiac
fibrosis, we explored the role of TG2 in myofibroblast
development using two cell models consisting of cardio-
fibroblasts and ECs4.
In the first preclinical model we used a progressive

reactive model of cardiac fibrosis, where hypertension was
induced by chronic infusion of AngII with one group of
mice receiving the TG2 selective inhibitor 1–155 and the
other group vehicle alone. Following a 14-day delivery of
AngII by an osmotic pump implanted subcutaneously,
collagen deposition was found around the major blood
vessels (perivascular) and in the interstitium (interstitial)
of the mouse hearts, which could be significantly reduced
by around 50% in the mice receiving the TG2 inhibitor
1–155, indicating that the reactive fibrosis induced in this
model has been attenuated.
Importantly, this observation of a reduction in depos-

ited collagen which when crosslinked by TG2 prevents
turnover of the fibrotic collagen matrix mirrors that found
in a recent publication using the transverse aorta con-
striction model (TAC) in TG2 ko mice22. In this TG2 ko
model in the wt control mice increased TG2 expression
was found in cardiomyocytes, interstitial cells and in the
extracellular matrix, but increases in TG2 activity as
defined by an increase in ε(γ-glutamyl) lysine crosslink
was not measured. In a further very recently published
TAC model, using wt mice on a C57BL/6J background
mice were treated with the transglutaminase inhibitor

ERW1041E ((S)-Quinolin-3-ylmethyl 2-((((S)-3-Bromo-4,
5-dihydroisoxazol-5-yl)methyl)carbamoyl)pyrrolidine-1-
carboxylate) administered twice daily by intraperitoneal
injection over 28 days23. In each of these animal models,
whether it be TAC or AngII treated the insult results in
progressive diffuse cardiac fibrosis which is reduced by
TG2 ko or by inhibition of TG2. However, they are dif-
ficult to compare directly since in one, TG2 protein and
activity is totally absent while in the preclinical models it
is very likely that some TG2 activity is still present as is
the TG2 protein, which may be important given the
multi-functional roles of TG2 as demonstrated in the
recent TAC model reported by Shinde et al.23

Notably in our AngII model, TG2 inhibitor 1–155 had
no effect on systolic hypertension or heart rate when
compared to the mice receiving AngII alone, indicating
that TG2 inhibitor 1–155 was acting directly to prevent
cardiac fibrosis in vivo, and not via a secondary change in
blood pressure. In the AngII model, cardiac hypertrophy
was also preserved, an adaptive component of LVH which
is known to be protective in hypertensive settings24.
Interestingly, in the TAC model, administration of the
TG2 inhibitor ERW1041E had a protective effect on sys-
tolic function in male mice but not female mice although
preserved diastolic function was noted in both genders.
The authors also observed an increase in ejection fraction
in sham animals receiving vehicle or ERW1041E, which
they concluded was due to the multiple injection regime
received by these animals23.
Comparison of the two preclinical models is also made

difficult by the method of inhibitor administration, the
selectivity of the inhibitor used and the methods used to
show a reduction in TG2 activity. ERW1041E, unlike
1–155, is not highly selective for TG2 since its inhibition
of TG1 is comparable to that of TG225. Using intraper-
itoneal injection of this inhibitor twice a day can also
cause problems as noted by the authors, unlike adminis-
tration via mini-pump infusion, where PK values of the
inhibitor also allow approximate calculations to be made
on the steady-state concentration of the inhibitor present
in the animal. In addition, in the TAC model, the authors
used biotinylated pentylamine to assess target engage-
ment by measuring in situ TG2 activity but this amine
substrate is not specific for TG2 and measures all in situ
transglutaminase activity. This is particularly important if
the transglutaminase inhibitor used is not highly selective
for TG2.
In our second study on TG2 involvement in cardiac

fibrosis, the mouse model of myocardial infarction was
used to induce replacement fibrosis in the infarct region
and interstitial fibrosis in the remote myocardium. In vivo
MRI was used to match baseline infarct sizes between
groups acutely after infarction and prior to treatment. At
24 h after infarction, one group of mice received mini-
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pump infusion of the TG2 selective inhibitor 1–155 and
the other group vehicle alone. At 20 days, mice treated
with 1–155 had smaller infarct sizes, less ventricular
remodelling and reduced interstitial fibrosis within the
remote myocardium compared with controls. Impor-
tantly, no increased mortality was observed in the 1–155
treated mice, suggesting that treatment with our TG2
inhibitor allows for sufficient collagen deposition to pre-
vent acute cardiac rupture.
In both the AngII and AMI models, treatment with the

selective TG2 inhibitor 1–155 led to a significant reduc-
tion in cardiac fibrosis, indicating that the TGFβ1-induced
pathways leading to myofibroblast formation and collagen
deposition have been significantly attenuated. In the AMI
model, the reduction in fibrosis was paralleled by a sig-
nificant reduction in infarct size and remodelling.
Based on a measured in vivo, PK mouse Clp of >5.4 L/h/

