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Abstract

This thesis contains an analysis of certain classes of parabolic stochastic partial differential
equations with singular drift and multiplicative Wiener noise. Equations of this type have been
studied so far only under rather restrictive hypotheses on the growth and smoothness of the
drift. By contrast, we give here a self-contained treatment for such equations under minimal
assumptions.

The first part of the thesis is focused on semilinear SPDEs with singular drift. In particular,
the nonlinearity in the drift is the superposition operator associated to a maximal monotone
graph everywhere defined on the real line, on which neither continuity nor growth assumptions
are imposed. The hypotheses on the diffusion coefficient are also very general. First of all,
well-posedness is established for the equation through a combination of variational techniques
and a priori estimates. Secondly, several refined well-posedness results are provided, allowing
the initial datum to be only measurable and the diffusion coefficient to be locally Lipschitz-
continuous. Moreover, existence, uniqueness and integrability properties of invariant measures
for the Markovian semigroup generated by the solution are proved. Furthermore, the associ-
ated Kolmogorov equation is studied in Lp spaces with respect to the invariant measure and
the infinitesimal generator of the transition semigroup is characterized as the closure of the
corresponding Kolmogorov operator.

The second part of the thesis focuses on equations with monotone singular drift in divergence
form. Due to rather general assumptions on the growth of the nonlinearity in the drift, which,
in particular, is allowed to grow faster than polynomially, existing techniques are not applicable.
Equations of this type are typically doubly nonlinear, making their treatment more challenging
in comparison to the semilinear case. Well-posedness for such equations is established in several
cases, suitably generalizing the techniques for semilinear equations to an abstract generalized
variational setting.
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Impact statement

The research results presented in this thesis deal with a general variational approach to some
classes of singular stochastic partial differential equations. The greatest impact of this analysis
concerns the abstract research field of the study of stochastic evolution equations with singular
terms. The main interest and relevance of the entire thesis are thus of academic type, both
from a mathematical perspective and in terms of applications to other fields where SPDEs play
an important role.

The available literature on stochastic evolution equations is very developed, and addresses
problems such as well-posedness, long-time behaviour and regularity of solutions. However,
several of the existing techniques dealing with stochastic evolution equations strongly rely on
growth and smoothness assumptions on the drift, which is particular cannot exceed prescribed
polynomial growth rates, and hence are not applicable in many concrete situations. By contrast,
in this thesis we introduce a generalized variational approach and give a self-contained analysis
of certain classes of equations, where the drift is allowed to grow faster than polynomially. This
is obtained through a combination of tools from montone and convex analysis, and compactness
results in spaces of vector-valued functions.

Such problems are clearly interesting on their own in a mathematical perspective, and
represent a first step towards a generalization of the existing variational techniques also to
singular stochastic evolution equations of monotone type. The relevance of the results presented
in this work could be strongly beneficial to the academic research field of stochastic evolution
equations. Indeed, one of the main topics that are currently being investigated is the study
of stochastic equations with possibly degenerate terms. Even if this thesis focuses in detail on
semilinear and divergence-form equations, the abstract variational setting that we introduce
here can be applied also to several other types of stochastic equations, and provides an effective
tool to analyse stochastic equations with singular terms in a variational framework.

Furthermore, the techniques presented in this thesis can be adapted in order to deal with
other types of stochastic PDEs, which are much more relevant for applications to physics. Let
us mention, above all, the stochastic Allen-Cahn and Cahn-Hilliard equations, which play an
important role in phase transition modelling for example. While these have received much
attention in the deterministic setting in the last years, only few works are focused the corre-
sponding stochastic equations. This is due in large part to the the fact that the high singularity
of the drift gives rise to several difficulties in the stochastic case. For these reasons, the contri-
bution of this thesis could be beneficial also to the applicative aspect of the study of stochastic
PDEs, since it provides an effective way of handling parabolic stochastic PDEs with possibly
degenerate terms.
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Introduction

This PhD thesis is devoted to the analysis of some classes of parabolic stochastic partial dif-
ferential equations with singular drift and multiplicative Wiener noise. The main motivation
of the entire work is that equations of this type have been studied in the available literature
on stochastic evolution equations only under rather restrictive hypotheses on the growth and
smoothness of the drift.

It is well known that in the deterministic setting a complete and satisfactory theory is
available for evolution equations of monotone type in the form

d

dt
u+Au 3 f, u(0) = u0,

where A is a (multivalued) maximal monotone operator on a Hilbert space H or, more generally,
an m-accretive operator on a Banach space E, f ∈ L1(0, T ;E) and u0 is a given initial datum.
The mere assumption of maximal monotonicity on the operator A is very broad and allows to
include in this general treatment also several degenerate equations arising from applications.
The monotonicity of the equation provides a very powerful tool to obtain a complete well-
posedness theory also in highly singular settings.

The corresponding stochastic evolution equation in this abstract setting reads

du+Audt 3 B(u) dW, u(0) = u0,

whereW is a cylindrical Wiener process on a certain separable Hilbert space and B is a suitable
stochastically integrable operator with respect to W . However, a general theory of existence of
solutions and continuous dependence on the data for such equations still seems out of reach,
even in some simplified setting where B is nonrandom and independent of both u and t.

Among the current literature on stochastic evolution equations, significant results have been
obtained only in some specific cases. In this direction, there are two main available approaches
to the study of stochastic PDEs.

First of all, for semilinear equations, a powerful tool is offered by the semigroup approach:
the concept of solution is formulated in analogy with the corresponding theory for deterministic
equations, using the semigroup generated by the linear component of the drift. Here, one of the
main difficulties consists in giving appropriate sense to the so-called “stochastic convolution”.
The approach has been widely studied and is very effective in terms of both well-posedness
issues, regularity and long-time behaviour: for example, the general theory of semigroups on
Banach spaces allows to assume very broad requirements for the initial datum, and to investigate
several interesting qualitative properties such as maximal regularity and optimal estimates. On
the other side, the theory presents some drawbacks: due to the formulation of solutions, the
equations must necessarily be semilinear and, most notably, the nonlinearity in the drift cannot
grow faster than polynomially at infinity.
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10 Introduction

The second main approach to nonlinear stochastic PDEs is the variational approach. This
is a very natural and powerful generalization to the stochastic case of the classical variational
theory for deterministic evolution equations by Lions and Magenes (see for example [51–53]).
It was introduced in the classical works [46, 72] by Pardoux, Krylov and Rozovskĭı, and it has
been extensively developed in the recent years as well in terms of regularity, invariant measures
and long-time behaviour of solutions. One of the main advantages of the variational approach
is the possibility to deal with fully nonlinear equations, where the operator A is defined from
a Banach space to its dual, and can be random and time-dependent. On the other side, the
operator A must satisfy some classical monotonicity, coercivity and boundedness conditions.
Even if these can be weakened, this forces the nonlinearity in the equation not to exceed a
prescribed polynomial growth.

In this PhD thesis, we study some classes of stochastic evolution equations which do not fall
in the classical variational approach because of the high singularity in the drift, and we give
a self-contained treatment in terms of well-posedness, regularity and long-time behaviour in a
generalized variational setting. In particular, the results obtained here considerably extend the
classical ones of the variational theory, and are a very powerful tool to deal with stochastic
equations with singular drift exceeding polynomial growth.

The first part of the thesis is focused on singular semilinear equations on a smooth bounded
domain D of Rd in the form

dX +AX dt+ β(X) dt 3 B(X) dW, X(0) = X0, (0.0.1)

where A is a linear coercive maximal monotone operator on L2(D) and β is a maximal monotone
graph in R × R. The singularity of the equation is contained in the graph β. The analysis of
multivalued operators β is crucial: indeed, since any increasing function of R, possibly with
infinitely many discontinuities (jumps), can be canonically embedded into a maximal monotone
graph, we include in our analysis also reaction-diffusion equations with discontinuous reaction
terms. Secondly, and more importantly for us, no growth assumption will be in order for β,
which is allowed to grow at any rate at infinity. The main requirement on β in our study is
that its effective domain is the whole real line. Even if this assumption is not needed in the
deterministic theory, in the stochastic case it seems to be essential. Nevertheless, this setting
clearly does not fall in the classical variational framework, and we are able to give appropriate
sense also to semilinear stochastic equations with rapidly growing drift.

In Chapter 2 we present a natural well-posedness result for such equations, which is part
of the joint work [65] with Carlo Marinelli, to appear on Annals of Probability. The proof is
based on a double approximation of the problem: the diffusion coefficient B is firstly regularized
through a suitable smoothing elliptic operator, and secondly the graph β is approximated using
its Yosida approximation. The corresponding regularized equations can be solved invoking the
classical variational theory. Then, we prove several uniform estimates on the approximated
solutions, both pathwise and in expectation, which allow us to pass to the limit and obtain a
solution for the original problem. The proof is strongly based on arguments from monotone and
convex analysis, as well as compactness and lower semicontinuity results in spaces of Bochner-
integrable functions.

In Chapter 3 we show some refined well-posedness results for the equation (0.0.1), which
have been object of the article [63] with Carlo Marinelli. First of all, we prove that the solution
has strongly continuous trajectories in H := L2(D). Secondly, we use such continuity property
to extend the well-posedness result also to the case when X0 is only measurable and B is locally-
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Lipschitz continuous in its last argument. More specifically, we show that the the well-posedness
of the equation (0.0.1) can be extrapolated to the whole range p ∈ [0,+∞[, meaning that if
the initial datum X0 belongs to Lp(Ω;H), then the solution X belongs to Lp(Ω;E), where E
is the natural space of the trajectories, and the map X0 7→ X is continuous. In the particular
case p = 0, the convergence in probability of the initial data yields the uniform convergence
of the solutions in [0, T ] in probability. The proofs are based on the introduction of suitable
stopping times, depending on the initial datum and the coefficient B, as well as a generalized
Itô’s formula in an abstract variational setting.

In Chapter 4 we investigate the ergodicity properties of solutions to equation (0.0.1): these
results have been collected in the joint paper [62] with Carlo Marinelli. Since the equation
cannot be treated within the classical variational setting, we cannot rely on established tools
to study ergodicity. First of all, we show that the transition semigroup induced by the solution
X admits an ergodic invariant measure µ, which is also unique and strongly mixing if β is su-
perlinear: this result follows mainly by a priori estimates and compactness results obtained by
a suitable version of Itô’s formula. Secondly, we study the Kolmogorov equation associated to
(0.0.1), and we characterize the infinitesimal generator of the transition semigroup on L1(H,µ)

as the closure of the Kolmogorov operator associated to (0.0.1). This is done regularizing first
the Yosida approximation of β through convolutions with mollifiers and solving the Kolmogorov
equations of the corresponding approximated problem through existing techniques. Then, sev-
eral regular dependence results of the corresponding approximated solutions with respect to
the initial datum are proved, allowing us to verify that the Kolmogorov operator coincides with
the infinitesimal generator of the transition semigroup on a dense subset of L1(H,µ). Finally,
a careful application of the Lumer-Phillips theorem together with the m-dissipativity of the
Kolmogorov operator yields the desired result.

In Chapter 5 we complement the analysis of semilinear singular stochastic equations with
a regularity result, which is part of the above-mentioned work [63]. We prove that if X0 and
B are more regular, then the regularity of the solution X also improves, irrespectively of the
singularity in β. For example, if A (better said, the part of A in H) is self-adjoint, the solution
has paths belonging to the domain of A in H if X0 and B, roughly speaking, take values in the
domain of A1/2. This implies that X is a strong solution in the classical analytical sense, not
just in the variational sense.

The second part of the thesis is devoted to the study of singular stochastic equations with
drift in divergence form of the type

dX − div γ(∇X) dt+ β(X) dt 3 B(X) dW, X(0) = X0, (0.0.2)

where γ and β are maximal monotone graphs on Rd and R, respectively. Such equations are
doubly-nonlinear, hence more difficult to handle than the semilinear case. The available litera-
ture on divergence-form equations as (0.0.2) is very limited and entirely focused on the classical
case where γ and β satisfy suitable coercivity assumptions and are polynomially bounded (the
so-called Leray-Lions conditions). In this setting, some qualitative results have been obtained
in the specific case γ(x) = |x|p−2x, which corresponds to the p-Laplace equation. We study
instead equations of the form (0.0.2) under no growth hypotheses on γ and β, thus widely
improving the results in the existing literature. In analogy with semilinear equations, we only
need to assume that γ and β are everywhere defined: the final well-posedness result is much
more difficult to achieve in this case, due to the fact that the double nonlinearity gives rise to
several nontrivial measurability problems, and it will follow after some intermediate steps.
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In Chapter 6 we study equation (0.0.2) in the case where γ satisfies the above-mentioned
Leray-Lions polynomial conditions and β satisfies the same assumptions considered in the case
of semilinear equations. The results presented in this chapter have been collected in the ar-
ticle [75], published on Journal of Differential Equations. Through a double approximation
analogous to the one used in Chapter 2, well-posedness is proved through monotonicity and
compactness arguments. However, when γ is multivalued, the uniqueness of the solution com-
ponents −div γ(∇X) and β(X) may not hold necessarily, and this causes in turn nontrivial
measurability problems. For these reasons, in this chapter γ is assumed to be single-valued.

In Chapter 7 we focus our attention entirely on the divergence term and we study equation
(0.0.2) in the case β = 0 and without any polynomial growth condition on γ. The results
presented here have been object of the article [67] with Carlo Marinelli, published on Stochastics
& Partial Differential Equations: Analysis and Computations. Due to the lack of coercivity
and growth conditions, the first step consists in the regularization of the problem, replacing γ
with its Yosida approximation and adding a “small” elliptic term, thus obtaining a family of
equations for which well-posedness is known to hold. As a second step, we prove that the family
of solutions to the regularized equations is compact in suitable topologies, so that, by passage
to the limit in the regularization parameters (roughly speaking), a process can be constructed
that, in a final step, is shown to actually be the unique solution to the original problem.
The fact that γ is the subdifferential of a certain convex function will be used to recover a
suitable integrability condition on ∇X. As in the previous chapter, if γ is multivalued several
measurability problems arise, as the uniqueness of − div γ(∇X) does not imply uniqueness of
γ(∇X), hence we still assume that γ is single-valued.

In Chapter 8 we give an alternative self-contained treatment to the case β = 0, including in
our analysis also multivalued operators γ. These results are collected in the short contribution
[64] with Carlo Marinelli, published on Springer Proceedings in Mathematics & Statistics. The
main idea is to work only using estimates in expectation, so that the measurability of the limit
processes is ensured by the weak compactness itself. However, in order to do so, the price to pay
is a loss of regularity of the solutions in comparison with the corresponding result in Chapter 7.

Finally, in Chapter 9 we consider equation (0.0.2) in its most general form, with no growth
conditions on the operators γ and β, also allowing γ to be multivalued. We thus obtain a
general well-posedness result that unifies and extends those proved in the previous chapters.
Such final result has been object of the joint paper [66] with Carlo Marinelli, to appear in Atti
Accademia Nazionale Lincei. Rendiconti Lincei. Matematica e Applicazioni. In this case, we
can prove that − div γ(∇X) + β(X) is unique, hence that it is measurable, but showing that
each one of them is unique (hence measurable) seems difficult, if not impossible. This is the
reason why γ was assumed to be single-valued in the previous chapters. However, we show here
that it is possible to construct two suitable limiting processes which are “sections” of γ(∇X)

and β(X), and that are indeed measurable. In other words, we prove that the uniqueness of
the limit processes (which is still not present here) is not necessary to have measurability: the
intuitive idea is that we restore uniqueness working on a suitable quotient space.

The main goal of this thesis is to give a rigorous presentation of a new general variational
approach that allows to handle stochastic evolution equations with possibly singular and rapidly
growing drift. Let us conclude this introduction with some remarks on the advantages and the
possibilities that the generalized variational approach described in this thesis offers also in
other contexts. Even if we have studied in detail the case of semilinear and divergence-form
equations, it is worth emphasizing that these techniques can be adapted also to several other
types of stochastic PDEs with singular drift terms.
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First of all, these ideas can be adapted for example to handle singular Allen-Cahn equations
with dynamic boundary conditions: in this case, the presence of a nonlinearity also on the
boundary makes the problem more complicated. Thanks to a compatibility conditions between
the nonlinearities in the interior of the domain and on the boundary, well-posedness is shown
to hold irrespectively of the growth rate of the drifts. We refer for further detail to the joint
work [69] with Carlo Orrieri.

Moreover, a similar approach has been developed to give a general treatment to the stochas-
tic “pure” Cahn-Hilliard equation with a singular double-well potential. Here, the structure of
the equation is completely different since, as it is well-known, it is of order four in space and
monotone in a suitable dual space. Nevertheless, through a combination of ad hoc a priori esti-
mates and the ideas exposed in this thesis, well-posedness is proved for any everywhere-defined
potential. We point out in this direction the contribution [76], to appear in Nonlinear analysis.

Finally, in a work in preparation, the well-posedness result for semilinear equations is ex-
tended also to the case where β is random and time-dependent, and the noise is given by a
general Hilbert-space-valued semimartingale.
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a . b There exists N > 0 such that a ≤ Nb, with a, b ∈ R

16



Chapter 1

Prerequisites

This first chapter contains some theoretical prerequisites that may be useful for the reader
throughout the thesis. For convenience, we recall some basic notions of convex and monotone
analysis, the classical variational approach to SPDEs and standard Markovianity and ergodicity
properties.

We stress that the classical results of functional analysis, probability theory and stochastic
integration in infinite dimensions are taken for granted. The reader may refer to the classical
textbooks [10,21–23,28,30,51–53,56].

1.1 Functional analysis

Let (E, ‖·‖E) be a real Banach space. The dual space is denoted by E∗ and the duality pairing
between E∗ and E is indicated with the symbol 〈·, ·〉E . The dual norm ‖·‖E∗ on E∗ is defined
as

‖·‖E∗ := sup
‖x‖E≤1

〈y, x〉E , y ∈ E∗ .

The duality mapping of E is the set-valued function J : E → 2E
∗
given by

J(x) :=
{
y ∈ E∗ : 〈y, x〉E = ‖x‖2E = ‖y‖2E∗

}
, x ∈ E .

It is well known that the set J(x) is not empty for every x ∈ E as a consequence of the Hahn-
Banach theorem. Let us collect some some useful properties in the following proposition: these
are well-known results and the proof can be found in the textbooks quoted above.

Proposition 1.1.1. If E is reflexive, then the duality mapping of E∗ is the inverse map J−1 :

E∗ → E, given by J−1(y) := {x ∈ E : y ∈ J(x)} for y ∈ E∗. If E∗ is strictly convex, then
the duality mapping J is single-valued and demicontinuous i.e. continuous from E to E∗w (the
space E∗ endowed with the weak-star topology). If E∗ is uniformly convex, then J is uniformly
continuous on every bounded subset of E.

Example 1.1.2. If E = H is a Hilbert space, the duality mapping J is the canonical Riesz
isomorphism from H to H∗. If E = Lp(Ω,F , µ), where (Ω,F , µ) is a measure space and
1 < p < +∞, the duality mapping is given by

J : Lp(Ω)→ L
p
p−1 (Ω) , J(f) := |f |p−2

Lp(Ω)f‖f‖
2−p
Lp(Ω) , f ∈ Lp(Ω) ,

17
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while if p = 1, then J is generally multivalued and given by

J(f) := {g ∈ L∞(Ω) : g ∈ sign(f) a.e. in Ω} , f ∈ L1(Ω) ,

where

sign : R→ 2R , sign(r) :=


−1 if r < 0 ,

[−1, 1] if r = 0 ,

1 if r > 0 .

1.2 Convex analysis

We recall here some basic concepts of convex analysis: the reader may refer to [10] for further
details.

Let (E, ‖·‖E) be a real Banach space and φ : E → (−∞,+∞]. We say that φ is convex,
proper or lower semicontinuous (l.s.c.) when, respectively,

• φ(ϑx+ (1− ϑ)y) ≤ ϑφ(x) + (1− ϑ)φ(y) ∀ϑ ∈ [0, 1] , ∀x, y ∈ E ,

• ∃x ∈ E : φ(x) < +∞ ,

• φ(x) ≤ lim infy→x φ(y) ∀x ∈ E .

The domain and the epigraph of φ are defined as

D(φ) := {x ∈ E : φ(x) < +∞} , epiφ := {(x, s) ∈ E × R : φ(x) ≤ s} .

The notions of domain and epigraph play an important role in convex analysis: in particular,
we have the following well-known properties.

Proposition 1.2.1. The function φ is convex if and only if epiφ is convex in E × R; φ is
proper if and only if D(φ) 6= ∅; φ is l.s.c. if and only if the set {φ ≤ s} := {x ∈ E : φ(x) ≤ s}
is closed in E for every s ∈ R. Moreover, if φ is convex, proper and l.s.c. then φ is continuous
in IntD(φ), and there exist ȳ ∈ E∗ and b ∈ R such that

φ(x) ≥ 〈ȳ, x〉E + b ∀x ∈ E .

An important role in convex analysis is played by the concept of conjugate functions and
their properties.

Definition 1.2.2. If φ is proper, the conjugate function of φ (or Legendre transform fo φ) is
defined as

φ∗ : E∗ → (−∞,+∞] , φ∗(y) := sup
x∈E
{〈y, x〉 − φ(x)} , y ∈ E∗ .

By the previous definition, the generalized Young inequality follows directly:

〈y, x〉E ≤ φ(x) + φ∗(y) ∀x ∈ E , ∀ y ∈ E∗ .

It is well-known that φ∗ is always convex and l.s.c. Furthermore, if φ is also proper and l.s.c. then
φ∗ is proper as well.

The class of convex, proper and l.s.c. functions on Banach spaces is widely studied as it
represents a useful tool in the analysis of PDEs and SPDEs of monotone type. A fundamental
notion that we must introduce is the subdifferential.
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Definition 1.2.3. Let φ be convex, proper and l.s.c. The subdifferential of φ is the multivalued
function

∂φ : E → 2E
∗
, ∂φ(x) := {y ∈ E∗ : φ(x) + 〈y, z − x〉 ≤ φ(z) ∀ z ∈ E} .

The domain and the range of the subdifferential ∂φ are defined as

D(∂φ) := {x ∈ E : ∂φ(x) 6= ∅} , R(∂φ) :=
⋃
x∈E

∂φ(x) .

The following properties are well-known.

Proposition 1.2.4. If φ is convex, proper and l.s.c. then

D(∂φ) ⊆ D(φ) densely , IntD(φ) ⊆ D(∂φ) .

Proposition 1.2.5. If E is reflexive and φ is convex, proper and l.s.c. then for every x ∈ E
and y ∈ E∗ the following three conditions are equivalent:

y ∈ ∂φ(x) , x ∈ ∂φ∗(y) , 〈y, x〉E = φ(x) + φ∗(y) .

In particular, ∂φ∗ = (∂φ)−1.

Proposition 1.2.6. If φ is weakly l.s.c. and every level set {x ∈ E : φ(x) ≤ s} is weakly
compact for every s ∈ R, there exists x̄ ∈ E such that φ(x̄) = infx∈E φ(x). In particular, this is
true if E is reflexive and φ is convex, proper, l.s.c. such that

lim
‖x‖E→+∞

φ(x) = +∞ .

The next result is very well known, but we prefer to stress it and give a possible proof as it
plays a fundamental role in the key idea of the main results presented in this thesis.

Proposition 1.2.7. If E is reflexive, then the following conditions are equivalent:

a) R(∂φ) = E∗ and ∂φ∗ is bounded on bounded sets,

b) lim‖x‖E→+∞
φ(x)
‖x‖E

= +∞ .

Proof. a)⇒ b). By the generalized Young inequality we have

φ(x) ≥ 〈y, x〉E − φ
∗(y)

for every x ∈ E and y ∈ E. Denoting by J the duality mapping of E and choosing y = ηz‖x‖−1
E

with z ∈ J(x) (for x 6= 0 and η > 0) we have

φ(x) ≥ η‖x‖E − φ
∗(ηz‖x‖−1

E ) ∀ η > 0 , ∀x ∈ E \ {0} .

Let now M > 0 be arbitrary. By definition of J and the choice of z we have

‖ηz‖x‖−1
E ‖E∗ = η‖x‖−1

E ‖z‖E∗ = η .

Hence, since the boundedness hypothesis on ∂φ∗ in a) implies the same for φ∗ by definition of
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subdifferential, we deduce that there exists Cη > 0 such that |φ∗(ηz‖x‖−1
E )| ≤ Cη, so that

φ(x) ≥ η‖x‖E − Cη ∀x ∈ E \ {0} , ∀ η > 0 .

Choosing for example η = 2M , this implies that for ‖x‖E ≥
C2M

M we have

φ(x)

‖x‖E
≥ η − Cη

‖x‖E
≥ 2M −M = M ,

from which b) follows by arbitrariness of M .
b)⇒ a). Let y ∈ E∗. The function ψy : E → (−∞,+∞] defined as

ψy(x) := φ(x)− 〈y, x〉E , x ∈ E ,

is convex, proper and l.s.c. in E. Moreover, we have that ∂ψy = ∂φ − y: indeed, for every
x ∈ E,

∂ψy(x) = {w ∈ E∗ : ψy(x) + 〈w, x̃− x〉E ≤ ψy(x̃) ∀ x̃ ∈ E}

= {w ∈ E∗ : φ(x) + 〈w + y, x̃− x〉E ≤ φ(x̃) ∀ x̃ ∈ E}

= {z − y ∈ E∗ : φ(x) + 〈z, x̃− x〉E ≤ φ(x̃) ∀ x̃ ∈ E} = ∂φ(x)− y .

Now, the superlinearity assumption on φ contained in b) implies that

lim
‖x‖→+∞

ψy(x) = +∞ .

Hence, since E is reflexive and ψy is convex, proper and l.s.c. we deduce that ψy attains its
minimum on E. Consequently, by definition of subdifferential, there is x ∈ E such that

0 ∈ ∂ψy(x) = ∂φ(x)− y , i.e. y ∈ ∂φ(x) .

We infer that R(∂φ) = E∗ by arbitrariness of y. Finally, let us show that ∂φ∗ = (∂φ)−1 is
bounded on every bounded subset of E∗. By contradiction, assume that there are two sequences
(xn)n ⊆ E, (yn)n ⊆ E∗ and a constant C0 > 0 such that yn ∈ ∂φ(xn) and ‖yn‖E∗ ≤ C0 for
every n, but ‖xn‖E → +∞ as n→∞. By definition of subdifferential we have

φ(xn)− C0‖xn‖E ≤ φ(xn)− 〈yn, xn〉 = φ(xn) + 〈yn, 0− xn〉 ≤ φ(0) ∀n ∈ N .

Letting n→∞, by b) the left hand side diverges to +∞, and this is a contradiction.

1.3 Monotone analysis

We recall here some fundamental results of monotone analysis: the reader may refer to [10] for
further details.

Let (E, ‖·‖E) be a real Banach space. We shall denote by the symbol E × E∗ the usual
cartesian product between E and E∗, and by the bracket (·, ·) the generic element in E × E∗.

