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Predicting vapor liquid equilibria (VLE) of molecules governed by weak van der Waals (vdW) inter-
actions using the first principles approach is a significant challenge. Due to the poor scaling of the
post Hartree-Fock wave function theory with system size/basis functions, the Kohn-Sham density
functional theory (DFT) is preferred for systems with a large number of molecules. However, tradi-
tional DFT cannot adequately account for medium to long range correlations which are necessary for
modeling vdW interactions. Recent developments in DFT such as dispersion corrected models and
nonlocal van der Waals functionals have attempted to address this weakness with a varying degree
of success. In this work, we predict the VLE of argon and assess the performance of several density
functionals and the second order Møller-Plesset perturbation theory (MP2) by determining critical
and structural properties via first principles Monte Carlo simulations. PBE-D3, BLYP-D3, and rVV10
functionals were used to compute vapor liquid coexistence curves, while PBE0-D3, M06-2X-D3, and
MP2 were used for computing liquid density at a single state point. The performance of the PBE-D3
functional for VLE is superior to other functionals (BLYP-D3 and rVV10). At T = 85 K and P = 1 bar,
MP2 performs well for the density and structural features of the first solvation shell in the liquid
phase. Published by AIP Publishing. https://doi.org/10.1063/1.5025726

I. INTRODUCTION

The knowledge of thermophysical properties such as
vapor liquid equilibria (VLE) is critical for the design and
development of numerous separation processes. The classical
empirical potentials are often parametrized against experimen-
tal data for computing thermophysical properties at ambi-
ent or subcritical state points.1–5 The performance of these
force fields becomes unreliable when considering properties
or state points not included in the parametrization. There is
also a significant emphasis on developing an ab initio inter-
atomic potential by using quantum chemical calculations and
using them to predict bulk phase properties.6–25 The potential
energy surface for a large number of configurations is gen-
erated to fit to the functional form of the force field. This
approach is, however, limited to moderately sized molecules
with limited conformational degrees of freedom as the compu-
tational cost increases significantly with the complexity of the
molecule.

Rapid advances in computational resources and effi-
cient algorithms have contributed immensely to the devel-
opment and application of electronic structure calculations.
This expands the capacity to simulate bigger system size
and model complex molecules, by significantly reducing the
computational time. Recent density functionals (DF) and

a)Electronic mail: neerajrai@che.msstate.edu

post Hartree–Fock (HF) wave function theory can model
small molecules with reasonable accuracy. However, mod-
eling condensed phase systems, in particular, multi–phase
phenomena such as vapor liquid equilibria, remains a sig-
nificant challenge. The popular Kohn-Sham density func-
tional theory (KS-DFT)26,27 is widely used in material sci-
ence for modeling condensed phase properties. One of the
biggest challenges for KS-DFT is to accurately account for
weak non-covalent interactions.28–30 Advances in the DFT
are largely based on improving the performance of exchange-
correlation (XC) functionals by incorporating additional infor-
mation of the electronic system. Perdew et al.31 explain the
construction of XC functionals through “Jacob’s ladder” where
different rungs were classified based on the density func-
tional approximations to define XC energies. As of now,
there are five rungs starting from local density approximation
(LDA),32,33 generalized gradient approximation (GGA),34–37

meta-GGA,38–42 hybrid functionals,43–47 and random phase
approximation (RPA).48–51 As one climbs higher steps in the
ladder, it leads to greater accuracy albeit at a higher compu-
tational cost. Additional details regarding the hierarchy of DF
methods can be accessed through the work of Perdew and
co-workers.31,52–54

Over the last two decades or so, many improvements in
DFT have been through the addition of dispersion correction
terms to the XC energies. A concept similar to “Jacob’s lad-
der” was introduced by Klimeš and Michaelides29 to classify
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different DFT based dispersion correction schemes. Going
higher on the ladder leads us to greater accuracy, less empiri-
cism, and higher computational cost. At present, the pair-wise
additive dispersion correction models28,55–57 and nonlocal van
der Waals (vdW) functionals58–61 have demonstrated some
success in handling weak vdW interactions. These models are
usually benchmarked against data sets of dimer energetics, and
their performance in estimating bulk phase properties precisely
is still a concern.

