Supporting Information

P25@CoAl-layered double hydroxide heterojunction nanocomposites for CO₂ photocatalytic reduction

Santosh Kumar,^a Mark A. Isaacs,^a Rima Trofimovaite,^a Christopher M.A. Parlett,^a Richard E. Douthwaite,^b Ben Coulson,^b Karen Wilson,^a and Adam F. Lee ^a *

Apparent quantum yield calculations

The apparent quantum yield (AQY) was measured using the same experimental setup, but with band-pass filters of 365 nm for UV light and 480 nm visible light to obtain monochromatic light and the equation as follows:

AQY / % =
$$\frac{\text{Number of reacted electrons}}{\text{Number of incident photons}} \times 100$$

Moles of incident photons (N_{Einstein}) = $\frac{\text{Number of incident photons (N_p)}}{N_A}$

Number of incident photons N_p can be calculated by

$$N_{\rm P} = \frac{\text{Irradiance (E)}}{\text{Photon energy (E_p)}} ; \text{and Photon energy (E_p)} = \frac{\text{hc}}{\lambda}$$
$$E_{\rm p} = \frac{(6.625 \times 10^{-34} \text{ J. Sec }) (3 \times 10^{17} \text{ nm Sec}^{-1})}{\lambda \text{ (nm)}} = \frac{19.88 \times 10^{-17}}{\lambda \text{ (nm)}}$$

$$N_p = \frac{E}{E_p} = E \times \lambda \times 5.03 \times 10^{15} (m^{-2} \text{Sec}^{-1});$$

$$N_{Einstein} = \frac{N_P}{N_A} = 0.836 \times E \times \lambda (nm) \times 10^{-8} (mol. m^{-2}. sec^{-1})$$

$$N_{Einstein} = 0.836 \times E \times \lambda (nm) \times 10^{-2} (\mu mol. m^{-2}. sec^{-1})$$

AQY / % =
$$\frac{\text{Number of reacted electrons } (\mu \text{mol. sec}^{-1})}{0.836 \times \text{E} \times \lambda \times 10^{-2} } (\mu \text{mol. m}^{-2} \text{. sec}^{-1})} \times 100$$

AQY / % =
$$\frac{\text{Number of reacted electrons } (\mu \text{mol. h}^{-1})}{0.836 \times 3600 \times \text{E} \times \lambda \times 10^{-2}} \times 100$$

AQY / % =
$$\frac{\text{Number of reacted electrons}(\mu \text{mol. h}^{-1})}{30.096 \times \text{E} \times \lambda (\text{nm})} \times 100$$

where Irradiance (E) = light intensity in reactor \times effective light irradiation area. Light intensity within the reactor was measured using a G & R labs intensity meter over the range 190-750 nm.

E is 0.10 W.cm⁻² at 365 nm and 0.12 W.cm⁻² at 475 nm

Figure S1. Spectral output of 300 W Xe light source.

Figure S2. (top) low and (bottom) high resolution TEM images and corresponding EDX element maps of 20 wt% $TiO_2@CoAl-LDH$ nanocomposite highlighting relatively high and uniform distribution of P25 throughout LDH matrix.

Figure S3. Powder XRD patterns of P25@CoAl-LDH nanocomposites, and reference patterns from P25, CoAl-LDH and a physical mixture of 20wt%P25+CoAl-LDH.

Figure S4. DRIFT spectra of P25@CoAl-LDH nanocomposites, and reference patterns from P25, CoAl-LDH and a physical mixture of 20wt%P25+CoAl-LDH.

Figure S5. N2 adsorption-desorption isotherms of CoAl-LDH, P25@CoAl-LDH nanocomposites and P25.

Figure S6. (a) Tauc plot to determine optical band gap of (a) CoAl-LDH and (b) P25 reference materials.

Figure S7. CO productivity during control experiments using (a) P25 and (b) 20 wt% P25@CoAl-LDH.

Figure S8. CO selectivity during aqueous phase CO₂ photoreduction over P25 and CoAl-LDH references and P25@CoAl-LDH nanocomposites under UV-visible irradiation.

Figure S9. Effect of 2-propanol as a hole scavenger on photocatalytic production of (a) gas and (b) liquid phase carbon containing products during UV-visible irradiation under a He atmosphere.

Figure S10. Effect of titania morphology on CO₂ photoreduction over 20 wt% P25@CoAl-LDH and 20 wt% anatase nanorod@CoAl-LDH nanocomposites under UV-visible irradiation. 18 nm long anatase nanorods prepared according to reference 11.