A (multivalued, or set-valued) operator from E to E∗ is a function

A : E → 2E
∗
.
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First of all, let us point out that there is a bijection between the set of operators A : E → 2E
∗

and the subsets G ⊆ E×E∗. Indeed, given an operator A : E → 2E
∗
, one can define the graph

of A as
G(A) := {(x, y) ∈ E × E∗ : y ∈ A(x)} ⊆ E × E∗ ,

and, conversely, given a subset G ⊆ E ×E∗, it is a standard matter to check that the operator
A : E → 2E

∗
defined as

A(x) := {y ∈ E∗ : (x, y) ∈ G} , x ∈ E ,

satisfies G(A) = G. Consequently, as it is usually done in literature, we shall identity any
operator with its graph, and we will use the terminology graph or operator with no distinction
when convenient. Analogously, we shall use the notation y ∈ A(x) or (x, y) ∈ A equivalently
for any x ∈ E and y ∈ E∗.

The domain and the range of A : E → 2E
∗
are defined as

D(A) := {x ∈ E : A(x) 6= ∅} , R(A) :=
⋃
x∈E

A(x) .

Throughout this section, A : E → 2E
∗
is a given operator. Let us recall some well known

concepts that we will use in the sequel.

Definition 1.3.1. We say that A is monotone when

〈y1 − y2, x1 − x2〉E ≥ 0 ∀ (xi, yi) ∈ A , i = 1, 2 .

We say that A is maximal montone if it is montone and is maximal in the ordered set (E×E∗,⊆
), or, equivalently, if A is not properly contained in any monotone subset of E × E∗.

Definition 1.3.2. Let A : E → E∗ be a single-valued operator with D(A) = E. We say that A
is hemicontinuous if

A(x1 + tx2)
∗
⇀ A(x1) in E∗ as t→ 0 ∀x1, x2 ∈ E .

We say that A is demicontinuous if it is continuous from (E, ‖·‖E) to the space E∗ endowed
with the weak* topology, or, in other words, if for every x ∈ E and (xn)n ⊆ E

xn → x in E ⇒ A(xn)
∗
⇀ A(x) in E∗ .

We say that A is coercive if there is x0 ∈ E such that

lim
n→∞

〈yn, xn − x0〉
‖xn‖E

= +∞

for every sequence (xn, yn)n ⊆ A with ‖xn‖E → +∞ as n→∞.

The following properties are well-known.

Proposition 1.3.3. Let A be maximal monotone in E × E∗. Then,

• A is weakly-strongly closed, i.e for every x, y ∈ E and (xn, yn)n ⊆ A, if xn → x in E and
yn

∗
⇀ y in E∗, then y ∈ A(x);

• A−1 is maximal monotone in E∗ × E;
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• A(x) is closed and convex in E∗ for every x ∈ D(A).

The fundamental characterization of maximal monotone operators is recalled in the following
proposition.

Proposition 1.3.4. Assume that E and E∗ are reflexive and strictly convex. Then, A is
maximal montone if and only if for every λ > 0 (or, equivalently, for some λ > 0) R(A+λJ) =

E∗, where J : E → E∗ is the duality mapping of E.

Remark 1.3.5. Note that the hypothesis that E and E∗ are strictly convex can be omitted.
Indeed, by Asplund’s theorem, one may always choose a norm | · |E in E, equivalent to the
usual one ‖·‖E , such that E is strictly convex with respect to | · |E and E∗ is strictly convex
with respect to the corresponding dual norm. For this reason, we can only assume that E is
reflexive (hence so is E∗).

The previous result allows to prove several properties on maximal monotone operators in a very
direct way. We recall the most important ones.

Proposition 1.3.6. Assume that E is reflexive. If A is maximal monotone and B : E → E∗

is hemicontinuous, monotone and bounded, then A+B is maximal monotone.

Proposition 1.3.7. Assume that E is reflexive. Then,

• any monotone and hemicontinuous operator in E × E∗ is maximal monotone;

• any coercive and maximal monotone operator in E × E∗ is surjective (i.e. its range is
E∗);

• any monotone, hemicontinuous and coercive operator in E × E∗ is surjective.

One of the major issues in the study of nonlinear PDEs is to approximate maximal monotone
operators in a reasonable way, possibly preserving monotonicity and maximality. To this end,
there is canonical way to smooth out any generic maximal monotone operator, that we present
now. Let us assume that E is reflexive, strictly convex with strictly convex dual E∗, and that
A : E → 2E

∗
is maximal monotone.

For any λ > 0 and x ∈ E, the operator λA + J(· − x) is surjective thanks to the last two
propositions, so that there is xλ ∈ E such that

λA(xλ) + J(xλ − x) 3 0 .

Moreover, such xλ is unique in E: indeed, if x1
λ and x2

λ satisfy the equation above, testing by
x1
λ − x2

λ and using the monotonicity of A it is readily seen that

〈J(x1
λ − x)− J(x2

λ − x), x1
λ − x2

λ〉 ≤ 0 ,

so that, recalling the definition of J ,

(
‖x1

λ − x‖E − ‖x
2
λ − x‖E

)2 ≤ 〈J(x1
λ − x)− J(x2

λ − x), x1
λ − x2

λ〉 ≤ 0 ,

and x1
λ = x2

λ. Consequently, with this notation, the following definitions make sense.

Definition 1.3.8. Let E be reflexive and strictly convex with its dual E∗. The resolvent and
the Yosida approximation of A are defined, respectively, as

Jλ : E → E , Jλ(x) := xλ , Aλ : E → E∗ , Aλ(x) :=
1

λ
J(xλ − x) ,
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for every x ∈ E and λ > 0.

The following properties are crucial.

Proposition 1.3.9. Assume that E and E∗ are reflexive and strictly convex, and A is maximal
monotone. Then,

• Aλ : E → E∗ is montone, demicontinuous and bounded;

• Aλ(x) ∈ A(Jλ(x)) for every x ∈ E;

• ‖Aλ(x)‖E ≤ ‖A0(x)‖E, where A0(x) is the minimum-norm element in A(x);

• Jλ : E → E is bounded and

lim
λ→0+

Jλ(x) = x ∀x ∈ convD(A) ;

• Aλ(x)
∗
⇀ A0(x) for every x ∈ D(A) as λ → 0+. If E∗ is uniformly convex, then the

convergence is strong in E∗ ;

• for every x ∈ E, y ∈ E∗ and (xn, yn)n ⊆ A such that xn ⇀ x in E and yn
∗
⇀ y in E∗ as

n→∞, if
lim sup
n→∞

〈yn, xn〉E ≤ 〈y, x〉E ,

then y ∈ A(x).

Proposition 1.3.10. If E = H is a Hilbert space identified with its dual H∗, then

• Jλ = (I + λA)−1 : H → H is nonexpansive;

• Aλ : H → H is 1
λ -Lipschitz continuous.

A very large and important class of maximal montone operators is represented by the subdif-
ferentials of proper, convex and l.s.c. functions on Banach spaces. We have indeed the following
well-known result.

Proposition 1.3.11. If φ : E → (−∞,+∞] is proper, convex and l.s.c., then ∂φ : E → 2E
∗
is

maximal montone.

As the Yosida approximations provide a good regularization of an arbitrary maximal mono-
tone operator, preserving monotonicity for example, in a similar fashion there is a canonical
way of regularizing any arbitrary proper, convex and l.s.c. function, preserving fundamental
properties such as convexity. In this direction, we have the following definition.

Definition 1.3.12. Let φ : E → (−∞,+∞] be proper, convex and l.s.c. For any λ > 0 the
Moreau-Yosida regularization of φ is the proper, convex and l.s.c. function defined as

φλ : E → R , φλ(x) := inf
w∈E

{
‖x− w‖2E

2λ
+ φ(w)

}
, x ∈ E .

Note that φλ is actually well-defined and D(φλ) = E, so that in particular φλ is continuous.
Moreover, we recall the following properties.
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Proposition 1.3.13. Let E be reflexive and strictly convex with its dual E∗ and let φ : E →
(−∞,+∞] be proper, convex and l.s.c. and set A := ∂φ. Then, for any λ > 0 φλ : E → R is
convex, continuous and Gateaux differentiable with Dφλ = Aλ : E → E∗. Moreover,

φλ(x) =
‖x− Jλ(x)‖2E

2λ
+ φ(Jλ(x)) ∀x ∈ E , ∀λ > 0 ,

φ(Jλ(x)) ≤ φλ(x) ≤ φ(x) ∀x ∈ E , ∀λ > 0 ,

lim
λ→0+

φλ(x) = φ(x) ∀x ∈ E .

We shall also need a result about passing to the limit “within” maximal monotone graphs
due to Brézis, see [21, Theorem 18, p. 126].

Lemma 1.3.14. Let γ be a maximal monotone graph in R × R with D(γ) = R and 0 ∈ γ(0).
Assume that the sequences (yn)n∈N, (gn)n∈N of real-valued measurable functions on a finite
measure space (Y,A , µ) are such that yn → y µ-a.e. as n → ∞, gn ∈ γ(yn) µ-a.e. for all
n ∈ N, and (gnyn) is a bounded subset of L1(Y,A , µ). Then there exists g ∈ L1(Y,A , µ) and
a subsequence n′ such that gn′ → g weakly in L1(Y,A , µ) as n′ → ∞ and g ∈ γ(y) µ-almost
everywhere.

Finally, we recall a simplified version of an “abstract” Jensen’s inequality, due to Haase
(see [41, Theorem 3.4]), that will be used to prove a priori estimates for convex functionals of
stochastic processes.

Lemma 1.3.15. Let (Y,A , µ), (Z,B, ν) be measure spaces, E ⊂ L0(Y,A , µ) a Banach func-
tion space, and

T : E −→ L0(Z,B, ν)

a linear continuous sub-Markovian operator. Moreover, let ϕ : R → [0,∞[ be a convex lower
semicontinuous function with ϕ(0) = 0. Then

ϕ(Tf) ≤ Tϕ(f)

for all f ∈ E such that ϕ(f) ∈ E.

1.4 Continuity and compactness for spaces of vector-valued

functions

The following result by Strauss, see [79, Theorem 2.1], provides sufficient conditions for a
vector-valued function to be weakly continuous. It will be used to establish the pathwise weak
continuity of solutions to several stochastic equations. We recall that, given a Banach space
E and an interval I ⊆ R, the space of weakly continuous functions from I to E is denoted by
Cw(I;E).

Lemma 1.4.1. Let E and F be Banach spaces such that E is dense in F , E ↪→ F , and E is
reflexive. Then

L∞(0, T ;E) ∩ Cw([0, T ];F ) = Cw([0, T ];E).

The next result is a classical integration-by-parts formula, whose proof can be found, for
instance, in [8, §1.3]. Let V and H be Hilbert spaces such that V ↪→ H ↪→ V∗, and denote by
W (a, b;V) the set of functions u ∈ L2(a, b;V) such that u′ ∈ L2(a, b;V∗), where the derivative
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u′ is meant in the sense of V∗-valued distributions. The duality of V and V∗ as well as the
scalar product of H will be denoted by 〈·, ·〉.

Lemma 1.4.2. Let u ∈W (a, b;V). Then there exists ũ ∈ C([a, b];H) such that u(t) = ũ(t) for
almost all t ∈ [a, b]. Moreover, for any v ∈ W (a, b;V), 〈u, v〉 is absolutely continuous on [a, b]

and
d

dt

〈
u(t), v(t)

〉
=
〈
u′(t), v(t)

〉
+
〈
u(t), v′(t)

〉
.

The following compactness criterion is due to Simon, see [77, Corollary 4, p. 85].

Lemma 1.4.3. Let E1, E2, E3 be three Banach spaces such that E1 ↪→ E2 and E2 ↪→ E3

compactly. Assume that F is a bounded subset of Lp(0, T ;E1)∩W 1,1(0, T ;E3) for some p ≥ 1.
Then F is relatively compact in Lp(0, T ;E2).

1.5 Hilbert-Schmidt operators

Let us recall now some standard facts about linear maps. For general definitions and properties
of Hilbert-Schmidt operators we refer to [56]. We recall that the space of continuous linear
operators from a Banach space E to another one F , equipped with the strong operator topology,
is denoted by Ls(E,F ). If E and F are Hilbert spaces, the space of Hilbert-Schmidt operators
L 2(E,F ) is an operator ideal, in particular it is stable with respect to pre-composition as well
as post-composition with continuous linear operators: if H and K are also Hilbert spaces, and

H
R−−→ E

T−−→ F
L−−→ K,

with R and L continuous linear operators, then LTR ∈ L 2(H,K), with

∥∥LTR∥∥
L 2(H,K)

≤
∥∥L∥∥

L (F,K)

∥∥T∥∥
L 2(E,F )

∥∥R∥∥
L (H,E)

(see, e.g., [20, p. V.52]). It follows from these properties that, for any T ∈ L 2(E,F ), the
mapping

ΦT : Ls(F,K) −→ L 2(E,K)

L 7−→ LT

is continuous: Ln → L in Ls(F,K) implies that LnT → LT in L 2(E,K). If E and F are
separable, then L 2(E,F ) is itself a separable Hilbert space.

Lemma 1.5.1. Given two Hilbert spaces U and H, if G is a progressively measurable process
with values in L 2(U,H) such that

E
∫ T

0

∥∥G(s)
∥∥2

L 2(U,H)
ds <∞

and F is a progressively measurable H-valued process such that E(F ∗T )2 < ∞, then, for any
ε > 0,

E
(
(FG) ·W

)∗
T
≤ εE

(
F ∗T
)2

+N(ε)E
∫ T

0

∥∥G(s)
∥∥2

L 2(U,H)
ds.
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Proof. By the ideal property of Hilbert-Schmidt operators, one has

∥∥F (s)G(s)
∥∥

L 2(U,R)
≤
∥∥F (s)

∥∥
H

∥∥G(s)
∥∥

L 2(U,H)

≤ (F ∗T )
∥∥G(s)

∥∥
L 2(U,H)

for all s ∈ [0, T ], hence∫ T

0

∥∥F (s)G(s)
∥∥2

L 2(U,R)
ds ≤ (F ∗T )2

∫ T

0

∥∥G(s)
∥∥2

L 2(U,H)
ds,

where the right-hand side is finite P-a.s. thanks to the assumptions on F and G. Then (FG) ·W
is a local martingale, for which Davis’ inequality yields

E
(
(FG) ·W

)∗
T
. E

[
(FG) ·W, (FG) ·W

]1/2
T

= E
(∫ T

0

∥∥F (s)G(s)
∥∥2

L 2(U,R)
ds

)1/2

≤ E(F ∗T )

(∫ T

0

∥∥G(s)
∥∥2

L 2(U,H)
ds

)1/2

.

The proof is finished invoking the elementary inequality

ab ≤ 1

2

(
εa2 +

1

ε
b2
)

∀a, b ∈ R.

1.6 Classical variational approach to SPDEs

Let us recall the classical variational approach to stochastic evolution equations: the reader
may refer to [56].

Given a positive real number T , let (Ω,F ,P) be a probability space endowed with a filtration
(Ft)t∈[0,T ] which is saturated and right-continuous. Let us consider also a separable Hilbert
space H and a separable Banach space V which is continuously and densely embedded in H.
Then, if we identify H with its dual H∗ through the Riesz isomorphism, we have the following
dense and continuous inclusions:

V ↪→ H ↪→ V ∗ .

Let W = (W (t))t∈[0,T ] be a cylindrical Wiener process on a separable Hilbert space U , and
consider some operators

A : Ω× [0, T ]× V → V ∗ , B : Ω× [0, T ]× V → L 2(U,H)

which are progressively measurable, i.e. the restrictions of A and B to Ω× [0, t]× V are Ft ⊗
B([0, t])⊗B(V )-measurable for every t ∈ [0, T ].

In this setting, we are interested in solving stochastic evolution equations in the following
variational form:

dX(t) +A(t,X(t)) dt = B(t,X(t)) dW (t), X(0) = X0.

The classical variational approach to this type of stochastic evolution equations requires the
following assumption on A and B.
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(i) (Hemicontinuity). For every x, y, z ∈ V and (ω, t) ∈ Ω× [0, T ], the map

s 7→ 〈A(ω, t, x+ sy), w〉, s ∈ R,

is continuous.

(ii) (Weak monotonicity). There exists a constant k > 0 such that, for every x, y ∈ V and
(ω, t) ∈ Ω× [0, T ],

〈A(ω, t, x)−A(ω, t, y), x− y〉 − 1

2
‖B(ω, t, x)−B(ω, t, y)‖2L 2(U,H)

≥ −k‖x− y‖2.

(iii) (Weak coercivity). There exist constants k1, k2 > 0, p > 1 and an adapted process
f ∈ L1(Ω× (0, T )) such that, for every x ∈ V and (ω, t) ∈ Ω× [0, T ],

〈A(ω, t, x), x〉 − 1

2
‖B(ω, t, x)‖2L 2(U,H) ≥ k1‖x‖pV − k2‖x‖2 − f(ω, t).

(iv) (Weak boundedness). There exists a constant k3 > 0 and an adapted process g ∈ L1(Ω×
(0, T )) such that, for every x ∈ V and (ω, t) ∈ Ω× [0, T ],

‖A(ω, t, x)‖
p
p−1

V ∗ ≤ k3‖x‖pV + g(ω, t).

In this setting, we have the following main results.

Proposition 1.6.1. Let A and B satisfy conditions (i)–(iv) and let X0 ∈ L2(Ω,F0,P;H).
Then, there exists a unique adapted process

X ∈ L2(Ω;C([0, T ];H)) ∩ Lp(Ω× (0, T );V )

such that

X(t) +

∫ t

0

A(s,X(s)) ds = X0 +

∫ t

0

B(s,X(s)) dW (s) ∀ t ∈ [0, T ], P-a.s.

Proposition 1.6.2. Let Y0 ∈ L2(Ω,F0,P;H), p > 1 and Z,G be progressively measurable
processes such that

Z ∈ L
p
p−1 (Ω× (0, T );V ∗), G ∈ L2(Ω;L2(0, T ); L 2(U,H)).

If a process Y satysfies

Y ∈ Lp(Ω× (0, T );V ), Y (t) ∈ L2(Ω;H) for a.e. t ∈ (0, T )

and

Y (t) +

∫ t

0

Z(s) ds = Y0 +

∫ t

0

G(s) dW (s) ∀ t ∈ [0, T ], P-a.s.,
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then Y ∈ L2(Ω;C([0, T ];H)) and the following Itô’s formula holds:

1

2
‖Y (t)‖2 +

∫ t

0

〈Z(s), Y (s)〉 ds =
1

2
‖Y0‖2 +

1

2

∫ t

0

‖G(s)‖2L 2(U,H) ds

+

∫ t

0

Y (s)G(s) dW (s) ∀ t ∈ [0, T ], P-a.s.

1.7 Tightness, Markovian semigroups, ergodicity

Let (E,E ) be a measurable space. The set of probability measures on (E,E ) is denoted by
M1(E) and endowed with the topology σ(M1(E), Cb(E)), which we shall call the narrow topol-
ogy. We recall that a subset N of M1(E) is called (uniformly) tight if for every ε > 0 there
exists a compact set Kε such that µ(E \Kε) < ε for all µ ∈ N . The following characterization
of relative compactness of sets of probability measures is classical (see, e.g., [19, §5.5]).

Theorem 1.7.1 (Prokhorov). Let E be a complete separable metric space. A subset of M1(E)

is relatively compact in the narrow topology if and only if it is tight.

A family P = (Pt)t≥0 of Markovian kernels on a measure space (E,E ) such that Pt+s = PtPs

for all t, s ≥ 0 is called a Markovian semigroup. We recall that a Markovian kernel on (E,E )

is a map K : E × E → [0, 1] such that (i) x 7→ K(x,A) is E -measurable for each A ∈ E ,
(ii) A 7→ K(x,A) is a measure on E for each x ∈ E, and (iii) K(x,E) = 1 for each x ∈ E.
A Markovian kernel K on (E,E ) can naturally be extended to the space bE of E -measurable
bounded functions by the prescription

f 7−→ Kf :=

∫
E

f(y)K(·, dy).

Then K : bE → bE is a linear, bounded, positive, σ-order continuous map. Similarly, K can be
extended to positive measures on E setting

µ 7−→ µK(·) :=

∫
E

K(x, ·)µ(dx).

The notations Ptf and µPt, with f E -measurable bounded or positive function and µ positive
measure on E , are hence to be understood in this sense. We shall also assume that P0 = I and
that (t, x) 7→ Ptf(x) is B(R+)⊗ E -measurable.

A probability measure µ on E is said to be an invariant measure for the Markovian semigroup
P if ∫

E

Ptf dµ =

∫
E

f dµ ∀f ∈ bE , ∀t ≥ 0,

or, equivalently, if µPt = µ for all t ≥ 0. If P admits an invariant measure µ, then it can be
extended to a Markovian semigroup on Lp(E,µ), for every p ≥ 1. The invariant measure µ is
said to be ergodic for P if

lim
t→∞

1

t

∫ t

0

Psf ds =

∫
E

f dµ in L2(E,µ) ∀f ∈ L2(E,µ),

and strongly mixing if

lim
t→+∞

Ptf =

∫
E

f dµ in L2(E,µ) ∀f ∈ L2(E,µ).
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We recall the following classical fact on the structure of the set of ergodic measures: the
ergodic invariant measures for P are the extremal points of the set of its invariant measures.
In particular, if P admits a unique invariant measure µ, then µ is ergodic. In order to state a
criterion for the existence of invariant measures, let us introduce, for any probability measure
ν ∈M1(E), the family of averaged measures (µνt )t≥0 defined as

µνt :=
1

t

∫ t

0

νPs ds.

Theorem 1.7.2 (Krylov and Bogoliubov). Let (Pt)t≥0 be a (time-homogeneous) Markovian
transition semigroup on a complete separable metric space E. Assume that

(a) (Pt)t≥0 has the Feller property, i.e. that it maps Cb(E) into Cb(E);

(b) there exists ν ∈M1(E) such that the (µνt )t≥0 ⊂M1(E) is tight.

Then the set of invariant measures for (Pt)t≥0 is non-empty.

Note that if x ∈ E and ν is the Dirac measure at x, then νPs = Ps(x, ·). Then condition
(b) is satisfied if there exists x ∈ E such that the family of measures(

1

t

∫ t

0

Ps(x, ·) ds
)
t≥0

is tight. This latter condition is satisfied, for example, if (Pt(x, ·))t≥0 ⊂M1(E) is tight.
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Singular semilinear equations:
global well-posedness

In this chapter, we prove global well-posedness for a class of dissipative semilinear stochastic
evolution equations with singular drift and multiplicative Wiener noise. In particular, the
nonlinear term in the drift is the superposition operator associated to a maximal monotone
graph everywhere defined on the real line, on which neither continuity nor growth assumptions
are imposed. The hypotheses on the diffusion coefficient are also very general, in the sense that
the noise does not need to take values in spaces of continuous, or bounded, functions in space
and time. Our approach combines variational techniques with a priori estimates, both pathwise
and in expectation, on solutions to regularized equations.

The results presented in this chapter are part of a joint work with Carlo Marinelli, to apper
on Annals of Probability: see [65].

2.1 The problem: literature and main goals

Our aim is to establish existence and uniqueness of solutions, and their continuous dependence
on the initial datum, to the following semilinear stochastic evolution equation on L2(D), with
D ⊂ Rd a bounded domain:

dX(t) +AX(t) dt+ β(X(t)) dt 3 B(t,X(t)) dW (t), X(0) = X0, (2.1.1)

where A is a linear maximal monotone operator on L2(D) associated to a coercive Markovian
bilinear form, β is a maximal monotone graph in R×R defined everywhere, W is a cylindrical
Wiener process on a separable Hilbert space U , and B takes values in the space of Hilbert-
Schmidt operators from U to L2(D) and satisfies suitable Lipschitz continuity assumptions.
Precise assumptions on the data of the problem and on the definition of solution are given
below. Since any increasing function β0 : R → R can be extended in a canonical way to a
maximal monotone graph of R × R by “filling the gaps” (i.e., setting β(x) := [β0(x−), β0(x+)]

for all x ∈ R, where β(x−) and β(x+) denote the limit from the left and from the right of β0 at
x, respectively), Equation (2.1.1) can be interpreted as a formulation of the stochastic evolution
equation

dX(t) +AX(t) dt+ β0(X(t)) dt = B(t,X(t)) dW (t), X(0) = X0.

31
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Semilinear equations with singular and rapidly growing drift appear, for instance, in mathemat-
ical models of Euclidean quantum field theory (see, e.g., [1] for an equation with exponentially
growing drift), and, most importantly for us, cannot be directly treated with the existing
methods, hence are interesting from a purely mathematical perspective as well. In particular,
the variational approach (see [46,72]) works only assuming that β satisfies suitable polynomial
growth conditions depending on the dimension n of the underlying Euclidean space (see also [56,
pp. 137-ff.] for improved sufficient conditions, still dependent on the dimension), whereas most
available results relying on the semigroup approach require just polynomial growth, although
usually compensated by rather stringent hypotheses on the noise (see, e.g., [27, 28]). Under
natural assumptions on the noise, well-posedness in Lp spaces is proven, with different meth-
ods, in [47], under the further assumption that β is locally Lipschitz continuous, and in [58].
A common basis for both works is the semigroup approach on UMD Banach spaces. A special
mention deserves the short note [9], where the author considers problem (2.1.1) with A = −∆

and B independent of X, and proves existence of a pathwise solution∗ assuming that the so-
lution Z to the equation with β ≡ 0 (i.e., the stochastic convolution) is jointly continuous in
space and time. Furthermore, assuming that

E
∫ T

0

∫
D

j(Z) <∞,

where j is a primitive of β, he obtains that the pathwise solution may admit a version that can
be considered as a generalized mild solution to (2.1.1). This is the only result we are aware
of about existence of solutions to stochastic semilinear parabolic equations without growth
assumptions on the drift in any dimension.

It is well known that a well-posedness theory for stochastic evolution equations on a Hilbert
space H of the type

du+Audt 3 B(u) dW, u(0) = u0,

with A an arbitrary (nonlinear) maximal monotone operator, is, in full generality, not yet
available, even if B does not depend on u and is a fixed non-random operator. However, a
satisfactory treatment in the finite-dimensional case has been given by Pardoux and Răşcanu
in [73, §4.2], where the authors consider stochastic differential equations in Rn of the type

dXt +A(Xt) dt+ F (t,Xt) dt 3 G(t,Xt) dBt,

where A is a (multivalued) maximal monotone operator whose domain has non-emtpy interior,
B is a k-dimensional Wiener process, G satisfies standard Lipschitz continuity assumptions,
and F (t, ·) is continuous and monotone (not necessarily Lipschitz continuous). While the as-
sumptions on A are not restrictive in finite dimensions, unbounded linear operators generating
contraction semigroups in infinite-dimensional spaces, as in our case, have dense domain, whose
interior is hence empty.

On the other hand, in the deterministic setting complete results have long been known for
equations of the type

du

dt
+Au 3 f, u(0) = u0,

even in the much more general setting where A is a (multivalued) m-accretive operator on a
Banach space E and f ∈ L1(0, T ;E) (see, e.g., [8, 22]). Although a solution to the general

∗To avoid misunderstandings, we should clarify once and for all that with this expression we do not refer to
a solution in the sense of rough paths, but simply “with ω fixed”.
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stochastic problem does not currently seem within reach, significant results have been obtained
in special cases: apart of the above-mentioned works on semilinear equations, well-posedness for
the stochastic porous media equation under fairly general assumptions is known (see [12], where
the same hypotheses on β imposed here are used and the noise is assumed to satisfy suitable
boundedness conditions, and [13] for an extension to jump noise). Moreover, the variational
theory by Pardoux, Krylov and Rozovskĭı is essentially as complete as the corresponding de-
terministic theory. As mentioned above, however, large classes of maximal monotone operators
on H = L2(D) cannot be cast in the variational framework.