This work is aimed at obtaining vapor liquid coexistence
curves (VLCCs), critical properties, and structural properties
for argon via first principles Monte Carlo (FPMC) simula-
tions and assess the performance of several density func-
tionals (GGA, hybrid, and rVV10 nonlocal vdW functionals)
along with second order Møller-Plesset perturbation theory
(MP2). Being an important noble gas, argon has been studied
extensively for establishing benchmarks. Earlier VLE stud-
ies with FPMC simulations were performed on water,62–64

methane,65 methanol,65 hydrofluorocarbons,66,67 carbon diox-
ide,68 and sulfur dioxide.68 For argon, the work carried out
by Maerzke et al.69 presents several key results including
dimer potential energy curves (PECs) and liquid structure
by using self-consistent polarization density functional the-
ory. However, their bulk phase calculation was limited to a
single temperature (85 K). Given the significance of argon
as a prototypical system governed by dispersion interactions,
it is useful to determine VLE directly from first principles
and examine the performance of several density function-
als. In the past, most of the studies were performed by
using the GGA class of functionals, and the accuracy of
higher rung functionals is rarely tested. With the relatively
low cost of GGA functionals, they are still very popular and
widely used with reasonable accuracy. However, researchers
are moving toward hybrid density functionals and electron
correlation methods such as RPA, and MP2, to predict bulk
phase properties with greater accuracy as compared to GGA
functionals.70–84

The rest of the paper is organized as follows. Sec-
tion II describes the details of density functionals, simula-
tion setup, dispersion models and Monte Carlo method. In
Sec. III, we present potential energy curves, second virial coef-
ficients, and results obtained from Monte Carlo simulations.
The results comprise of VLCCs, Clausius-Clapeyron plots,85

critical properties, and structural investigation of the liquid
phase argon. At last, concluding remarks are presented in
Sec. IV.

II. COMPUTATIONAL METHODS

In this work, two sets of simulations were performed.
First, we calculate the vapor liquid coexistence curves of argon,
which involves two thermodynamically connected simulation
boxes for computing saturated liquid and vapor densities at dif-
ferent temperatures. Second, using NpT ensemble, the density
is computed at a single temperature. First set of calculations
were performed by using the PBE,37 BLYP35,36 GGA func-
tionals and the rVV1086 nonlocal van der Waals functional.
The GGA functionals particularly PBE and BLYP are well
known and were extensively used due to reasonable accuracy

and modest computational cost. Nonlocal functionals add a
nonlocal correlation energy term to the local or semilocal func-
tional, which results in increased computational cost to some
degree but improves performance. We have used the rVV1086

functional which is a revised version of the VV1087 func-
tional. The rVV10 functional is chosen because it is one of
the best-performing nonlocal correlation functionals for accu-
rate predictions of the equilibrium bond length and interaction
energy of argon dimer and the equilibrium lattice constant and
cohesive energy of solid argon.88 The second set or single
temperature calculations were carried out using PBE0,45,89

M062X,47 and the second-order Møller-Plesset perturbation
theory (MP2).90–94 We could do these calculations only at a
single temperature due to extremely high computational cost.
In order to consider the long range dispersion interactions,
we have used dispersion correction DFT-D357 developed by
Grimme and co-workers. The DFT-D3 method is used with
PBE, BLYP, PBE0 and M06-2X functionals, respectively.
In order to determine the VLCCs for argon, we have used
the canonical version of the Gibbs ensemble Monte Carlo
(GEMC) method95 and the NpT96 ensemble was employed
to calculate the liquid density at a specified temperature and
pressure. The GEMC simulation setup utilizes two separate
periodic simulation boxes for representing liquid and vapor
phases connected thermodynamically via a unified partition
function.97 For GEMC simulation, total number of molecules,
total volume of both boxes, and temperature of the system
are kept constant. The Monte Carlo simulation contains var-
ious trial moves to sample the configurational space. These
moves include translation and changes in the volume of the
simulation box for NpT simulations. In addition, the swap
moves between liquid and vapor boxes were also performed for
GEMC simulation to equilibrate the chemical potential. The
probabilities of volume, swap, and translational move types are
15%-20%, 20%-25%, and 60%, respectively, and the accep-
tance rate of the moves ranges from 50% to 60%. Most of
the simulations were carried out using the triple-zeta valence
basis set augmented with polarization functions (TZV2P) and
Godecker-Teter-Hutter (GTH) pseudopotentials.98,99 For dis-
persion corrected hybrid functionals (PBE0-D3, M06-2X-D3),
the auxiliary density matrix method (ADMM) with the pFIT3
auxiliary basis was employed.76 The benefit of the ADMM
method is to reduce the computational cost by considering
a smaller auxiliary basis for nonlocal Hartree-Fock exchange
(HFX) calculations. For MP2 simulation, we used the Gaussian
and plane wave MP2 approach with the resolution of identity
(RI) approximation100,101 which was recently implemented in
the CP2K code. The triple-zeta quality valence-only correla-
tion consistent type primary basis set and associated auxiliary
RI basis set (see the supplementary material) were generated
and used for the RI-Gaussian and Plane Wave (GPW)-MP2
calculation. The procedure for generating these basis sets has
been discussed in the work of Del Ben et al.,101 and we refer
the interested reader to the original reference for more infor-
mation. The truncation radius for Coulomb interaction was set
to 7 Å for hybrid DFT and MP2 calculations. All computa-
tional details such as XC functionals, GTH pseudopotentials,
and their plane wave cutoff are explicitly provided in the sup-
plementary material. All MC simulations presented in this
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work have used the CP2K software suite (version 2.6.2 and
5.0).102 The CP2K software suite uses KS-DFT to compute
interaction energies via the Quickstep module103 employing
a hybrid scheme of the Gaussian and Plane Wave (GPW)
method.

