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tenance requirements, OEMs require accurate information about the use and wear of their
products. In recent decades, the aerospace industry in particular has become expert in using
real time data for the purpose of product monitoring and maintenance scheduling. Sig-
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stant monitoring of real time product data by the OEMs, however the biggest challenge for
these industries, in particular construction, is the lack of accurate and real time under-
standing of how their products are being used possibly because of the complex supply
chains which exist in construction projects. This research focuses on current dynamic data
acquisition techniques for mobile hydraulic systems, in this case the use of a mobile inline
particle contamination sensor; the aim was to assess suitability to achieve both diagnostic
and prognostic requirements of Condition Based Maintenance. It concludes that hydraulic
oil contamination analysis, namely detection of metallic particulates, offers a reliable way to
measure real time wear of hydraulic components.
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1. Maintenance strategy for mobile products
1.1. Introduction

Traditionally, products are designed and manufactured to meet customers’ demands, but these can change dramatically
over time. However, high value products such as construction equipment, trucks, buses and aeroplanes are expected to have
long lifespans. These products are often bought in quantity as a fleet and are likely to be in service for 10 to 30 years or more.
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Product sales agreements often include a maintenance package and this is perhaps the most common and effective way to
ensure that the products maintain a high reliability level [1]. Selling maintenance or other services together with the
product in a bundle is known as a Product Service System (PSS). A PSS has been defined as a marketable set of products and
services capable of jointly fulfilling a user's needs [2]. This manufacturing approach has been developed as a sustainable
alternative to the conventional concepts of production and consumption for both manufacturers and consumers [3]. PSS
aims to reduce the consumption of raw materials for manufacturing new products [4] by prolonging the life span of existing
products [5].

However, it is very difficult to predict the maintenance that complex products such as construction equipment will
require over many years, particularly when the conditions within which the product is working and the types of work being
done are unknown. As a result maintenance has become an important part of operational budgets for OEMs [6], and
companies seek to address this burden by reducing the complexity and uncertainty which currently exist in maintenance
planning. Greater real time data acquisition and processing should enable them to conduct more accurate assessments of a
product's condition in the field (i.e. before it is returned to the factory for maintenance and repair). Madenas stated that
research into service and maintenance system development attracts little interest from researchers, and furthermore, this
limited research tends to focus on the aerospace sector [7]. However, other industries with high data transactions, and
significant warranty and maintenance costs, such as the automotive and construction industries, should also benefit from
preventative maintenance schemes driven by real time data acquisition and processing. The research reported in this paper
focused on a dynamic data acquisition technique that is typically used on mobile hydraulic systems (i.e. construction and
mining machines). It draws on a 1900-h oil contamination monitoring study of a 22-tonne hydraulic excavator, to identify
ways to improve maintenance regimes in hydraulic systems, namely through effective wear metal contamination detection.

1.2. Maintenance approaches

Maintenance is often perceived as being about fixing products that are no longer able to fulfil their designed func-
tionality; this is also known as run to failure (RTF). British Standards define maintenance as: “The combination of all
technical and administrative actions, including supervision actions, intended to retain an item in, or restore it to, a state in
which it can perform a required function”, [8]. The Maintenance Engineering Society of Australia (MESA) states that
“Maintenance is the engineering decisions and associated actions necessary and sufficient for the optimisation of specified
capabilities”, [9]. In this definition, “the optimisation of specified capabilities” implies that the product's functionality should
be delivered at a high level of performance and reliability.

Tsang stated that the primary objective of maintenance is to preserve system functionality in a cost-effective manner
[10], yet maintenance has been described as an expensive and daunting element of support required throughout the product
lifecycle of any given system [11]. Kelly went even further by suggesting that maintenance should achieve the agreed output
level and operating pattern at a minimum resource cost, and within the constraints of the system's condition and safety
[12]. In summary, maintenance must ensure the required reliability, availability, efficiency, and capability of a physical
product [13].

Condition-based maintenance (CBM) is a philosophy for maintaining engineering assets based on non-intrusive mea-
surement of their condition and maintenance logistics [14]. The R & D manager of Southwest Research Institute (SRI), Susan
Zubik, stated that the aerospace industry considers CBM to be a maintenance philosophy to actively manage the health
condition of assets in order to perform maintenance only when it is needed, and with the least disruption to the equip-
ment's uptime (Zubik 2010). CBM is designed to prevent the onset of a failure [10], hence equipment condition is assessed
by inspection and diagnosis, and maintenance actions are performed only when necessary [15]. The United States Air Force
(USAF) defines CBM as a set of maintenance processes and capabilities derived from real-time assessment of weapon system
conditions obtained from embedded sensors and/or external test and measurement using portable equipment [16]. Diag-
nostic and prognostic are two important components in a CBM programme, where diagnostic deals with fault detection and
prognostic deals with fault and degradation prevention before they occur [17]. Previous studies confirm that machine
components, data acquisition from sensors, data extraction, transformation and analysis are all key aspects of prognostic
maintenance [18].

Rausch (2008) noted several common monitoring methods, such as vibration analysis, process parameter modelling,
tribology, thermography and visual inspection. Sensors are often embedded into critical parts of the system to obtain data
relevant to system health [1]. For example, Rolls Royce uses Engine Health Management (EHM) to offer its “Power by the
Hour” monitoring service. There are about 25 sensors fitted permanently on a Rolls Royce Trent engine, which provide data
(i.e. pressure at various locations of the engine, turbine gas temperature and cooling air temperature) [19]. With such real
time data, OEMs can diagnose the condition of products whilst still operational in the field. Analysis techniques include
neural networks and probabilistic-based autonomous systems for real time failure prognostic predictions [20].