The main contribution of this chapter is a well-posedness result for (2.1.1) under the most
general conditions known so far, to the best of our knowledge. These conditions are quite sharp
for A, but not for β. In particular, the conditions on A are close to those needed to show that
A+ β(·) is maximal monotone on L2(D), but the hypothesis that β is finite on the whole real
line is not needed in the deterministic theory. Finally, the conditions on B are the natural ones
to have function-valued noise, and are in this sense as general as possible. Equations with white
noise in space and time, that have received much attention lately, are not within the scope of
our approach (nor of others, most likely, under such general conditions on β).

Let us now briefly outline the structure of the chapter and the main ideas of the proof.
Section 2.2 contains the statement of the main well-posedness result, and in Section 2.3 we dis-
cuss the hypotheses on the drift and diffusion coefficients, providing corresponding examples.
In Section 2.4 we consider a version of equation (2.1.1) with additive noise satisfying a strong
boundedness assumption. Using the Yosida regularization of β, we obtain a family of approxi-
mating equations with Lipschitz coefficients, which can be treated by the standard variational
theory. The solutions to such equations are shown to satisfy suitable uniform estimates, both
pathwise and in expectation. Such estimates allow us to obtain key regularity and integrability
properties for the solution to the equation with additive bounded noise. A crucial role is played
by Simon’s compactness criterion, which is applied pathwise, and by compactness criteria in
L1 spaces, applied both pathwise and in expectation. It is, in essence, precisely this interplay
between pathwise and “averaged” arguments that permits to avoid many restrictive hypotheses
of the existing literature. An abstract version of Jensen’s inequality for positive operators,
combined with the lower semicontinuity of convex integrals, is also an essential tool. In Sec-
tion 2.5 we prove well-posedness for equations with additive noise removing the boundedness
assumption of the previous section. This is accomplished by a further regularization scheme,
this time on the diffusion operator B, and by a priori estimates for solutions to the regularized
equations. A key role is played again by a combination of estimates and passages to the limit
both pathwise and in expectation. We also prove continuity of the solution map with respect
to the initial datum and the diffusion coefficient, by means of Itô’s formula and regularizations,
for which smoothing properties of the resolvent of A are essential. Finally, in Section 2.6 we
obtain well-posedness in the general case by a fixed-point argument, using the Lipschitz conti-
nuity of B only. Introducing weighted spaces of stochastic processes, we obtain directly global
well-posedness, thus avoiding a tedious construction by “patching” local solutions.

Some tools and reasonings used in this chapter are obviously not new: weak compactness
arguments in L1, for instance, are extensively used in the literature on partial differential equa-
tions (see, e.g., [17, 21] and references therein), as well as, to a lesser extent, in the stochastic
setting (cf. [9,12,60]). However, even where similarities are present, our arguments are consider-
ably streamlined and more general. The pathwise application of Simon’s compactness criterion,
made possible by a construction based on the variational framework, seems to be new, at least
in the context of stochastic evolution equations. It is in fact somewhat surprising that the
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variational setting, which notoriously fails when dealing with semilinear equations, is at a basis
of an approach that leads to well-posedness of those same equations, even with singular and
rapidly increasing drift.

2.2 Main results

In this section, after fixing notation and conventions used throughout the chapter, we state our
main result.

2.2.1 Notation and assumptions

All functional spaces will be defined on a smooth bounded domain D ⊂ Rd. We shall denote
L2(D) by H and its inner product by 〈·, ·〉.

All random quantities will be defined on a fixed probability space (Ω,F ,P) endowed with
a right-continuous and saturated filtration F := (Ft)t∈[0,T ], where T is a positive number. All
expressions involving random quantities are meant to hold P-almost surely, unless otherwise
stated. With W we shall denote a cylindrical Wiener process on a separable Hilbert space U ,
that may coincide with H, but does not have to.

The following assumptions on the data of the problem are assumed to be in force throughout
and will not always be recalled explicitly.

Assumption A. Let V be Hilbert space that is densely, continuously, and compactly embedded
in H. The linear operator A belongs to L (V, V ∗) and satisfies the following properties:

(i) there exists C > 0 such that

〈Av, v〉 ≥ C‖v‖2V ∀v ∈ V ;

(ii) the part of A in H admits a unique m-accretive extension A1 in L1(D);

(iii) the resolvent
(
(I + λA1)−1

)
λ>0

is sub-Markovian;

(iv) there exists m ∈ N such that

∥∥(I +A1)−m
∥∥

L (L1(D),L∞(D))
<∞.

Here we have used 〈·, ·〉 also to denote the duality pairing of V and V ∗, which is compatible
with the scalar product in H. In fact, identifying H with its dual, one has the so-called Gel'fand
triple

V ↪→ H ↪→ V ∗,

where both embeddings are dense (see, e.g., [50, §2.9]). Moreover, we recall that the part of
A in H is the operator A2 on H defined as D(A2) := {x ∈ V : Au ∈ H} and A2x := Ax for
all x ∈ D(A2). If one identifies the operators with their graphs, this is equivalent to setting
A2 := A ∩ (V × H). We shall often refer to condition (i) as the coercivity of A. The sub-
Markovianity condition (iii) amounts to saying that, for all functions f ∈ L1(D) such that
0 ≤ f ≤ 1, one has

0 ≤ (I +A1)−1f ≤ 1.

In other words, (I +A1)−1 is positivity preserving and contracting in L∞(D).
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From Section 2.4 onwards, we shall often use the symbol A to denote also A1 and A2.

Let us observe that if A is the negative Laplacian with Dirichlet boundary conditions, all
hypotheses are met. Much wider classes of operators satisfying hypotheses (i)-(iv) will be given
below.

Assumption B. β is a maximal monotone graph of R×R such that D(β) = R, 0 ∈ β(0), and
its potential j is even.

We recall that the potential j of β is the convex, proper, lower semicontinuous function j : R→
R+, with j(0) = 0, such that ∂j = β, where ∂ stands for the subdifferential in the sense of
convex analysis.

Assumption C. The diffusion coefficient

B : Ω× [0, T ]×H → L 2(U,H)

is Lipschitz continuous and grows linearly in its third argument, uniformly over Ω× [0, T ], i.e.,
there exist constants LB , NB such that

∥∥B(ω, t, x)−B(ω, t, y)
∥∥

L 2(U,H)
≤ LB‖x− y‖H ,∥∥B(ω, t, x)

∥∥
L 2(U,H)

≤ NB
(
1 + ‖x‖H

)
for all ω ∈ Ω, t ∈ [0, T ], and x, y ∈ H. Moreover, B(·, ·, x) is progressively measurable for all
x ∈ H, i.e., for all t ∈ [0, T ], the map (ω, s) 7→ B(ω, s, x) from Ω × [0, t], endowed with the σ-
algebra Ft ⊗B([0, t]), to L 2(U,H), endowed with its Borel σ-algebra, is strongly measurable.
We recall that, since U and H are separable, the space of Hilbert-Schmidt operators L 2(U,H)

is itself a separable Hilbert space, hence strong and weak measurability coincide. Whenever we
deal with maps with values in separable Banach spaces, since strong and weak measurability
coincide, we shall drop the qualifier “strong”.

2.2.2 The well-posedness result

Definition 2.2.1. Let X0 be an H-valued F0-measurable random variable. A strong solution
to the stochastic equation (2.1.1) is a pair (X, ξ) satisfying the following properties:

(i) X is a measurable adapted V -valued process such that AX ∈ L1(0, T ;V ∗) and B(·, X) ∈
L2(0, T ; L 2(U,H));

(ii) ξ is a measurable adapted L1(D)-valued process such that ξ ∈ L1(0, T ;L1(D)) and ξ ∈
β(X) almost everywhere in (0, T )×D;

(iii) one has, as an equality in L1(D) ∩ V ∗,

X(t) +

∫ t

0

AX(s) ds+

∫ t

0

ξ(s) ds = X0 +

∫ t

0

B(s,X(s)) dW (s)

for all t ∈ [0, T ].

Note that L1(D) ∩ V ∗ is not empty because D has finite Lebesgue measure, hence, for
instance, H is contained in both spaces.

Let us denote by J the set of pairs (φ, ζ), where φ and ζ are measurable adapted processes
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with values in H and L1(D), respectively, such that

φ ∈ L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V )),

ζ ∈ L1(Ω× [0, T ]×D),

j(φ) + j∗(ζ) ∈ L1(Ω× [0, T ]×D).

We shall say that (2.1.1) is well posed in J if there exists a unique process in J which is
a strong solution and such that the solution map X0 7→ X is continuous from L2(Ω;H) to
L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V )).

The central result of this chapter is the following.

Theorem 2.2.2. Let X0 ∈ L2(Ω,F0,P;H). Then (2.1.1) is well-posed in J . Moreover, the
solution map X0 7→ X is Lipschitz continuous and the paths of X are weakly continuous with
values in H.

Let us stress the fact that the more general problem of unconditional well-posedness (i.e.
without the extra condition that strong solutions belong to J ) remains open and is beyond
the scope of the techniques used in this chapter. In particular, we can only prove uniqueness
of solutions within J .

2.3 Examples and remarks

Some comments and examples on the assumptions on the data of the problem are in order. In
particular, the hypotheses on A deserve special attention. The coercivity condition 〈Av, v〉 ≥
C‖v‖2V for all v ∈ V is equivalent to A ∈ L (V, V ∗) being determined by a bounded V -elliptic†

bilinear form E : V × V → R, i.e. such that

|E (u, v)| . ‖u‖V ‖v‖V , E (v, v) ≥ C‖v‖2V ∀u, v ∈ V.

This is an immediate consequence of the Lax-Milgram theorem, which also implies that A is an
isomorphism between V and V ∗ (see, e.g., [7, §5.2] or [70, Lemma 1.3]).

The bilinear form E can also be seen as a closed unbounded form on H with domain V .
This defines a (unique) linear m-accretive operator A2 on H, that is nothing else than the part
of A in H (see, e.g., [7, §5.3] or [70, p. 34]). Conversely, given a positive closed bilinear form E

on H with dense domain D(E ) satisfying the strong sector condition‡

|E (u, v)| . E (u, u)1/2E (v, v)1/2 ∀u, v ∈ D(E ),

and such that E (u, u) > 0 for all u ∈ D(E ), u 6= 0, setting V := D(E ) with inner product given
by the symmetric part E s of E , that is

E s(u, v) :=
1

2

(
E (u, v) + E (v, u)

)
, u, v ∈ D(E ),

there is a unique linear operator A ∈ L (V, V ∗) such that E (u, v) = 〈Au, v〉 for all u, v ∈ V .
This amounts to trivial verifications, since, obviously, E (u, u) = E s(u, u) for all u ∈ D(E ). As
a particular case, let A′ be a linear positive self-adjoint (unbounded) operator H such that

†We prefer this terminology, taken from [50], over the currently more common “V -coercive”, to avoid possible
confusion with related terminology used in the theory of Dirichlet forms, where coercivity is meant in a somewhat
different sense (cf. [57, Definition 2.4, p. 16]).

‡Throughout this section we shall follow the terminology on Dirichlet forms of [57].
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〈A′u, u〉 > 0 for all u ∈ D(A), u 6= 0. Then A′ admits a square root
√
A′, which is in turn a

linear positive self-adjoint operator on H. One can then define the Hilbert space V := D(
√
A′),

endowed with the inner product

〈u, v〉V :=
〈√

A′u,
√
A′v
〉
,

and the symmetric bounded bilinear form E : V × V → R,

E (u, v) :=
〈√

A′u,
√
A′v
〉
, u, v ∈ V,

which is obviously V -elliptic. By a theorem of Kato ( [44, Theorem 2.23, p. 331]), there is in
fact a bijective correspondence between linear positive self-adjoint operators on H and positive
densely-defined closed symmetric bilinear forms. More generally, if A′ is a linear (unbounded)
m-accretive operator on H such that

∣∣〈A′u, v〉∣∣ . 〈A′u, u〉1/2〈A′v, v〉1/2 ∀u, v ∈ D(A′),

and 〈A′u, u〉 > 0 for all u ∈ D(A′), u 6= 0, then there exists a (unique) closed V -elliptic bilinear
form E that determines an operator A ∈ L (V, V ∗), with V := D(E ) and 〈·, ·〉V := E s, such
that A′ is the part on H of A. This follows, for instance, by [57, p. 27].

Note, however, that in the previous examples V may not be continuously embedded in H,
unless E satisfies a Poincaré inequality, i.e. ‖u‖2H . E (u, u) for all u ∈ D(E ) (as is the case, for
instance, for the Dirichlet Laplacian). This limitation is resolved by the following important
observation: our well-posedness result continues to hold if we assume, in place of hypothesis
(i), the following weaker one:

(i’) there exist constants C1 > 0, C2 ∈ R such that

〈Av, v〉 ≥ C1‖v‖2V − C2‖v‖2H ∀v ∈ V,

which is clearly equivalent to assuming that Ã := A+C2I is V -elliptic. Under this assumption,
equation (2.1.1) can equivalently be written as

dX(t) + ÃX(t) dt+ β(X(t)) dt = C2X(t) dt+B(t,X(t)) dW (t).

The only added complication in the proofs to follow would be the appearance of functional
spaces with an exponential weight in time, very much as in the proof of Proposition 2.5.2
below. An analogous argument, in a slightly different context, is developed in detail in [58].
This seemingly trivial observation allows to considerably extend the class of operators A that
can be treated. For instance, one has the following criterion.

Lemma 2.3.1. A coercive closed form E on H uniquely determines an operator A satisfying
(i’).

Proof. The hypothesis of the Lemma means that E is a densely defined bilinear form such that
its symmetric part E s is closed and E satisfies the weak sector condition

∣∣E1(u, v)
∣∣ . E1(u, u)1/2E1(v, v)1/2 ∀u, v ∈ D(E ),

where E1 := E + I. In other words, E satisfies the weak sector condition if the shifted form
E +I satisfies the strong sector condition. Therefore, adapting in the obvious way an argument
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used above, it is enough to take V := D(E ) with inner product 〈·, ·〉V := 〈·, ·〉H + E s to obtain
that the generator A2 of E can be (uniquely) extended to an operator A ∈ L (V, V ∗) satisfying
(i’) with C1 = C2 = 1.

Note that in all the above constructions one has V ↪→ H densely and continuously (under
appropriate assumptions), but the embedding is not necessarily compact. The latter condition
has to be proved depending on the situation at hand. For a general compactness criterion in
terms of ultracontractivity properties, see Proposition 2.3.3 below.

As regards condition (ii), the simplest sufficient condition ensuring that A2 admits an m-
accretive extension A1 in L1(D) is that −A2 is the generator of a symmetric Markovian semi-
group of contractions S2 onH, or, equivalently, that A2 is positive self-adjoint with a Markovian
resolvent. In fact, this implies that, for any p ∈ [1,∞[, there exists a (unique) symmetric Marko-
vian semigroup of contractions Sp on Lp(D) such that all Sp, 1 ≤ p <∞, are consistent, hence
the corresponding negative generators Ap coincide on the intersections of their domains (see,
e.g., [32, Theorem 1.4.1]). In the general case, i.e. if A2 is not self-adjoint, the same conclusion
remains true if the semigroup S2 and its adjoint S∗2 are both sub-Markovian, or, equivalently, if
S2 is sub-Markovian and L1-contracting (cf. [7, Lemma 10.13 and Theorem 10.15] or [70, Corol-
lary 2.16]). In particular, if A2 is the generator of a Dirichlet form on H, these conclusions
hold. Moreover, since the resolvent of A1 is sub-Markovian if and only if the resolvent of A2 is
sub-Markovian, we obtain the following complement to the previous Lemma.

Lemma 2.3.2. A Dirichlet form E on H uniquely determines an operator A satisfying (i’),
(ii), and (iii).

Without assuming that S∗2 is sub-Markovian (which is the case, for instance, if A is de-
termined by a semi-Dirichlet form on H, so that (i’) and (iii) only are satisfied), we note that
D(A2) is dense in L1(D), and the image of I+A2 is dense in L1(D): the former assertion follows
by D(A2) ⊂ L2(D) densely and L2(D) ⊂ L1(D) densely and continuously. Moreover, since A2

generates a contraction semigroup in L2(D), the Lumer-Phillips theorem (see, e.g., [36, p. 83])
implies that R(I + A2) = L2(D), hence R(I + A2) is dense in L1(D). The Lumer-Phillips
theorem again guarantees that the closure of A2 in L1(D) is m-accretive if A2 is accretive in
L1(D). The latter property is often not difficult to verify in concrete examples.

The most delicate condition is (iv), i.e. the ultracontractivity of suitable powers of the
resolvent of A1. If A2 is self-adjoint, a simple duality arguments shows that, for any t ≥ 0,

∥∥S2(t)
∥∥

L (L1,L∞)
≤
∥∥S2(t/2)

∥∥2

L (L2,L∞)
.

Sufficient conditions for S2(t) to be bounded from L2(D) to L∞(D) are known in terms, for
instance, of logarithmic Sobolev inequalities, Sobolev inequalities, and Nash inequalities (see,
e.g., [32, Chapter 2] and [70, Chapter 6]). The non-symmetric case is more difficult, but
ultracontractivity estimates are known in many special cases, such as in the examples that we
are going to discuss next. Ultracontractivity estimates for powers of the resolvent can then be
obtained from estimates for the semigroup, as explained below. The following result (probably
known, but for which we could not find a reference) shows that hypothesis (iv) guarantees that
the embedding D(E ) ↪→ H is compact, thus answering a question left open above.

Proposition 2.3.3. Let A2 be the generator of a closed coercive form E in H. If there exists
m ∈ N such that the m-th power of the resolvent of A2 is bounded from L2(D) to L∞(D), then
D(E ) is compactly embedded in H.
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Proof. Let (uk)k be a bounded sequence in D(E ), i.e., there exists a constant N such that

‖uk‖2H + E s(uk, uk) < N ∀k ∈ N.

In particular, there exists a subsequence of k, denoted by the same symbol, such that uk
converges weakly to u in H as k → ∞. The goal is to show that the convergence is in fact
strong. Since D(Am2 ) ⊂ L∞(D) by assumption, it follows by a result of Arendt and Bukhvalov,
see [6, Theorem 4.16(b)], that the resolvent Jλ := (I + λA2)−1 is a compact operator on H for
all λ > 0. The triangle inequality yields

‖uk − u‖ ≤ ‖uk − Jλuk‖+ ‖Jλuk − Jλu‖+ ‖Jλu− u‖,

where the second term on the right-hand side converges to zero as k → ∞ by compactness of
Jλ. Moreover, since Jλ → I in Ls(H,H) as λ → 0, the third term on the right-hand side can
be made arbitrarily small. Therefore we only have to bound the first term on the right-hand
side: note that I − Jλ = λAλ, where Aλ, λ > 0, stands for the Yosida approximation of A2,
hence ‖uk − Jλuk‖ = λ‖Aλuk‖, and

〈Aλuk, uk〉 = 〈Aλuk, uk − Jλuk + Jλuk〉 = λ‖Aλuk‖2 + 〈Aλuk, Jλuk〉

≥ λ‖Aλuk‖2,

where we have used, in the last step, the identity Aλ = A2Jλ and the monotonicity of A2.
Since, by [57, Lemma 2.11(iii), p. 20], one has

∣∣E (λ)
1 (u, v)

∣∣ . E1(u, u)1/2E
(λ)
1 (v, v)1/2 ∀u ∈ D(E ), v ∈ H,

where E (λ)(u, v) := 〈Aλu, v〉, u, v ∈ H, and the implicit constant depends only on E , it follows
that

E
(λ)
1 (u, u) . E1(u, u) ∀u ∈ D(E ),

hence
‖uk − Jλuk‖2 = λ2‖Aλuk‖2 ≤ λ〈Aλuk, uk〉 = λE

(λ)
1 (uk, uk) . λE1(uk, uk).

By the assumptions on the sequence (uk),

E1(uk, uk) = ‖uk‖2 + E (uk, uk) = ‖uk‖2 + E s(uk, uk)

is bounded uniformely over k, hence ‖uk − Jλuk‖2 can be made arbitrarily small as well, thus
proving the claim.

Let us now consider some concrete examples: we first consider the case of A being a suitable
“realization” of a second-order differential operator, and then of a nonlocal operator.

Example 2.3.4 (Symmetric divergence-form operators). Consider the bilinear form E on V :=

H1
0 (D) defined by

E (u, v) :=
〈
a∇u,∇v

〉
=

n∑
j,k=1

ajk∂ju∂kv,

where a = (ajk) with ajk ∈ L∞(D) for all j, k, and ajk = akj . The (formal) differential operator
associated to E is

A0u := −div
(
a∇u

)
, u ∈ C∞c (D),



40 Chapter 2

where C∞c (D) stands for the set of infinitely differentiable functions with compact support
contained in D. The form E is V -elliptic if there exists C > 0 such that 〈aξ, ξ〉 ≥ C|ξ|2 for all
ξ ∈ Rd. Moreover, if there exists a positive function µ ∈ C(D) such that 〈aξ, ξ〉 ≤ µ(ξ)|ξ|2 for
all ξ ∈ Rd, then A2 has sub-Markovian resolvent (details can be found, e.g., in [32, Chapter 1]
and, in much more generality, in [57, Chapter II]). Ultracontractivity estimates follow as a
special case of the corresponding estimates for non-symmetric forms treated next.

Example 2.3.5 (Non-symmetric divergence operators with lower-order terms). Consider the
differential operator on smooth functions

A0u := −div(a∇u) + b · ∇u− div(cu) + a0u

= −
n∑

j,k=1

∂j(ajk∂ku) +

n∑
j=1

(
bj∂ju− ∂j(cju)

)
+ a0u,

where ajk, bj , cj , a0 ∈ L∞(D), and the associated (non-symmetric) bilinear form E on V :=

H1
0 (D) is defined as

E (u, v) = 〈a∇u,∇v〉+ 〈b · ∇u, v〉+ 〈u, c · ∇v〉+ 〈a0u, v〉

=

∫
D

(∑
jk

ajk∂ju ∂kv +
∑
j

(
bj∂ju v + cju∂jv

)
+ a0uv

)
.

The bilinear form E is continuous, as it easily follows from the boundedness of its coefficients.
If there exists a constant C > 0 such that 〈aξ, ξ〉 ≥ C|ξ|2, then E is not V -elliptic, but satisfies
the weaker estimate

E (u, u) ≥ C1‖u‖2V − C2‖u‖2H ∀u ∈ V,

where C1 > 0 and C2 ∈ R (see, e.g., [7, §11.2] or [70, p. 100]), i.e. the corresponding operator
A satisfies (i’), but not (i). Using the Poincaré inequality, it is not difficult to show that E is
V -elliptic if the diameter of D is small enough (see [31, pp. 385–387]). If we furthermore assume
that a0−div c ≥ 0 (in the sense of distributions), then the semigroup S2 is sub-Markovian, and so
is also the resolvent of A2. Similarly, if a0−div b ≥ 0,§ then the semigroup S2 is L1-contracting
(these results can be found, for instance, in [7, Proposition 11.14], or deduced from [70, §4.3]).
As already mentioned above, this implies that S2 can be extended to a consistent family of
semigroups Sp for all p ∈ [1,∞[. Finally, let us discuss ultracontractivity: if E is V -elliptic, and
S2 as well as S∗2 are sub-Markovian, then a reasoning based on the Nash inequality

∥∥u∥∥2+4/n

L2 ≤ N
∥∥u∥∥2

H1
0

∥∥u∥∥4/n

L1 ∀u ∈ H1
0 ,

implies the estimate ∥∥S2(t)
∥∥

L (L1,L∞)
≤ N1t

−n/2,

where N1 :=
(
Nn/(2α)

)n/2. For a proof, see, e.g., [5, Theorem 12.3.2] or [70, p. 159]. The
Laplace transform representation of the resolvent yields

(I + λA1)−m =
λm

(m− 1)!

∫ ∞
0

tm−1e−λtS(t) dt

§These two conditions involving a0 and the divergence of b, c, are not restrictive, as they are close to necessary
to ensure that the bilinear form E is positive. This can be seen by a simple computation based on integration
by parts, cf. [57, p. 48].
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(see, e.g., [7, p. 17] or [74, p. 21]), hence

∥∥(I + λA1)−m
∥∥

L (L1,L∞)
.

λm

(m− 1)!

∫ ∞
0

tm−1−n/2e−λt dt.

Thus it suffices to choose m large enough to infer the ultracontractivity of the m-th power of
the resolvent.

Example 2.3.6 (Fractional Laplacian). Let ∆ be the Dirichlet Laplacian on H. Since it is
a positive self-adjoint operator, it follows that, for any α ∈ ]0, 1[, (−∆)α is itself a positive
self-adjoint (densely defined) operator on H. Furthermore, the bilinear form

E (u, v) :=
〈
(−∆)αu, v

〉
=
〈
(−∆)α/2u, (−∆)α/2v

〉
, u, v ∈ D

(
(−∆)α/2

)
,

is a symmetric Dirichlet form on H, which, as already seen, uniquely determines an operator
A satisfying conditions (i’), (ii), and (iii): in particular, V = D

(
(−∆)α/2

)
, equipped with the

scalar product 〈·, ·〉V := 〈·, ·〉+ E , and A is just the extension of (−∆)α, generator of E , to V .
In order to prove (iv), we are going to use again an argument based on the Nash inequality,
which is however more involved as before. In particular, since −∆ satisfies the Nash inequality

∥∥u∥∥2+4/n

L2 .
〈
−∆u, u

〉∥∥u∥∥4/n

L1 ∀u ∈ H1
0 ,

a result by Bendikov and Maheux, see [14, Theorem 1.3], implies that the fractional power
(−∆)α satisfies the Nash inequality

∥∥u∥∥2+4α/n

L2 .
〈
(−∆)αu, u

〉∥∥u∥∥4α/n

L1 ∀u ∈ D(E ).

It follows by a general criterion of Varopoulos, Saloff-Coste and Coulhon (attributed to Ph. Béni-
lan), see [81, Theorem II.5.2], that the semigroup Sα on H generated by (−∆)α satisfies the
ultracontractivity estimate ∥∥Sα(t)

∥∥
L (L1,L∞)

. t−n/2α,

from which corresponding estimates for suitable powers of the resolvent can be deduced, as in
the previous example.

Related results on ultracontractivity and smoothing properties of semigroups generated by
non-local operators, arising as generators of Markov processes, can be found, e.g., in [39,48].

We proceed with a brief discussion about the relation between our hypotheses on A and
those needed in the deterministic setting, where it is enough to prove that A + β is maximal
monotone inH to get well-posedness of the nonlinear equation, for any right-hand side belonging
to L1(0, T ;H). Probably the most widely used criterion for the maximal monotonicity of the
sum of two maximal monotone operators on H, at least with applications to PDE in mind,
is the following: let F be a maximal monotone operator on H and ϕ a lower semi-continuous
proper convex function on H. If

ϕ
(
(I + λF )−1u

)
≤ ϕ(u) + Cλ ∀λ > 0, ∀u ∈ D(ϕ), (2.3.2)

then F + ∂ϕ is maximal monotone (see [21, Theorem 9, p. 108]). In the case of semilinear
perturbations of the Laplacian of the type −∆ + β, this result is used as follows: let ϕ be such
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that −∆ = ∂ϕ, and

ψ : u 7→


∫
D

j(u) dx, if j(u) ∈ L1(D),

+∞, if j(u) 6∈ L1(D).