First principles MC simulations require large computa-
tional resources. This computational cost can be considerably
reduced by using approximate bias potentials to sample the
configurational space.104–107 In this scheme, the configura-
tional space is first sampled by approximate bias potentials
for a short sequence of moves followed by the DFT calcula-
tion. The energy difference between DFT and the approximate
bias potential is used to compute acceptance criteria to either
accept or reject the entire (short) sequence of moves. We
have used 16 moves for the short sequence using approxi-
mate bias potentials.62 The nonbonded interaction parameters
for the approximate bias potential are taken from Michels’
work.108 All GEMC/NpT simulations (except MP2) were run
for 500-600 MC cycles. Each cycle refers to N (total number
of molecules) moves with Quickstep energy calculations. The
first 250-300 cycles were considered to be the equilibration,
and the remaining cycles were considered for data collection.
The production run was divided into blocks of 50 cycles to cal-
culate the average and standard deviations for saturated liquid
and vapor densities. For MP2 simulation, we performed four
independent runs by using different seed and probability ratios.
Each independent simulation consisted of 175 MC cycles. The
first 100 MC cycles were considered as equilibration and the
remaining 75 cycles from each independent run were used
to calculate the average density and corresponding standard
deviation. The approximate bias parameters and the numerical
values for VLCCs can be found in the supplementary mate-
rial. The critical temperature and critical density of argon for
different functionals are also calculated by using subcritical
VLCC data. For this purpose, the density scaling law with crit-
ical exponent 0.325 and the law of rectilinear diameter were
used.109–111 Additionally, the normal boiling point was calcu-
lated by fitting vapor pressure data to the Clausius-Clapeyron
equation.

We performed GEMC calculations with the PBE-D3 func-
tional in order to choose an appropriate system size (number
of molecules) for this study. The system sizes considered are
36, 54, 64, 72, 128, and 256 argon atoms. Figure 1 shows

FIG. 1. Effect of system size (N) on the liquid density of argon at 85 K and
1 bar. The error bars smaller than the symbol size are not shown.

the plot for the saturated liquid density of argon as a function
of system size. It is evident from the figure that the density
converges to the large system size limit after 54 particles.
There is a somewhat larger standard deviation for the density
obtained from 54-particle simulation. The density obtained
from the system size of 64 or 72 argon atoms is reliable and
appears suitable for the simulation study. Thus, we have used
72 argon atoms for the GGA and hybrid functional calcula-
tions (PBE0-D3 and M06-2X-D3) and 64 particles for MP2
simulations. We have used a smaller system size for MP2 simu-
lations because of the significant computational cost associated
with the larger simulation cell. We note that the MP2 method
has recently been applied to study liquid water, and excellent
agreements have been obtained with the experiment on water
density and radial distribution functions (RDF).71 The initial
system setup procedure can be referred from our previous
work.66 The structural analysis for the liquid phase of argon
was determined through radial distribution function (RDF)
plots.