CBM is initiated based on the state of the degrading system, and therefore components are only replaced when the level
of degradation has reached a critical level. As a result, unscheduled down time of the equipment can be minimised. Fur-
thermore, the ability to predict the time to a components’ failure, means that Life Cycle Cost (LCC) may be greatly reduced
because the life of the components and equipment can be utilised fully. OEMs or service providers can therefore also plan
their service schedules more accurately, by knowing exactly what is required for the maintenance [20].
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1.3. Challenges within maintenance

Uncertainties about the current condition of products operating in the field make it extremely difficult for OEMs to plan
maintenance schedules efficiently and cost effectively. This results in greater risks of under-maintaining products, which can
lead to failure and longer, unscheduled down-times, both of which are unacceptable to customers. To reduce such un-
certainties, accurate product data, particularly related to product use, needs to be acquired and processed to determine the
frequency and types of maintenance/service required. Scheidt categorizes data as static and dynamic life cycle data [21].
Static data includes product information created during the product design phase, such as the product specification, Bill of
Materials (BOM) and service manuals. Dynamic data is collected during the product's operational phase, commonly whilst it
is being used by customers (rather than by the OEM), and consists of data such as usage patterns, servicing actions, en-
vironmental working conditions and components’ wear rates. The data is typically stored in an on-board data logger and
processor. OEMs also use questionnaires to capture product performance, patterns of use and customer satisfaction levels.
Some larger OEMs invite their dealers and customers to a week-long conference to share their product experiences [22].
Although a large amount of first-hand feedback on the products’ performance can be gathered in this way, this type of
information becomes out-of-date rapidly, and is can be subject to error, ambiguity and subjectivity.

It is challenging for OEMs to collect accurate and useful real time (dynamic) data from a product. When products are
designed, assumptions are made that they will be used in particular conditions and methods, as stated within the design
specification, however, some customers (users) may misuse the products, thereby reducing operational lifespan. In the
construction equipment industry, products are often subjected to unorthodox harsh usage and inadequate daily main-
tenance care, which can lead to accelerated wear on components, shortening life expectancy. To address this, OEMs may
consider monitoring real time usage of the product, as per the aerospace industry. Monitoring systems enable service
providers to schedule necessary maintenance immediately an abnormal event is detected. Any relevant real time data can
also be extracted and analysed to determine the work and parts that are required [23]. However, data monitoring systems
which involve the generation, processing and management of the product usage data are complex and expensive, and may
even exceed the cost of the components that are being monitored. Bill Sauber, Volvo Construction Equipment North
America's manager of remote technologies, stated that OEMs have a tendency to assume that if more dynamic, real time
operational data are collected, more information will be captured. However, this data will mostly be just noise. Johnathan
Metz, technology application specialist from Caterpillar also suggested that customers are likely to be overwhelmed by the
sheer quantity of data, and its irrelevance to customers’ needs [24]. Hence, if there is no system in place to analyse collected
data in a timely manner, only limited value will be gained [25]. Therefore, to be cost effective and competitive, it is very
important for construction equipment OEMs to design the monitoring systems as part of the overall product design. To do
S0, it is necessary to understand how the product's condition will be affected under different modes of operation, and how
such changes in condition may be detected. This is critical such that monitoring systems, including the location and number
of sensors can be designed to maximise the useful knowledge they can provide through real time data analysis, yet minimise
costs incurred by sensor installation and operation. The remainder of this paper presents an assessment of the suitability of
mobile inline particle contamination sensors for CBM, which was undertaken through a 1900 h oil contamination mon-
itoring study.

2. Monitoring hydraulic systems to predict faults

Construction industry OEMs such as Caterpillar Inc. (CAT), Komatsu Ltd. and ] C Bamford Excavators Ltd. manufacture
heavy equipment for various industries, such as backhoe loaders, wheeled loaders and hydraulic excavators for handling
bulky and heavy materials for various industries. More than 45% of the world's construction machines are hydraulic ex-
cavators [26], because of their high productivity and ease of operation compared to other construction machines [27]. Most
excavators are powered by a combustion engine. Unlike a conventional automobile, the generated power of the engine is
transmitted to drive the hydraulic pumps which provide the flow within the hydraulic system (Fig. 1). Hydraulics is the
science of transmitting force and/or motion through the medium of a confined liquid, and power is transmitted by pushing
on this confined liquid. Pumps are installed to propel the oil around the circuit and, at times, pressurise it.

Valve blocks are often used to control the flow and direction of the oil. These are metal castings in which oil-ways or
galleries are intersected by valve spools, the number of which depends on the number of services to be controlled. Failure of
control valves can cause a loss of production which is many times more expensive than the cost of prevention [28]. The
primary structural components of an excavator, such as the boom, dipper arm, bucket and slew motor are moved by hy-
draulic rams. Hydraulic rams convert fluid power into linear force and motion. The linear force generated by a hydraulic ram
is a product of system pressure and effective area, minus system inefficiencies.

The complexity of off-highway excavators’ hydraulic circuits and the tough working conditions they must endure, means
that the reliability of such systems is always a serious consideration [29]. Analysis of hydraulic system operations indicates
that the reliability of the system and its components will depend on a large number of factors [30], including pressure, flow,
temperature, viscosity and particulate contaminants [31]. Dave Douglass, the director of training and education of Muncie
Power Products, Muncie Inc. claims 70-90% of hydraulic system failures can be attributed to contaminated oil [32]. The
National Research Council of Canada also found that 82% of wear problems are attributable to particle-induced failures such
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Fig. 1. Typical hydraulic system (simplistic).

as abrasion, erosion and fatigue [33]. The National Fluid Power Centre (NFPC) also argues, in one of their oil contamination
management courses, that failure to address and effectively manage contamination will lead to expensive downtime and
short component life [34]. CAT Ltd maintains that the concentration of wear particles in oil is a key indicator of potential
component problems. Hence, oil analysis techniques for condition monitoring offer significant potential benefits to op-
erators [35]. For clarification, Ingalls and Barnes, president of TBR strategies and vice president of reliability service for Des-
Case, defined oil contaminants as dirt, water, air, wear debris and leaked coolant [36].

Hydraulic circuit contaminants affect the performance and life of hydraulic equipment, leading to one of three types of
system failure:

® Degradation: clearance-sized particles interact with both faces, often causing abrasive wear, corrosion and aeration issues [37].

e Intermittent: contamination causes temporary resistance on the valve spool or prevents the poppet valve from moving.
Although particulates are likely to be washed away by repetitive movement of the spool, only complete removal will
ensure that this failure will not happen again [38].

® (Catastrophic: this happens suddenly when a few large particles or a large number of small particles cause complete
seizure of moving parts [39].

There are many different types of contaminants that can lead to system failures, of which moisture is probably the most
common [40]. In general, there are three main sources of contaminants in hydraulic systems:

® Built-in contaminants, also known as primary contamination, are from manufacturing, assembly and testing of hydraulic
components [41].

