-Supporting information-

Cobalt promoted TiO₂/GO for the photocatalytic degradation of oxytetracycline and

Congo Red

Wan-Kuen Jo^a, Santosh Kumar,^b Mark. A. Isaacs, Adam F. Lee^b and S. Karthikeyan^{a,b*}

^aDepartment of Environmental Engineering, Kyungpook National University, Daegu 702-

701, South Korea.

^b European Bioenergy Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom

Materials and methods

Graphite powder (>20µm), Cobalt nitrate (Co(NO₃)₂.6H₂O)(98%), titanium (IV) isopropoxide (TIP)(97%), anatase titanium dioxide (99.7%), cobalt oxide, oxytetracyline (OCT, >95%), Congo Red (CR), terephthalic acid (98%), sodium sulfate (\geq 99%) and Indium tin oxide (ITO) coated glass slides were purchased from Sigma Aldrich. Table S1 shows the structure, chemical properties, and absorbance maximum (λ_{max}) of oxytetracyline (OTC), Congo Red (CR). Ethanol, sodium hydroxide (NaOH, 99%) and methanol (MeOH, analytical grade) were purchased from Merck Millipore, Germany. Hydrochloric acid (HCl) was purchased from PFP Matsunden Chemicals Ltd., South Korea. 500 W Xenon lamp was purchased from Woosung Electric Co. Ltd., South Korea.

Table S1. Surface	(XPS) and	bulk (XRF) Co	content of	composites.
-------------------	-----------	---------------	------------	-------------

Sample	Co loading / wt%		
	Surface	Bulk	
0.5 wt% Co ₃ O ₄ /TiO ₂	0	2.3	
1 wt% Co ₃ O ₄ /TiO ₂	0.61	6.1	
2% Co ₃ O ₄ /TiO ₂	0.75	10.3	
2 wt% Co ₃ O ₄ /TiO ₂ /GO	0.8	8.5	

Figure S1. Spectral distribution of light.

Figure S2. DRUV absorption spectra of (a) Co₃O₄/TiO₂ and (b) amine functionalized 2 wt% Co₃O₄/TiO₂/GO nanocomposites as a function of Co or GO loading. Reference anatase is shown for comparison.

Figure S3. Adsorption-desorption isotherms of (a) Co₃O₄/TiO₂ and (b) amine functionalized 2 wt% Co₃O₄/TiO₂/GO nanocomposites as a function of Co or GO loading. Reference anatase is shown for comparison.

Figure S4. DRIFT spectra of Co_3O_4/TiO_2 and (b) amine functionalized 2 wt% $Co_3O_4/TiO_2/GO$ nanocomposites.

Figure S5. SEM micrographs (a) TiO₂ reference, (b) Co₃O₄ reference, (c) 2 wt% Co₃O₄/TiO₂, (d) 2 wt% Co₃O₄/TiO₂/GO-1(GO reference inset), (e-j) 2 wt% Co₃O₄/TiO₂/GO-1 (EDX spectra inset).

Figure S6. (a-f) HR-TEM d-space analysis of pure and doped TiO₂ photocatalysts (scale bar 5nm), (a) pure TiO₂, (b) Co₃O₄, (c,d) 2 wt % Co₃O₄/TiO₂, and (e,f) 2 wt% Co₃O₄/TiO₂/GO-1

Figure S7. Photodegradation of CR and OTC under simulated solar and visible irradiation over amine functionalized 2 wt% Co₃O₄/TiO₂/GO nanocomposite determined by UV-Vis.

Figure S8. Recyclability of 2 wt% Co₃O₄/TiO₂/GO-1 for OTC depollution under simulated solar light.

SI-7

Figure S9. (a-e) LC-MS/MS spectra of OTC products over 2 wt% Co₃O₄/TiO₂/GO-1 catalyst under simulated solar irradiation as a function of time.

Figure S10. (a-e) LC-MS/MS spectra of OTC products over 2 wt% Co₃O₄/TiO₂/GO-1 catalyst under simulated solar irradiation as a function of time.

Figure S11. Emission spectra following terephthalic acid trapping by 2 wt% Co_3O_4/TiO_2 and 2 wt% $Co_3O_4/TiO_2/GO-1$ nanocomposites, and TiO_2 and Co_3O_4 references.