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Abstract

Background: Inflammatory effector T cells trigger inflammation despite increased numbers of Treg cells in the
synovial joint of patients suffering from juvenile idiopathic arthritis (JIA). The cAMP response element (CREM)a is
known to play a major role in regulation of T cells in SLE, colitis, and EAE. However, its role in regulation of effector
T cells within the inflammatory joint is unknown.

Methods: CREM expression was analyzed in synovial fluid cells from oligoarticular JIA patients by flow cytometry.
Peripheral blood mononuclear cells were incubated with synovial fluid and analyzed in the presence and absence
of CREM using siRNA experiments for T cell phenotypes. To validate the role of CREM in vivo, ovalbumin-induced T
cell dependent arthritis experiments were performed.

Results: CREM is highly expressed in synovial fluid T cells and its expression can be induced by treating healthy control

ameliorated in mice with adoptively transferred CREM ™~

phenotype of T cells in JIA.
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PBMCs with synovial fluid. Specifically, CREM is more abundant in CD161" subsets, than CD161 subsets, of T cells and
contributes to cytokine expression by these cells. Finally, development of ovalbumin-induced experimental arthritis is
T cells.

Conclusion: In conclusion, our study reveals that beyond its role in SLE T cells CREM also drives an inflammatory

Background

Juvenile idiopathic arthritis (JIA) is the most common
inflammatory rheumatic disease in children and is an
autoimmune disease of unknown origin. Apart from
cells of the innate immune system like neutrophils and
monocytes, which trigger inflammation, T cells play a
dominant role in the inflammatory reaction of the joint.
Recent investigations indicate an accumulation of highly
inflammatory CD4"CD161" cells in the joints [1-3]. Al-
though the functional relevance of CD161 ligation on T
cell function is less clear, CD161 expression is a useful
indicator of inflammatory T cells. They belong to either
Thl, Thl7 or Th1/Thl7, so called non-classical Thl,
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cells and their proportions in synovial fluid (SF) correl-
ate positively with parameters of disease activity [1, 4, 5].
The inflammatory potential of these effector T cells
within the joint is controlled by regulatory T cells
(Tregs). The control, however, is inefficient despite the
high presence of Tregs in arthritic joints. Tregs typically
are not pro-inflammatory, but recent reports showed
that some Tregs also may share functional capabilities
with conventional T cells, like production of inflamma-
tory cytokines in the context of autoimmunity or
chronic inflammation [6-8]. These Tregs are part of the
CD161 population and also enriched in joints of JIA and
rheumatoid arthritis (RA) patients [2, 9].

The cAMP response element modulator (CREM) «
binds to promoters of genes with cAMP response
elements (CRE) and regulates transcription via a
chromatin-dependent mechanism. Under physiological
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conditions, the production of CREM is tightly regulated
and involves the differential use of alternate promoters
and splicing processes, resulting in cell- and tissue-specific
expression patterns [10, 11]. Quite interesting is that in T
cells of SLE patients CREMa mRNA and protein expres-
sion is increased and this significantly alters the expression
of various T lymphocyte-specific target genes, including
IL-2 and IL-17 family cytokines [12-15]. Notably, the
observed effects of CREMa on IL-2 and IL-17a cytokine
production in humans are also observed in transgenic
mice with T cell-specific CREMa overexpression [16].
These mice have decreased IL-2 and increased IL-17a
levels and are more prone to develop signs of autoimmun-
ity (including lymphadenopathy and higher autoantibody
titers against double-stranded DNA) when an additional
genetic deletion of the cd95 gene (Fas) is present [16, 17].
Beyond its role in SLE CREMa also contributes to T cell
dysregulations in asthma, LPS-induced lung injury, colitis,
and EAE [18-21]. Although it is known that T cells con-
tribute to pathogenesis in JIA, the role of CREM here has
not been addressed so far.The aim of this study was to
evaluate the role CREM expressing T cells in oligoarticular
JIA. Our findings indicate that beyond its role in SLE
CREMa also contributes to T cell pathophysiology in
oligoarticular JIA by modulating inflammatory and regula-
tory T cells.