® Ingressed contamination often occurs due to insufficient sealing of the systems, such as rams [42], or insufficient filtration
on the breather cap of the oil reservoir [39]. Machines used in mining industries tend to have a high level of silicon, dirt,
[43] and water in hydraulic systems. Contamination can also be introduced during maintenance, especially when refilling
hydraulic oil, if environmental contamination is not taken into consideration [38].

® Generated contamination, also known as abrasion, is caused by contact of hydraulic components during use and is not
always avoidable [44].

The International Standard Organization (ISO), standard ISO 4406, “Hydraulic fluid power—Fluids—Method for coding the
level of contamination by solid particles”, introduced a standardised way for determining the amounts of particles of sizes,
4 um, 6 um, and 14 pm per millilitre of fluid [45]. A scale of ISO code numbers is used for each particular size to represent the
quantities of a specific range of particulates, e.g. ISO 20 represents any counts from more than 5000-10,000 particles per
millilitre. ISO 21 represents any counts from more than 10,000-20,000 particles per millilitre. A step ratio of two is generally
used through the scale.

Most fluid analysis results are now shown according to ISO 4406. Hydraulic component manufacturers (such as Bosch
Rexroth and Parker Hannifin) recommend a range of acceptable contamination levels for various types of systems, based on
internal clearance, dirt sensitivity and operating methods of the components [46,47]. Components such as pumps and valve
blocks which operate in high pressurised systems with low clearance tend to require a higher level of cleanliness. Bosch
Rexroth recommends that a level of cleanliness should be achieved based on the system requirements. For example, most
modern hydraulic systems equipped with directional valves and pressure values should maintain a 20/16/13 level, whereas
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Fig. 2. A typical contamination sensors set up on a Hitachi machine.

systems equipped with vane pump, piston pumps and piston engines should maintain a 19/14/11 level due to their smaller
fitting tolerance on the components [48]. Not only are these components critical to the provision of the primary func-
tionality of an excavator, but they are also some of the most expensive components in these products. Therefore, a filtration
system is often incorporated in the hydraulic system to maintain an acceptable level of contamination in the oil.

Particle counters can be used to count the number of particles in a fluid system. These counters can be magnetic, optical
or pressure difference depending on the application [49]. Most advanced automatic particle counters use laser-scattering, in
which a laser projects perpendicularly through an oil passage within the counter onto a photocell detector. Size and quantity
of the particles are measured by the different energy levels recorded by the detector, due to the particles’ sizes in the oil
[50]. Inline particle counters allow real time data to be collected during the usage of the machine; a temporary breach into
the system is not required, so cross-contamination due to external environmental factors is prevented [51]. However, re-
liability is questionable, as accuracy is often affected by aeration due to pressure differences, giving false readings. Despite
this, large excavators (typically over 100,000 kg operating weight, such as the Hitachi EX5500-6), will have integral con-
tamination sensors [52]. Operators are alerted if excessive contamination is present, indicating the need to change the filters
and oil. Fig. 2 shows a typical setup of contamination sensors on a Hitachi hydraulic working machine [53]. That said, OEMs
or service providers would still normally conduct an elemental analysis of an oil sample, before committing to changing the
filter or oil (Fig. 3).

For construction machines, oil samples are typically taken by service technicians during a periodic service. These are
either tested immediately by portable particle counters, providing quick and easy information on the cleanliness of the oil

Fig. 3. Particle sensors and external data logger installations.
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according ISO 4406, or are taken to an oil analysis laboratory for a more comprehensive elemental analysis. Inductively-
coupled Plasma/Optical Emission Spectrometry (ICP/OES) is regarded as one of the most powerful and popular element
analysis tools [54] because it measures 21 elements in the periodic table [55]. ICP/OES produces particles per millilitre (ppm)
values for wear metals, contaminants and oil additives, by element type, at an accuracy level between 0.5% and 5% [56]. ICP/
OES can analyse samples of at least 1 ml [57], so is commonly used in fuel and oil analysis.

Metallic particles, also known as wear debris, are commonly considered to be the most damaging particles for com-
ponents within hydraulic systems. Wear debris varies in shape and size, and is generated by components grinding against
metallic built-in contamination or other generated wear debris. The cause and origin of the wear debris can be identified
from its shape, size and colour. Based on such information and knowledge, a maintenance team can narrow down the
problem to a single component and conduct maintenance or repairs before failure [58].

Hence, a monitoring system to enable CBM for hydraulic excavators, should enable samples to be taken and analysed
from the hydraulic system, but from where should the samples be taken to accurately reflect the system's contamination
level at a given time? British Standard (BS), BS5540: Part 3, “Evaluating particulate contamination of hydraulic fluids”,
specifies the procedures for obtaining bottle samples of hydraulic fluid from fluid power systems and containers for sub-
sequent processing and evaluation by two approved methods; sampling valves and static sources [59]. Bottles should be
clean enough to achieve less than 500 particles above 5 um and volume of the sample should be at least 150 ml to ensure a
large enough sample for elemental analysis. The contamination level in a given sample however is determined by the
location at which the sample was taken; this should be at a point of turbulence, to ensure that contaminants are not settled
and are well-mixed. Furthermore, the type of fluid flow in pipes is defined by the size of the Reynolds number (Re), which is
calculated by:

Re=puvD|u [60].

Where p is the density of the fluid, v is the velocity of the fluid, D is the diameter of the pipe and y is the viscosity of the
fluid.

If bottle samples are taken, a permanent valve type sampling point should be installed at a location at which filters or
external pumping systems will not affect sample consistency. Before taking a sample at least twice the volume of the
sampling line should be bled off. Finally, during sampling the flow rate should not be disturbed, as this may release trapped
contamination [61]. Finning International Inc. the world's largest CAT Ltd dealer, like many other OEM dealers, further
recommends that the system should be running for at least 15 min to ensure most oil is flushed through, and that the
temperature is increased to the operating norm [62]. Aeration is no longer a concern with this type of sampling as samples
are tested via ICP/OES, which greatly reduces the chances of inaccurate results due to aeration in the samples. However, the
chances of cross-contamination may still exist which could lead to inaccurate results.