kg for 1–155 and a wide distribution of this cell permeable
inhibitor in the mouse, the steady-state concentration of
inhibitor in both models was calculated as ~0.35 µM.
Given the EC50 for inhibition of fibronectin deposition in
mouse cells is ~0.45 µM for 1–15513, our data demon-
strate the efficacy of 1–155 in blocking fibrosis by TG2
inhibition. Importantly, in both models, target engage-
ment by 1–155 leading to inhibition of TG2 was
demonstrated by reduction in its crosslink ε-(γ-glutamyl)-
lysine that paralleled the reduction in collagen deposition.
To provide a mechanism as to how inhibition of TG2

leads to a reduction of fibrosis in the two preclinical
models, we first asked the question whether the increased
levels of TGFβ1 found in the fibrotic heart which mediate
differentiation of resident cardiofibroblasts into myofi-
broblasts can be inhibited by our selective TG2 inhibitor.
Involvement of TG2 in TGFβ1 signalling is a new role for
TG2 in the fibrotic mechanism since previous reports for
the functional relationship between TG2 and TGFβ1 have
focused on the activation of the matrix-bound latent form
of TGFβ111. Our data clearly indicate that inhibition of
TG2 by its selective inhibitor 1–155 blocks exogenously
added TGFβ1-induced Smad2/3 signalling leading to
reversal of cardiofibroblast to myofibroblast transition.
Hence, TG2 appears essential for TGFβ1 signalling in
myofibroblast formation from cardiofibroblasts. This is in
addition to its role in activating latent matrix-bound
TGFβ1, both of which are key to the pathological role of
TGFβ1 in fibrosis. We also demonstrate that incubation
of cardiofibroblasts with TGFβ1 leads to an increased
TG2 found both at the cell surface and in the ECM, which
is essential for its role in matrix crosslinking and which
could be inhibited by the TG2 inhibitor 1–155. The cell
surface pool of TG2 was associated with the heparan
sulphate proteoglycan syndecans-4, which is required in
the translocation of TG2 into the ECM15. When TGFβ1-
treated cardiofibroblasts were treated with the TG2

inhibitor 1–155, the association of TG2 with syndecan-4
was blocked due to the ability of 1–155 to react with TG2
and fix the enzyme in its open conformation preventing
binding to syndecan-4 limiting translocation into the
matrix, agreeing with our previous report using this
inhibitor in NIH3T3 cells transduced with TG214.
We cannot rule out that the reduced infarct size in the

AMI model may also be due to increased survival of the
cardiomyocytes following TG2 inhibition, although this
seems unlikely given earlier reports indicating that in
TG2−/− mice, loss of TG2 leads to increased cardio-
myocyte cell death. However, as stated earlier it is difficult
to compare a TG2 knockout model with a preclinical
model, where TG2 protein is still present and not all TG2
activity is likely to be inhibited22.
But in keeping with a role for TG2 in cardiac fibrosis

earlier reports do indicate that targeted overexpression of
TG2 in cardiomyocytes in mice leads to interstitial cardiac
fibrosis26. In all the cardiac parameters, we measured in
animals treated with TG2 inhibitor there is no suggestion
from measurement of LV mass, ejection fraction, end
systolic and end diastolic volume and infarct size that
inhibition of TG2 causes increased apoptosis. In fact, our
data suggest that TG2 inhibition leads to preservation of
cardiomyocyte integrity.
EndMT induced by increases in TGFβ during the onset

of fibrosis is reported to be a further important event in the
fibrotic process1 shown in both kidney27 and cardiac
fibrosis28. This process can lead to loss of existing endo-
thelial cells, capillary rarefaction and inhibition of angio-
genesis by the activated ECs in the fibrotic area as we have
recently shown29. This cellular process can be demon-
strated in vitro by addition of TGFβ1 to endothelial cells
during tubule formation (Fig. 5b). Without new blood
vessel growth, remodelling of the fibrotic area would as a
consequence be difficult and prolonged. In addition to its
role in EndMT, TG2 has been recognised to play a role in
TGFβ1-induced EMT in cystic fibrosis30 and during cancer
progression31, while our recent paper confirms its role in
TGFβ1-induced EndMT32. Confirmation of a role for TG2
in canonical TGFβ1 signalling was shown by the significant
reduction of TGFβ1-induced p-Smad signalling in mouse
TG2−/− endothelial cells. These observations explain our
previous findings, where TG2 injection into tumour tissues
blocked angiogenesis in a mouse colon carcinoma3.
Interestingly, addition of exogenous thioredoxin, a