Methods

Flow cytometry

For surface staining, single cell suspensions were stained
with  anti-CD3  (UCHT1), anti-CD4 (RPA-T4),
anti-CD161 (HP-3G10) antibodies (all from eBioscience,
Germany). To analyze Foxp3 and CREM expression,
cells were fixed and permeabilized with a FOXP3 stain-
ing buffer set (eBioscience, Germany) following the man-
ufacturer’s instructions and stained with anti-Foxp3
(PCH101) antibodies (eBioscience, Germany), monoclo-
nal anti-CREM (Abcam, Great Britain) or IgG isotype
control antibodies for 30 min. Monoclonal anti-CREM
antibodies and IgG isotype control antibodies were la-
beled with Alexa Fluor Antibody Labeling Kits (Thermo
Fisher Scientific, USA) according to manufactures in-
structions. For measurement of intracellular cytokines,
cells were treated with propidium iodide (P/I) and Golgi-
Plug (BD Bisciences, Germany) for 5 h and fixed and
permeabilized with FoxP3 staining buffer set (eBioscience,
Germany) following the manufacturers’ instructions.
Intracellular cytokines were stained with anti-IFN-y
(4S.B3) APC and anti-IL-17 PE (64DEC17) (both
eBioscience, Germany) antibodies.

Patients and healthy donors
All patients were diagnosed as having oligoarticular JIA
and were receiving nonsteroidal anti-inflammatory drugs
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before therapeutic aspiration of SF and administration of
corticosteroids. JIA patients were diagnosed according to
internationally agreed criteria.Cells were pelleted by
centrifugation and supernatants were individually stored
at — 20 °C, with this more than twenty different SFs and
HC sera were collected and are included in different
experiment in this study. Ethical approval for all
experiments was obtained from the local ethics commit-
tee. All patients provided fully informed consent or
age-appropriate assent where applicable. Sera from
healthy controls (HC) were obtained from peripheral
blood. For co-incubation wit HC Sera and SF, cells from
healthy donors were isolated from buffy coats provided
by the local blood bank, Transfusionsmedizin, Universi-
tatsklinikumAachen, Germany).

Cell isolation

Human mononuclear cells from patients with JIA were
isolated onto a Ficoll (PAN Biotech, Germany) gradient
either from peripheral blood (PB) or synovial fluid (SF).
Erythrocytes were lysed and cells were washed twice.
Peripheral blood mononuclear cells (PBMC) were
isolated from healthy donors by the same procedure.

Cell culture

PBMCs from healthy donors were incubated with 10%
allogenic SF or serum from allogenic healthy controls
(HC) in RPMI (Gibco, Germany) with 10% FCS (Bio-
chrom, Germany). When indicated, cells were stimulated
with plate-bound anti-CD3 and anti-CD28 antibodies
(both at 3 pg/ml; BD Bioscience, Germany) in individual
wells of 96-well round-bottom microtiter plates. To
knock-down CREM expression, PBMCs and SFMCs
were transfected with 5 nM CREM-specific siRNA or ir-
relevant control siRNA (Origene, USA) using the Amaxa
transfection system (Lonza, Switzerland). After four
hours cells were transferred in fresh media and either
left unstimulated and analyzed after 24 h or stimulated
and anyalzed as indicated.

RNA isolation, complementary DNA (cDNA) synthesis, and
quantitative real-time polymerase chain reaction (PCR)
Total RNA was extracted from cells using an RNeasy
Mini Kit (Qiagen, Germany) and transcribed to cDNA
using a First Strand cDNA Synthesis Kit (Thermo Fisher
Scintific, USA) according to the manufacturer’s instruc-
tions. Standard quantitative real-time PCR was carried
out on a TagMan 7900 (Applied Biosystems, USA) using
the DNA intercalating dye SYBR Green.

Ovalbumin (OVA)-induced arthritis model

OVA-induced arthritis was induced in mice, as described
previously [22]. Briefly, 2 x 10° OVA-specific CD4*CD25"
T cells from either wild-type (WT) or CREM ™~ OT-1I
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mice were injected intraperitoneally into C57BL/6 RAG™
~ mice. Two independent experiments were performed
and overall 6 mice per group were analyzed. One day later
recipients were immunized with 100 pg cationized OVA
(Sigma-Aldrich, Germany) in PBS at the base of the tail.
On day 7 mice were rechallenged with 60 pg cationized
OVA injected intra-articularly into the left knee joint.
Knee swelling was assessed using calipers at definite time
points as the difference between the right (arthritic) before
and after OVA-injection.