In closing this section, it is important to emphasise that hydraulic contamination can never be wholly eliminated.
However, it can be controlled by taking precautions and installing filters of the correct grade. Although physical oil sampling
has been adopted by most OEMs as a routine procedure during service intervals, test results are often used reactively. In
addition, the interval periods are often too lengthy to capture the critical moment just before failure [16]. Furthermore, Lunt
claims that offline laboratory oil analysis is becoming less acceptable, as maintenance strategies are developing more to-
wards real-time decision making [63]. Hence, there is an arguably a need for OEMs to improve CBM programmes by ad-
dressing these concerns.

3. Research method

The previous section identified that testing for the presence of hydraulic oil contamination within a hydraulic oil system
can be used to determine the health status of its components and oil. As a result, a range of particle counters and oil
sampling procedures have been developed by the industry to monitor hydraulic systems for oil contamination. Yet due to
the harsh working environments, sophisticated particle sensors are used rarely in mobile applications such as excavators,
and data generated by such sensors are scrutinised constantly by machine OEMs to determine whether accuracy and in-
tegrity is being affected by aeration. As a result, such sensor data tends not to be used to predict component faults and is
therefore under-utilised in helping to extend the lifetime of an excavator and its components. Despite this, little work has
been done to clarify causes and levels of inaccuracy, reduce uncertainties and increase understanding of monitoring in-
formation from hydraulic systems.

Therefore, this research focuses on current dynamic data acquisition techniques for mobile hydraulic systems. The main
aim was to assess suitability of a mobile inline particle contamination sensor, to achieve both diagnostic and prognostic
requirements of CBM.

To achieve the main aim of the research, three hypotheses were developed (as shown below), and tested through an
experiment focusing on a mobile oil contamination particle sensor used within a typical mobile application working en-
vironment. All data collected were cross-validated by ICP/OES results, to check accuracy and reliability.
Ho: There is a difference between the levels and type of contamination generated by the two types of pumps in the machine.
H;: The contamination level at the inlet to the main return filter is higher than at the outlet from the main pump.
H,: Online particle sensors and ICP/OES have matching ISO code readings on the oil samples taken at a given time.

The experimental design consisted of three main tasks, to:
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1. Conduct an empirical investigation on hydraulic contamination on a mobile application hydraulic excavator.

2. Understand the relevant technology and techniques in the data acquisition requirement for the generation and capture of
dynamic data, which is the hydraulic oil contamination behavioural pattern.

3. Evaluate the suitability of oil contamination data for construction OEMs for diagnostic and prognostic.

3.1. Experimental design

A 22 t excavator was selected and scheduled to perform a 2000 h simulated field endurance test. During the test, the

machine underwent an hourly programme of mining and quarry duties, which included five different duties of excavating,

tracking and lorry loading in specific ratios. Operators were instructed to record any abnormal events (e.g. needing to refill

fluids or seeing leaks) in their end of shift reports.

The machine was subjected to all standard service requirements set out by the excavator's OEM, and particle counters
and an oil sampling system were installed. These were specifically designed for this research to measure contamination
levels within the hydraulic system (see following sections for further details). The machine was subject to a routine service
schedule, i.e. the main return filter was changed after every 500 machine engine hours, and the oil was changed at every
1000 machine engine hours. All return filters were collected and sent to the laboratory for filter debris and element analysis
(to provide data on the quantities, sizes and types of trapped particulates).

3.1.1. 0Oil sampling

Particle counters were installed at the outlet from the main pump, the inlet to the main tank return filter and at the
outlet from the tank (see Fig. 4), in accordance with the literature. More than ten types of particle counters were reviewed to
determine the most suitable for the machine's working environment. The final choice was based on accuracy, flow rate and
pressure differential requirements and size. There were two types of pumps on the machine; and, due to the dynamic
pressure, flow condition and technological limitations, the particle counters were installed at the outlets of the primary
pump and the secondary pump (referred to hereafter as the main pump and pilot pump). Fig. 4 is a simplified hydraulic
schematic diagram to show where the sensors and oil sampling points were installed.

To improve reliability, two additional sampling points were established at the outlet of the main pump and at the inlet
main return filter in the hydraulic tank. An electronic oil sampling system was designed and installed to allow oil samples to
be taken from areas that were not suitable for particle counters. These samples were taken to a laboratory for further
analysis by ICP/OES.

Pairs of oil samples were taken after the end of each shift. The sampling system was designed to be simple, minimising
risks to the operators and potential cross-contamination of the sample.

3.1.2. Data collection
Four primary sources were used to collect data. Each source provided data to test the hypothesis and also to validate the
reliability of other data from each individual source.
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Fig. 4. Simplified diagram of the hydraulic system for a 22-tonne excavator.
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3.1.2.1. Source A - particle counter — sensors. The particle counters were set to take readings at one minute intervals. This was
to ensure that no data was missed, although, when analysing the data, averages can be taken using various period lengths to
expose hidden behaviours and reduce ‘noise’. Pressure reducing and flow control modules were also used to ensure particle
counters worked efficiently. An external data logger was installed onto the machine to record data generated by the particle
counters. This data was extracted at the same time each week, to act as a useful checking point, to see if any repairs were
necessary. Sensors were calibrated by the suppliers in accordance to ISO 11171:2010 Hydraulic fluid power: Calibration of
automatic particle counters for liquids, before being installed onto the machines. Further verification was conducted in
accordance to ISO 4407:2002 “Hydraulic fluid power: Fluid contamination- Determination of particulate contamination by
the counting method using an optical microscope”, to match with readings from the sensors when they were initially
installed.
The data collected from this source were:

1) Particle counts from both main and pilot pumps of <4 um, <6 um and < 14 pm in ISO codes.
2) The temperature and saturation levels of the hydraulic oil.
3) Timestamp of each data point.

3.1.2.2. Source B - ICP/OES - laboratory analysis. All oil samples were taken by operators who were briefed on the oil
sampling standard operational procedure (SOP), which is based on BS 5540-3:1978, “Specification for evaluating particulate
contamination of hydraulic fluids - methods of bottling fluid samples” [59]. The results were split into three categories of
“oil additives”, “contamination” and “wear metals”. A copy of the SOP was fixed behind the bay door where the sampling
took place and a copy was kept in the office on site. A clear means of contact was established with the site manager, in case
any queries were raised.