known activator of oxidised extracellular TG2, also led to
EndMT in HUVEC cells. Thioredoxin is normally asso-
ciated with a protective role during chronic inflammatory
conditions33. It is therefore not unreasonable to suggest
that activation of matrix-bound oxidised TG2 leading to
matrix crosslinking is required in the initial wound healing
response forming part of the protective role of thioredoxin
prior to onset of progressive fibrosis in the later stages.
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Once TG2 is active in the ECM either through thior-
edoxin reduction or via increased secretion, its cross-
linking activity will lead to the remodelling of the ECM
proteins, such as collagens. In addition, the involvement
of TG2 in latent TGFβ1 activation, its requirement for
TGFβ1 signalling and the ability of TGFβ1 to induce
TG2-expressing myofibroblasts lead to a vicious positive
feedback cycle, resulting in increased TGFβ1 increased
TG2 and progressive fibrosis (Fig. 6). Our preclinical
studies in two different models of cardiac fibrosis clearly
indicate that this vicious positive feedback cycle can be
blocked by selective inhibition of TG2 leading to a
reduction in collagen deposition and fibrosis.
Our work therefore confirms the role of TG2 in cardiac

fibrosis as demonstrated by its importance in the TGFβ1
induction of cardiac myofibroblasts from resident cardi-
ofibroblasts and the induction of EndMT ultimately
leading to increased matrix deposition and capillary rar-
efaction. We also show TG2’s ability to regulate
TGFβ1 signalling in both endothelial cells and in cardiac
fibroblasts, an observation which we recently demon-
strated in cystic fibrosis bronchial epithelial cells30.
In conclusion, we demonstrate not only the importance

of TG2 in cardiac fibrosis and the profound effect of its
inhibitor 1–155 on attenuating the progression of cardiac
fibrosis in two different models, but also mechanisms of

the TG2-mediated fibrotic process, i.e., driving EndMT in
endothelial cells and cardiofibroblast transition to myo-
fibroblasts via TGFβ1 signalling. Emerging evidence sug-
gests the potential of TG2 as a therapeutic target for
various diseases and early clinical trials are taking place,
e.g., diabetic nephropathy to test the effects of TG2
inhibition as a therapeutic strategy for this disease.
Therefore, the significance of our work indicating the
importance of TG2 as a novel and translational ther-
apeutic target for the prevention of heart failure has a
great potential in both scientific and clinical fields.

Materials and methods
A detailed methodology is presented in the Supple-

mentary Information-Methods.

Reagents and antibodies
The general reagents were purchased from Sigma-

Aldrich (UK), unless stated below. The peptidomimetic
irreversible TG2 selective inhibitor 1–155 was synthesised
at Aston University14. Antibodies used in this study are
listed in Supplementary Information Table 1.

In vitro studies
HUVECs were from Lonza (Germany). Human cardio-

fibroblasts were from PromoCell (Germany). TG2−/− and

Fig. 6 Schematic showing the role of TG2 in cardiac fibrosis and the TG2/TGFβ1 positive feedback mechanism indicating its importance in
the progression of cardiac fibrosis. a How hemodynamic or oxidative stress and hypoxia can lead to an inflammatory response causing increased
amounts of extracellular TGFβ1 leading to increased amounts of TG2 and increased numbers of myofibroblast leading to the deposition of a highly
TG2 crosslinked fibrotic matrix. b The functional relationship between TG2 in the progression of fibrosis. The arrow shows how inactivation of TG2
can block this vicious cycle in fibrosis development
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control TG2+/+ ECs were isolated from 4–6 weeks old B6
TG2 ko or wt mice32. Details of well-established methods
by our group used for in vitro studies, including the assay
of cell viability, the V2a Angio kit angiogenesis co-culture
system biotinylation of cell surface proteins, co-
immunoprecipitation SDS-PAGE and western blotting,
immunofluorescence staining are detailed in the Supple-
mentary Information -Methods.

In vivo studies
Two animal models of cardiac fibrosis were used in our

study. A progressive diffuse model of cardiac fibrosis
where hypertension was induced by chronic infusion of
AngII leading to left ventricular hypertrophy and diffuse
interstitial cardiac fibrosis and an AMI model of focal
cardiac fibrosis induced after permanent ligation of the
proximal left coronary artery. In the AMI model, in vivo
imaging was used to provide serial quantification of car-
diac function prior to and after myocardial infarction and
therapy. Detailed experimental procedures and statistical
analysis undertaken are detailed in the Supplementary
Information-Methods.
For analysis of the ε(γ-glutamyl)lysine crosslink, tissue

samples from both models were digested using a cocktail
of proteolytic enzymes and the crosslink then analysed
using cation exchange amino acid analysis using a lithium
buffer system as previously described14.

Statistical analysis
Unless stated otherwise, all values are presented as the

mean ± SD for at least three independent replicate
experiments (n ≥ 3). Data analyses were performed using
either the Turkey and Dunnet test or the Student’s t test.
A p value of less than 0.05 was considered to indicate
statistical significance when is indicated in the text.
For animal work, statistical analysis of results was

undertaken using the one-way analysis of variance
(ANOVA) using a post test depending on the require-
ment. Data are expressed as the mean ± SE. A p value of
less than 0.05 was considered to indicate statistical
significance.
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