As the two-body interaction term contributes most to the
total potential energy of the n-body system, it can be help-
ful to assess the performance of various functionals for dimer
energetics. The potential energy curves (PECs) can provide
an insight into the accuracy of bulk phase property prediction.
The argon PECs through different functionals are compared
with coupled cluster single, double, and perturbative triple
excitations (CCSD(T))112–117 level of theory with extrapo-
lation to the complete basis set (CBS) limit.7 Most of the
GPW dimer calculations and VLCCs in this work have been
performed using the TZV2P basis set, which was found to
converge well for the equilibrium bond length and interac-
tion energy of the argon dimer. Therefore, it is also beneficial
to obtain the PECs from the CCSD(T) using the triple zeta
basis set. For this purpose, we carried out the argon dimer
calculation to obtain the PECs from the CCSD(T)/aug-cc-
pVTZ(aVTZ) basis set.118,119 We have used the Boys and
Bernardi counterpoise correction120 for removing the basis set
superposition error. The CCSD(T)/aVTZ calculations for the
potential energy curve were performed by using the Gaussian
09 software.121

The potential energy curve between two argon atoms can
be used to compute the second virial coefficient using the
following equation:

B2(T ) = −2π
∫ ∞

0
(e−U(r)/(kBT ) − 1)r2dr, (1)

where U(r), kB, and T represent the dimer potential at separa-
tion r, the Boltzmann constant, and temperature, respectively.
To compute B2(T ), we have followed the approach used by
Maerzke et al.69 However, we did not include the quantum
corrections to the virial coefficients as they appear to be less
than 1%.69 In brief, B2(T ) was determined by using trape-
zoidal numerical integration in the range of r = 0–50.0 Å. The
energies were set to a large positive number in the region of
r = 0–2.0 Å, which results in the Mayer function to be −1.
For every functional, we have computed the dimer potential
energy for r = 2.0–7.0 Å, and the local cubic splines were
used to interpolate the energies in this region. The potential
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energies obtained over the region r = 6.25–7.0 Å were used
to fit the functional form −C6r−6. Thereafter, the value for C6

coefficient was used to extrapolate the potential energies from
7.0 to 50.0 Å.

III. RESULTS AND DISCUSSION
A. Dimer energetics

The leading contribution to the total energy for an n-body
system is from two-body terms. Thus, dimer potential energy
curves (PECs) can be a good indicator for the performance of
different levels of theory for predicting condensed phase ther-
modynamic properties. Figure 2 shows the PECs of argon with
different classes of functionals and MP2. The location of the
minima and the interaction energy are also listed in Table I. The
curve obtained from the CCSD(T)/aug-cc-pVTZ(aVTZ) basis
set overestimates the equilibrium bond length and underesti-
mates the binding energy when compared with CCSD(T)/CBS
or the experiment.

FIG. 2. Potential energy curves of argon dimer at different levels of the-
ory. The black stars, red squares, violet triangle up, blue triangle left,
magenta triangle down, maroon cross, orange triangle right, turquoise dia-
monds, green circles, maroon circles, and blue triangle down represent data
for CCSD(T)/CBS,7 CCSD(T)/aVTZ (aug-cc-pVTZ), BLYP-D3/GPW, PBE-
D3/GPW, PBE0-D3/GPW, rVV10/GPW, M06-2X-D3/GPW, MP2/GPW,
MP2/aVTZ, LJ (Michels et al.),108 and LJ (Vrabec et al.)23 potentials,
respectively. The dashed lines of the corresponding color are guide to the
eye.

TABLE I. The location of well depth (R0, Å) and interaction energy (Eint,
kJ/mol) of argon at the minima in the dimer potential energy curve for different
methods compared with CCSD(T) and experimental work.

Functional R0 �Eint

PBE-D3/GPW 3.87 1.412
BLYP-D3/GPW 3.85 0.690
rVV10/GPW 3.77 1.210
PBE0-D3/GPW 3.85 1.155
M062X-D3/GPW 4.10 0.780
MP2/GPW 3.90 0.759
MP2/aVTZ 3.85 1.014
LJ (Vrabec et al.23) 3.81 0.969
LJ (Michels et al.108) 3.82 0.994
CCSD(T)/aVTZ 3.89 0.853
CCSD(T)/CBS7 3.767 1.187
Experiment122 3.761 1.188

aug-cc-pVTZ (aVTZ)
Complete basis set (CBS)
Gaussian plane wave (GPW)