Mice

Experiments were performed withage-matched RAG ™,
WT OT-II and CREM™~ OT-II mice (all C57BL/6).
CREM ™'~ animals were originally cloned and provided
by Prof. G. Schiitz (Deutsches Krebsforschungszentrum,
Heidelberg, Germany) [23]. CREM ™~ OT-II mice were
generated by crossing CREM ™~ mice with OT-II mice.
All mice were bred in our animal facility and kept under
standardized conditions. The study was approved by the
regional government authorities and animal procedures
were performed according to German legislation for ani-
mal protection.

Histology

Knee joints from mice were fixed in 4% neutral buff-
ered formalin solution for 24 h. Afterwards they
were placed in an EDTA-decalcifying solution (20%
EDTA) for 20 days, dehydrated, and embedded in
paraffin blocks. Sections were cut along a longitu-
dinal axis at 6 pm and stained with hematoxylin and
eosin. Hematoxylin and eosin stained slides were
evaluated and scored blindly for exudates, granulo-
cyte infiltration, hyperplasia, fibroblast proliferation/
mononuclear cell infiltration, periarticular mono-
nuclear cell infiltration (each scoring 0-3), bone/car-
tilage destruction (scoring 0-4), and an additional
score of 1 for visible fibrin deposition and peri-
articular granulocyte infiltration, resulting in a max-
imum score of 21.

Statistical analysis

All data are presented as mean * standard error (SEM).
Differences between two groups were evaluated using
two-tailed unpaired or paired (if indicated), Student’s
t-test if data were normally distributed. Otherwise, a
non-parametric Mann-Whitney test or Wailcoxon
matched-pairs signed rank test were performed. All stat-
istical analysis and subsequent graphics generation were
performed using GraphPad Prism version 7.0 (GraphPad
Software, USA). A p-value <0.05 was considered to be
statistically significant.
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Results

CREMa is overexpressed in synovial fluid T cells of
juvenile arthritis patients

T cells from SLE patients have previously been shown to
display enhanced CREMa levels, thus pointing to the
relevance of CREMa in human disease. Based on these
findings we asked if expression of CREMua is also upreg-
ulated during another autoimmune disease in which T
cells are involved in pathogenesis. We therefore investi-
gated expression of CREMa in synovial fluid T cells
from JIA patients. As shown in Fig. 1, percentages of
CREM™&" cells within CD3* T cells were indeed more
abundant in the synovial fluid of JIA patients than in the
peripheral blood of healthy controls (Fig. 1a and b).

Incubation of control PBMCs with synovial fluid
upregulates FoxP3 and IL-17 expression and involves
upregulation of CREM

Synovial fluid of JIA patients contains high amounts of
FoxP3" and IL-17" cells [24, 25]. Hence, we asked
whether SF of JIA patients contains factors responsible
for differentiation of these type of immune cells and
whether this went along with increased expression of
CREM. Thus we mimicked the inflammatory setting in
the joint in vitro by incubating PBMCs from healthy
controls with 10% allogenic synovial fluid from individ-
ual patients for 24 h. As a control we incubated PBMCs
from the same healthy controls with 10% allogenic
serum from individual healthy controls for 24 h. We ob-
served increased percentages of FoxP3 positive cells in
particular (Fig. 1c and d) and an increase in FoxP3
mRNA in general (Fig. 1e) when PBMC were incubated
in the presence of synovial fluid for 24 h. In addition,
when restimulated with P/I in the presence of Brefeldin
A, percentages of IL-17" T cells (Fig. 1f and g) and IL-17
mRNA (Fig. 1h) were also increased in SF-stimulated
PBMC. Moreover, incubation with SF also upregulated
CREM mRNA expression in PBMC (Fig. 1j) and CREM
protein expression specifically in T cells (Fig. 1i). Hence,
incubation of control PBMCs with SF not only upregu-
lates FoxP3 and IL17 expression but also CREM expres-
sion in T cells. Therefore, we hypothesize that soluble
factors within the synovial fluid induce CREM transcrip-
tion in SF T cells which leads to enhanced expression of
CREM in SF T cells.