Then ψ : H → R ∪ {+∞} is proper convex lower semicontinuous, and F := ∂ψ is maximal
monotone, with F (u) = β(u) a.e. for all u ∈ H such that j(u) ∈ L1(D). Then one has, recalling
that (I + λβ)−1 is a contraction on R,

ϕ
(
(I + λF )−1u

)
=

∫
D

∣∣∇(I + λβ)−1u
∣∣2 dx

≤
∫
D

|∇u|2 dx = ϕ(u),

so that (2.3.2) is satisfied, and −∆+β is maximal monotone. If one replaces −∆ with a general
positive self-adjoint operator A on H, it is not clear how to adapt such reasoning. However,
if we assume that A is the generator of a symmetric Dirichlet form E on H, then (2.3.2) is
satisfied, with C = 0 and ϕ = E . This follows from the fact that (I + λβ)−1 is a normal
contraction on R and that, for any normal contraction T on R, u ∈ D(E ) implies Tu ∈ D(E )

and E (Tu, Tu) ≤ E (u, u), a proof of which can be found, e.g., in [57, Theorem 4.12, p. 36].

On the other hand, if A is maximal monotone but not self-adjoint, we cannot express it
as the subdifferential of a convex function on H. Hence we are led to “dualize” the previous
argument, i.e. we can try to show that

ψ
(
(I + λA)−1u

)
≤ ψ(u) + Cλ ∀λ > 0, ∀u ∈ D(ϕ).

Knowing only that the resolvent is a contraction does not seem enough to proceed. How-
ever, if we assume that the resolvent is sub-Markovian, we can apply Jensen’s inequality (see
Lemma 1.3.15 below), so that

j
(
(I + λA)−1u

)
≤ (I + λA)−1j(u),

hence, integrating,

ψ
(
(I + λA)−1u

)
=

∫
D

j
(
(I + λA)−1u

)
dx ≤

∫
D

(I + λA)−1j(u) dx.

Assuming also that the resolvent is contracting in L1, we obtain ψ
(
(I+λA)−1u

)
≤ ψ(u), hence

that A+ β is maximal monotone in H. Recall that A is contracting in L1 if it is the generator
of a (nonsymmetric) Dirichlet form. It results from this discussion that our conditions (ii) and
(iii) on A are not restrictive and are probably close to optimal, while the ultracontractivity
condition (iv) is completely superfluous in the deterministic setting. Moreover, while condition
(i’) is always satisfied if A is self-adjoint, it is equally superfluous in the deterministic case if A
is non-symmetric.

Let us now comment on the Lipschitz continuity assumption on B. It is natural to ask
whether a well-posedness result analogous to Theorem 2.2.2 holds under the weaker assumption
that B is progressively measurable, linearly growing, and just locally Lipschitz continuous, i.e.
assuming that there exists a sequence (LnB)n of positive real numbers such that

∥∥B(ω, t, x)−B(ω, t, y)
∥∥

L 2(U,H)
≤ LnB‖x− y‖H
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for every (ω, t) ∈ Ω × [0, T ] and x, y ∈ H with ‖x‖H , ‖y‖H ≤ n, for every n ∈ N. In this case,
introducing the globally Lipschitz continuous truncated operators

Bn : Ω× [0, T ]×H → L 2(U,H), Bn(ω, t, x) := B(ω, t, nPx),

for all n ∈ N, where P : H → H is the projection on the closed unit ball in H, the stochastic
evolution equation

dXn +AXn dt+ β(Xn) dt 3 Bn(t,Xn) dW, Xn(0) = X0,

is well-posed in J for all n ∈ N. One would now expect to be able to construct a global solution
by suitably “gluing” the solutions (Xn, ξn). In fact, this technique has been successfully applied
in several situations (cf., e.g., [25, 47, 80]): the key argument is to introduce the sequence of
stopping times (τn)n defined as

τn := inf
{
t ∈ [0, T ] : ‖Xn(t)‖ ≥ n

}
∧ T,

and to show that, for any m > n, one has Xm = Xn on

[[0, τn]] :=
{

(ω, t) ∈ Ω× [0, T ] : 0 ≤ t ≤ τn(ω)
}
.

For this construction to work, it seems essential to assume that Xn has continuous trajectories
for all n ∈ N (as is the case in op. cit.). However, in our case, we only know that the trajectories
of Xn are weakly continuous in H, hence the above construction does not seem to work. On the
other hand, we conjecture that strong solutions in J to (2.1.1) are indeed pathwise continuous
under suitable polynomial boundedness assumption on β, and that, in this case, equations with
locally Lipschitz diffusion coefficient can be shown to be well-posed. This will be treated in the
forthcoming Chapter 3. We conclude remarking that such a well-posedness result for semilinear
equations with polynomially growing drift does not follow from the classical variational approach
(see, e.g., [56, Example 5.1.8]).

2.4 Well-posedness for a regularized equation

Let V0 be a separable Hilbert space such that V0 is a dense subset of V , V0 ↪→ V , and V0 ↪→
L∞(D). The goal of this section is to establish existence and uniqueness of solutions to the
stochastic evolution equation

dX(t) +AX(t) dt+ β(X(t)) dt 3 B(t) dW (t), X(0) = X0, (2.4.3)

where B is an L 2(U, V0)-valued process. In particular, this stochastic equation can be inter-
preted as a version of (2.1.1) with additive and more regular noise.

Proposition 2.4.1. Assume that X0 ∈ L2(Ω,F0,P;H) and that

B ∈ L2(Ω;L2(0, T ; L 2(U, V0)))

is measurable and adapted. Then equation (2.4.3) admits a unique strong solution (X, ξ) such
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that

X ∈ L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V )),

j(X) + j∗(ξ) ∈ L1((0, T )×D) P-almost surely.

Moreover, X(ω, ·) ∈ Cw([0, T ];H) for P-almost all ω ∈ Ω.

The rest of this section is devoted to the proof of Proposition 2.4.1, which is structured as a
follows: we consider a regularized version of (2.4.3), where the nonlinear term β is replaced by
its Yosida approximation, and obtain suitable a priori estimates, both pathwise and in expec-
tation. Taking limits in appropriate topologies of the solutions to these regularized equations,
we construct solutions to (2.4.3), that are finally shown to be unique.

Let
βλ :=

1

λ

(
I − (I + λβ)−1

)
, λ > 0,

be the Yosida approximation of β, and consider the regularized equation

dXλ(t) +AXλ(t) dt+ βλ(Xλ(t)) dt = B(t) dW (t), Xλ(0) = X0. (2.4.4)

Since βλ is monotone and Lipschitz continuous, it is easy to check that the operator A + βλ

satisfies, for any λ > 0, the classical conditions of Pardoux, Krylov and Rozovskĭı [46, 72]. For
completeness, a proof is given next.

Lemma 2.4.2. Let λ > 0. The operator Aλ := A + βλ : V → V ∗ satisfies the following
conditions:

(i) Aλ is hemicontinuous, i.e. the map R 3 η 7→ 〈Aλ(u + ηv), x〉 is continuous for all u, v,
x ∈ V ;

(ii) Aλ is monotone, i.e. 〈Aλu−Aλv, u− v〉 ≥ 0 for all u, v ∈ V ;

(iii) Aλ is coercive, i.e. there exists a constant C1 > 0 such that 〈Aλv, v〉 ≥ C1‖v‖2V for all
v ∈ V ;

(iv) Aλ is bounded, i.e. there exists a constant C2 > 0 such that ‖Aλv‖V ∗ ≤ C2‖v‖V for all
v ∈ V .

Proof. (i) For any u, v, x ∈ V , one has

〈Aλ(u+ ηv), x〉 = 〈Au, x〉+ η〈Av, x〉+

∫
D

βλ(u+ ηv)x.

It clearly suffices to check that the last term depends continuously on η, which follows imme-
diately by the Lipschitz continuity of βλ. (ii) Since both A and βλ are monotone, one has

〈Aλu−Aλv, u− v〉 = 〈Au−Av, u− v〉+

∫
D

(βλ(u)− βλ(v)(u− v) ≥ 0.

(iii) Similarly, since 0 ∈ β(0) implies βλ(0) = 0, coercivity of A and monotonicity of βλ imply

〈Aλv, v〉 = 〈Av, v〉+

∫
D

βλ(v)v ≥ 〈Av, v〉 ≥ C‖v‖2V

(in particular, C1 can be chosen equal to C, the coercivity constant of A itself). (iv) Using again
the fact that βλ(0) = 0, and recalling that βλ is Lipschitz continuous with Lipschitz constant
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bounded by 1/λ, one has

〈Aλv, u〉 = 〈Av, u〉+

∫
D

βλ(v)u ≤ ‖Av‖V ∗‖u‖V +
1

λ
‖v‖H‖u‖H

≤
(
‖A‖L (V,V ∗) + k/λ

)
‖v‖V ‖u‖V ,

where k is the norm of the continuous embedding ι : V → H.

Hence (2.4.4) admits a unique variational solution, that is, there exists a unique adapted
process

Xλ ∈ L2(Ω;C([0, T ];H)) ∩ L2(Ω;L2(0, T ;V ))

such that, in V ∗,

Xλ(t) +

∫ t

0

AXλ(s) ds+

∫ t

0

βλ(Xλ(s)) ds = X0 +

∫ t

0

B(s) dW (s) (2.4.5)

for all t ∈ [0, T ].
In the next lemmata we establish a priori estimates for Xλ and βλ(Xλ). We begin with a

pathwise estimate.

Lemma 2.4.3. There exists Ω′ ⊆ Ω with P(Ω′) = 1 and M : Ω′ → R such that

∥∥Xλ(ω)
∥∥2

C([0,T ];H)∩L2(0,T ;V )
+
∥∥jλ(Xλ(ω))

∥∥
L1(0,T ;L1(D))

< M(ω)

for all ω ∈ Ω′.

Proof. Setting Yλ := Xλ −B ·W , Itô’s formula¶ yields

∥∥Yλ(t)
∥∥2

H
+ 2

∫ t

0

〈
AXλ(s), Yλ(s)

〉
ds+ 2

∫ t

0

〈
βλ(Xλ), Yλ(s)

〉
ds =

∥∥X0

∥∥2

H
,

where ‖Xλ‖H ≤ ‖Yλ‖H + ‖B ·W‖H by the triangle inequality, hence

‖Yλ(t)‖2H ≥
1

2
‖Xλ(t)‖2H − ‖B ·W (t)‖2H .

Moreover, writing 〈AXλ, Yλ〉 = 〈AXλ, Xλ〉 − 〈AXλ, B ·W 〉, one has

〈AXλ, Xλ〉 ≥ C‖Xλ‖2V

by the coercivity of A, and

〈AXλ, B ·W 〉 ≤ ‖A‖L (V,V ∗)‖Xλ‖V ‖B ·W‖V

≤ 1

2
C‖Xλ‖2V +

1

2ε
‖B ·W‖2V ,

where we have used the elementary inequality ab ≤ 1
2 (εa2 + b2/ε) for all a, b ∈ R, with ε :=

C‖A‖−2
L (V,V ∗). Then

〈AXλ, Yλ〉 ≥
1

2
C‖Xλ‖2V −

1

2ε
‖B ·W‖2V ,

so that

2

∫ t

0

〈
AXλ(s), Yλ(s)

〉
ds ≥ C

∫ t

0

‖Xλ(s)‖2V ds−
1

ε

∫ t

0

‖B ·W (s)‖2V ds

¶Whenever we refer to Itô’s formula, we shall always mean the version in [46].
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and

1

2
‖Xλ(t)‖2H + C

∫ t

0

‖Xλ(s)‖2V ds+ 2

∫ t

0

〈
βλ(Xλ(s)), Yλ(s)

〉
ds

≤ ‖X0‖2H + ‖B ·W (t)‖2H +
1

ε

∫ t

0

‖B ·W (s)‖2V ds.
(2.4.6)

Let jλ be the Moreau-Yosida regularization of j, that is

jλ(x) := inf
y∈R

(
j(y) +

|x− y|2

2λ

)
, λ > 0.

We recall that jλ is a convex, proper differentiable function, with j′λ = βλ, that converges
pointwise to j from below. In particular,

βλ(x)(x− y) ≥ jλ(x)− jλ(y) ≥ jλ(x)− j(y) ∀x, y ∈ R.

This implies∫ t

0

〈
βλ(Xλ(s)), Yλ(s)

〉
ds =

∫ t

0

∫
D

βλ(Xλ(s, x))(Xλ(s, x)−B ·W (s, x)) dx ds

≥
∫ t

0

∫
D

jλ(Xλ(s, x)) dx ds−
∫ t

0

∫
D

j(B ·W (s, x)) dx ds,

hence also

1

2
‖Xλ(t)‖2H + C

∫ t

0

‖Xλ(s)‖2V ds+ 2

∫ t

0

∫
D

jλ(Xλ(s, x)) dx ds

≤ ‖X0‖2H + ‖B ·W (t)‖2H +
1

ε

∫ t

0

‖B ·W (s)‖2V ds

+ 2

∫ t

0

∫
D

j(B ·W (s, x)) dx ds.

Taking the supremum with respect to t yields

∥∥Xλ

∥∥2

C([0,T ];H)
+
∥∥Xλ

∥∥2

L2(0,T ;V )
+
∥∥jλ(Xλ)

∥∥
L1(0,T ;L1(D))

.
∥∥X0

∥∥2

H
+
∥∥B ·W∥∥2

C([0,T ];H)
+
∥∥B ·W∥∥2

L2(0,T ;V )
+
∥∥j(B ·W )

∥∥
L1(0,T ;L1(D))

,

where the implicit constant depends only on the operator norm of A. It follows by Itô’s isometry
and Doob’s inequality that

∥∥B ·W∥∥
L2(Ω;C([0,T ];V0))

.
∥∥B∥∥

L2(Ω;L2(0,T ;L 2(U,V0)))
,

where the right-hand side is finite by assumption, hence, recalling that V0 is continuously
embedded in V ,

∥∥B ·W∥∥
C([0,T ];H)

+
∥∥B ·W∥∥

L2(0,T ;V )
.T

∥∥B ·W∥∥
C([0,T ];V0)

.

Analogously, denoting the norm of the continuous embedding ι : V0 → L∞(D) by k, one has,
recalling that j is symmetric and increasing on R+,∥∥j(B ·W (t)

∥∥
L1(D)

.|D| j
(
‖B ·W (t)‖L∞(D)

)
≤ j
(
k‖B ·W (t)‖V0

)
,
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for all t ∈ [0, T ], hence

∥∥j(B ·W )
∥∥
L1(0,T ;L1(D))

.|D|,T j
(
k‖B ·W‖C([0,T ];V0)

)
.

We conclude choosing Ω′ ⊂ Ω such that ‖X0(ω)‖H and ‖B ·W (ω)‖C([0,T ];V0) are finite for all
ω ∈ Ω′, and defining M : Ω′ → R as

M :=
∥∥X0

∥∥2

H
+
∥∥B ·W∥∥2

C([0,T ];H)
+
∥∥B ·W∥∥2

L2(0,T ;V )
+
∥∥j(B ·W )

∥∥
L1(0,T ;L1(D))

.

Remark 2.4.4. The above estimates can be obtained by purely deterministic arguments, with-
out invoking Itô’s formula. In fact, note that equation (2.4.5) can equivalently be written as

Yλ(t) +

∫ t

0

(
AXλ(s) + βλ(Xλ(s))

)
ds = 0.

One has Yλ ∈ L2(0, T ;V ), which follows at once by the properties of Xλ and by B · W ∈
L2(Ω;C([0, T ];V0)). Similarly, since AXλ and βλ(Xλ) belong to L2(Ω;L2(0, T ;V ∗)), one also
has, by the previous identity, Y ′λ ∈ L2(0, T ;V ∗). In particular, there exists Ω′ ⊂ Ω, with
P(Ω′) = 1, such that

Yλ(ω) ∈ L2(0, T ;V ), Y ′λ(ω) ∈ L2(0, T ;V ∗) ∀ω ∈ Ω′.

Lemma 1.4.2 then yields

1

2

∥∥Yλ(t)
∥∥2

H
+

∫ t

0

〈
AXλ(s), Yλ(s)

〉
ds+

∫ t

0

〈
βλ(Xλ), Yλ(s)

〉
ds =

1

2

∥∥X0

∥∥2

H
.

Lemma 2.4.5. There exists a constant N > 0 such that

∥∥Xλ

∥∥2

L2(Ω;C([0,T ];H))
+
∥∥Xλ

∥∥2

L2(Ω;L2(0,T ;V )
+
∥∥βλ(Xλ)Xλ

∥∥
L1(Ω;L1(0,T ;L1(D)))

< N
(∥∥X0

∥∥2

L2(Ω;H)
+
∥∥B∥∥2

L2(Ω;L2(0,T ;L 2(U,H)))

)
.

Proof. Itô’s formula yields

∥∥Xλ(t)
∥∥2

H
+ 2

∫ t

0

〈
AXλ(s), Xλ(s)

〉
ds+ 2

∫ t

0

〈
βλ(Xλ(s)), Xλ(s)

〉
ds

=
∥∥X0

∥∥2

H
+ 2

∫ t

0

Xλ(s)B(s) dW (s) +
1

2

∫ t

0

∥∥B(s)
∥∥2

L 2(U,H)
ds,

where Xλ in the stochastic integral on the right-hand side has to be interpreted as taking
values in H∗ ' H. The coercivity of A and the monotonicity of βλ readily imply, after taking
supremum in time and expectation,

E
∥∥Xλ

∥∥2

C([0,T ];H)
+ 2C E

∥∥Xλ

∥∥2

L2(0,T ;V )
+ E

∫ T

0

〈
βλ(Xλ(s)), Xλ(s)

〉
ds

. E
∥∥X0

∥∥2

H
+ E

∥∥B∥∥2

L2(0,T ;L 2(U,H))
+ E sup

t∈[0,T ]

∣∣∣∣∫ t

0

Xλ(s)B(s) dW (s)

∣∣∣∣,
where, by Lemma 1.5.1,

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

Xλ(s)B(s) dW (s)

∣∣∣∣ ≤ εE∥∥Xλ

∥∥2

C([0,T ];H)
+N(ε)E

∫ T

0

∥∥B(s)
∥∥2

L 2(U,H)
ds
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for any ε > 0, whence the result follows choosing ε small enough.

We now establish weak compactness properties for the sequence (βλ(Xλ)).

Lemma 2.4.6. The sequence (βλ(Xλ)) is relatively weakly compact in L1(Ω × (0, T ) × D).
Moreover, there exists a set Ω′′ ⊂ Ω, with P(Ω′′) = 1, such that (βλ(Xλ(ω, ·)) is weakly relatively
compact in L1((0, T )×D) for all ω ∈ Ω′′.

Proof. Recalling that, for any y, r ∈ R, j(y) + j∗(r) = ry if and only if r ∈ ∂j(y) = β(y), one
has

j
(
(I + λβ)−1x

)
+ j∗

(
βλ(x)

)
= βλ(x)(I + λβ)−1x ≤ βλ(x)x ∀x ∈ R. (2.4.7)

In fact, since βλ ∈ β ◦ (I + λβ)−1, it follows from β = ∂j that βλ(x) ∈ ∂j
(
(I + λβ)−1x

)
.

Moreover, β
(
(I+λβ)−1x

)
(I+λβ)−1x ≥ 0 by monotonicity of β, hence the inequality in (2.4.7)

follows since (I + λβ)−1 is a contraction. The previous lemma thus implies, thanks to the
symmetry of j∗, that there exists a constant N , independent of λ, such that, setting

N̄(X0, B) := N
(∥∥X0

∥∥2

L2(Ω;H)
+
∥∥B∥∥2

L2(Ω;L2(0,T ;L 2(U,H)))

)
,

one has

E
∫ T

0

∫
D

j∗
(
|βλ(Xλ)|

)
≤ E

∫ T

0

∫
D

βλ(Xλ)Xλ < N̄(X0, B).

Since j∗ is superlinear at infinity, the sequence (βλ(Xλ)) is uniformly integrable on Ω×(0, T )×D
by the de la Vallée-Poussin criterion, hence weakly relatively compact in L1(Ω× (0, T )×D) by
a well-known theorem of Dunford and Pettis. The first assertion is thus proved.

By (2.4.6), since Yλ = Xλ −B ·W , it follows that∫ t

0

〈
βλ(Xλ(s)), Xλ(s)

〉
ds . ‖X0‖2H + ‖B ·W (t)‖2H +

∫ t

0

‖B ·W (s)‖2V ds

+

∫ t

0

〈
βλ(Xλ(s)), B ·W (s)

〉
ds,

where, by Young’s inequality and convexity (recalling that j∗(0) = 0),∫ t

0

〈
βλ(Xλ(s)), B ·W (s)

〉
ds ≤ 1

2

∫ t

0

∫
D

j∗
(
βλ(Xλ)

)
+

∫ t

0

∫
D

j(2B ·W ).

Rearranging terms and proceeding as in the (end of the) proof of Lemma 2.4.3, we infer that
there exists a set Ω′′ ⊂ Ω, with P(Ω′′) = 1, and a function M : Ω′′ → R such that∫ T

0

〈
βλ(Xλ(ω, s)), Xλ(ω, s)

〉
ds < M(ω) ∀ω ∈ Ω′′. (2.4.8)

The symmetry of j∗ and (2.4.7) yield that, for any ω ∈ Ω′′, (βλ(Xλ(ω, ·))) is weakly relatively
compact in L1((0, T )×D).

In order to pass to the limit as λ → 0, we are going to use Simon’s compactness criterion,
i.e. Lemma 1.4.3, and Brézis’ Lemma 1.3.14.

Proposition 2.4.7. There exists Ω′ ⊆ Ω, with P(Ω′) = 1, such that, for any ω ∈ Ω′, there
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exists a subsequence λ′ = λ′(ω) of λ such that, as λ′ → 0,

Xλ′(ω, ·)
∗−⇀ X(ω, ·) in L∞(0, T ;H),

Xλ′(ω, ·) −⇀ X(ω, ·) in L2(0, T ;V ),

Xλ′(ω, ·) −→ X(ω, ·) in L2(0, T ;H),

βλ′(Xλ′(ω, ·)) −⇀ ξ(ω, ·) in L1((0, T )×D).

Proof. The first two convergence statements follow by Lemma 2.4.3, and the fourth one follows
by Lemma 2.4.6. Let us show that the third convergence statement holds. In the following
we omit the indication of ω, as no confusion can arise. Setting Yλ = Xλ − B ·W , (2.4.5) can
equivalently be written as the deterministic equation (with random coefficients) on V ∗

Y ′λ +AXλ + βλ(Xλ) = 0,

where

∥∥AXλ

∥∥
L1(0,T ;V ∗0 )

.
∥∥AXλ

∥∥
L1(0,T ;V ∗)

.
∥∥Xλ

∥∥
L1(0,T ;V )

,∥∥βλ(Xλ)
∥∥
L1(0,T ;V ∗0 )

.
∥∥βλ(Xλ)

∥∥
L1(0,T ;V ∗)

.
∥∥βλ(Xλ)

∥∥
L1(0,T ;L1(D))

,

hence, again by Lemmata 2.4.3 and 2.4.6, ‖Y ′λ‖L1(0,T ;V ∗0 ) is bounded uniformly over λ. Moreover,
since B ·W ∈ L2(Ω;C([0, T ];V0)) and

∥∥Yλ∥∥L2(0,T ;V )
≤
∥∥Xλ

∥∥
L2(0,T ;V )

+
∥∥B ·W∥∥

L2(0,T ;V )
,

we conclude that (Yλ) is bounded in L2(0, T ;V ). Simon’s compactness criterion then implies
that Yλ, hence also Xλ, is relatively compact in L2(0, T ;H). Since Xλ′ ⇀ X in L2(0, T ;V ), it
follows that

Xλ′(ω, ·) −→ X(ω, ·) in L2(0, T ;H),

thus completing the proof.

We are now going to show that the couple (X, ξ) just constructed is indeed the unique
solution to the equation with “smoothed” noise (2.4.3).

Proof of Proposition 2.4.1. In spite of the above preparations, the argument is quite long, so
we subdivide it into several steps.

Step 1. In the notation of Proposition 2.4.7, let ω ∈ Ω′ be arbitrary but fixed. Note that
Xλ′ → X in L2(0, T ;H) implies that, passing to a further subsequence of λ′, denoted with the
same symbol for simplicity, Xλ′(t) → X(t) in H for almost all t ∈ [0, T ]. Moreover, Xλ′ ⇀ X

in L2(0, T ;V ) implies that∫ t

0

AXλ(s) ds −⇀
∫ t

0

AX(s) ds in V ∗

for all t ∈ [0, T ]. In fact, taking φ0 ∈ V and φ := s 7→ 1[0,t](s)φ0 ∈ L2(0, t;V ), one obviously
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has A∗φ ∈ L2(0, t;V ∗) and∫ t

0

〈AXλ(s), φ0〉 ds =

∫ T

0

〈AXλ(s), φ(s)〉 ds =

∫ T

0

〈Xλ(s), A∗φ(s)〉 ds

−→
∫ T

0

〈X(s), A∗φ(s)〉 ds =

∫ t

0

〈AX(s), φ0〉 ds.

Similarly, βλ′(Xλ′) ⇀ ξ in L1((0, T )×D) implies∫ t

0

βλ′(Xλ′(s)) ds −⇀
∫ t

0

ξ(s) ds in L1(D)

for all t ∈ [0, T ]. In particular, passing to the limit as λ′ → 0 in the regularized equation (2.4.5)
yields

X(t) +

∫ t

0

AX(s) ds+

∫ t

0

ξ(s) ds = X0 +B ·W (t) in V ∗0 for a.a. t ∈ [0, T ].

Since AX ∈ L2(0, T ;V ∗) ↪→ L1(0, T ;V ∗0 ) and ξ ∈ L1(0, T ;L1(D)) ↪→ L1(0, T ;V ∗0 ), recalling
that B ·W ∈ C([0, T ];V0), we infer that X ∈ C([0, T ];V ∗0 ), hence the previous identity is true
for all t ∈ [0, T ]. Moreover, it follows from X ∈ L∞(0, T ;H) that X ∈ Cw([0, T ];H), thanks
Lemma 1.4.1. Note also that all terms expect the second one on the left-hand side take values
in L1(D), and all terms except the third one on the left-hand side take values in V ∗, hence the
above identity holds true also in L1(D) ∩ V ∗.

Let us now show that ξ ∈ β(X) a.e. in (0, T ) ×D: Xλ′ → X in L2(0, T ;H) implies that,
passing to a subsequence of λ′, still denoted by the same symbol, Xλ′ → X a.e. in (0, T )×D,
hence also (I + λ′β)−1Xλ′ → X a.e. in (0, T ) × D. Since βλ′(Xλ′) ∈ β((I + λ′β)−1Xλ′) a.e.
in (0, T ) × D and βλ′(Xλ′)(I + λ′β)−1Xλ′ is bounded in L1((0, T ) × D) by (2.4.8), Brézis’
Lemma 1.3.14 implies the claim. These relations and the weak convergence βλ′(Xλ′) ⇀ ξ in
L1((0, T )×D) also imply, by the weak lower semicontinuity of convex integrals, that∫ T

0

∫
D

(
j(X) + j∗(ξ)

)
≤ lim inf

λ′→0

∫ T

0

∫
D

(
j((I + λ′A)−1Xλ′) + j∗(βλ′(Xλ′))

)
= lim inf

λ′→0

∫ T

0

∫
D

βλ′(Xλ′)(I + λ′A)−1Xλ′ ≤ N,

where N is a constant that depends on ω.