For GGA functionals (PBE and BLYP with disper-
sion correction D3), the equilibrium bond lengths from both
functionals are overestimated by approximately 0.1 Å in
comparison with the experiment. The binding energy is largely
underestimated for BLYP-D3 and overestimated by the PBE-
D3 functional compared to the experimental values. This
binding energy difference for the BLYP-D3/PBE-D3 func-
tionals can have significant consequences on the nature of
VLCCs (see below). In the case with hybrid functionals, the
PBE0-D3 functional overestimated the bond length marginally
with a difference of 0.09 Å as compared to the experiment
or CCSD(T)/CBS. The PBE0-D3 functional binding energy
at the equilibrium distance is close enough to the exper-
iment or CCSD(T)/CBS, but it fails to carry the similar
performance in the long range interaction region where it
is more attractive than CCSD(T)/CBS. The M06-2X func-
tional is based on hybrid meta-exchange-correlation func-
tionals and accounts for short to medium range correlation.
The M062X-D3 functional completely fails to determine the
equilibrium bond length and it overestimated the value by
0.40 Å. Furthermore, the binding energy obtained from the
M062X-D3 functional underestimates the experimental well
depth.

For the nonlocal functional rVV10, we can see that the
calculated equilibrium bond length and the binding energy
are in good agreement with the experimental data. The PEC
obtained from the rVV10 functional matches well with the
CCSD(T)/CBS curve until 4 Å. However, the rVV10 PEC does
not provide similar accuracy as the distance between particles
increases beyond 4 Å. After 4 Å, the interaction energy is
slightly underestimated when compared to the CCSD(T)/CBS
curve. In addition, the argon PEC with the rVV10 functional
is in good agreement with the reference curve as shown in
the work of Sabatini et al.86 and Tran and Hutter.88 Next, the
MP2 method well known for accounting electron correlation is
computationally efficient as compared to coupled cluster and
configuration interaction methods. The results obtained from



224501-5 Goel et al. J. Chem. Phys. 148, 224501 (2018)

the MP2/GPW and MP2/aVTZ show the binding energy dif-
ference of around 0.25 kJ/mol. Compared to the experimental
data, both underestimate the binding energy and overestimate
the equilibrium bond length. In summary, the rVV10 func-
tional is the best functional for dimer energetics, which is
consistent with our earlier published studies on hydrofluo-
rocarbons as well.66,68 According to the work of Tran and
Hutter,88 the rVV10 functional also performs well as com-
pared to other tested DFT functionals in case of rare gas dimers.
After the rVV10 functional, the PBE0-D3 functional also does
a decent job for the equilibrium bond length and binding energy
as compared to the experiment/CCSD(T)/CBS. The effective
LJ pair potentials developed by Michels et al.108 and Vrabec
et al.23 underestimate the potential well depth by approxi-
mately 16% and 18%, respectively. Since the LJ potential by
Vrabec et al.23 can provide an extremely good prediction for
the vapor liquid coexistence curve, it suggests that many-body
polarization effects are repulsive in nature.

B. Second virial coefficients

The second virial coefficients for argon with different
functionals and LJ potential23 are shown in Fig. 3 and com-
pared with the experimental123 and CCSD(T)/CBS7 data over
the range of 100–1000 K. The numerical values for second
virial coefficients are also provided in Table S6 of the sup-
plementary material. Among all the functionals and the LJ
potential23 used here, the best performance is shown by the
PBE0-D3 and rVV10 nonlocal functional. At lower temper-
atures (100–200 K), the unsigned mean percentage errors
are 7.5% and 8.0% for PBE0-D3 and rVV10 functionals as
compared to the experimental data. Moreover, the predictions
for second virial coefficients at higher temperatures are also
in good agreement with experimental data. The next closest
results are provided by the LJ potential.23 The PBE-D3 func-
tional significantly overestimates, while BLYP-D3, MP2, and
M06-2X-D3 significantly underestimate B2(T ).

FIG. 3. Temperature dependence of the second virial coefficient of argon.
The black stars, magenta pluses, red diamonds, maroon squares, turquoise
triangle down, green triangle left, orange triangle right, violet triangle up, and
blue circles represent data for the experiment,123 CCSD(T)/CBS,7 BLYP-
D3/GPW, PBE-D3/GPW, PBE0-D3/GPW, rVV10/GPW, M06-2X-D3/GPW,
MP2/GPW, and LJ (Vrabec et al.)23 potential, respectively. The dashed lines
of the corresponding color are a guide to the eye.