SF-induced expression of IFN-y, IL-17, and FoxP3 in T cells
can be reversed by CREM knock down with CREM-specific
siRNA

We next asked if expression of CREM directly influences
activation of T cells and therefore analyzed T cell activa-
tion in the absence of CREM. We isolated CD4"CD25~
cells from healthy donors, transfected them with
CREM-specific siRNA or control siRNA. Flow cytometric
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Fig. 1 CREM is overexpressed in JIA T cells. a Percentages of CREM high expressing T cells of 8 healthy control PBMCs and of 11 oligoarticular JIA
SFMCs as assessed by flow cytometry. b Representative histogram showing mean fluorescent intensity of CREM expression in CD3™ T cells. ¢-j HC
PBMCs were treated with 10% SF or HC Serum in RPMI for 24 h. ¢ Percentages of Foxp3™ cells within CD3"* T cells. d Representative dot plot of
Foxp3 expressing T cells. @ Foxp3 mRNA expression. f Representative dot plot of IL-17" expressing T cells after restimulation with P/l in the
presence of Brefeldin A. g Percentages of IL-177 cells within CD3™ T cells after restimulation with P/l in the presence of Brefeldin A. h IL-17 mRNA
expression. i Geometric (G)-Mean of CREM expression, paired, two tailed t-test. j CREM mRNA expression, two-tailed Mann Whitney test. Symbols
present individual patients, SFs or HC sera and horizontal bars show SEM. A two-tailed unpaired t-test was used to calculate p-values in a, b, e, g
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analysis revealed that siRNA knockdown results in re-
duced protein expression of CREM (Fig. 2a and b). We
next incubated the cells with anti-CD3/CD28 antibodies.
Our analysis showed that percentages of IL-17a", IFN-y*
and FoxP3" cells were significantly reduced in CREM

siRNA transfected cells (Fig. 2c, d and e). To further
analyze if CREM is required for IL-17a and FoxP3 expres-
sion under the inflammatory environment we stimulated
CD4" T cells with knocked down CREM by incubation in
SF from JIA patients. Stimulation of CD4" T cells with



Ohl et al. Pediatric Rheumatology (2018) 16:39

Page 5 of 9

a
°
= 304 °
=
| =2
o Q
g °
2 204 a
=
3 T
[]
10 T T
control CREM siRNA
Cc

% of IL17" cells
» o9 &

% IL-17* cells
Yy ¢

control CREM siRNA
HC PBMCs + SF

control

4.37%

;o‘ 1'02 1103
IL-17a PE

control

9.78%

1;3‘ 1102 110G
Foxp3 FITC

Fig. 2 (See legend on next page.)

RNA

179 «mm control
=== CREM s
2
c
=120
=]
=]
60
0
10° 10' 10° 10°
CREM FITC

25 } * i 80 |;|
20 @
= I T 604 —
o 15+ o
£ T o ‘\_
5 i & 401
= \ =]
— =
= o s 21 ;E E
o T T
2 conltrol CREMI SiRNA control CREM siRNA
9 . h
" | e—
= 2 10
E ° E .\0
s 4 é 81
4
2 " \
S
= 4
1] T T T T
control CREM siRNA control CREM siRNA
HC PBMCs + SF HC PBMCs + SF
CREM siRNA l
157 @ SFMCs
v
1 215% 5 ®PBMCs |2*y
9
& 10- ~
g I * i
=
E Ny —— \.
] = | N
S8 E — o
r—r-rrrerer 0
10 0 1 2 3
" dLazapE & & & &
A
& &
& &
CREM siRNA I
1 %, 159 @ SFMCs
6.94% a @ PBMCs
Q ——o
£ 104
k
o §
1=
$ 59
=] §.
53
R e R M ° N > > >
Foxp3 FITC S s &
o @g S @es
& &
) (@)




Ohl et al. Pediatric Rheumatology (2018) 16:39

Page 6 of 9

(See figure on previous page.)