The data collected from this source were:

1) Particle counts in the oil of 24 periodic elements from the main pump and tank return in values of particles per millilitre
(ppm) also known as mg/kg.

2) Particle counts of <4 um, <6 pm and < 14 pm in ISO codes.

3) Exact counts of <4 pum, <5um, <6um, <7 pm, <10 pm, <14 um, <20 pm and < 30 pm particles.

4) Timestamp of each data point and the machine hour at the time of the reading.

3.1.2.3. Source C - filter debris analysis. Each main return filter was sent for filter debris analysis to allow the quantity of the
trapped particulates to be measured and determine the cause based on their shapes. Reports were generated containing
analysis and evaluation of the debris found in the filter. A standard elemental analysis was also included, providing the
elements’ counts in ppm.

The data collected from this source were:

1) Particle counts of the 20 periodic elements in the filter debris and oil mix trapped inside the filter.
2) Microscopic images of debris.
3) Analysis report based on the data.

3.1.2.4. Source D - telemetric system. The on-board telemetric system broadcast most data generated by local machine
sensors. The data described the machine location, engine on/off status, machine error codes etc. Source D provided primary
background information about the machine's activities, which was used to analyse the reasons behind the data identified by
the other three sources.

The data collected of particular interest from this source were:

1) Timestamp of machine activities such as on/off status of engine, duties etc.
2) Fuel consumption at a given time.

3.1.2.5. Source E - operators’ score sheets. At the end of each shift, test operators were required to quantitatively evaluate the
machine's performance in their shift. Information gathered included maintenance activities and observations such as re-
filling hydraulic oil, fuel, oil leaks and any other abnormal events. These records were treated as secondary background
information, to provide validation of actual machine activities when combined with telemetry source data. Source E may not
be wholly reliable as there could be differences in practices between individual operators.

The data collected from this source are:

1) Unscheduled events such as oil leaks, refills, breakdowns etc.
2) Machine hours in the shift period.

3.1.3. Method of analysing data
Data collected from particle sensors and physical oil samples were organised in Microsoft Excel to enable a quick initial
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Fig. 5. Data analysis pathway.

assessment of sources A and B (See Section 3.1.2). These assessments looked for trends in the data resulting from various
operating behaviours and duties, thereby known as behavioural patterns, i.e. the rate of change between different particle
sizes and relationships between different elements. Sources D and E provide coverage of other possible variables, i.e. leaks,
oil changes, type of work etc., that may affect a particular pattern. Specialist programmes (Matlab and Statistical Package for
the Social Science, more commonly known as SPSS) were used to reorganise the data to filter out “noise” as well as filling in
missing data by interpolation, and statistically analyse the data to identify correlations and differences in means and var-
iances. In summary, these programs provided a good background platform to refine the data set for further visual and
mathematical analysis. Fig. 5 shows a simplified flow chart explaining the analysis method.

3.2. Data analysis

3.2.1. Duty breaks down

Although the experiment was conducted under 24/7 technical supervision, unexpected break downs and repair work
were unavoidable during the experiment. Sources C and D were used to calculate the actual duty ratios compared to the
specific ratios mentioned in Section 3.1. The conclusion is that all duties were performed in the exact ratios planned.

3.2.2. Contamination by duty

Table 1 shows the average contamination levels over the total hours for the five duties (A-E) from Source A. There is no
significant difference in the contamination levels between the duties. All differences shown in the table are within the +
ISO code tolerance of the sensors’ accuracy. Therefore, based on Source A, different duties do not have any effect on the
contamination levels at the hydraulic pumps.

The differences in the contamination levels identified at the main and pivot pumps are not significant. However, the
quantities of particulates that are equal to or larger than 4 pm per millilitre do have a large gap compared to the quantities of
6 pm and 14 pm.

The ISO values from Source B were determined in a laboratory environment with higher accuracy than the sensors used
in source A. Table 2 shows the average contamination level by duty for the same period as in Table 1. Results again show
insignificant differences in contamination levels for the different duties. Surprisingly, the positive difference in oil con-
tamination levels between the return line and the pilot pump was not as significant as expected.

3.2.3. Contamination by filter periods

In previous sections, only the average contamination levels of various locations were shown, which may mask significant
fluctuations in individual contamination levels. As mentioned in Section 3.1, the main return filter was changed every 500 h
to ensure filtration efficiency was kept at the highest possible level. Therefore, this section focuses on the behavioural
pattern of contamination levels between filter periods.

The locations in which the sensors monitor the contamination level can be used as an indicator of the minimum con-
tamination level the hydraulic system was experiencing at a given time. Twenty graphs were plotted, with machine hours

Table 1
Contamination by Duties (source A).
Sensors — main pump Sensors - pilot pump
1SO4 ISO6 1SO14 1SO4 ISO6 1SO14
Duty A 15.8 13.6 9.0 16.9 134 8.7
Duty B 16.2 13.9 9.0 16.8 135 8.7
Duty C 16.0 13.7 9.0 16.8 13.5 8.7
Duty D 16.1 13.8 9.1 16.8 135 8.8
Duty E 16.1 13.9 9.1 16.9 13.6 8.8

Total 16.0 138 9.0 16.8 13.5 8.7
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Table 2
Contamination by Duties Source B.

Laboratory - pilot pump Laboratory - tank return

1SO4 ISO6 1S014 1S04 ISO6 1SO14
Duty A 18.5 15.8 11.2 18.6 16.0 11.2
Duty B 18.2 15.6 11.0 18.8 16.0 1.3
Duty C 18.3 15.6 11.5 18.9 16.4 12.0
Duty D 17.9 15.3 10.9 19.0 16.6 121
Duty E 18.5 15.9 114 18.6 15.9 11.2
Total 18.3 15.7 1.2 18.7 16.1 14

against ppm values from Source A. Five categories of graphs were created in accordance with the individual and combined
periods of the four main returned filters used in the simulated field endurance test. Four individual graphs of 4 um, 6 pm,
14 um and other sources were found in each category. Temperature and saturation levels of the hydraulic oil were linked to
chemical oil contamination, and this results in thermal and oxidative degradation of the oil [64]. As a result, these factors
were included in all graphs.