C. Liquid density and structure

The performance of GGA (PBE-D3 and BLYP-D3),
rVV10, hybrid (PBE0-D3, M06-2X-D3), and MP2 methods
is compared by predicting liquid densities for argon at 85 K
and 1 bar. Table II lists down the computed densities for dif-
ferent functionals and MP2. The accuracy of the functionals
in predicting density is in this order: MP2 > M06-2X-D3
> PBE0-D3 > BLYP-D3 > PBE-D3 > rVV10. Clearly, the
MP2 method provides the best estimate of density with a 2.2%
error. From the B2(T ) values for MP2, one could not have come
to the conclusion that MP2 would be able to provide such a
good estimate for the liquid density. It appears as the system
size increases, MP2 overestimates many-body polarization
effects, leading to the cancellation of errors. The only con-
straint in doing MP2 calculations for the condensed phase is the
need for substantial computational resources. The second best
estimate comes from the M06-2X-D3 functional with an
underprediction of 2.3%. We could also test the accuracy of
the M06-2X-D3 functional at a slightly higher temperature
(105 K) and the computed density is underpredicted by approx-
imately 6.5%. The M06-2X-D3 does a decent job in computing
the density in spite of poor performance for the well depth
location of argon dimer. The performance of another hybrid
functional PBE0-D3 is somewhat reasonable for the density
and PEC of argon. The computed density is overpredicted by
8.4%. The density obtained from BLYP-D3 and PBE-D3 func-
tionals are underestimated by 10% and 12%, respectively. At
85 K, both functionals show similar accuracy for liquid density
in spite of the large difference in the binding energy, suggest-
ing that at lower temperatures the location of the minima in
PEC is more important than the binding energy. As described
above, the difference in binding energy mainly affects the bulk
phase properties at higher reduced temperatures.

The structural features of the liquid phase of argon are
explored through analyzing the radial distribution function.
Figure 4 shows the RDF plots with different functionals at
85 K and their characteristics (location of the first coordina-
tion shell and height of the peak) are provided in Table III. The
experimental RDF is taken from the work of Yarnell et al.125

Except for PBE-D3 and BLYP-D3, most of the other func-
tionals perform reasonably well in predicting the location of
the first coordination shell. The PBE-D3 and BLYP-D3 func-
tionals somewhat overestimate the location of the peak, 3.86
and 3.74 Å, respectively, as compared to the experimental

TABLE II. Liquid density of argon at T = 85 K and P = 1 bar with different
methods and LJ potential compared with experiment. Experimental data are
taken from the NIST chemistry webbook.124

Functional ρ (g/cm3) St. dev. % error

PBE-D3 (at 85 K) 1.238 0.014 �12.14
BLYP-D3 (at 85 K) 1.268 0.016 �10.0
rVV10 (at 85 K) 1.621 0.006 15.04
PBE0-D3 (at 85 K) 1.527 0.010 8.37
M062X-D3 (at 85 K) 1.377 0.016 �2.27
MP2 (at 85 K) 1.440 0.014 2.20
LJ (Vrabec et al.23) 1.407 0.002 �0.15
Expt. (at 85 K)124 1.409

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-003823
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-003823
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FIG. 4. Liquid phase radial distribution functions for argon at 85 K. The
dash-dotted red, dashed green, and dotted orange color lines represent results
obtained with BLYP-D3, PBE-D3, and PBE0-D3, respectively. The solid vio-
let, dashed maroon, dotted blue, and dashed magenta color lines represent
results obtained with MP2, M062X-D3, rVV10, and LJ (Vrabec et al.23)
potentials, respectively (an offset of +2 was added to the y-coordinates). The
solid black line denotes the experimental data taken from the work of Yarnell
et al.125 A bin width of 0.04 Å is used for all RDF plots.

value of 3.68 Å. This is also consistent with the fact that liq-
uid density is underestimated for these functionals. The peak
height with PBE0-D3 and rVV10 functionals is considerably
higher as compared to other functionals and this is largely due
to higher densities predicted with both of these functionals.
The peak height obtained from the M062X-D3 functional is
slightly smaller despite a reasonable density prediction. The
liquid structure obtained from MP2 based MC simulations is in
excellent agreement with experimental data. This is somewhat
expected since the density obtained with MP2 energetics is also
very close to the experimental liquid density. The location and
the height of the first solvation peak for the LJ pair poten-
tial is also in good agreement with the experimental data (see
Table III).

D. Vapor liquid phase equilibria

The VLCCs for argon obtained from GEMC simulations
are shown in Fig. 5. This figure compares the performance of
three different functionals (PBE-D3, BLYP-D3, and rVV10)
against the experimental data. The overall saturated liquid
densities obtained from PBE-D3 and BLYP-D3 functionals
are underestimated by 8.5% and 14%, respectively. Clearly,

TABLE III. Characteristics (location and height of the first solvation peak)
of liquid phase radial distribution function for argon with different methods
and LJ potential.