Fig. 2 CREM contributes to T cell dysregulations in JIA. a Healthy control PBMCs were transfected with control siRNA or with CREM siRNA and
G-Mean of CREM expression was analyzed by flow cytometry, two-tailed paired t-test. b Representative histogram of CREM expression after
transfection with control siRNA (black) or CREM siRNA (red). c-e Healthy control PBMCs were transfected with control siRNA or with CREM siRNA
and stimulated with anti-CD3 and anti CD28 antibodies for 3 days, symbols present individual healthy controls incubated with different allogenic
HC sera or SFs, two-tailed paired t-tests. ¢ Percentages of IL-17" cells within CD3" T cells after restimulation with P/l in the presence of Brefeldin
A. d Percentages of IFN-y" cells within CD3"* T cells after restimulation with P/l in the presence of Brefeldin. e Percentages of Foxp3™ cells within
CD3* T cells. F-H) Healthy control PBMCs were transfected with control siRNA or with CREM siRNA and incubated with 10% SF in RPMI for 24 h,
two-tailed, paired t-tests were used to calculate p-values. f Percentages of IL-17* cells within CD3" T cells g Percentages of IFN-y* cells within
CD3* T cells. h Percentages of Foxp3™ cells within CD3* T cells after restimulation with P/l in the presence of Brefeldin A. i-l PBMCs and SFMCs
from JIA patients were transfected with control siRNA or with CREM siRNA and i-h) percentages of IL-17" cells after restimulation with P/l in the
presence of Brefeldin A, Wilcoxon matched-pairs signed rank test was used to calculate p-values and of k-I) Foxp3™ cells were assessed by flow
cytometry after 24 h, two-tailed paired t-tests were used to calculate p-values

healthy control serum served as control. Similar to
anti-CD3/CD28 antibody mediated stimulation of CD4" T
cells, also the SF-induced expression of IFN-y, IL-17a and
FoxP3 could be reversed in CD4" T cells by expression of
CREM-specific siRNA (Fig. 2f, g, and h). To establish the
involvement of CREMu« in the regulation of IL-17a, FoxP3
and IFN-y expression in JIA we transfected ex vivo iso-
lated SEMC with either unrelated control siRNA or siRNA
directed against CREM. SFMC transfected with
CREM-specific siRNA expressed significantly lower per-
centages of FoxP3" and IL17a"* cells (Fig. 2i-1). Hence,
these experiments provide evidence for the involvement
of CREMa in the regulation of IL-17 and FoxP3 expres-
sion in juvenile arthritic joints.

CREM regulates inflammatory CD161* T cells and
determines the outcome in inflammatory arthritis

Among CD4" cells the subset of CD161" T cells are the
most important in maintaining the inflammatory process
and exactly this cell population is increased in the SF of
JIA patients [1, 5]. We thus analyzed the role of CREMa
within this population of CD4" cells. We found en-
hanced expression of CREMa in CD1617CD4" PBMC
and of SFMC from JIA patients compared to their
CD161" counterparts (Fig. 3a). Treatment of HC PBMCs
with SF upregulated CD161"CD4"IL-17" cells in the
presence of CREM, while knock down of CREM inhib-
ited the SF induced expression of this inflammatory sub-
set (Fig. 3b). Unfortunately, in contrast to humans, mice
do not express CD161 in cytokine-producing T cells and
therefore we could not validate these data in vivo.
Nevertheless, we performed a T cell dependent arthritis
model in mice to analyze how CREM signaling in T cells
influences the fate of an inflammatory arthritis.

To this end, we transferred CD4"CD25" T cells from
either OTII-CREM '~ or control OTII-wild-type (WT)
mice into RAG™'~ mice and immunized the mice with
OVA to expand the T cells (Fig. 3c). On day 7 we in-
duced arthritis by injecting cationic OVA-peptide into
the right knee. As seen in Fig. 3d, transfer of CREM ™/~
T cells resulted in a faster remission of arthritis and

significantly lower histological scores for inflammation
and tissue destruction (Fig. 3d-f).