Step 2. Still keeping ω fixed as in the previous step, we are going to show that the limits X
and ξ constructed above are unique. Suppose there exist (Xi, ξi), ξi ∈ β(Xi) a.e. in (0, T )×D,
i = 1, 2, such that

Xi(t) +

∫ t

0

AXi(s) ds+

∫ t

0

ξi(s) ds = X0 +B ·W (t)

in L1(D)∩V ∗ for all t ∈ [0, T ]. Setting X = X1−X2 and ξ = ξ1− ξ2, it is enough to show that

X(t) +

∫ t

0

AX(s) ds+

∫ t

0

ξ(s) ds = 0 (2.4.9)

in L1(D) ∩ V ∗ for all t ∈ [0, T ] implies X = 0 and ξ = 0. By the hypotheses on A, there exists



Singular semilinear equations: global well-posedness 51

m ∈ N such that (I + δA)−m maps L1(D) in L∞(D). Therefore, setting

Xδ := (I + δA)−mX, ξδ := (I + δA)−mξ,

one has

Xδ(t) +

∫ t

0

AXδ(s) ds+

∫ t

0

ξδ(s) ds = 0

for all t ∈ [0, T ], for which Itô’s formula and monotonicity of A yield

1

2

∥∥Xδ(t)
∥∥2

H
+

∫ t

0

∫
D

ξδ(s, x)Xδ(s, x) dx ds ≤ 0.

We can now take the limit as δ → 0. Since (I + δA)−m converges, in the strong operator
topology, to the identity in L (H), one has ‖Xδ(t)‖H → ‖X(t)‖H for all t ∈ [0, T ]. Passing
to a subsequence of δ, still denoted by the same symbol, we also have Xδ → X and ξδ → ξ

a.e. in (0, T )×D, hence Xδξδ → Xξ a.e. in (0, T )×D. Let us show that (Xδξδ) is uniformly
integrable: by the symmetry of j and j∗, and the abstract Jensen inequality of Lemma 1.3.15,
we have

|Xδξδ| ≤ j(Xδ) + j∗(ξδ) ≤ (I + δA)−m
(
j(X) + j∗(ξ)

)
,

where the term on the right-hand side converges to j(X) + j∗(ξ) in L1((0, T ) ×D) as δ → 0,
hence (Xδξδ) is indeed uniformly integrable on (0, T ) × D. It follows by Vitali’s convergence
theorem that, for any t ∈ [0, T ], ∫ t

0

∫
D

Xδξδ →
∫ t

0

∫
D

Xξ,

hence also
1

2

∥∥X(t)
∥∥2

H
+

∫ t

0

∫
D

X(s, x)ξ(s, x) dx ds ≤ 0.

The monotonicity of β immediately implies that X(t) = 0 for all t ∈ [0, T ]. Substituing in
(2.4.9), we are left with

∫ t
0
ξ(s) ds = 0 in L1(D) for all t ∈ [0, T ], so that also ξ = 0, and

uniqueness is proved.

Step 3. The solution (X, ξ) does not have, a priori, any measurability in ω, because of the way
it has been constructed. We are going to show that in fact X and ξ are predictable processes.
The reasoning for X is simple: with ω fixed, we have proved that from any subsequence of
λ one can extract a further subsequence λ′, depending on ω, such that the convergences of
Proposition 2.4.7 take place, and the limit (X, ξ) is unique. This implies, by a well-known
criterion of classical analysis, that the same convergences hold along the original sequence λ,
which does not depend on ω. The convergence of Xλ(ω, ·) to X(ω, ·) in L2(0, T ;H) implies that
X : Ω→ L2(0, T ;H) is measurable and Xλ(ω, t) converges to X(ω, t) in H in P⊗ dt-measure,
hence Xλ̄(ω, t)→ X(ω, t) in H P⊗ dt-a.e. along a subsequence λ̄ of λ. Since Xλ is predictable,
being adapted with continuous trajectories in H, we infer that X is predictable. Unfortunately
a similar reasoning does not work for ξ, because ξλ(ω) := βλ(Xλ(ω)) converges only weakly in
L1((0, T ) ×D) for P-a.a. ω ∈ Ω.‖ We shall prove instead that a subsequence of ξλ := βλ(Xλ)

converges weakly to ξ in L1(Ω× (0, T )×D). In fact, let g ∈ L∞((0, T )×D) be arbitrary but

‖One may indeed deduce, using Mazur’s lemma, that there exists, for each ω in a set of probability one, a
sequence (ξ̃µ(ω)(ω))µ(ω) in the convex envelope of (ξλ(ω))λ that converges to ξ(ω). However, the map ω 7→
ξ̃µ(ω)(ω) needs not be measurable, hence we cannot infer measurability of its limit ξ.
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fixed. Then, setting

Fλ(ω) :=

∫ T

0

∫
D

ξλ(ω, s, x)g(s, x) dx ds, F (ω) :=

∫ T

0

∫
D

ξ(ω, s, x)g(s, x) dx ds,

we have Fλ → F in probability, and we claim that Fλ → F weakly in L1(Ω). Let h ∈ L∞(Ω)

be arbitrary but fixed, and introduce the even convex function

j0 := j∗(·/M), M :=
1(

‖g‖L∞((0,T )×D) ∨ 1
)(
‖h‖L∞(Ω) ∨ 1

) .
Then, by Jensen’s inequality,

E j0(Fλh) = E j0
(∫ T

0

∫
D

ξλ(ω, s, x)g(s, x)h(ω) dx ds

)
.T,|D| E

∫ T

0

∫
D

j0
(
ξλ(ω, s, x)g(s, x)h(ω)

)
dx ds

≤ E
∫ T

0

∫
D

j∗
(
ξλ(ω, s, x)

)
dx ds,

where the last term is bounded by a constant independent of λ, as proved in Lemma 2.4.6.
Since j0 inherits the superlinearity at infinity of j∗, the criterion of de la Vallée Poussin implies
that Fλh is uniformly integrable, hence, since Fλh → Fh in probability, that Fλh → Fh

strongly in L1(Ω) by Vitali’s theorem. As h was arbitrary, this implies that Fλ → F weakly
in L1(Ω), thus also that ξλ → ξ weakly in L1(Ω × (0, T ) × D) by arbitrariness of g. By the
canonical identification of L1(Ω × (0, T ) ×D) with L1(Ω × (0, T );L1(D)) and Mazur’s lemma
(see, e.g., [20, 7), p. 360]), there exists a sequence (ζn)n∈N of convex combinations of (ξλ) that
converges strongly to ξ in L1(D) in P⊗ dt-measure, hence P⊗ dt-a.e. passing to a subsequence
of n. Since ξλ, hence ζn, are predictable for all λ and n, respectively, it follows that ξ is a
predictable L1(D)-valued process and ξ : Ω → L1((0, T )×D)) is measurable. Moreover, since
Xλ(ω, ·) → X(ω, ·) in L2(0, T ;H) for P-a.a. ω and (Xλ)λ is bounded in L2(Ω;L2(0, T ;V )), it
follows that Xλ ⇀ X in L2(Ω;L2(0, T ;V )). Therefore, an entirely analogous argument based
on Mazur’s lemma yields that X : Ω→ L2(0, T ;V ) is measurable.

Step 4. As last step, we are going to show that X and ξ satisfy also estimates in expectation.
In particular, the weak and weak* lower semicontinuity of the norm ensures that, for P-almost
all ω ∈ Ω,

∥∥X(ω, ·)
∥∥
L2(0,T ;V )

≤ lim inf
λ→0

∥∥Xλ(ω, ·)
∥∥
L2(0,T ;V )

,∥∥X(ω, ·)
∥∥
L∞(0,T ;H)

≤ lim inf
λ→0

∥∥Xλ(ω, ·)
∥∥
L∞(0,T ;H)

,∥∥ξ(ω, ·)∥∥
L1(Q)

≤ lim inf
λ→0

∥∥βλ(Xλ(ω, ·))
∥∥
L1(Q)

.

Taking expectations and recalling Lemmata 2.4.5 and 2.4.6, it follows by Fatou’s lemma that,
for a constant N ,

E
∥∥X∥∥2

L2(0,T ;V )
≤ E lim inf

λ→0

∥∥Xλ

∥∥2

L2(0,T ;V )
≤ lim inf

λ→0
E
∥∥Xλ

∥∥2

L2(0,T ;V )
< N,

E
∥∥X∥∥2

L∞(0,T ;H)
≤ E lim inf

λ→0

∥∥Xλ

∥∥2

L∞(0,T ;H)
≤ lim inf

λ→0
E
∥∥Xλ

∥∥2

L∞(0,T ;H)
< N,

E
∥∥ξ∥∥

L1(0,T ;L1(D))
≤ E lim inf

λ→0

∥∥ξλ∥∥L1(0,T ;L1(D))
≤ lim inf

λ→0
E
∥∥ξλ∥∥L1(0,T ;L1(D))

< N,
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i.e.

X ∈ L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V )),

ξ ∈ L1(Ω× (0, T )×D).

The proof is thus complete.

We conclude this section with a corollary that will be used in the following.

Corollary 2.4.8. There exists a constant N such that

E
∫ T

0

∫
D

(
j(X) + j∗(ξ)

)
< N

(∥∥X0

∥∥2

L2(Ω;H)
+
∥∥B∥∥2

L2(Ω;L2(0,T ;L 2(U,H)))

)
.

Proof. Thanks to Step 3 in the previous proof, there exists a sequence λ, independent of ω,
such that Xλ → X a.e. in (0, T )×D and βλ(Xλ)→ ξ weakly in L1((0, T )×D). Proceeding as
in the first part of the proof of Lemma 2.4.6, Lemma 2.4.5 implies that there exists a constant
N such that

E
∫ T

0

∫
D

(
j(I + λβ)−1Xλ) + j∗(βλ(Xλ))

)
dx ds < N̄(X0, B),

where N̄(X0, B) := N
(
‖X0‖2L2(Ω;H) + ‖B‖2L2(Ω;L2(0,T ;L 2(U,H)))

)
. Therefore, in analogy to Step

4 of the previous proof, two applications of Fatou’s lemma yield

E
∫ T

0

∫
D

j(X) ≤ lim inf
λ→0

E
∫ T

0

∫
D

j((I + λβ)−1Xλ) < N̄(X0, B),

as well as, by the weak lower semicontinuity of convex integrals and Fatou’s lemma again,

E
∫ T

0

∫
D

j∗(ξ) ≤ lim inf
λ→0

E
∫ T

0

∫
D

j∗(βλ(Xλ)) < N̄(X0, B).

2.5 Well-posedness with additive noise

In this section we prove well-posedness for the equation

dX(t) +AX(t) dt+ β(X(t)) dt 3 B(t) dW (t), X(0) = X0, (2.5.10)

where B is an L 2(U,H)-valued process. Note that this is just equation (2.1.1) with additive
noise.

Proposition 2.5.1. Assume that X0 ∈ L2(Ω,F0,P;H) and that

B ∈ L2(Ω;L2(0, T ; L 2(U,H)))

is measurable and adapted. Then equation (2.5.10) is well posed in J . Moreover, X(ω, ·) ∈
Cw([0, T ];H) for P-almost all ω ∈ Ω.

Proof. We shall proceed in several steps: first we approximate the coefficient B in such a way
that the corresponding equation can be uniquely solved by the methods of the previous section.
Then we pass to the limit in an appropriate way, obtaining a solution to (2.5.10), which is then
shown to be unique.
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Step 1. By Assumption A(iv), there exists m ∈ N such that (I +A)−m maps continuously L1

to L∞. The space V0 := D(Am), endowed with inner product

〈u, v〉V0
:= 〈u, v〉H + 〈Amu,Amv〉H , u, v ∈ D(Am),

is a Hilbert space densely and continuously embedded in V . Moreover, the diagram

D(Am)
(I+A)m−−−−−−→ L1(D)

(I+A)−m−−−−−−−→ L∞(D)

immediately shows that V0 is also continuously embedded in L∞(D). In particular, all hypothe-
ses on V0 of the previous section are met. Moreover, by the ideal property of Hilbert-Schmidt
operators, setting, for any ε > 0,

Bε := (I + εA)−mB,

we have Bε ∈ L2(Ω;L2(0, T ; L 2(U, V0))). Then it follows by Proposition 2.4.1 that, for any
ε > 0, there exist predictable processes

Xε ∈ L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V )),

ξε ∈ L1(Ω× (0, T )×D),

with Xε(ω, ·) ∈ Cw([0, T ];H) for P-almost all ω ∈ Ω, such that

Xε(t) +

∫ t

0

AXε(s) ds+

∫ t

0

ξε(s) ds = X0 +

∫ t

0

Bε(s) dW (s) (2.5.11)

in V ∗ ∩ L1(D) for all t ∈ [0, T ]. Moreover, ξε ∈ β(Xε) a.e. in (0, T )×D and j(Xε) + j∗(ξε) ∈
L1((0, T )×D) P-almost surely.

Step 2. For any ε > 0, the equation in V ∗

Xε
λ(t) +

∫ t

0

AXε
λ(s) ds+

∫
0

βλ(Xε
λ(s)) ds = X0 +

∫ t

0

Bε(s) dW (s)

admits a unique (variational) strong solution Xε
λ. Taking into account the coercivity of A and

the monotonicity of βλ, Itô’s formula yields, for any δ > 0,

∥∥Xε
λ(t)−Xδ

λ(t)
∥∥2

H
+

∫ t

0

∥∥Xε
λ(s)−Xδ

λ(s)
∥∥2

V
ds

.
∫ t

0

(
Xε
λ(s)−Xδ

λ(s)
)(
Bε(s)−Bδ(s)

)
dW (s) +

∫ t

0

∥∥Bε(s)−Bδ(s)∥∥2

L 2(U,H)
ds.

Taking supremum in time and expectation, it easily follows from Lemma 1.5.1 that

∥∥Xε
λ −Xδ

λ

∥∥
L2(Ω;L∞(0,T ;H))

+
∥∥Xε

λ −Xδ
λ

∥∥
L2(Ω;L2(0,T ;V ))

.
∥∥Bε −Bδ∥∥

L2(Ω;L2(0,T ;L 2(U,H)))
.

On the other hand, the proof of Proposition 2.4.1 shows that there exists a sequence λ, inde-
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pendent of ε, such that, for P-almost all ω ∈ Ω,

Xε
λ(ω, ·) ∗−⇀ Xε(ω, ·) in L∞(0, T ;H),

Xε
λ(ω, ·) −⇀ Xε(ω, ·) in L2(0, T ;V ),

βλ(Xε
λ(ω, ·)) −⇀ ξε(ω, ·) in L1((0, T )×D)

as λ → 0. Since the weak* limit in L∞(0, T ;H) as λ → 0 of Xε
λ −Xδ

λ is Xε −Xδ, the weak*
lower semicontinuity of the norm implies

∥∥Xε −Xδ
∥∥
L∞(0,T ;H)

≤ lim inf
λ→0

∥∥Xε
λ −Xδ

λ

∥∥
L∞(0,T ;H)

,

thus also, by Fatou’s lemma,

E
∥∥Xε −Xδ

∥∥2

L∞(0,T ;H)
≤ E lim inf

λ→0

∥∥Xε
λ −Xδ

λ

∥∥2

L∞(0,T ;H)

. E
∥∥Bε −Bδ∥∥2

L2(0,T ;L 2(U,H))
.

An entirely similar argument yields

E
∥∥Xε −Xδ

∥∥2

L2(0,T ;V )
. E

∥∥Bε −Bδ∥∥2

L2(0,T ;L 2(U,H))
,

so that

∥∥Xε −Xδ
∥∥
L2(Ω;L∞(0,T ;H))

+
∥∥Xε −Xδ

∥∥
L2(Ω;L2(0,T ;V ))

.
∥∥Bε −Bδ∥∥

L2(Ω;L2(0,T ;L 2(U,H)))
.

Taking into account that
∥∥Bε − B∥∥

L2(Ω;L2(0,T ;L 2(U,H)))
→ 0 as ε → 0, it follows that (Xε) is

a Cauchy sequence in E := L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V )), hence there exists X ∈ E
such that Xε converges (strongly) to X in E as ε → 0. In particular, the limit process X is
predictable. Moreover, by Corollary 2.4.8, there exists a constant N such that

E
∫ T

0

∫
D

(
j(Xε) + j∗(ξε)

)
dx ds < N

(∥∥X0

∥∥2

L2(Ω;H)
+
∥∥Bε∥∥2

L2(Ω;L2(0,T ;L 2(U,H)))

)
≤ N

(∥∥X0

∥∥2

L2(Ω;H)
+
∥∥B∥∥2

L2(Ω;L2(0,T ;L 2(U,H)))

)
,

(2.5.12)

as it follows by the ideal property of Hilbert-Schmidt operators and the contractivity of (I +

εA)−1. The criterion by de la Vallée Poussin then implies that (ξε) is uniformly integrable
on Ω× (0, T )×D, hence, by the Dunford-Pettis theorem, (ξε) is weakly relatively compact in
L1(Ω × (0, T ) × D). Therefore, passing to a subsequence of ε, denoted by the same symbol,
there exists ξ belonging to the latter space such that ξε → ξ therein in the weak topology. In
particular, by an argument based on Mazur’s lemma, entirely analogous to that used in Step 3
of the proof of Proposition 2.4.1, one infers that ξ is a predictable process.

Step 3. We can now pass to the limit as ε→ 0 in Equation (2.5.11), by a reasoning analogous
to the one use in Step 1 of the proof of Proposition 2.4.1. As proved in the previous step, Xε

converges strongly to X in L2(Ω;L∞(0, T ;H)), hence

ess sup
t∈[0,T ]

∥∥Xε(t)−X(t)
∥∥
H
→ 0
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in probability as ε→ 0. Let φ0 ∈ V0 be arbitrary. Since V0 ↪→ L∞(D), one has

〈
Xε(t), φ0

〉
→
〈
X(t), φ0

〉
in probability for almost all t ∈ [0, T ]. Let us set, for an arbitrary but fixed t ∈ [0, T ], φ :

s 7→ 1[0,t](s)φ0 ∈ L2(0, T ;V ), so that Aφ ∈ L2(0, T ;V ∗). Recalling that Xε → X (strongly,
hence also weakly) in L2(Ω;L2(0, T ;V )), it follows immediately that Xε ⇀ X in L2(0, T ;V ) in
measure, hence∫ t

0

〈AXε, φ0〉 ds =

∫ T

0

〈AXε(s), φ(s)〉 ds =

∫ T

0

〈Xε(s), Aφ(s)〉 ds

→
∫ T

0

〈X(s), Aφ(s)〉 ds =

∫ t

0

〈AX(s), φ0〉 ds

in probability as ε→ 0. A completely analogous reasoning shows that∫ t

0

〈ξε(s), φ0〉 ds→
∫ t

0

〈ξ(s), φ0〉 ds

in probability as ε→ 0. Doob’s maximal inequality and the convergence

∥∥Bε −B∥∥
L2(Ω;L2(0,T ;L 2(U,H)))

ε→0−−−→ 0

readily yield also that Bε ·W (t)→ B ·W (t) in H in probability for all t ∈ [0, T ]. In particular,
since φ0 ∈ V0 and t ∈ [0, T ] are arbitrary, we infer that

X(t) +

∫ t

0

AX(s) ds+

∫ t

0

ξ(s) ds = X0 +

∫ t

0

B(s) dW (s)

holds in V ∗0 for almost all t. Recalling that ξ ∈ L1(0, T ;L1(D)) ↪→ L1(0, T ;V ∗0 ), so that all terms
except the first on the left-hand side have trajectories in the space C([0, T ];V ∗0 ), we conclude
that the identity holds for all t ∈ [0, T ]. Moreover, thanks to Lemma 1.4.1, X ∈ C([0, T ];V ∗0 )

and X ∈ L∞(0, T ;H) imply that X ∈ Cw([0, T ];H). Note also that all terms bar the second
[third] one on the left-hand side are L1(D)-valued [V ∗-valued], hence the identity holds in
L1(D) ∩ V ∗ for all t ∈ [0, T ].

Step 4. Convergence of Xε → X in L2(Ω;L∞(0, T ;H)) implies convergence in measure in
Ω× (0, T )×D, hence, by Fatou’s lemma, (2.5.12) yields

E
∫ T

0

∫
D

j(X) < N̄(X0, B),

where N̄(X0, B) is the constant appearing in the last term of (2.5.12). Similarly, since ξε → ξ

weakly in L1(Ω × (0, T ) × D), (2.5.12) and the weak lower semicontinuity of convex integrals
yield

E
∫ T

0

∫
D

j∗(ξ) < N̄(X0, B).

To complete the proof of existence, we only need to show that ξ ∈ β(X) a.e. in Ω× (0, T )×D.
Note that, passing to a subsequence of ε, still denoted by the same symbol, we have Xε → X

a.e. in Ω× (0, T )×D. Recalling that ξε ∈ β(Xε) a.e. in Ω× (0, T )×D, (2.5.12) again implies

E
∫ T

0

∫
D

Xεξε = E
∫ T

0

∫
D

(
j(Xε) + j∗(ξε)

)
< N̄(X0, B).
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It follows by monotonicity that Xεξε ≥ 0, hence Xεξε ∈ L1(Ω × (0, T ) ×D). Brézis’ Lemma
1.3.14 then yields ξ ∈ β(X) a.e. in Ω× (0, T )×D.

Uniqueness and continuous dependence of the solution on the initial datum is an immediate
consequence of the next result.

We first need to introduce weighted (in time) versions of some spaces of processes. For
any p ∈ [1,∞] and α ≥ 0, we shall denote by Lpα(0, T ) the space Lp(0, T ) endowed with the
norm ‖f‖Lpα(0,T ) := ‖t 7→ e−αtf(t)‖Lp(0,T ). It is clear that Lp(0, T ) and Lpα(0, T ), for different
values of α, are all isomorphic (their norms are equivalent). Completely similar notation will
be used for vector-valued Lp and Lpα spaces. For typographical economy, restricted only to the
formulation of the following proposition, let us define the Banach space

Fα := L2(Ω;L∞α (0, T ;H)) ∩ L2(Ω;L2
α(0, T ;V )),

endowed with the norm

‖·‖Fα := ‖·‖L2(Ω;L∞α (0,T ;H))∩L2(Ω;L2
α(0,T ;V )) +

√
α‖·‖L2(Ω;L2

α(0,T ;H))

Proposition 2.5.2. Let (X1, ξ1), (X2, ξ2) ∈J be solutions to (2.5.10) with initial values X01,
X02 ∈ L2(Ω,F0;H) and diffusion coefficients B1, B2 ∈ L2(Ω;L2(0, T ; L 2(U,H))), respectively.
Then, for any α ≥ 0,

‖X1 −X2‖Fα . ‖X01 −X02‖L2(Ω;H) + ‖B1 −B2‖L2(Ω;L2
α(0,T ;L 2(U,H))).

In particular, there is a unique solution (X, ξ) ∈J to (2.5.10).

Proof. Setting
Y := X1 −X2, Y0 := X01 −X02, G := B1 −B2,

one has

Y (t) +

∫ t

0

AY (s) ds+

∫ t

0

ζ(s) ds = Y0 +

∫ t

0

G(s) dW (s)

in V ∗∩L1(D), where ζ := ξ1− ξ2, and ξ1, ξ2 are defined in the obvious way. By the hypotheses
on A, there exists m ∈ N such that, using the notation hδ := (I + δA)−mh for any h for which
it makes sense,

AY δ, ζδ ∈ L1(Ω;L1(0, T ;H)),

while Y δ0 and Gδ have the same integrability properties of Y , Y0 and G, respectively. In
particular, we have

Y δ(t) +

∫ t

0

AY δ(s) ds+

∫ t

0

ζδ(s) ds = Y δ0 +

∫ t

0

Gδ(s) dW (s)

in V ∗. Let α > 0 be arbitrary but fixed, and add a superscript α to any process that is
multiplied pointwise by the function t 7→ e−αt. The integration by parts formula yields

Y δ,α(t) +

∫ t

0

(A+ αI)Y δ,α(s) ds+

∫ t

0

ζδ,α(s) ds = Y δ0 +

∫ t

0

Gδ,α(s) dW (s),

to which we can apply Itô’s formula for the square of the norm in H, obtaining, using the
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coercivity of A,

∥∥Y δ,α(t)
∥∥2

H
+ 2α

∫ t

0

∥∥Y δ,α(s)
∥∥2

H
ds+ 2C

∫ t

0

∥∥Y δ,α(s)
∥∥2

V
ds

+ 2

∫ t

0

〈
Y δ,α(s), ζδ,α(s)

〉
ds

≤
∥∥Y δ0 ∥∥2

H
+

∫ t

0

Y δ,α(s)Gδ,α(s) dW (s) +

∫ t

0

∥∥Gδ,α(s)
∥∥2

L 2(U,H)
ds.

We are now going to pass to the limit as δ → 0: the first term on the left-hand side and on
the right-hand side clearly converge to ‖Y α(t)‖2H and ‖Y0‖2H , respectively. Since (I + δA)−1

converges to the identity in H as well as in V in the strong operator topology, the dominated
convergence theorem yields ∫ t

0

∥∥Y δ,α(s)
∥∥2

V
ds −→

∫ t

0

∥∥Y α(s)
∥∥2

V
ds,∫ t

0

∥∥Gδ,α(s)
∥∥2

L 2(U,H)
ds −→

∫ t

0

∥∥Gα(s)
∥∥2

L 2(U,H)
ds

as δ → 0 for all t ∈ [0, T ]. Defining the real local martingales

M δ,α := (Y δ,αGδ,α) ·W, Mα := (Y αGα) ·W,

in order to establish convergence in probability (uniformly on compact sets) of the sequence
Mδ,α to Mα as δ → 0, it is sufficient to show that [Mδ,α−Mα,Mδ,α−Mα]T converges to zero
in probability. To this purpose, note that

[Mδ,α −Mα,Mδ,α −Mα]
1/2
T =

∥∥Y δ,αGδ,α − Y αGα∥∥
L2(0,T ;L 2(U,R))

≤
∥∥Y δ,αGδ,α − Y δ,αGα∥∥

L2(0,T ;L 2(U,R))

+
∥∥Y δ,αGα − Y αGα∥∥

L2(0,T ;L 2(U,R))
,

where

∥∥Y δ,α(t)Gδ,α(t)− Y δ,α(t)Gα(t)
∥∥

L 2(U,R))
≤
∥∥Y α(t)

∥∥
H

∥∥Gδ,α(t)−Gα(t)
∥∥

L 2(U,H))

for all t ∈ [0, T ]. Since the right-hand side converges to 0 as δ → 0 and it is bounded by
2‖Y α‖L∞(0,T ;H)‖Gα(t)‖L 2(U,H), and Gα ∈ L2(0, T ; L 2(U,H)), the dominated convergence
theorem yields ∥∥Y δ,αGδ,α − Y δ,αGα∥∥

L2(0,T ;L 2(U,R))
→ 0

as δ → 0. Similarly,
∥∥Y δ,αGα − Y αGα

∥∥
L2(0,T ;L 2(U,R))

tends to 0 as δ → 0 by completely
analogous argument.