Functional r (Å) g(r)

PBE-D3 3.86 2.808
BLYP-D3 3.74 3.174
rVV10 3.66 3.784
PBE0-D3 3.70 3.395
M062X-D3 3.70 2.632
MP2 3.66 2.982
LJ (Vrabec et al.23) 3.67 2.943
Experiment125 3.68 3.050

FIG. 5. Vapor-liquid coexistence curves (VLCCs) for argon with different
functionals and LJ potential. The solid black lines depict the experimental data
and the star represents the experimental critical point.124 The red diamonds,
violet squares, green circles, and magenta pluses represent GEMC simulation
data with BLYP-D3, PBE-D3, rVV10, and LJ (Vrabec et al.23) potential,
respectively. The error bars smaller than the symbol size are not shown.

PBE-D3 functional’s performance is superior to the BLYP-D3
functional. Nonetheless, both GGA functionals fail to mimic
the slope of the saturated liquid and vapor lines. At higher
temperatures, the BLYP-D3 functional gives larger errors as
compared to lower temperatures, whereas for the PBE-D3
functional agreement with experimental data improves with
the increase in temperature. The results obtained from both
these functionals show the underestimation of dispersion inter-
actions. In the case of the rVV10 functional, the overprediction
for saturated liquid densities is nearly 23%. The complete
curve shows consistent overprediction of the saturated liquid
densities and underprediction of the saturated vapor densi-
ties. In other words, the dispersion interactions are largely
overestimated.

Next, we have used saturated vapor densities to com-
pute the saturated vapor pressures via the ideal gas law. This
is an approximation which holds well at lower vapor den-
sities. In Fig. 6, the Clausius-Clapeyron plots compare the
saturated vapor pressures obtained from PBE-D3, BLYP-D3,
and rVV10 functionals for argon. The BLYP-D3 functional
overpredicts the saturated vapor pressures as compared to the
experimental data, and this is largely due to the higher vapor
densities from the VLCCs. The saturated vapor pressure curves
from the PBE-D3 functional show moderate underprediction
for all the state points considered in this study. In the case
of the rVV10 functional, the saturated vapor pressure curve
shows underprediction with larger standard deviation, espe-
cially at the lower temperatures. The underprediction of the
saturated vapor pressure for PBE-D3 and rVV10 functionals is
directly associated with the underprediction of saturated vapor
densities.

The subcritical VLE data can be used to estimate the
critical properties of any compound. The predicted critical
temperature (TC), critical densities (ρC), and normal boiling
points (TB) are presented in Table IV. The critical temper-
ature for argon is overestimated by 15.2% and 27.8% with
the PBE-D3 and rVV10 functionals, respectively. The high
error for the rVV10 functional is due to the overprediction
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FIG. 6. Clausius-Clapeyron plots for argon with different functionals and
LJ potential. The solid black lines depict the experimental data.124 The red
diamonds, violet squares, green circles, and magenta pluses represent GEMC
simulation data with BLYP-D3, PBE-D3, rVV10, and LJ (Vrabec et al.23)
potential, respectively. The error bars smaller than symbol size are not shown.
The dashed lines show a linear fit of the simulation data.

of saturated liquid densities and underprediction of saturated
vapor densities. For PBE-D3, it still performs reasonably well
for saturated liquid densities but underprediction of saturated
vapor densities takes the critical temperature to a higher value.
The critical temperature for argon with the BLYP-D3 func-
tional is underestimated by 24%, and this is mainly because of
the incorrect curvature of the saturated liquid and vapor den-
sity curves. The normal boiling point is obtained by using
the Clausius-Clapeyron equation. The PBE-D3 and rVV10
functionals overestimate the boiling point by 17% and 20%,
respectively, whereas the BLYP-D3 functional underpredict by
24%. The LJ potential,23 on the other hand, accurately predicts
these thermodynamic properties, which is not surprising given
that these are parameterized to predict bulk thermodynamic
properties.

The VLCCs obtained from different functionals can also
be directly related to the dimer PECs for argon. As mentioned
above, both functionals (BLYP-D3 and PBE-D3) give very
similar results for the location of the well depth but the dif-
ference for the binding energy is approximately 0.7 kJ/mol.
The underestimation of binding for BLYP-D3 leads to lower
saturated liquid densities and higher saturated vapor densities,
and this behavior ultimately leads to a lower critical tempera-
ture. With the PBE-D3 functional, the prediction for saturated
liquid densities at lower reduced temperatures (T r = T /TC)

TABLE IV. Critical temperature (TC), critical density (ρC), and normal boil-
ing point (TB) for argon obtained from Monte Carlo simulations. Experimental
data are taken from the NIST chemistry webbook.124 The numbers in the
parenthesis are the standard deviations.