Discussion

For the first time we provide evidence that CREM plays
a role in T cell dysregulation in oligoarticular JIA
patients. Our conclusion is based on several levels of
evidence. First, we observed enhanced expression of
CREM in SF T cells from JIA patients. Enhanced expres-
sion of CREM could also be induced after ex vivo cul-
ture of PBMCs from healthy donors with SF from JIA
patients. CREM expression is also enhanced in SLE T
cells and as well as SF Sera from SLE patients also in-
duces CREM expression [26]. However, expression of
CREM is regulated by complex mechanism and by at
least two different promoter regions that are differen-
tially activated in SLE and normal T cells [10]. Further
studies will show which promoter regions are activated
by SE. Second, we found enhanced expression of CREM
in CD4"CD161" cells, which are known producers of in-
flammatory cytokines. Third, incubation with SF induced
expression of IFN-y, IL-17 and FoxP3 in T cells, which
could be reversed by knock down of CREM. Finally defi-
ciency of CREM in T cells ameliorated OVA induced
arthritis in vivo.

There are some limitations to our study. While our
data suggest that CREM directly regulates CD4"CD161"
T cells in human JIA, we cannot fully transfer this obser-
vation to our in vivo arthritis model as the murine
analog of CD161 has not yet been identified. Further-
more, we could only analyze a small number of patients
and further work is required to confirm our data.

Regarding the pathophysiology of JIA, the inflamma-
tory reaction within the joint is initiated by cells of the
innate immune system like neutrophils and macro-
phages, but cells of the adaptive immune system like B
cells and T cells play a dominant role in perpetuating
the disease. Pathogenic T cells within the joint display a
mixed Th17/Thl phenotype characterized by the pro-
duction of IL-17 as well as IFN-y and expression of both
lineage transcription factors T-bet and RORyT [2].
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Furthermore, in humans, these cells display a high
expression of CD161, low expression of the TCR { chain
(CD247) and low expression of IL-2 as well as low
response to stimulation with IL-2 [27]. In addition, the
TCR ( chain has been established recently as an inde-
pendent risk factor for JIA in linkage analysis studies
[28]. The same is true for the IL2- receptor [29].

Interestingly, despite abundance of pathogenic T cells
within the inflamed joint, the expression of detectable
IL-2 within the joint is negligible [30]. This could be the
result of decreased expression of IL-2 by the Th17 cells
[27] or of consumption by the abundant regulatory T
cells, which are dependent on IL-2. CREMa has been
shown before to downregulate the TCR { chain and the
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IL-2 expression in SLE while enhancing secretion of
IL-17 and IL-21 [12, 13, 16, 20, 31] and as shown here
also dysregulates T cell responses in JIA as shown by our
siRNA and in vivo studies. We therefore suggest that
CREM regulates T cells in JIA by several mechanisms,
which similarly to consequences of CREM overexpression
in SLE contributes to an aberrant cytokine-expression
profile and an enhanced occurrence of Th17 cells. How
exactly CREM is activated in the synovium remains to be
elucidated.

Recent studies underline the importance of a balance
between inflammatory T cells and Tregs within inflamed
joints [32] and CREM mediated mechanism might have
potential as a therapeutic strategy for Th17-driven auto-
immune diseases. It is therefore noticeable that genetic
or pharmacologic inhibition of calcium/calmodulin-de-
pendent protein kinase IV (CaMK4) reduced 11-17 tran-
scription through decreased activation of CREMa [21].
Furthermore a recent clinical trial demonstrated the
safety and efficacy of low-dose IL-2 treatment on SLE
[33]. This shows that there are already advances to
re-establish CREM-mediated dysregulations in T cells in
autoimmune diseases and our study suggests that it
would be valuable to further analyze the therapeutic
potential of these mechanisms in JIA as well.

Conclusion

T cell dysregulations critically contribute to ongoing
inflammation in juvenile arthritis joints. By identifying
CREM as a transcriptional activator that contributes to
increased occurrence of inflammatory effector T cells
within the joints; our study puts CREMa in a central
role within JIA and makes it a possible attractive target
for pharmacological intervention.
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