Material	Reaction conditions	Light source	Surface area / m².g ⁻¹	Productivity / μmol.g ⁻¹ .h ⁻¹	AQE / %	Ref.
ZrOCo ^{II} –IrO _x SBA-15 wafer	CO ₂ and water vapor	355 nm UV light	-	CO=1.74	0.001 (355 nm)	[1]
Cu ₂ O/RuO _x	1 bar CO ₂ and 0.7M aqueous Na ₂ SO ₃	150 W Xe	-	CO=0.32	-	[2]
Cu ^{II} -grafted Nb ₃ O ₈ nanosheets	CO ₂ and 0.5 M aqueous KHCO ₃	Hg_Xe	-	CO=0.72	-	[3]
Cu _x O-SrTiO ₃	CO ₂ and 0.5 M aqueous KHCO ₃	Hg–Xe	-	CO=0.35	-	[4]
Ce–TiO ₂ /SBA-15	CO ₂ and water vapor	450 W Xe (450 mW.cm ⁻²)	140	0.30 (CO=0.25, CH ₄ =0.05)	-	[5]
Au@SrTiO ₃	CO ₂ and water vapor	300 W Xe	72	0.52 (CO=0.35, CH ₄ =0.17)	-	[6]
Cu-PbS-QDs/TiO ₂	CO ₂ and water	300 W Xe	-	1.71 (CO=0.82, CH ₄ =0.58, C ₂ H ₆ =0.31)	-	[7]
MgAl-LDO/TiO ₂	CO ₂ and water vapor <50 °C	450 W Xe	175	CO=1.5	-	[8]
Au@NaTaO ₃	CO ₂ and water vapor	200 W Hg-Xe	21	0.20 (CO=0.17, CH ₄ =0.03)	-	[9]
In ₂ O _{3-x} (OH) _y Nanocrystal	CO ₂ and water vapor	1000 W Hortilux Blue metal halide	159	CO=1.2	-	[10]
P25@CoAl-LDH	1 bar CO ₂ and water	300 W Xe	57	CO=2.21	0.10 (365 nm) 0.03 (475 nm)	This work

Table S1. Comparative performance of inorganic heterostructures for the photocatalytic reduction of CO₂

References

[1] W. Kim, G. Yuan, B.A. McClure, H. Frei, J. Am. Chem. Soc. 136 (2014) 11034-11042.

[2] E. Pastor, F.M. Pesci, A. Reynal, A.D. Handoko, M. Guo, X. An, A.J. Cowan, D.R. Klug, J.R. Durrant, J. Tang, PCCP 16 (2014) 5922-5926.

[3] G. Yin, M. Nishikawa, Y. Nosaka, N. Srinivasan, D. Atarashi, E. Sakai, M. Miyauchi, ACS Nano 9 (2015) 2111-2119.

[4] S. Shoji, G. Yin, M. Nishikawa, D. Atarashi, E. Sakai, M. Miyauchi, Chem. Phys. Lett. 658 (2016) 309-314.

[5] C. Zhao, L. Liu, Q. Zhang, J. Wang, Y. Li, Catal. Sci. Technol. 2 (2012) 2558-2568.

[6] H. Zhou, J. Guo, P. Li, T. Fan, D. Zhang, J. Ye, Sci. Rep. 3 (2013) 1667.

[7] C. Wang, R.L. Thompson, P. Ohodnicki, J. Baltrus, C. Matranga, J. Mat. Chem. 21 (2011) 13452-13457.

[8] C. Zhao, L. Liu, G. Rao, H. Zhao, L. Wang, J. Xu, Y. Li, Catal. Sci. Technol. 5 (2015) 3288-3295.

- [9] H. Zhou, P. Li, J. Guo, R. Yan, T. Fan, D. Zhang, J. Ye, Nanoscale 7 (2015) 113-120.
- [10] L. He, T.E. Wood, B. Wu, Y. Dong, L.B. Hoch, L.M. Reyes, D. Wang, C. Kübel, C. Qian, J. Jia, K. Liao, P.G. O'Brien, A. Sandhel, J.Y.Y. Loh, P. Szymanski, N.P. Kherani, T.C. Sum, C.A. Mims, G.A. Ozin, ACS Nano 10 (2016) 5578-5586.
- [11] J. Chen, H Bin Yang, J. Miao, H.-Y. Wang, B. Liu, J. Am. Chem. Soc. 136 (2014) 15310–15318.