We are now going to show that Y δ,αζδ,α → Y αζα in L1(Ω × (0, T ) × D), which clearly
implies that ∫ t

0

∫
D

Y δ,αζδ,α →
∫ t

0

∫
D

Y αζα

in probability for all t ∈ [0, T ]. Since Y δ,α → Y α and ζδ,α → ζα in measure in Ω × (0, T ) ×
D, Vitali’s theorem implies strong convergence in L1 if the sequence (Y δ,αζδ,α) is uniformly
integrable in Ω× (0, T )×D. In turn, the latter is certainly true if

(
|Y δ,αζδ,α|

)
is dominated by

a sequence that converges strongly in L1. In order to prove this property, note that j and j∗
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are increasing on R+, hence

1

4

∣∣Y δ,α(ω, t, x)ζδ,α(ω, t, x)
∣∣ ≤ j(e−αt|Y δ(ω, t, x)|/2

)
+ j∗

(
e−αt|ζδ(ω, t, x)|/2

)
≤ j
(
|Y δ(ω, t, x)|/2

)
+ j∗

(
|ζδ(ω, t, x)|/2

)
,

so that, by the symmetry of j and j∗, and by the Jensen inequality of Lemma 1.3.15,

1

4

∣∣Y δ,αζδ,α∣∣ ≤ j(Y δ/2) + j∗(ζδ/2) ≤ (I + δA)−m
(
j(Y/2) + j∗(ζ/2)

)
,

where, by convexity and symmetry,

j(Y/2) = j
(1

2
X1 +

1

2
(−X2)

)
≤ 1

2

(
j(X1) + j(X2)

)
∈ L1(Ω× (0, T )×D),

and, completely analogously,

j∗(ζ/2) ≤ 1

2

(
j∗(ξ1) + j∗(ξ2)

)
∈ L1(Ω× (0, T )×D),

hence ∣∣Y δ,αζδ,α∣∣ . (I + δA)−m
(
j(X1) + j(X2) + j∗(ξ1) + j∗(ξ2)

)
.

Since the right-hand side of this expression converges strongly in L1(Ω× (0, T )×D) as δ → 0,
it is, a fortiori, uniformly integrable, and so is the left-hand side.

We have thus obtained

∥∥Y α(t)
∥∥2

H
+ 2α

∫ t

0

∥∥Y α(s)
∥∥2

H
ds+ 2

∫ t

0

E
(
Y α(s), Y α(s)

)
ds

+ 2

∫ t

0

∫
D

Y α(s, x)ζα(s, x) dx ds

≤
∥∥Y0

∥∥2

H
+

∫ t

0

Y α(s)Gα(s) dW (s) +

∫ t

0

∥∥Gα(s)
∥∥2

L 2(U,H)
ds,

where, by monotonicity, Y αζα = e−2α·(X1−X2)(ξ2−ξ2) ≥ 0, hence, taking the L∞(0, T ) norm
and expectation on both sides,

∥∥Y α∥∥
L2(Ω;L∞(0,T ;H))

+
√
α
∥∥Y α∥∥

L2(Ω;L2(0,T ;H))
+
∥∥Y α∥∥

L2(Ω;L2(0,T ;V ))

.
∥∥Y0

∥∥
L2(Ω;H)

+

(
E sup
t≤T

∣∣∣∣∫ t

0

Y α(s)Gα(s) dW (s)

∣∣∣∣)1/2

+
∥∥Gα∥∥

L2(Ω;L2(0,T ;L 2(U,H)))
.

By Lemma 1.5.1, one has(
E sup
t≤T

∣∣∣∣∫ t

0

Y α(s)Gα(s) dW (s)

∣∣∣∣)1/2

≤ ε
∥∥Y α∥∥

L2(Ω;L∞(0,T ;H))

+N(ε)
∥∥Gα∥∥

L2(Ω;L2(0,T ;L 2(U,H)))
,

with ε > 0 arbitrary. Choosing ε sufficiently small and rearranging terms, one obtains

‖X1 −X2‖Fα . ‖X01 −X02‖L2(Ω;H) + ‖B1 −B2‖L2(Ω;L2
α(0,T ;L 2(U,H)))

as claimed.
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Choosing α = 0, X01 = X02, and B1 = B2, one gets immediately X1 = X2, hence also, by
substitution, ∫ t

0

(ξ1(s)− ξ2(s)) ds = 0 ∀t ∈ [0, T ],

which implies uniqueness of ξ.

2.6 Proof of the main result

For every progressively measurable process Y ∈ L2(Ω;L2(0, T ;H)) and initial datum X0 ∈
L2(Ω,F0,P;H), we consider the equation

dX(t) +AX(t) dt+ β(X(t)) dt 3 B(t, Y (t)) dW (t), X(0) = X0. (2.6.13)

Since B(·, Y ) is U -measurable, adapted, and belongs to L2(Ω;L2(0, T ; L 2(U,H))), the above
equation is well-posed in J by Proposition 2.5.1, hence one can define a map

Γ : L2(Ω;H)× L2(Ω;L2(0, T ;H)) −→ L2(Ω;L2(0, T ;H))× L1(Ω× (0, T )×D)

(X0, Y ) 7−→ (X, ξ),

where (X, ξ) is the unique process in J solving (2.6.13). Denote the L2(Ω;L2(0, T ;H))-valued
component of Γ by Γ1 and the L1(Ω × (0, T ) × D)-valued component by Γ2: we are going to
show that Y 7→ Γ1(X0, Y ) is a (strict) contraction of L2(Ω;L2(0, T ;H)), if endowed with a
suitably chosen equivalent norm. Let Xi = Γ1(X0i, Yi), i = 1, 2, with obvious meaning of the
symbols. For any α ≥ 0, Proposition 2.5.2 yields∥∥X1 −X2

∥∥
L2(Ω;L∞α (0,T ;H))∩L2(Ω;L2

α(0,T ;V ))
+
√
α
∥∥X1 −X2

∥∥
L2(Ω;L2

α(0,T ;H))

.
∥∥X01 −X02

∥∥
L2(Ω;H)

+
∥∥B(·, Y1)−B(·, Y2)

∥∥
L2(Ω;L2

α(0,T ;L 2(U,H)))
,

(2.6.14)

in particular, by the Lipschitz continuity of B,

∥∥X1 −X2

∥∥
L2(Ω;L2

α(0,T ;H))
.

1√
α

∥∥X01 −X02

∥∥
L2(Ω;H)

+
1√
α

∥∥B(·, Y1)−B(·, Y2)
∥∥
L2(Ω;L2

α(0,T ;L 2(U,H)))

.
1√
α

(∥∥X01 −X02

∥∥
L2(Ω;H)

+
∥∥Y1 − Y2

∥∥
L2(Ω;L2

α(0,T ;H))

)
, (2.6.15)

where the implicit constant does not depend on α. In particular, if X01 = X02, choosing
α large enough, one has that, for any X0 ∈ L2(Ω, H), Y 7→ Γ1(X0, Y ) is a contraction of
L2(Ω;L2

α(0, T ;H)). It follows by the Banach fixed-point theorem that Γ1(X0, ·) has a unique
fixed point X therein, hence also in L2(Ω;L2(0, T ;H)) by equivalence of norms. Setting ξ :=

Γ2(X0, X), by definition of the map Γ, (X, ξ) is a solution to (2.1.1) and it belongs to J .

Let X01, X02 ∈ L2(Ω,F0;H) and X1, X2 be the unique fixed points of the maps Γ1(X0i, ·),
i = 1, 2, respectively, and ξi := Γ2(X0i, Xi), i = 1, 2. Replacing Yi with Xi = Γ1(X0i, Xi),
i = 1, 2, in (2.6.15) yields

∥∥X1 −X2

∥∥
L2(Ω;L2

α(0,T ;H))
≤ C1

∥∥X01 −X02

∥∥
L2(Ω;H)

+ C2

∥∥X1 −X2

∥∥
L2(Ω;L2

α(0,T ;H))
,
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with C1 > 0, C2 ∈ ]0, 1[, hence, by equivalence of norms,

∥∥X1 −X2

∥∥
L2(Ω;L2(0,T ;H))

.
∥∥X01 −X02

∥∥
L2(Ω;H)

.

This implies, substituting Yi with Xi = Γ(X0i, Xi), i = 1, 2, in (2.6.14), with α = 0,

∥∥X1 −X2

∥∥
L2(Ω;L∞(0,T ;H))∩L2(Ω;L2(0,T ;V ))

.
∥∥X01 −X02

∥∥
L2(Ω;H)

+
∥∥B(·, X1)−B(·, X2)

∥∥
L2(Ω;L2(0,T ;L 2(U,H)))

.
∥∥X01 −X02

∥∥
L2(Ω;H)

+
∥∥X1 −X2

∥∥
L2(Ω;L2(0,T ;H))

.
∥∥X01 −X02

∥∥
L2(Ω;H)

.

Choosing α = 0 and X01 = X02, one gets immediately X1 = X2, hence also, by substitution,∫ t

0

(ξ1(s)− ξ2(s)) ds = 0 ∀t ∈ [0, T ],

which implies uniqueness of ξ.





Chapter 3

Singular semilinear equations:
refined well-posedness

In this chapter, we prove existence/uniqueness of solutions to stochastic semilinear evolution
equations with monotone nonlinear drift and multiplicative noise, assuming the initial datum
to be only measurable and allowing the diffusion coefficient to be locally Lipschitz-continuous.
Moreover, we show how the finiteness of the p-th moment of solutions depends on the integra-
bility of the initial datum, in the whole range p ∈]0,∞[. Lipschitz continuity of the solution
map in p-th moment is established, under a Lipschitz continuity assumption on the diffusion
coefficient, in the even larger range p ∈ [0,∞[.

The results presented in this chapter are part of a joint work with Carlo Marinelli: see [63].

3.1 The problem: literature and main goals

We study semilinear stochastic partial differential equations on a smooth bounded domain
D ⊆ Rd of the form

dXt +AXt dt+ β(Xt) dt 3 B(t,Xt) dWt, X(0) = X0, (3.1.1)

where A is a linear coercive maximal monotone operator on (a subspace of) H := L2(D), β
is a maximal monotone graph in R× R defined everywhere, W is a cylindrical Wiener process
on a separable Hilbert space U , and B is a process taking values in the space of Hilbert-
Schmidt operators from U to L2(D) satisfying a (local) Lipschitz continuity condition. Precise
assumptions on the data of the problem are given in §3.2 below.

Assuming that the initial datum X0 has finite second moment and the diffusion coefficient B
is globally Lipschitz continuous, we proved in Chapter 2 that equation (3.1.1) admits a unique
solution, in a generalized variational sense, whose trajectories are weakly continuous in H. The
contribution of this chapter is to extend these results in several directions. As a first step
we show that the solution X is pathwise strongly continuous in H, rather than just weakly
continuous. This is possible thanks to an Itô-type formula, interesting in its own right, for the
square of the H-norm of processes satisfying minimal integrability conditions, in a variational
setting extending the classical one by Pardoux [72]. The strong pathwise continuity allows us to
prove that existence and uniqueness of solutions to (3.1.1) continues to hold under much weaker
assumptions on the initial datum and on the diffusion coefficient. In particular, X0 needs only
be measurable and B can be locally Lipschitz-continuous with linear growth. Denoting by Ω

63
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the underlying probability space, the solution map X0 7→ X is thus defined on L0(Ω;H), with
codomain contained in L0(Ω;E), where E is a suitable path space. By the results of Chapter 2
we also have that the solution map restricted to L2(Ω;H) has codomain contained in L2(Ω;E).
As a further result, we extrapolate these mapping properties to the whole range of exponents
p ∈ [0,∞[, that is, we show that if X0 ∈ Lp(Ω;H) then X ∈ Lp(Ω;E) for every positive finite
p, and we provide an explicit upper bound on the Lp(Ω;E)-norm of the solution in terms of the
Lp(Ω;H)-norm of the initial datum. If, in addition, B is Lipschitz-continuous, we show that
the solution map is Lipschitz-continuous from Lp(Ω;H) to Lp(Ω;E) for all p ∈ [0,∞[. In the
particular case p = 0, this implies that solutions converge uniformly on [0, T ] in probability if
the corresponding initial data converge in probability.

In the classical variational theory of SPDEs, existence and uniqueness of solutions under a
local Lipschitz condition on B and measurability of X0 were obtained by Pardoux in [72]. Our
results do not follow from his, however, as equation (3.1.1) cannot be cast in the usual varia-
tional setting. Stochastic equations where all nonlinear terms are locally Lipschitz-continuous
have been considered in the semigroup approach (see, e.g., [47] and references therein), but
our existence results are not covered, as β can be discontinuous and have arbitrary growth.
Moreover, the properties of the solution map between Lp(Ω;H) and Lp(Ω;E) do not seem to
have been addressed even in the classical variational setting. On the other hand, the continuity
of the solution map in the case p = 0 for ordinary SDEs in Rn with Lipschitz coefficients has
been studied, also with very general semimartingale noise (see, e.g., [35]).

The chapter is organized as follows. In §3.2 we state the main assumptions and we recall
the well-posedness result for (3.1.1) obtained in Chapter 2. In §3.3 we prove a generalized
Itô formula for the square of the norm, as well as the strong pathwise continuity of solutions.
In §3.4 we prove existence and uniqueness of strong variational solutions to (3.1.1) assuming
first that B is locally Lipschitz-continuous with linear growth and that X0 is square integrable,
hence removing the latter assumption in a second step, allowing X0 to be merely measurable.
While in the former case solutions have finite second moment, in the latter case one needs
to work with processes that are just measurable (in ω), so that uniqueness has to be proved
in a much larger space. This is achieved by a suitable application of the Itô formula of §3.3
and stopping arguments. In §3.5 we show that X0 having finite p-th moment implies that the
solution belongs to a space of processes with finite p-moment as well, with explicit control of
its norm. The Lipschitz continuity of the solution map is then established in a particular case.
Further regularity of the solution and of invariant measures is obtained in the last section, under
additional regularity assumptions on X0 and B.

3.2 Assumptions and preliminaries

Let D be a bounded domain in Rd with smooth boundary, and V a real separable Hilbert space
densely, continuously, and compactly embedded in H := L2(D). The scalar product and the
norm of H will be denoted by 〈·, ·〉 and ‖·‖, respectively. Identifying H with its dual H ′, the
triple (V,H, V ′) is a so-called Gelfand triple: the duality form between V and V ′ extends the
scalar product of H, i.e. 〈v, w〉 = V 〈v, w〉V ′ for any v, w ∈ H. For this reason, we shall simply
denote the duality form of V and V ′ by the same symbol used for the scalar product in H.

The following assumptions on the linear operator A ∈ L (V, V ′) will be tacitly assumed to
hold throughout the whole text:

(i) there exists C > 0 such that 〈Av, v〉 ≥ C‖v‖2V for every v ∈ V ;
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(ii) the part of A in H can be extended to an m-accretive operator A1 on L1(D);

(iii) for every δ > 0, the resolvent (I + δA1)−1 is sub-Markovian;

(iv) there exists m ∈ N such that (I + δA1)−m ∈ L (L1(D), L∞(D)).

We shall occasionally refer to hypothesis (i) as coercivity of A, and to hypothesis (iv) as ultra-
contractivity of the resolvent of A1.

Let us now state the assumptions on the nonlinear part of the drift: β ⊂ R×R is a maximal
monotone graph such that 0 ∈ β(0) and D(β) = R. Let j : R → [0,+∞) be the unique
convex lower-semicontinuous function such that j(0) = 0 and β = ∂j, where ∂ stands for the
subdifferential in the sense of convex analysis. We assume that

lim sup
|r|→∞

j(r)

j(−r)
<∞.

Denoting the Moreau-Fenchel conjugate of j by j∗, the fact that D(β) = R is equivalent to the
superlinearity of j∗ at infinity, i.e. to

lim
|r|→∞

j∗(r)

|r|
= +∞.

For a comprehensive treatment of maximal monotone operators and their connection with
convex analysis we refer to, e.g., [10]. Here we limit ourselves to recalling that, for any maximal
monotone graph γ on a Hilbert space E, its resolvent and Yosida approximation of γ are defined
as (I + λγ)−1 and

γλ :=
1

λ

(
I − (I + λγ)−1

)
,

respectively, that both are continuous operators on E, and that the former is a contraction,
while the latter is Lipschitz-continuous with Lipschitz constant bounded by 1/λ.

Let (Ω,F ,P) be a probability space, endowed with a right-continuous and completed filtra-
tion (Ft)t∈[0,T ], on which a cylindrical Wiener process W on a real separable Hilbert space U
is defined. The diffusion coefficient

B : Ω× [0, T ]×H → L 2(U,H)

is assumed to be such that B(·, ·, x) is progressively measurable for every x ∈ H, and to grow at
most linearly in its third argument, uniformly with respect to the others. That is, we assume
that there exists a constant N such that

∥∥B(t, ω, x)
∥∥

L 2(U,H)
≤ N

(
1 + ‖x‖

)
for all (ω, t, x) ∈ Ω × [0, T ] × H. In addition to this, we shall consider either of two different
assumptions, namely

(B1) B is Lipschitz continuous in its third argument, uniformly with respect to the others, i.e.

∥∥B(ω, t, x)−B(ω, t, y)
∥∥

L 2(U,H)
≤ N‖x− y‖

for all (ω, t) ∈ Ω× [0, T ] and x, y ∈ H.

(B2) B is locally Lipschitz continuous in its third argument, uniformly with respect to the
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others, i.e. there exists a function R 7→ NR : R+ → R+ such that

∥∥B(ω, t, x)−B(ω, t, y)
∥∥

L 2(U,H)
≤ NR‖x− y‖

for all (ω, t) ∈ Ω× [0, T ] and x, y ∈ H with ‖x‖, ‖y‖ ≤ R.

Finally, X0 is assumed to be an H-valued F0-measurable random variable.

Let us now define the concept of solution to equation (3.1.1).

Definition 3.2.1. A strong solution to (3.1.1) is a pair (X, ξ), where X is a V -valued adapted
process and ξ is an L1(D)-valued predictable process, such that, P-almost surely,

X ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), ξ ∈ L1(0, T ;L1(D)),

ξ ∈ β(X) a.e. in (0, T )×D,

and

X(t) +

∫ t

0

AX(s) ds+

∫ t

0

ξ(s) ds = X0 +

∫ t

0

B(s,X(s)) dW (s)

in V ′ ∩ L1(D) for all t ∈ [0, T ].

It is convenient to introduce the family of sets (Jp)p≥0 as follows:

Jp ⊂
(
Lp(Ω;C([0, T ];H)) ∩ Lp(Ω;L2(0, T ;V ))

)
× Lp/2(Ω;L1((0, T )×D)

formed by processes (φ, ψ) such that φ is adapted with values in V , ψ is predictable with values
in L1(D), ψ ∈ β(φ) a.e. in Ω× (0, T )×D, and j(φ) + j∗(ψ) ∈ Lp/2(Ω;L1((0, T )×D).

The following well-posedness result has been proved in Chapter 2. Just for the purposes of
this statement, we shall denote the space J2 with L∞(0, T ;H) in place of C([0, T ];H) by J̃2.

Theorem 3.2.2. If X0 ∈ L2(Ω,F0;H) and B satisfies the global Lipschitz condition (B1),
then there exists a unique strong solution (X, ξ) to (3.1.1) belonging to J̃2. Furthermore, the
trajectories of X are weakly continuous in H and the solution map

L2(Ω;H) −→ L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V ))

X0 7−→ X

is Lipschitz-continuous.

Our main result in this chapter is the following far-reaching extension of Theorem 3.2.2: un-
der the more general local Lipschitz continuity assumption (B2), for any X0 ∈ Lp(Ω,F0,P;H),
p ∈ [0,∞[, there exists a strong solution (X, ξ) belonging to Jp, which is unique in J0. In
particular, the trajectories of X are strongly continuous in H. Precise statements and proofs
are given in §3.4.

3.3 Pathwise continuity via a generalized Itô formula

In this section we prove that, under the assumptions of Theorem 3.2.2, the unique strong
solution (X, ξ) in J2 to (3.1.1) is such that X admits a modification with strongly continuous
trajectories in H, rather than just weakly continuous. To this purpose, we need a generalized
Itô’s formula for the square of the norm under minimal integrability assumptions, that will play
a fundamental role throughout.
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We first need some preparations. Let us recall that the part of A in H is the linear (un-
bounded) operator on H defined by A2 := A ∩ (V ×H). In particular,

D(A2) =
{
u ∈ V : Au ∈ H

}
and A2u = Au ∀u ∈ D(A2).

It is well known (see, e.g., [7]) that A2 is closed and that D(A2) is a Banach space with respect
to the graph norm

‖u‖2D(A2) := ‖u‖2 + ‖Au‖2.

Moreover, D(A2) is continuously and densely embedded in V .

Lemma 3.3.1. Let v ∈ V and vλ := (I + λA1)−1v. Then vλ → v in V as λ→ 0.

Proof. Let v ∈ V and ε > 0: since D(A2) is densely embedded in V , we can choose u ∈ D(A2)

such that ‖v − u‖V < ε. Setting uλ := (I + λA1)−1u, we have

‖v − vλ‖V ≤ ‖v − u‖V + ‖u− uλ‖V + ‖uλ − vλ‖V .

Since u, v ∈ V , we have uλ − vλ = (I + λA2)−1(u − v), and recalling that A2 is the part of A
in H we have

(uλ − vλ) + λA(uλ − vλ) = u− v,

where the identity holds in V as well. Taking the duality product with A(uλ − vλ) ∈ V ′, by
coercivity and boundedness of A it follows that

V ′

〈
A(uλ − vλ), uλ − vλ

〉
V

+ λ
V ′

〈
A(uλ − vλ), A(uλ − vλ)

〉
V

≥ C
∥∥uλ − vλ∥∥2

V
+ λ
∥∥A(uλ − vλ)

∥∥2

and

V ′〈A(uλ − vλ), u〉V ≤ ‖A‖L (V,V ′)‖uλ − vλ‖V ‖u‖V ,

hence
C‖uλ − vλ‖2V + λ‖A(uλ − vλ)‖2 ≤ ‖A‖L (V,V ′)‖uλ − vλ‖V ‖u‖V ,

which implies that there exists a constant N > 0, independent of λ, such that

‖uλ − vλ‖V ≤ N‖u− v‖V ,

or, equivalently, that (I + λA1)−1 is uniformly bounded in V with respect to λ. This implies
that

‖uλ − vλ‖V ≤ N‖u− v‖V ≤ Nε.

It remains to estimate the term ‖u− uλ‖V . Since u ∈ D(A2) and

uλ := (I + λA1)−1u = (I + λA2)−1u,

one has uλ ∈ D(A2
2), hence, recalling that A2 is the part of A in H,

Auλ + λA(Auλ) = Au

in H ↪→ V ′. Taking the duality pairing with Auλ ∈ D(A2) ↪→ V , one has

V ′

〈
Auλ, Auλ

〉
V

+ λ
V ′

〈
A(Auλ), Auλ

〉
V

=
V ′

〈
Au,Auλ

〉
V
,
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where

V ′

〈
Auλ, Auλ

〉
V

=
∥∥Auλ∥∥2

,
V ′

〈
A(Auλ), Auλ

〉
V
≥ C

∥∥Auλ∥∥2

V
,

V ′

〈
Au,Auλ

〉
V

=
〈
Au,Auλ

〉
≤ 1

2

∥∥Au∥∥2
+

1

2

∥∥Auλ∥∥2
,

hence ∥∥Auλ∥∥2
+ λC

∥∥Auλ∥∥2

V
≤ 1

2

∥∥Au∥∥2
+

1

2

∥∥Auλ∥∥2
,

which implies that
√
λ
∥∥Auλ∥∥V ≤ N

∥∥Au∥∥, with a constant N independent of λ. Therefore,
since u ∈ D(A2), ∥∥uλ − u∥∥V = λ

∥∥Auλ∥∥V ≤ N√λ∥∥Au∥∥.
Choosing λ such that N

√
λ
∥∥Au∥∥ < ε, one has then

‖vλ − v‖V < (2 +N)ε,

from which the conclusion follows by arbitrariness of ε.

We recall that (see, e.g., [45]) if two Banach spaces F and G are continuously embedded in
a separated topological vector space E, their sum F +G is defined as the subspace of E

F +G :=
{
u ∈ E : ∃f ∈ F, g ∈ G : u = f + g

}
.

Endowed with the norm ∥∥u∥∥
F+G

:= inf
u=f+g

(
‖f‖F + ‖g‖G

)
,

F + G is a Banach space. Similarly, the intersection F ∩G is also a Banach space if endowed
with the norm ∥∥u∥∥

F∩G := ‖u‖F + ‖u‖G.

Moreover, if F ∩ G is dense in both F and G, then F ′ and G′ are continuously embedded in
(F ∩ G)′, and (F + G)′ = F ′ ∩ G′. In the following we shall deal with F := L1(0, T ;H) and
G := L2(0, T ;V ′), so that as ambient space E one can simply take L1(0, T ;V ′). In this case
F ∩G is dense in both F and G, hence, by reflexivity of V ,

(
L1(0, T ;H) + L2(0, T ;V ′)

)′
= L∞(0, T ;H) ∩ L2(0, T ;V ).

Theorem 3.3.2. Let Y , v and g be adapted processes such that

Y ∈ L0(Ω;L∞(0, T ;H) ∩ L2(0, T ;V )),

v ∈ L0(Ω;L1(0, T ;H) + L2(0, T ;V ′)),

g ∈ L0(Ω;L1(0, T ;L1(D))),

∃α > 0 : j(αY ) + j∗(αg) ∈ L0(Ω;L1((0, T )×D)).

Moreover, let Y0 ∈ L0(Ω,F0;H) and G be a progressive L 2(U,H)-valued process such that

G ∈ L0(Ω;L2(0, T ; L 2(U,H))).

If

Y (t) +

∫ t

0

v(s) ds+

∫ t

0

g(s) ds = Y0 +

∫ t

0

G(s) dW (s) ∀t ∈ [0, T ] P-a.s.
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in V ′ ∩ L1(D), then

1

2
‖Y (t)‖2 +

∫ t

0

〈
v(s), Y (s)

〉
ds+

∫ t

0

∫
D

g(s, x)Y (s, x) dx ds

=
1

2
‖Y0‖2 +

1

2

∫ t

0

‖G(s)‖2L 2(U,H) ds+

∫ t

0

Y (s)G(s) dW (s)

for all t ∈ [0, T ] with probability one.

Proof. Since the resolvent of A1 is ultracontractive by assumption, there exists m ∈ N such
that

(I + δA1)−m : L1(D)→ H ∀δ > 0.

Using a superscript δ to denote the action of (I + δA1)−m, we have

Y δ(t) +

∫ t

0

vδ(s) ds+

∫ t

0

gδ(s) ds = Y δ0 +

∫ t

0

Gδ(s) dW (s)

where gδ ∈ L1(0, T ;H), hence the classical Itô’s formula yields, for every δ > 0,

1

2
‖Y δ(t)‖2 +

∫ t

0

〈
vδ(s), Y δ(s)

〉
ds+

∫ t

0

∫
D

gδ(s, x)Y δ(s, x) dx ds

=
1

2
‖Y δ0 ‖

2
+

1

2

∫ t

0

‖Gδ(s)‖2L 2(U,H) ds+

∫ t

0

Y δ(s)Gδ(s) dW (s).