Functional TC (K) ρC (g/cm3) TB (K)

PBE-D3 173.6(4) 0.439(0.03) 102(2)
BLYP-D3 114.8(8) 0.534(0.10) 67(5)
rVV10 192.7(5) 0.612(0.04) 105(3)
LJ (Vrabec et al.23) 152.0(1) 0.522(0.005) 87(1)
Experiment124 150.69 0.535 87.5

are similar to BLYP-D3, but agreement improves at higher
reduced temperatures. This is largely due to the difference in
binding energy between the functionals. The higher binding
energy prediction with PBE-D3 leads to having a higher criti-
cal temperature as compared to the prediction from BLYP-D3.
The rVV10 functional does not reproduce the actual VLCC
behavior in spite of PEC that matches well with the experi-
ment and CCSD(T)/CBS data for a separation less than 4 Å.
The overprediction for saturated liquid densities is possibly
due to overbinding at larger separations. Therefore, at present,
the rVV10 functional is evidently one of the best options to
determine accurate geometries for dimer energetics, but it is
not sufficiently reliable for computing liquid phase properties
of the system. In summary, the PBE functional with the D3
dispersion correction model is a good choice to model vapor
liquid equilibria for argon when compared with BLYP-D3 and
rVV10 functionals.

IV. CONCLUSIONS

Vapor liquid equilibria along with the liquid density and
liquid microstructure of argon are predicted using first prin-
ciples Gibbs ensemble Monte Carlo simulations. Among dif-
ferent theoretical models considered in the present work, MP2
performs extremely well for liquid and the structure of first sol-
vation shell albeit at a significantly higher computational cost
compared to density functional methods. The rVV10 nonlocal
van der Waals functional performs well for PEC and second
virial coefficients but overpredicts saturated liquid densities,
indicating that many body polarization effects are overesti-
mated. The performance of dispersion corrected hybrid func-
tionals (PBE0-D3 and M06-2X-D3) is not as good as MP2
for the densities and location of the first coordination shell.
At last, PBE-D3 performs reasonably well for VLE as com-
pared to BLYP-D3 and rVV10. Overall, our work indicates that
the MP2/GPW approach is most suitable for predicting con-
densed phase properties of systems governed by dispersion
interactions.

SUPPLEMENTARY MATERIAL

See supplementary material for bias potential parameters,
energy cutoff for different simulations, plot for density versus
Monte Carlo steps, numerical data used for VLE and Clausius-
Clapeyron plots, dimer PEC, second virial coefficients, and
basis sets used for RI-MP2 calculations.
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A. Malijevskỳ, “State-of-the-art correlated ab initio potential energy curves
for heavy rare gas dimers: Ar2, Kr2, and Xe2,” J. Chem. Phys. 119,
2102–2119 (2003).

9C. Desgranges and J. Delhommelle, “Many-body effects on the thermo-
dynamics of fluids, mixtures, and nanoconfined fluids,” J. Chem. Theory
Comput. 11, 5401–5414 (2015).

10A. Eskandari Nasrabad and R. Laghaei, “Computational studies on ther-
modynamic properties, effective diameters, and free volume of argon using
an ab initio potential,” J. Chem. Phys. 125, 084510 (2006).

11M. Callsen and I. Hamada, “Assessing the accuracy of the van der waals
density functionals for rare-gas and small molecular systems,” Phys. Rev.
B 91, 195103 (2015).

12G. Marcelli and R. J. Sadus, “A link between the two-body and three-body
interaction energies of fluids from molecular simulation,” J. Chem. Phys.
112, 6382–6385 (2000).

13A. Hermann and P. Schwerdtfeger, “Complete basis set limit second-order
Møller–Plesset calculations for the fcc lattices of neon, argon, krypton, and
xenon,” J. Chem. Phys. 131, 244508 (2009).

14M. J. Van Vleet, A. J. Misquitta, A. J. Stone, and J. R. Schmidt, “Beyond
born–mayer: Improved models for short-range repulsion in ab initio force
fields,” J. Chem. Theory Comput. 12, 3851–3870 (2016).

15M. J. McGrath, J. N. Ghogomu, N. T. Tsona, J. I. Siepmann, B. Chen,
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