Within the first 500 h, the average decreasing rates of 4 um, 6 pm and 14 pm particulates are shown in Table 3. The main
pump always achieved a higher rate in comparison to the pilot pump by an average of 0.005 ppm/h. In between the second
and third filter periods, the 14 um particulates dropped down to the 11 ISO code level and remained so throughout the two
filter periods. A small increase in ISO level can be seen from both pumps of both sizes, until the third period when the 4 um
pilot pump particulates gained a higher ISO code than the main pump, but matched the same increase rate of 0.0071 ISO
code/h, and remained so throughout the rest of the experiment.

By 180 h of the machine running, 4 um, 6 um and 14 um particulates from both pumps were decreasing at the same rate.
On average, the main and pilot pumps have the same 4 um contamination level. There is clear evidence to suggest the main
pump suffers higher contamination levels than the pilot at 6 um and 14 um, by at least 1 ISO code. However, for the next
820 h the 4 um and 6 um contamination levels from both pumps stabilised at about ISO levels of 18 and 15 respectively. The
14 pm contamination level dropped down to the 8 ISO level, but increased up to the 9 ISO level at 1000 h.

A full hydraulic system oil change was conducted at 1000 h and thus a drop of contamination can been seen in both
pumps, however the magnitude varied depending on the size of the particulates. At the main pump, 24% and 28% drops in
ISO code levels can be found at 4 um and 6 pm respectively whilst 14 um dropped back to ISO 8 level. At the pilot pump,
6 pm particulates dropped by 23% and 14 um remained at the ISO 8 level. However 4 um readings only dropped by 12%,
which is half of the observed value of the main pump. Table 4 shows the average increasing rate of 4 ym, 6 pm and 14 um
contaminations in both the main and pilot pumps. The rate of difference between the pumps is much less than the data
shown in Table 3. However at the 4 pm particulates level the pilot pump was on average 3 ISO codes higher than the main
pump, whereas at 6 um the main pump has a greater ISO code than the pilot pump, and the 14 pm contamination remained
the same at both the two pumps. By the end of 1900 h the 4 um contamination of the pilot pump was over 2 ISO codes
dirtier than the main pump, whereas 6 um and 14 um particulates were 2 ISO codes cleaner in both pumps.

Fig. 6 shows the correlation of three different levels of contamination at 4 pm, 6 um and 14 pm captured by particle
sensors situated at the outlets of the main and pilot pumps. In general, despite there being two types of pumps the con-
tamination levels have a very strong correlation to each other at 4 ym, 6 pm and 14 pm. Contamination at the 14 pm level
has a maximum of 2 ISO codes difference between the main and pilot pumps. The large sizes of these particles suggest that
these are likely to be built-in contaminants, as the system is cleaning itself within its first 100 h of oil circulation. Despite the
differences in contamination levels in the last 500 h of the endurance programme, strong correlations can still be seen
clearly.

3.2.3.1. Additives. The ppm values of the 24 elements from Source B show more turbulent behaviour than the ISO codes. A
two-tailed Spearman correlation test was conducted on the additives from two locations, due to the data's non parametric
behaviour (Pearson product-moment correlation was not suitable for the data collection in this experiment, as the data does
not behave in a linear manner). Most additives have a 99% confidence level of a strong correlation to each other, with less
than 1% chance that these correlations only happened by chance. These additives were added into the oil to increase its anti-
wear and frictionless properties. Events obtained from Source D, such as the main return filter change, and oil changes

Table 3
Rate of change in contamination level (1st filter period).

ISO code/h 4 pm 6 pm 14 pm
Main Pump —0.0059 —0.0077 —0.0105
Pilot Pump —0.0004 —0.0028 —0.0058

Differences 0.0055 0.0049 0.0046
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Table 4
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Rate of change in contamination level (4th filter period).

ISO code/h 4 pm 6 pm 14 pm
Main Pump 0.009 0.0067 0.0008
Pilot Pump 0.0073 0.0065 0.0007
Differences 0.0017 0.0002 0.0001
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Fig. 6. The correlation of oil contamination (sensors - main and pilot pumps).

suggest minimal, but detectable, influence at the measured ppm levels. Despite a strong correlation, the sulphur level in the
hydraulic oil is on average 50 ppm higher at the main pump than at the pilot pump, which suggests that the sulphur has
been added to the oil internally between the main return filter and the main pump.

3.2.3.2. Contamination. There is a strong correlation (99% confidence level) between Sodium (Na), Potassium (K), Silicon (Si)
and Lithium (Li) identified through the four periods. The existence of both Na and K potentially meant that the system had
been suffering coolant leaks into the hydraulic system.

Li is often found in grease, which is used on the pivot points of the structure of the machine. Although it does not
correspond with any known events specified in Source D, the correlation with K could suggest that grease breached the
hydraulic system with the coolant. However, the recorded values of both K and Li are minimal suggesting that coolant or
grease leaks are unlikely. The hydraulic system, coolant system and the grease lines are completely separate systems, and
are located as separate components, therefore these particles are likely to have been introduced into the hydraulic system
from the tank when the hydraulic system was refilled.

3.2.3.3. Dirt ingestion. The combination of Si and Aluminium (Al) suggests that dirt was present within the system. These
particles are usually introduced when the hydraulic system is breached, such as refilling hydraulic oil, disconnection of
hydraulic hoses, and connection of hydraulic attachments. After 1900 h, only low levels of Si and Al were found, therefore
dirt contamination must have been controlled by the filtration unit. However between 1500 h and 1900 h, the ppm values of
Si started to increase from 2 ppm to 3.5 ppm, unlike previous periods where Si values were consistent at 2 ppm.

3.2.3.4. Wear Metal. Strong correlations (99% confidence level) can be found between Copper (Cu), Iron (Fe) and Manganese
(Mn). All wear metals except Cu and Fe were maintained below 3 ppm level throughout the period. Fe was increasing at an
average rate of 0.0185 ppmy/h, but remained below 3 ppm after the first filter change. Cu had a similar increase rate as Fe up
to the first filter change, as the rate of increase dropped down to an average of 0.0132 ppm/h. A dramatic drop in ppm values
can be observed after the third and fourth filter changes, but the ppm increase rate remained the same. However after the
fourth filter change the rate increased to 0.0329 ppm/h. The consistent increase rate in Cu ppm values between filter change
periods suggests a constant wear of bushings in the pumps and other hydraulic components (such as the slew motor). As
shown in Fig. 7, the ppm values peaked at 20 ppm before the filter change period. The increase in the wear rate as well as
ineffective filtration of Cu, can eventually lead to system failure.