Let us pass to the limit as δ → 0. Since the resolvent of A1 coincides on H with the resolvent of
A2, which converges to the identity in L (H) in the strong operator topology, we immediately
infer that

Y δ(t) −→ Y (t) in H ∀t ∈ [0, T ],

gδ −→ g in L1(0, T ;L1(D)),

Y δ0 −→ Y0 in H,

Gδ −→ G in L2(0, T ; L 2(U,H))

where the last statement, which follows by well-known continuity properties of Hilbert-Schmidt
operators, also implies ∫ t

0

‖Gδ(s)‖2L 2(U,H) ds −→
∫ t

0

‖G(s)‖2L 2(U,H) ds.

Moreover, by the previous lemma we have

Y δ −→ Y in L2(0, T ;V ),

and Y ∈ L∞(0, T ;H) and the contractivity in H of the resolvent of A1 immediately imply,
by the dominated convergence theorem, that Y δ → Y weakly* in L∞(0, T ;H). Therefore, by
reflexivity of V ,

Y δ −→ Y weakly* in L∞(0, T ;H) ∩ L2(0, T ;V ).

Since v ∈ L1(0, T ;H) + L2(0, T ;V ′), we have that v = v1 + v2, with v1 ∈ L1(0, T ;H) and
v2 ∈ L2(0, T ;V ′). In this case vδ has to be interpreted as

vδ := (I + δA1)−mv1 + (I + δA)−mv2.
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Note that this is very natural since A1 and A coincide on D(A1) ∩ V . By the properties of the
resolvent it easily follows that

vδ1 −→ v1 in L1(0, T ;H).

Moreover, since A−1v2 ∈ L2(0, T ;V ) and A−1vδ2 = (I + δA2)−mA−1v2, thanks to Lemma 3.3.1
we have that A−1vδ2 → A−1v2 in L2(0, T ;V ), hence also, by continuity of A,

vδ2 −→ v2 in L2(0, T ;V ′).

The convergences of vδ and Y δ just proved thus imply∫ t

0

〈
vδ(s), Y δ(s)

〉
ds −→

∫ t

0

〈
v(s), Y (s)

〉
ds

for all t ∈ [0, T ].

We are now going to prove that
(
(Y δGδ) ·W − (Y G) ·W

)∗
T
→ 0 in probability. Setting

Mδ := (Y δGδ) · W and M := (Y G) · W , it is well known that it suffices to show that the
quadratic variation of Mδ −M converges to 0 in probability. One has

[
Mδ −M,Mδ −M

]
=
∥∥Y δGδ − Y G∥∥2

L2(0,T ;L 2(U,R))

≤
∥∥Y δGδ − Y δG∥∥2

L2(0,T ;L 2(U,R))
+
∥∥Y δG− Y G∥∥2

L2(0,T ;L 2(U,R))

≤ ‖Y ‖2L∞(0,T ;H)‖G
δ −G‖2L2(0,T ;L 2(U,H)) + ‖Y δG− Y G‖2L2(0,T ;L 2(U,R)),

where the convergence to zero of the first term in the last expression has already been proved,
and

‖Y δG− Y G‖2L2(0,T ;L 2(U,R)) ≤
∫ T

0

∥∥Y δ(s)− Y (s)
∥∥2∥∥G(s)

∥∥2

L 2(U,H)
ds −→ 0,

by the dominated convergence theorem, because Y δ → Y pointwise in H and ‖Y δ − Y ‖ ≤
2‖Y ‖ ∈ L∞(0, T ). We have thus shown that∫ ·

0

Y δ(s)Gδ(s) dW (s) −→
∫ ·

0

Y (s)G(s) dW (s)

in probability, hence P-a.s. along a subsequence of δ.

Finally, it is clear that Y δgδ → Y g in measure in (0, T ) × D, and that, thanks to the
assumptions on j,

±α2Y δgδ ≤ j(±αY δ) + j∗(αgδ) . 1 + j(αY δ) + j∗(αgδ),

where the second inequality follows from the fact that, thanks to the assumption on the growth
of j at ∞, there exists a constant M > 0 such that

j(r) ≤M
(
1 + j(−r)

)
∀r ∈ R.

Jensen’s inequality for sub-Markovian operators (see, e.g., [41]) thus yields

j(αY δ) + j∗(αgδ) ≤ (I + δA1)−m
(
j(αY ) + j∗(αg)

)
,
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so that
α2
∣∣Y δgδ∣∣ . 1 + (I + δA1)−m

(
j(αY ) + j∗(αg)

)
.

Since j(αY )+j∗(αg) ∈ L1((0, T )×D) by assumption, the contractivity of the resolvent in L1(D)

and the dominated convergence theorem imply that the right-hand side in the last inequality is
convergent in L1((0, T )×D). Hence (Y δgδ)δ is uniformly integrable and, by Vitali’s theorem,∫ t

0

∫
D

gδ(s, x)Y δ(s, x) dx ds −→
∫ t

0

∫
D

g(s, x)Y (s, x) dx ds

for all t ∈ [0, T ]. The proof is thus completed.

As a first important consequence of the generalized Itô formula we show that (the first
component of) strong solutions are pathwise strongly continuous in H.

Theorem 3.3.3. Let (X, ξ) be the unique strong solution to (3.1.1) belonging to J2. Then X
has strongly continuous paths in H, i.e. there exists Ω′ ∈ F with P(Ω′) = 1 such that

X(ω) ∈ C([0, T ];H) ∀ω ∈ Ω′.

Proof. Let r ∈ [0, T ]. We have to prove that X(t)→ X(r) in H as t→ r, t ∈ [0, T ]. It follows
from Theorem 3.3.2 that for every t ∈ [0, T ] there exists Ω′ ∈ F0 with P(Ω′) = 1 such that

1

2
‖X(t)‖2 − 1

2
‖X(r)‖2 = −

∫ t

r

〈AX(s), X(s)〉 ds−
∫ t

r

∫
D

ξ(s)X(s) ds

+
1

2

∫ t

r

∥∥B(s)
∥∥2

L 2(U,H)
+

∫ t

r

X(s)B(s,X(s)) dW (s)

everywhere on Ω′. By the definition of strong solution, we can assume that X ∈ L∞(0, T ;H),
AX ∈ L2(0, T ;V ′), j(X) + j∗(ξ) ∈ L1((0, T ) × D), and that B(·, X) ∈ L2(0, T ; L 2(U,H)),
everywhere on Ω′. Since Xξ = j(X) + j∗(ξ), it follows that the process

[0, T ] 3 s 7−→ ψ(s) := −〈AX(s), X(s)〉 −
∫
D

ξ(s)X(s) +
1

2

∥∥B(s,X(s))
∥∥2

L 2(U,H)

belongs to L1(0, T ) everywhere on Ω′. Therefore, writing

1

2
‖X(t)‖2 − 1

2
‖X(r)‖2 =

∫ t

r

φ(s) ds+

∫ t

r

X(s)B(s,X(s)) dW (s),

since ψ ∈ L1(0, T ) and the stochastic integral has continuous trajectories, we have, as t→ r,

‖X(t)‖2 − ‖X(r)‖2 → 0,

so that ‖X(t)‖ → ‖X(r)‖. Furthermore, X(t)→ X(r) weakly in H as t→ r by Theorem 3.2.2,
hence, since H is uniformly convex, we conclude that X(t)→ X(r) in H (cf., e.g., [23, Propo-
sition 3.32]).

3.4 Existence and uniqueness

We begin with a simple estimate that will be used several times.

Lemma 3.4.1. Let F and G be progressively measurable processes with values in the spaces H
and L 2(U,H), respectively, such that FG is integrable with respect to W . For any numbers p,
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ε > 0 and any stopping time S one has

∥∥((FG) ·W
)∗
S

∥∥
Lp(Ω)

. ε
∥∥F ∗S∥∥2

L2p(Ω)
+

1

ε

∥∥G1[[0,S]]

∥∥2

L2p(Ω;L2(0,T ;L 2(U,H)))

Proof. The Burkholder-Davis-Gundy inequality asserts that

∥∥((FG) ·W
)∗
S

∥∥
Lp(Ω)

h
∥∥[(FG) ·W, (FG) ·W ]

1/2
S

∥∥
Lp(Ω)

,

where, by the ideal property of Hilbert-Schmidt operators and Young’s inequality,

[(FG) ·W, (FG) ·W ]
1/2
S =

(∫ S

0

∥∥F (t)G(t)
∥∥2

L 2(U,R)
dt

)1/2

≤
(∫ S

0

∥∥F (t)
∥∥2∥∥G(t)

∥∥2

L 2(U,H)
dt

)1/2

≤ F ∗S
(∫ S

0

∥∥G(t)
∥∥2

L 2(U,H)
dt

)1/2

≤ εF ∗2S +
1

ε

∫ S

0

∥∥G(t)
∥∥2

L 2(U,H)
dt.

Therefore, taking the Lp(Ω)-(quasi)norm on both sides,

∥∥((FG) ·W
)∗
S

∥∥
Lp(Ω)

. ε
∥∥F ∗S∥∥2

L2p(Ω)
+

1

ε

∥∥G1[[0,S]]

∥∥2

L2p(Ω;L2(0,T ;L 2(U,H)))

Let (X, ξ) and (Y, η) ∈ J0 be strong solutions, in the sense of Definition 3.2.1, to the
equation

dX +AX dt+ β(X) dt 3 B(·, X) dW

with initial conditions X0 and Y0, both elements of L0(Ω,F0,P;H), respectively. Here and
throughout this section we assume that B is locally Lipschitz-continuous in the sense of as-
sumption (B2).

Let us also introduce the sequence of stopping times (Tn)n∈N defined as

Tn := inf
{
t ≥ 0 : ‖XΓ(t)‖ ≥ n or ‖YΓ(t)‖ ≥ n

}
∧ T.

Here and in the following, for any Γ ∈ F0, we shall denote multiplication by 1Γ by a subscript
Γ. Even though the stopping times Tn depend on Γ, we shall not indicate this explicitly to
avoid making the notation too cumbersome.

The stopping times Tn are well defined because, by definition of J0, X and Y have contin-
uous paths with values in H. Moreover, Tn 6= 0 for sufficiently large n.

The estimate in the following lemma is an essential tool, from which, for instance, uniqueness
and a local property of solutions will follow as easy corollaries.

Lemma 3.4.2. Let Γ ∈ F0 be such that X0Γ, Y0Γ ∈ L2(Ω,F0,P;H). One has, for every
n ∈ N,

E
(
XΓ − YΓ

)∗2
Tn

. E
∥∥X0Γ − Y0Γ

∥∥2
,

with implicit constant depending on T and on the Lipschitz constant of B in the ball in H of
radius n.
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Proof. One has

(X − Y ) +

∫ t

0

A(X − Y ) ds+

∫ t

0

(ξ − η) ds = X0 − Y0 +

∫ t

0

(B(X)−B(Y )) dW.

We recall that, for any F0-measurable random variable ζ and any stochastically integrable
process K, one has ζ(K ·W ) = (ζK) ·W . Therefore

(X − Y )Γ +

∫ t

0

A(X − Y )Γ ds+

∫ t

0

(ξ − η)Γ ds

= (X0 − Y0)Γ +

∫ t

0

(B(X)−B(Y ))Γ dW.

The Itô formula of Theorem 3.3.2 yields

∥∥XΓ − YΓ

∥∥2
(t ∧ Tn) + 2

∫ t∧Tn

0

〈
A(XΓ − YΓ), XΓ − YΓ)

〉
ds

+ 2

∫ t∧Tn

0

∫
D

((X − Y )(ξ − η))Γ ds

=
∥∥X0Γ − Y0Γ

∥∥2
+

∫ t∧Tn

0

∥∥(B(X)−B(Y ))Γ

∥∥2

L 2(U,H)
ds

+ 2

∫ t∧Tn

0

(X − Y )Γ(B(X)−B(Y ))Γ dW,

where (a) the second and term terms on the left-hand side are positive by monotonicity of A
and β, and by the assumption that ξ ∈ β(X), η ∈ β(Y ) a.e. in Ω× (0, T )×D; (b) one has

(B(X)−B(Y ))Γ = 1Γ

(
B(XΓ)−B(YΓ)

)
,

hence
1[[0,Tn]]

∥∥(B(X)−B(Y ))Γ

∥∥2

L 2(U,H)
.n 1[[0,Tn]] 1Γ

∥∥XΓ − YΓ

∥∥.
Taking supremum in time and expectation,

E
(
XTn

Γ − Y TnΓ

)∗2
t

. E
∥∥X0Γ − Y0Γ

∥∥2
+

∫ t

0

E
(
XTn

Γ − Y TnΓ

)∗2
s
ds

+ E sup
s≤t

∫ s∧Tn

0

(X − Y )Γ(B(X)−B(Y ))Γ dW,

where, by Lemma 3.4.1, the last term on the right-hand side is bounded by

εE
(
XTn

Γ − Y TnΓ

)∗2
t

+N(ε)E
∫ t∧Tn

0

∥∥(B(X)−B(Y ))Γ

∥∥2

L 2(U,H)
ds

≤ εE
(
XTn

Γ − Y TnΓ

)∗2
t

+N(ε, n)

∫ t

0

E
(
XTn

Γ − Y TnΓ

)∗2
s
ds.

Choosing ε small enough, it follows by Gronwall’s inequality that

E
(
XΓ − YΓ

)∗2
Tn

= E
(
XTn

Γ − Y TnΓ

)∗2
T

. E
∥∥X0Γ − Y0Γ

∥∥2
,

with an implicit constant that depends on T and on the Lipschitz constant of B on the ball in
H of radius n.

Corollary 3.4.3. Uniqueness of strong solutions in J0 holds for (3.1.1).
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Proof. Let (X, ξ), (Y, η) ∈ J0 be strong solutions to (3.1.1). For any Γ ∈ F0 such that
X0Γ ∈ L2(Ω;H) the previous lemma yields XTn

Γ = Y TnΓ for all n ∈ N, hence XΓ = YΓ. Writing

Ω =
⋃
k∈N

Ωk, Ωk :=
{
ω ∈ Ω : ‖X0(ω)‖ ≤ k

}
,

and choosing Γ as Ωk, it follows that X1Ωk = Y 1Ωk for all k, hence X = Y . By comparison,
ξ = η a.e. in Ω× (0, T )×D.

Remark 3.4.4. To prove the corollary, by inspection of the proof of Lemma 3.4.2 it is evident
that one may directly take Γ = Ω, as in this case X0−Y0 = 0, whose second moment is obviously
finite. This immediately implies XTn = Y Tn for all n ∈ N, hence X = Y .

Corollary 3.4.5. Let Γ ∈ F0. If X0Γ = Y0Γ, then XΓ = YΓ, and ξΓ = ηΓ a.e. in Ω×(0, T )×D.

Proof. Write Ω =
⋃
k∈N Ωk, where

Ωk :=
{
ω ∈ Ω : ‖X0(ω)‖ ≤ k

}
∩
{
ω ∈ Ω : ‖Y0(ω)‖ ≤ k

}
.

Then X01Γ∩Ωk , Y01Γ∩Ωk ∈ L2(Ω;H), and Lemma 3.4.2 implies that XΓ∩Ωk = YΓ∩Ωk for all
k ∈ N, hence XΓ = YΓ, as well as, again by comparison, ξΓ = ηΓ a.e. in Ω× (0, T )×D.

Now that uniqueness is cleared, we turn to the question of existence of strong solutions. For
this we need some preparations. For R > 0, let us consider the truncation operator σR : H → H

defined as

σR : x 7−→

x, ‖x‖ ≤ R,

Rx/‖x‖, ‖x‖ > R.

We shall then define

BR : Ω× [0, T ]×H −→ L 2(U,H)

(ω, t, x) 7−→ B(ω, t, σR(x)).

Let us check that BR is Lipschitz-continuous for every R > 0. The progressive measurability
of BR follows from the one of B and the fact that σR : H → H is (Lipschitz) continuous.
Moreover, since σR is 1-Lipschitz continuous, thanks to the local Lipschitz continuity and the
linear growth of B, for every ω ∈ Ω, t ∈ [0, T ] and x, y ∈ H one has

‖BR(ω, t, x)−BR(ω, t, y)‖L 2(U,H) ≤ NR‖σR(x)− σR(y)‖ ≤ NR‖x− y‖

as well as
‖BR(ω, t, x)‖L 2(U,H) ≤ N(1 + ‖σR(x)‖) ≤ N(1 + ‖x‖).

Thanks to Theorems 3.2.2 and 3.3.3, as well as Lemma 3.4.2, the equation

dXn +AXn dt+ β(Xn) dt = Bn(Xn) dW, Xn(0) = X0, (3.4.2)

admits a strong solution (Xn, ξn), which belongs to J2 and is unique in J0, for every n ∈ N.∗

Moreover, by the strong continuity of the paths of Xn, one can define the increasing sequence

∗Note that Theorem 3.2.2 only shows that (Xn, ξn) is unique in J2, while Lemma 3.4.2 yields uniqueness in
the larger space J0.
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of stopping times (τn)n∈N by

τn := inf
{
t ∈ [0, T ] : ‖Xn(t)‖ ≥ n

}
,

as well as the stopping time
τ := lim

n→∞
τn = sup

n∈N
τn.

As first step we show that the sequence of processes (Xn, ξn) satisfies a sort of consistency
condition.

Lemma 3.4.6. One has Xτn
n+1 = Xτn

n for all n ∈ N, as well as ξn1[[0,τn]] = ξn+11[[0,τn]] in
L0(Ω× (0, T )×D).

Proof. Itô’s formula yields, in view of the monotonicity of A and β,

∥∥Xn+1 −Xn

∥∥2
(t ∧ τn) .

∫ t∧τn

0

(Xn+1 −Xn)
(
Bn+1(Xn+1)−Bn(Xn)

)
(s) dW (s)

+

∫ t∧τn

0

∥∥Bn+1(Xn+1(s))−Bn(Xn(s))
∥∥2

L 2(U,H)
ds.

Note that Bn+1 = Bn on the ball of radius n in H, hence Bn(Xn) = Bn+1(Xn) on [[0, τn]].
Therefore, since Bn+1 is Lipschitz continuous,

E
(
Xτn
n+1 −Xτn

n

)∗2
t

. E
(
((Xn+1 −Xn)(Bn+1(Xn+1)−Bn+1(Xn))) ·W

)∗
t∧τn

+

∫ t

0

E
(
Xτn
n+1 −Xτn

n

)∗2
s
ds,

where the first term on the right-hand side can be estimated, thanks to the BDG inequality
and the ideal property of Hilbert-Schmidt operators, by

E
(∫ t∧τn

0

∥∥Xn+1 −Xn

∥∥2
(s)
∥∥Bn+1(Xn+1(s))−Bn+1(Xn(s))

∥∥2

L 2(U,H)
ds

)1/2

.n E
(
Xτn
n+1 −Xτn

n

)∗
t

(∫ t

0

∥∥Xτn
n+1 −Xτn

n

∥∥2
(s)

)1/2

.n εE
(
Xτn
n+1 −Xτn

n

)∗2
t

+
1

ε

∫ t

0

E
(
Xτn
n+1 −Xτn

n

)∗2
s
ds.

Choosing ε small enough, Gronwall’s inequality implies

E
(
Xτn
n+1 −Xτn

n

)∗2
t

= 0

for all t ≤ T , hence Xτn
n+1 = Xτn

n . The first claim is thus proved.

In order to prove the second claim, note that it holds

Xτn
n+1(t) +

∫ t∧τn

0

AXn+1 ds+

∫ t∧τn

0

ξn+1 ds = X0 +

∫ t∧τn

0

Bn+1(Xn+1) dW,

Xτn
n (t) +

∫ t∧τn

0

AXn ds+

∫ t∧τn

0

ξn ds = X0 +

∫ t∧τn

0

Bn(Xn) dW,

where Bn(Xn) on the right-hand side of the second identity can be replaced by Bn+1(Xn+1)

because the paths of Xτn
n+1 remain within a ball of radius n in H and Xτn

n+1 = Xτn
n . This
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identity also yields, by comparison,∫ t

0

ξn+11[[0,τn]] ds =

∫ t∧τn

0

ξn+1 ds =

∫ t∧τn

0

ξn ds =

∫ t

0

ξn1[[0,τn]] ds,

which implies the second claim.†

The lemma implies that one can define processes X and ξ on [[0, τ ]] by the prescriptions
X := Xn and ξ := ξn on [[0, τn]] for all n ∈ N, or equivalently (but perhaps less tellingly), as
X = limn→∞Xn and ξ = limn→∞ ξn.

We are now going to show that the linear growth assumption on B implies that τ = T . We
shall first establish a priori estimates for the solution to equation (3.4.2).

Lemma 3.4.7. There exists a constant N > 0, independent of n, such that

E
∥∥Xn

∥∥2

C([0,T ];H)
+ E

∥∥Xn

∥∥2

L2(0,T ;V )
+ E

∥∥ξnXn

∥∥
L1((0,T )×D)

< N
(
1 + E‖X0‖2

)
.

Proof. The Itô formula of Theorem 3.3.2 yields

‖Xn(t)‖2 + 2

∫ t

0

〈AXn(s), Xn(s)〉 ds+ 2

∫ t

0

∫
D

ξn(s)Xn(s) dx ds

= ‖X0‖2 +

∫ t

0

∥∥Bn(s,Xn(s))
∥∥2

L 2(U,H)
ds+ 2

∫ t

0

Xn(s)Bn(s,Xn(s)) dW (s),

where, recalling that Bn = B(·, ·, σn(·)) and σn is a contraction in H, and that B grows at most
linearly, ∫ t

0

∥∥Bn(s,Xn(s))
∥∥2

L 2(U,H)
. T +

∫ T

0

‖Xn(s)‖2 ds.

Denoting the stochastic integral on the right-hand side by Mn, taking supremum in time and
expectation we get, by the coercivity of A,

E
∥∥Xn

∥∥2

C([0,T ];H)
+ E

∥∥Xn

∥∥2

L2(0,T ;V )
+ E

∥∥ξnXn

∥∥
L1((0,T )×D)

. 1 + E‖X0‖2 + E
∫ T

0

‖Xn(s)‖2 ds+ EM∗2T ,

where the implicit constant depends on T . By Lemma 3.4.1 we have, for any ε > 0,

EM∗2T . εE
∥∥Xn

∥∥2

C([0,T ];H)
+N(ε)E

∫ T

0

‖Xn(s)‖2 ds,

therefore, choosing ε sufficiently small,

E
∥∥Xn

∥∥2

C([0,T ];H)
+ E

∥∥Xn

∥∥2

L2(0,T ;V )
+ E

∥∥ξnXn

∥∥
L1((0,T )×D)

. 1 + E‖X0‖2 + E
∫ T

0

‖Xn(s)‖2 ds.

Since this inequality holds also with T replaced by any t ∈]0, T ], we also have

E
∥∥Xn

∥∥2

C([0,t];H)
. 1 + E‖X0‖2 +

∫ T

0

E
∥∥Xn

∥∥2

C([0,s];H)
ds,

†The argument in fact proves the following slightly stronger statement: setting Ξn :=
∫ ·
0 ξn ds, the processes

Ξτnn+1 and Ξτnn are indistinguishable for all n.
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hence, by Gronwall’s inequality,

E
∥∥Xn

∥∥2

C([0,T ];H)
. 1 + E‖X0‖2,

with implicit constant depending on T . Since C([0, T ];H) ↪→ L2(0, T ;H), one easily deduces

E
∥∥Xn

∥∥2

C([0,T ];H)
+ E

∥∥Xn

∥∥2

L2(0,T ;V )
+ E

∥∥ξnXn

∥∥
L1((0,T )×D)

. 1 + E‖X0‖2.

Lemma 3.4.8. One has
P
(

lim sup
n→∞

{τn ≤ T}
)

= 0.

In particular, τ = T .

Proof. By Markov’s inequality and the previous lemma,

P
(
‖Xn‖C([0,T ];H) ≥ n

)
≤ 1

n2
E‖Xn‖2C([0,T ];H) .

1

n2

(
1 + E‖X0‖2).

Since the event {‖Xn‖C([0,T ];H) ≥ n} coincides with {τn ≤ T}, one has

∞∑
n=1

P
(
τn ≤ T

)
<∞,

thus also, by the Borel-Cantelli lemma,

P

⋂
n∈N

⋃
k≥n

{τk ≤ T}

 = 0.

In other words, the sequence (τn) is ultimately constant: for each ω in a subset of Ω of P-
measure one, there exists m = m(ω) such that τn(ω) = T for all n > m. In particular, τ = T

P-almost surely.

This lemma implies that the processes X and ξ defined immediately after the proof of
Lemma 3.4.6 are indeed defined on the whole interval [0, T ].

We can now prove the first existence result.

Theorem 3.4.9. Assume that X0 ∈ L2(Ω,F0,P;H). Then equation (3.1.1) admits a unique
strong solution, which belongs to J2.

Proof. Uniqueness of strong solutions is proved, in more generality, by Corollary 3.4.3. Let us
prove existence. By stopping at τn, one has

Xτn
n (t) +

∫ t∧τn

0

AXn(s) ds+

∫ t∧τn

0

ξn(s) ds = X0 +

∫ t∧τn

0

Bn(Xn(s)) ds,

where, by definition of X, Xτn
n = Xτn , as well as, by definition of Bn,∫ t∧τn

0

Bn(Xn(s)) ds =

∫ t∧τn

0

B(X(s)) ds.

Similarly, by definition of ξ it follows that∫ t∧τn

0

ξn(s) ds =

∫ t∧τn

0

ξ(s) ds,
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hence that

Xτn(t) +

∫ t∧τn

0

AX(s) ds+

∫ t∧τn

0

ξ(s) ds = X0 +

∫ t∧τn

0

B(X(s)) ds.

Since this identity holds for all n ∈ N and τn → T as n→∞, we infer that

X(t) +

∫ t

0

AX(s) ds+

∫ t

0

ξ(s) ds = X0 +

∫ t

0

B(X(s)) ds

for all t ∈ [0, T ] P-a.s.. Moreover, for every n ∈ N, ξn ∈ β(Xn) a.e. in Ω × (0, T ) ×D, hence
ξn1[[0,τn]] ∈ β(Xn)1[[0,τn]], thus also ξ1[[0,τn]] ∈ β(X)1[[0,τn]] a.e. in Ω× (0, T )×D. Recalling that
τn → T as n→∞, this in turn implies ξ ∈ β(X) a.e. in Ω× (0, T )×D.

Moreover, since (X, ξ) is the almost sure limit of (Xn, ξn), we immediately infer that X and
ξ are predictable H-valued and L1(D)-valued processes, respectively. The a priori estimates of
Lemma 3.4.7 and Fatou’s lemma then yield

X ∈ L2(Ω;C([0, T ];H)) ∩ L2(Ω;L2(0, T ;V )), ξ ∈ L1(Ω× (0, T )×D).

Similarly, ξn ∈ β(Xn) implies Xnξn = j(Xn) + j∗(ξn), hence

E
∫ T

0

∫
D

(
j(Xn) + j∗(ξn)

)
. 1 + E‖X0‖2

for all n ∈ N, and again by Fatou’s lemma, as well as by the lower-semicontinuity of convex
integrals, one obtains

j(X) + j∗(ξ) ∈ L1(Ω;L1(0, T ;L1(D))).