Fig. 8 shows the behaviour patterns between different particulate sizes throughout the 1900 h. At the end of the ex-
periment, particulates that are less than 10 pm reached about a 70% chance of increasing at the tank return compared to a
30% chance of failing at the pump. Yet the probability for particulates that are equal and larger than 10 pm decreased after
the first filter period. This suggests that the 10 um rated main return filter is working effectively in filtering particulate that
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Fig. 7. The effects of filter change on contamination of wear metals.

are larger than 10 pm, and any built-in contaminants larger than 10 um are usually caught in the first 500 h of machine
usage in any case.

3.2.4. Difference between ISO 4406 and ICP/OES

Figs. 6 and 9 show the results based on the ISO 4406 standard collected from Sources A and B of both pumps. Results
from both sources exhibit a steady increase of 4 um, 6 pm and 14 pm particulates at the beginning of the filter 1 period and
at the end of the filter 4 period, and a decrease at the end of the filter 1 period. Source B consistently gives a cleaner reading
than Source A throughout the study. As mentioned in Section 2, ISO 4406 data limits at a certain quantity range of parti-
culates. Hence comparing the actual values of ppm shown in Fig. 10, within the filter 4 period, clearly shows that only the
4 um particulates were increasing steadily.

3.2.5. Filter analysis

Large amounts of particulates with varied shapes were found in the first filter. In particular large quantities of 100 pm
particulates shaped in thin straight stripes were found. Based on the size and shape of the particulates, the majority would
have been generated through erosion, where material is removed due to particle impacts. Particulates would have been
forced through tight clearances, causing high pressure and stress on the contact surfaces and creating severe sliding wear
particles. The grain on the sliding wear particle shown in Fig. 11 indicates the direction of the sliding motion. Large amounts
of particulates over 100 pm were also found only in the filter used in the first 500 h. These particulates, as shown in Figs. 11
and 12, are built-in contaminants described in Section 3. Moderately high levels of Fe and Cu are found in the sample mix
extracted from the filter. Combining this information with data from Source A collected in the first 500 h, leads to the
conclusion that these Fe particulates were probably generated from the pump housing clearance and valve spool clearance.

Particulates found in the second, third and fourth filters were different in shape and quantity to those found in the first
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Fig. 8. Comparing tank return and pilot pump (ICP/OES).
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Contamination Behaviour (Main and Pilot Pumps)- Laboratory 1SO4406
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Fig. 10. Contamination behaviour by ICP/OES (Laboratory).

Fig. 11. 1st Filter microscopic image A.
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Fig. 12. 1st Filter microscopic image B.

filter. These particulates, as shown in Figs. 13 and 14, tended to be flat with irregular shapes, which is an indication of fatigue
wear, and most commonly occurs by normal and tangential force through contacting asperities [58]. As the machine worked
towards the 1900 h, a larger quantity of small particles, can be observed in the filtered elements from Source C as well as
from the particle sensors of Source A and ICP/OES of Source B. Elementary analysis from Source D further suggests that these
particulates are largely Cu, Fe and Sn. Based on knowledge of the materials used to manufacture hydraulic components and
understanding gained from the discussions above, a conclusion can be reached that the machine was suffering bushing wear
at the main pump and/or the slew motor.

3.2.6. Overall contamination behaviour

Figs. 6,9 and 10 are accumulative graphs of ISO codes values and the amounts of particles per millilitre from the samples
physically extracted from the pilot pump for ICP/OES analysis. These figures exhibit similar contamination behavioural
patterns, which show the various increased rates of contamination level, however the amount of information available is
insufficient to give warnings of premature faults or be able to suggest the source of the fault. Hence, if a sudden spike was
observed, it will almost certainly be too late to prevent the machine breaking down. In particular with ISO 4406 reporting
methods that decrease the resolution of the data, the chances of supporting CBM are low.

The sudden spike in ppm count of 4 pm particles at the beginning of the experiment was the result of a build-up of
contamination through the system before being cleaned by the filter. Some of these particles will have been broken into
smaller sizes when they were forced through narrow clearances such as valve blocks and pumps. This theory is supported by
the increased rate of 4 um particles identified between the first and second filter periods. After the first filter was changed,
the increased rate of 4 um particulates stabilized until reaching the fourth filter period.

Fig. 13. 4th Filter microscopic image A.
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Fig. 14. 4th Filter microscopic image B.

4. Experimental results

The experiment carried out in Section 4.1 aimed to identify the hydraulic oil contamination level behaviour on a mobile
construction machine during the use phase of its lifecycle. The results discussed in Section 4.2 show that the increase and
decrease of certain elements such as Cu and iron are affected by filter changes. The correlation between Tin (Sn) and Cu that
was only discovered by the use of SPSS suggests that bronze (which is used as a bushing material in the hydraulic pump)
was wearing out more quickly as the machine ran towards 1900 h. An analysis was then undertaken to answer the hy-
potheses stated in Section 3, as outlined below.

4.1. Hy. There is a difference between the levels and types of contamination generated by the two types of pumps in the machine

According to Source A, the overall average contamination levels between the main and pilot pumps can be deemed to be
the same. However further analysis in Section 3.2.3 identified fluctuations in contamination levels between various filter
periods. Events such as oil leaks or refill of oil do not produce a large effect compared to the full hydraulic system oil change,
in which the cleanliness level changes sharply on both pumps.

Spearman'’s rank-order correlation was used to determine the relationship between the contamination levels of various
micron sizes and pumps. Only the 4 um main pump particulates do not have any correlation with temperature. However,
there were strong, positive statistically significant correlations found between the 4 pm, 6 pum and 14 pm particulates in both
pumps. Furthermore, the saturate level in the oil also shows a strong positive correlation between the 4 um, 6 pm and 14 pm
particulates of both pumps, in particular for the main pump. This is understandable because if saturation level increases the
amount of water particles in the oil will also increase. A significant negative correlation can be found between temperature
and the pumps. This can be explained by the relationship between saturation level and oil temperature. The strong negative
correlation between these variables means, as temperature increases, fewer water particles will exist in the oil because they
evaporate. Hence there will be a lower contamination level in the oil and therefore a negative correlation.

As a result, Hy was accepted.

4.2. H;: The contamination level at the inlet to the main return filter is higher than at the outlet from the main pump

According to Source B, there is no obvious variation in contamination level in the hydraulic oil between the pump and
the tank return area. Levene's test for equality of variance was used to determine if the hydraulic oil contamination level
between tank return and pump has the same or different amounts of variability in particulates, by size and type. Significant
variance equality can be found in Pb, Molybdenum (Mo), Cadmium (Cd) and particulates that are larger or equal to 7 um,
10 um and 20 pm. Based on the two-tailed test, significant mean differences between particulates in samples from the tank
return oil and the pump oil can be found between 4 um, 6 pum, Pb, Mo and Cd.

Despite the low significant differences found by the statistical analysis, the results from Section 3.2.3.4 do show higher,
more obvious differences as the machine worked towards 1900 h. Therefore, H; was accepted.

4.3. Hy: Online particle sensors and ICP/OES have matching ISO code readings on the oil samples taken at a given time
The cleanliness level of hydraulic oil (ISO 4406) at the outlet of the pilot pump was sampled and tested by both the

particle sensor and ICP/OES. The result shows an average of two ISO codes differences in 4 um and 6 pm particles between
the two testing methods, and the sensor's results are cleaner than the ICP/OES results. The ICP/OES results were very stable
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at 18/16/12 throughout the experimental period, with only on average 0.4 code of difference among the 3 um sizes. By
comparison, the sensors’ results exhibit a 2-3 codes difference for 4 um and 6 pm particulates and 1 code difference for
14 um particulates. In particular during the period of hydraulic oil low saturation level, the average differences between the
cleanest and dirtiest samples have increased to 3 ISO codes, making this the cleanest period according to the sensor. Yet the
machine would have been working constantly, maximising the expected output of the machine as well as the hydraulic
system. Subsequently oil would have been pumped and channelled much more vigorously, leading to the system tem-
perature increasing and then stabilising at about 70 °C. At this temperature, moisture content will decrease due to eva-
poration and hence saturation level will be low during a machine's heavy duty period. During this heavy duty, the pump will
be forced to suck hydraulic oil from the tank as quickly as possible to supply the required pressure and flow to the rams.
Under such circumstances, aeration is a common problem, because a cavity can be created if the oil does not flow fast
enough to replace the oil that has been sucked from the tank [65]. If aeration goes through the particle sensor, the mea-
surements will not be accurate [50].

ICP/OES samples were taken offline, where a temporary breach into the system occurred. Hence cross contamination
when obtaining the samples may be the reason for the difference. However, seasonal factors such as temperature (dust) and
humidity (rain) will also have a direct effect on the cross contamination of the samples. Yet the consistency of the gap size
does not support the possibility of occurrence of cross contamination, hence the difference in the sensors and ICP/OES
results are more likely caused by the sampling methods. Particle sensors in Source A have straight hoses connected to the
inlet and the outlet, creating a laminar flow at the area. The inlet of the sampling system in Source B is connected to a 90°
elbow adaptor, creating a turbulent flow. Samples from turbulent flow may have a higher ppm value due to the fluid being
stirred much more vigorously than in laminar flow samples.

Another possible reason is the technology and the design of the particle sensors (optical-based), emitting a single laser
beam perpendicularly through a narrow passage where oil travels through. This sensor measures and counts the size of
particulates by measuring the intensity of the laser that successfully reaches the other side of the passage. The passage has
to be a certain size to ensure that it is free of blockage no matter how dirty the oil becomes, hence two or more particulates
may have been seen as one. Furthermore, aeration and water in the oil can scatter and block the beam resulting in a false,
cleaner reading.

After combining the evidence from these results, H, was rejected.

5. Conclusions and further work

Uncertainties about the condition of products operating in the field make it extremely difficult for OEMs to plan
maintenance schedules efficiently and cost effectively. This results in a greater risk that products are under-maintained,
which can lead to failure. Real-time oil contamination data provides vital information that can help service technicians to
follow and conduct suitable service procedures to prolong a product's service life, and prevent downtime; this principle is at
the heart of CBM. The majority of oil analysis facilities and contamination monitoring equipment available on the market
measure and represent the contamination level in accordance with ISO standards such as ISO4406, and thus provide a lower
resolution of the actual oil contamination pattern. Yet the experiment presented in this paper has shown that the ICP/OES
method provides a higher resolution, and therefore offers a more accurate measurement of fluctuation and origin of par-
ticulates within the hydraulic system. More advanced oil analysis methods such as ICP/OES are available and offer the data
that inline particle counters fail to provide. These methods are capable of measuring the size and quantity of specific
metallic particulates. This study shows that metallic particulates such as Cu and Fe should be the main focus, as these wear
metals represent the majority of the main materials used in current hydraulic components (such as pumps and valve
blocks). Such an understanding will enable more targeted diagnostic work and service planning for a machine, especially if
it is working in a remote area. Clearly, access to this type of information has the potential to save OEMs a substantial amount
of time and money.

An important outcome from this research is that dynamic data gathered by inline particle sensors is not sufficiently
detailed to underpin a successful CBM strategy for mobile applications in the construction industry. However, the major and
original contributions arising from this research are, that;

1. The assessment of current methods in measuring hydraulic oil contamination expose both technological methods, and at
the same time raises questions about the benefits of current maintenance routine, e.g. the effectiveness of oil change in
removing contamination from the system.

2. The main focus in contamination detection should be metallic particulates such as Cu and Fe, as they are considered as
wear metal and represent the majority of the main materials used in current hydraulic components such as pumps and
valve blocks. However little research can be found in both academia and industry to allow metallic particulates to be
detected at the required resolution level.

Although in-line particle counters do offer OEMs a real-time capability for monitoring hydraulic systems, the limitations
in contamination measurement and their inability to measure metallic particulates, make the tangible implementation costs
higher than the (currently) intangible gains. OEMs need a reliable, accurate oil contamination sensor that monitors
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(metallic) wear particulates. It is a key recommendation from this study that the research community undertakes further,
collaborative research with the OEM industry to design and test in-line particle sensors that are truly suitable for mobile
applications within the construction industry.
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