We have thus proved that (X, ξ) ∈J2, so the proof is completed.

The second existence result, which allows X0 to be merely F0-measurable, follows by a
further “gluing” procedure.

Theorem 3.4.10. Assume that X0 ∈ L0(Ω,F0,P;H). Then equation (3.1.1) admits a unique
strong solution.

Proof. Uniqueness of strong solutions has already been proved in Corollary 3.4.3. It is hence
enough to prove existence. Let us define the sequence (Γn)n∈N of elements of F0 as

Γn :=
{
ω ∈ Ω : ‖X0‖ ≤ n

}
.

It is evident that (Γn) is a sequence increasing to Ω, and that X0Γn = X01Γn ∈ L2(Ω;H).
Therefore, by the previous theorem, for each n ∈ N there exists a unique strong solution
(Xn, ξn) to (3.1.1) with initial condition X0Γn . By the local property of solutions established in
Corollary 3.4.5, we have that Xn+11Γn and Xn1Γn are indistinguishable, and ξn+11Γn = ξn1Γn

a.e. in Ω× (0, T )×D. Since (Γn) is increasing, it makes sense to define the processes X and ξ
by

X1Γn = Xn1Γn , ξ1Γn = ξn1Γn

for all n ∈ N. This amounts to saying that X and ξ are the P-a.s. limits of Xn and ξn,
respectively, which immediately implies that X and ξ are predictable processes with values in
H and L1(D), respectively. Moreover, by construction, we also have

X ∈ L0(Ω;C([0, T ];H) ∩ L2(0, T ;V )), ξ ∈ L0(Ω;L1(0, T ;L1(D)))
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In fact, writing E := C([0, T ];H) ∩ L2(0, T ;V ) for compactness of notation, by the previous
theorem we have Xn ∈ L2(Ω;E) and ξ ∈ L1(Ω × (0, T ) × D), and for any arbitrary but
fixed ω in a subset of Ω of probability one, there exists n = n(ω) such that (X(ω), ξ(ω)) =

(Xn(ω), ξn(ω)) ∈ E × L1((0, T ) ×D). Furthermore, since ξn ∈ β(Xn) a.e. for all n ∈ N, it is
easy to see that

ξ1Γn = ξn1Γn ∈ β(Xn)1Γn = β(Xn1Γn)1Γn = β(X)1Γn

for all n ∈ N, so that ξ ∈ β(X) a.e. because Γn ↑ Ω. Similarly,

j(Xn)1Γn = j(1ΓnXn)1Γn = j(X)1Γn

as well as, by the same reasoning, j∗(ξn)1Γn = j∗(ξ)1Γn . Since, by the previous theorem,
j(Xn) + j∗(ξn) ∈ L1(Ω;L1((0, T )×D) for all n ∈ N, it follows that

(
j(X) + j∗(ξ)

)
1Γn ∈ L1(Ω;L1((0, T )×D) ∀n ∈ N,

hence j(X) + j∗(ξ) ∈ L0(Ω;L1((0, T )×D).

3.5 Moment estimates and dependence on the initial da-

tum

We are now going to show that the integrability of the solution is determined by the integrability
of the initial condition.

Theorem 3.5.1. Let p ≥ 0. If X0 ∈ Lp(Ω,F0,P;H), then the unique strong solution to
equation (3.1.1) belongs to Jp.

Proof. Itô’s formula yields

‖X(t)‖2 + 2

∫ t

0

〈AX(s), X(s)〉 ds+ 2

∫ t

0

∫
D

ξ(s)X(s) dx ds

= ‖X0‖2 +

∫ t

0

∥∥B(s,X(s))
∥∥2

L 2(U,H)
ds+ 2

∫ t

0

X(s)B(s,X(s)) dW (s).

For any α > 0, it follows by the integration-by-parts formula that

e−2αt‖X(t)‖2 + 2α

∫ t

0

e−2αs‖X(s)‖2 ds+ 2

∫ t

0

e−2αs〈AX(s), X(s)〉 ds

+ 2

∫ t

0

∫
D

e−2αsξ(s)X(s) dx ds

= ‖X0‖2 +

∫ t

0

e−2αs
∥∥B(s,X(s))

∥∥2

L 2(U,H)
ds

+ 2

∫ t

0

e−2αsX(s)B(s,X(s)) dW (s).

LetM denote the stochastic integral on the right-hand side, and Y (t) := e−αtX(t). Since X has
continuous paths in H, one can introduce the sequence of stopping times (Tn)n∈N, increasing
to T , as

Tn := inf
{
t ≥ 0 : ‖X(t)‖ ≥ n

}
∧ T.
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It follows by the local Lipschitz-continuity property of B that

‖Y Tn(t)‖2 + 2α

∫ t∧Tn

0

‖Y (s)‖2 ds+ 2C

∫ t∧Tn

0

‖Y (s)‖2V ds

+ 2

∫ t∧Tn

0

∫
D

e−2αsξ(s)X(s) dx ds

≤ ‖X0‖2 +

∫ t∧Tn

0

e−2αs
∥∥Bn(s,X(s))

∥∥2

L 2(U,H)
ds+ 2MTn(t).

Recalling that Bn = B(·, ·, σn(·)) and σn is a contraction in H, and that B grows at most
linearly, one has

e−2αs
∥∥Bn(s,X(s))

∥∥2

L 2(U,H)
. e−2αs + ‖Y (s)‖2,

hence ∫ t∧Tn

0

e−2αs
∥∥Bn(s,X(s))

∥∥2

L 2(U,H)
ds .

1

2α
+

∫ t∧Tn

0

‖Y (s)‖2 ds. (3.5.3)

Taking supremum in time and the Lp/2(Ω)-(quasi)norm, recalling the BDG inequality and the
fact that e−αtξnXn ≥ e−αT ξnXn, we are left with

∥∥Y ∗Tn∥∥2

Lp(Ω)
+ α

∥∥Y 1[[0,Tn]]

∥∥2

Lp(Ω;L2(0,T ;H))
+
∥∥Y 1[[0,Tn]]

∥∥2

Lp(Ω;L2(0,T ;V ))

+ e−αT
∥∥ξX1[[0,Tn]]

∥∥
Lp/2(Ω;L1((0,T )×D))

.
∥∥X0

∥∥2

Lp(Ω;H)
+

1

2α
+
∥∥Y 1[[0,Tn]]

∥∥2

Lp(Ω;L2(0,T ;H))
+
∥∥[M,M ]

1/2
Tn

∥∥
Lp/2(Ω)

.

Lemma 3.4.1 and (3.5.3) yield

[M,M ]
1/2
Tn

. εY ∗2Tn +
1

ε

(
1

2α
+
∥∥Y 1[[0,Tn]]

∥∥2

L2(0,T ;H)

)
,

hence ∥∥[M,M ]
1/2
Tn

∥∥
Lp/2(Ω)

. ε
∥∥Y ∗Tn∥∥2

Lp(Ω)
+

1

ε

∥∥Y 1[[0,Tn]]

∥∥2

Lp(Ω;L2(0,T ;H))
+

1

2αε
,

where the implicit constant is independent of α and of an arbitrary ε > 0 to be chosen later.
We thus have

∥∥Y ∗Tn∥∥2

Lp(Ω)
+ α

∥∥Y 1[[0,Tn]]

∥∥2

Lp(Ω;L2(0,T ;H))
+
∥∥Y 1[[0,Tn]]

∥∥2

Lp(Ω;L2(0,T ;V ))

+ e−αT
∥∥ξX1[[0,Tn]]

∥∥
Lp/2(Ω;L1((0,T )×D))

.
∥∥X0

∥∥2

Lp(Ω;H)
+ ε
∥∥(Y Tn)∗T

∥∥2

Lp(Ω)
+ (1 + 1/ε)

∥∥Y 1[[0,Tn]]

∥∥2

Lp(Ω;L2(0,T ;H))

+
1

2α
(1 + 1/ε).

Since the implicit constant is independent of α and ε, one can take ε small enough and α large
enough so that

∥∥Y ∗Tn∥∥2

Lp(Ω)
+
∥∥Y 1[[0,Tn]]

∥∥2

Lp(Ω;L2(0,T ;V ))
+
∥∥ξX1[[0,Tn]]

∥∥
Lp/2(Ω;L1((0,T )×D))

. 1 +
∥∥X0

∥∥2

Lp(Ω;H)
.
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As the implicit constant is independent of n and Tn increases to T , we get

∥∥Y ∥∥2

Lp(Ω;C([0,T ];H))
+
∥∥Y ∥∥2

Lp(Ω;L2(0,T ;V ))
+
∥∥ξX∥∥

Lp/2(Ω;L1((0,T )×D))

. 1 +
∥∥X0

∥∥2

Lp(Ω;H)
.

The proof is completed noting that, for E := C([0, T ];H) ∩ L2(0, T ;V ),

‖X‖E ≤ e
αT ‖Y ‖E .

If B is Lipschitz-continuous, related arguments show that the solution map is Lipschitz-
continuous between spaces with finite p-th moment in the whole range p ∈ [0,∞[. We consider
the cases p > 0 and p = 0 separately.

Proposition 3.5.2. Let p > 0. If B is Lipschitz-continuous in the sense of assumption (B1),
then the solution map

Lp(Ω;H) −→ Lp(Ω;C([0, T ];H)) ∩ Lp(Ω;L2(0, T ;V ))

X0 7−→ X

is Lipschitz-continuous.

Proof. Let X0, Y0 ∈ Lp(Ω;H). The previous theorem asserts that the (unique) strong solutions
(X, ξ) and (Y, η) to (3.1.1) with initial condition X0 and Y0, respectively, belong to Lp(Ω;E),
where, as before, E stands for C([0, T ];H) ∩ L2(0, T ;V ). By Itô’s formula,

‖X − Y ‖2 + 2

∫ t

0

〈A(X − Y ), X − Y 〉 ds+ 2

∫ t

0

∫
D

(ξ − η)(X − Y ) ds

= ‖X0 − Y0‖2 +

∫ t

0

∥∥B(X)−B(Y )
∥∥2

L 2(U,H)
ds

+ 2

∫ t

0

(X − Y )(B(X)−B(Y )) dW,

where the third term on the left-hand side is positive by monotonicity of β. Let α > 0 be a
constant to be chosen later, and set Xα := Xe−α·, Yα := Y e−α·. It follows by the integration-
by-parts formula, in complete analogy to the proof of the previous theorem, by the Lipschitz
continuity of B, and by the coercivity of A, that

‖Xα − Yα‖2 + α

∫ t

0

‖Xα − Yα‖2 ds+

∫ t

0

‖Xα − Yα‖2V ds

. ‖X0 − Y0‖2 +

∫ t

0

∥∥Xα − Yα
∥∥2
ds+M,

where M :=
(
e−2α·(X − Y )(B(X)− B(Y ))

)
·W . Taking supremum in time and the Lp/2(Ω)-

(quasi)norm yields

∥∥Xα − Yα
∥∥2

Lp(Ω;C([0,T ];H))
+ α

∥∥Xα − Yα
∥∥2

Lp(Ω;L2(0,T ;H))

+
∥∥Xα − Yα

∥∥2

Lp(Ω;L2(0,T ;V ))

.
∥∥X0 − Y0

∥∥2

Lp(Ω;H)
+
∥∥Xα − Yα

∥∥2

Lp(Ω;L2(0,T ;H))
+
∥∥M∗T∥∥Lp/2(Ω)

,
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where, by Lemma 3.4.1,

∥∥M∗T∥∥Lp/2(Ω)
. ε
∥∥Xα − Yα

∥∥2

Lp(Ω;C([0,T ];H))
+N(ε)

∥∥Xα − Yα
∥∥2

Lp(Ω;L2(0,T ;H))

for any ε > 0. Choosing first ε small enough, then α sufficiently large, we obtain

∥∥Xα − Yα
∥∥2

Lp(Ω;C([0,T ];H))
+
∥∥Xα − Yα

∥∥2

Lp(Ω;L2(0,T ;V ))
.
∥∥X0 − Y0

∥∥2

Lp(Ω;H)
,

which completes the proof noting that ‖X − Y ‖E ≤ eαT ‖Xα − Yα‖E .

Lipschitz continuity of the solution map can also be obtained in the case p = 0. As already
seen, the space E := C([0, T ];H) ∩ L2(0, T ;V ), equipped with the norm

∥∥u∥∥
E

:=
∥∥u∥∥

C([0,T ];H)
+
∥∥u∥∥

L2(0,T ;V )
,

is a Banach space. Then L0(Ω;E), endowed with the topology of convergence in probability, is
a complete metrizable topological vector space. In particular, the distance

d(f, g) := E
(
‖f − g‖E ∧ 1

)
generates its topology.

Proposition 3.5.3. If B is Lipschitz-continuous in the sense of assumption (B1), then the
solution map

L0(Ω;H) −→ L0(Ω;E)

X0 7−→ X

is Lipschitz-continuous.

Proof. Let X0, Y0 ∈ L0(Ω,F0,P;H), and (X, ξ), (Y, η) the unique solutions in J0 to equation
(3.1.1) with initial datum X0 and Y0, respectively. The stopping time

T1 := inf
{
t ≥ 0 : (X − Y )∗t +

(∫ t

0

‖X(s)− Y (s)‖2V ds
)1/2

≥ 1
}
∧ T.

is well defined thanks to the pathwise continuity of X and Y . For every α > 0, using the same
notation as in the previous proof, Theorem 3.3.2 yields, by monotonicity of β and coercivity of
A,

(
Xα − Yα

)∗2
t

+

∫ t

0

‖Xα(s)− Yα(s)‖2V ds+ α

∫ t

0

‖Xα(s)− Yα(s)‖2 ds

. ‖X0 − Y0‖2 +

∫ t

0

∥∥(B(X(s))−B(Y (s)))α
∥∥2

L 2(U,H)
ds

+
(
(Xα − Yα)(B(X)−B(Y ))α ·W

)∗
t

Raising to the power 1/2, stopping at T1, and taking expectation, we get, by the Lipschitz
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continuity of B,

E
(
Xα − Yα

)∗
T1

+ E
(∫ T1

0

‖Xα(s)− Yα(s)‖2V ds
)1/2

+
√
αE
(∫ T1

0

‖Xα(s)− Yα(s)‖2 ds
)1/2

. E1[[0,T1]]‖X0 − Y0‖+ E
(∫ T1

0

‖Xα(s)− Yα(s)‖2 ds
)1/2

+ E
(
(Xα − Yα)(B(X)−B(Y ))α ·W

)∗1/2
T1

,

where, by Lemma 3.4.1 and Lipschitz continuity of B, the last term on the right-hand side is
bounded by

εE
(
Xα − Yα

)∗
T1

+N(ε)E
(∫ T1

0

‖Xα(s)− Yα(s)‖2 ds
)1/2

for every ε > 0. Therefore, choosing ε small enough and α large enough, we are left with

E
(
X − Y

)∗
T1

+ E
(∫ T1

0

‖X(s)− Y (s)‖2V ds
)1/2

. E1[[0,T1]]‖X0 − Y0‖.

The proof is concluded noting that, by definition of T1,

(
X − Y

)∗
T1

+

(∫ T1

0

‖X(s)− Y (s)‖2V ds
)1/2

=
∥∥X − Y ∥∥

C([0,T ];H)∩L2(0,T ;V )
∧ 1,

and ‖X0 − Y0‖ ≤ 1 on [[0, T1]], hence

E1[[0,T1]]‖X0 − Y0‖ = E1[[0,T1]]

(
‖X0 − Y0‖ ∧ 1

)
≤ E

(
‖X0 − Y0‖ ∧ 1

)
.





Chapter 4

Singular semilinear equations:
long-time behaviour

In this chapter, we prove existence of invariant measures for the Markovian semigroup generated
by the solution to a parabolic semilinear stochastic PDE whose nonlinear drift term satisfies
only a kind of symmetry condition on its behavior at infinity, but no restriction on its growth
rate is imposed. Thanks to strong integrability properties of invariant measures µ, solvability of
the associated Kolmogorov equation in L1(µ) is then established, and the infinitesimal generator
of the transition semigroup is identified as the closure of the Kolmogorov operator. A key role
is played by a generalized variational setting.

The results presented in this chapter are part of a joint work with Carlo Marinelli: see [62].

4.1 The problem: literature and main goals

Our goal is to study the asymptotic behavior of solutions to semilinear stochastic partial dif-
ferential equations on a smooth bounded domain D ⊆ Rd of the form

dXt +AXt dt+ β(Xt) dt 3 B(Xt) dWt, X(0) = X0. (4.1.1)

Here A : V → V ′ is a linear maximal monotone operator from a Hilbert space V to its dual
V ′, and V ⊂ H := L2(D) ⊂ V ′ is a so-called Gelfand triple; β is a maximal monotone graph
everywhere defined on R; W is a cylindrical Wiener process on a separable Hilbert space U , and
B takes values in the space of Hilbert-Schmidt operators from U to L2(D). Precise assumptions
on the data of the problem are given in §4.2 below. The most salient point is that β is not
assumed to satisfy any growth assumption, but just a kind of symmetry on its rate of growth at
plus and minus infinity – see assumption (vi) in §4.2 below. Well-posedness of equation (4.1.1)
in the strong (variational) sense has been obtained in Chapters 2 and 3 by a combination
of classical results by Pardoux and Krylov-Rozovskĭı (see [46, 72]) with pathwise estimates
and weak compactness arguments. The minimal assumptions on the drift term β imply that,
in general, the operator A + β does not satisfy the coercivity and boundedness assumptions
required by the variational approach of [46, 72]. For this reason, questions such as ergodicity
and existence of invariant measures for (4.1.1) cannot be addressed using the results by Barbu
and Da Prato in [11], which appear to be the only ones available for equations in the variational
setting (cf. also [68]). On the other hand, there is a very vast literature on these problems for
equations cast in the mild setting, references to which can be found, for instance, in [28,29,78].

85
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Even in this case, however, we are not aware of results on equations with a drift term as
general as in (4.1.1). Our results thus considerably extend, or at least complement, those on
reaction-diffusion equations in [26, 28, 29], for instance, where polynomial growth assumptions
are essential. More recent existence and integrability results for invariant measures of semilinear
equations have been obtained, e.g., in [37,38], but still under local Lipschitz-continuity or other
suitable growth assumptions on the drift. Another possible advantage of our results is that we
use only standard monotonicity assumptions, whereas in a large part of the cited literature one
encounters assumptions of the type

〈Ax+ β(x+ y), z〉 ≤ f(‖y‖)− k‖x‖

for some (or all) z belonging to the subdifferential of ‖x‖, where f is a function and k a constant.
Here A actually stands for the part of A in a Banach space E continuously embedded in L2(D),
〈·, ·〉 stands for the duality between E and its dual, and the condition is assumed to hold for
those x, y for which all terms are well defined. Often E is chosen as a space of continuous
functions such as C(D). This monotonicity-type condition on A and β is precisely what one
needs in order to obtain a priori estimates by reducing the original equation to a deterministic
one with random coefficients, under the assumption of additive noise. Using a figurative but
rather accurate expression, this methods amounts to “subtracting the stochastic convolution”.
Our estimates are obtained mostly by stochastic calculus, for which the standard notion of
monotonicity suffices. Among such estimates we obtain the integrability of (the potential of)
the nonlinear drift term β with respect to the invariant measure µ, which is known to be a
delicate issue, especially for non-gradient systems (cf. the discussion in [37]). These results
allow us to show that the Kolmogorov operator associated to the stochastic equation (4.1.1)
with additive noise is essentially m-dissipative in L1(H,µ). This implies that the closure of the
Kolmogorov operator in L1(H,µ) generates a Markovian semigroup of contractions, which is a
µ-version of the transition semigroup generated by the solution to the stochastic equation. It is
worth mentioning that the variational-type setting, while allowing for a very general drift term
β, gives raise to quite many technical issues in the study of Kolmogorov equations, for instance
because test functions in function spaces on V and V ′ naturally appear.

We conclude this introductory section with a brief description of the structure of the chapter
and of the main results. In Section 4.2 we state the basic assumptions which are in force
throughout the paper, and recall the well-posedness result for equation (4.1.1) obtained in
Chapter 2. Section 4.3 is devoted to auxiliary results, most of which should be interesting in their
own right, that underpin our subsequent arguments. In particular, we prove two generalized
versions of the classical Itô formula in the variational setting for equation (4.1.1): one for the
square of the norm, and another one extending a very useful but not-so-well known version for
more general smooth functions, originally obtained by Pardoux (see [72, p. 62–ff]). Furthermore,
we establish results on the first and second-order differentiability, both in the Gâteaux and
Fréchet sense, of (variational) solutions to semilinear equations with regular drift with respect
to the initial datum. In Section 4.4 we prove that the transition semigroup P generated by the
solution to (4.1.1) admits an ergodic invariant measure µ, which in also shown to be unique
and strongly mixing if β is superlinear. These results follow mainly by a priori estimates
(which, in turn, are obtained by stochastic calculus) and compactness. Finally, Section 4.5
deals with the Kolmogorov equation associated to (4.1.1). In particular, we characterize the
infinitesimal generator −L of the transition semigroup P on L1(H,µ) as the closure of the
Kolmogorov operator −L0. After showing that L0 is dissipative and coincides with L on a
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suitably chosen dense subset of L1(H,µ), we prove that the image of I+L0 is dense in L1(H,µ),
so that the Lumer-Phillips theorem can be applied. Due to the variational formulation of the
problem, the latter point turns out to be rather delicate, even though the general approach
follows a typical scheme: we first introduce appropriate regularizations of L0, for which the
Kolmogorov equation can be solved by established techniques, then we pass to the limit in the
regularization’s parameters. Here the generalized Itô formulas and the differentiability results
proved in Section 4.3 play a key role.

4.2 General assumptions and well-posedness

Before stating the hypotheses on the coefficients and on the initial datum of equation (4.1.1)
that will be in force throughout the paper, let us fix some notation.

The Hilbert space L2(D) will be denoted by H, and its norm and scalar product by ‖·‖
and 〈·, ·〉, respectively. Let V be a separable Hilbert space densely, continuously and compactly
embedded in H = L2(D). The duality form between V and V ′ is also denoted by 〈·, ·〉, as
customary. We assume that A ∈ L (V, V ′) satisfies the following properties:

(i) there exists C > 0 such that 〈Av, v〉 ≥ C‖v‖2V for every v ∈ V ;

(ii) the part of A in H can be uniquely extended to an m-accretive operator A1 on L1(D);

(iii) for every δ > 0, the resolvent (I + δA1)−1 is sub-Markovian;

(iv) there exists m ∈ N such that (I + δA1)−m ∈ L (L1(D), L∞(D)).

Let us now consider the non-linear term in the drift. We assume that

(v) β ⊂ R× R is a maximal monotone graph such that 0 ∈ β(0) and D(β) = R.

Let j : R → R+ be the unique convex lower semicontinuous function such that j(0) = 0 and
β = ∂j, in the sense of convex analysis. We assume that

(vi) lim sup
|r|→∞

j(r)

j(−r)
<∞.

This hypothesis is obviously satisfied if j (or, equivalently, β) is symmetric. Denoting the
convex conjugate of j by j∗, it is well known that the hypothesis D(β) = R is equivalent to the
superlinearity of j∗ at infinity, i.e.

lim
|r|→∞

j∗(r)

|r|
=∞.

We are going to need the following property implied by assumption (vi): there exists a strictly
positive number η such that, for every measurable function y : D → R, j∗(y) ∈ L1(D) implies
j∗(η|y|) ∈ L1(D). In fact, from (vi) we deduce that there exist R > 0 and M1 = M1(R) > 0

such that j(r) ≤ M1j(−r) for |r| ≥ R. Since j ≥ 0, one can choose M1 > 1 without loss of
generality. Setting M2 := max{j(r) : |r| ≤ R}, which is finite by continuity of j, we deduce
that

j(r) ≤M1j(−r) +M2 ∀r ∈ R.

Taking convex conjugates on both sides we infer that

j∗(r) ≥M1j
∗(−r/M1)−M2 ∀r ∈ D(j∗).
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Setting η := 1/M1 < 1 and recalling that j∗(0) = 0, hence j∗ is positive on R and increasing
on R+, one has

j∗(η|y|) = j∗(ηy)1{y≥0} + j∗(−ηy)1{y<0}

≤ j∗(y)1{y≥0} + ηj∗(y)1{y≥0} + ηM2

≤ j∗(y) +M2 ∈ L1(D).

The assumptions on the Wiener process W and the diffusion coefficient B are standard: let
U be a separable Hilbert space and W a cylindrical Wiener process on U , defined on a filtered
probability space (Ω,F , (Ft)t∈[0,T ],P) satisfying the so-called usual conditions.∗ We assume
that

(vii) B : H → L 2(U,H) is Lipschitz-continuous and with linear growth, i.e. that there exists
a positive constants LB such that

‖B(x)−B(y)‖L 2(U,H) ≤ LB‖x− y‖ ∀x, y ∈ H,

‖B(x)‖L 2(U,H) ≤ LB(1 + ‖x‖) ∀x ∈ H.

Finally, the initial datum X0 is assumed to be F0-measurable and such that E‖X0‖2 is finite.
All hypotheses just stated will be tacitly assumed to hold throughout.

The following well-posedness result for equation (4.1.1) has been proved in Chapter 2, al-
lowing the coefficient B to be also random and time-dependent.

Theorem 4.2.1. There is a unique pair (X, ξ), with X a V -valued adapted process and ξ an
L1(D)-valued predictable process, such that

X ∈ L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V )), ξ ∈ L1(Ω× (0, T )×D),

j(X) + j∗(ξ) ∈ L1(Ω× (0, T )×D), ξ ∈ β(X) a.e. in Ω× (0, T )×D,

and

X(t) +

∫ t

0

AX(s) ds+

∫ t

0

ξ(s) ds = X0 +

∫ t

0

B(X(s)) dW (s) ∀t ∈ [0, T ], P-a.s.

in V ′ ∩ L1(D). Moreover, X is P-a.s. pathwise weakly continuous from [0, T ] to H, and the
solution map

L2(Ω;H) −→ L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V ))

X0 7−→ X

is Lipschitz-continuous.

The main result of this chapter will be stated at the end of Section 4.5 and will follow after
some intermediate steps.

∗Expressions involving random elements are always meant to hold P-a.s. unless otherwise stated.
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4.3 Auxiliary results

To prove the main results we shall need some auxiliary results that are interesting in their own
right, and that are collected in this section. In particular, we recall or prove some Itô-type
formulas and provide conditions for the differentiability of solutions to equations in variational
form with respect to the initial datum.

4.3.1 Itô formulas

The following version of Itô’s formula for the square of the norm is proved in Chapter 3.

Proposition 4.3.1. Assume that an adapted process

Y ∈ L0(Ω;L∞(0, T ;H)) ∩ L0(Ω;L2(0, T ;V ))

is such that

Y (t) +

∫ t

0

AY (s) ds+

∫ t

0

g(s) ds = Y0 +

∫ t

0

G(s) dW (s)

in L1(D) for all t ∈ [0, T ], where Y0 ∈ L0(Ω,F0;H), G is a progressive L 2(U,H)-valued process
such that

G ∈ L2(Ω× (0, T ); L 2(U,H)),

g is an adapted L1(D)-valued process such that

g ∈ L0(Ω;L1(0, T ;L1(D))),

and there exists α > 0 for which

j(αY ) + j∗(αg) ∈ L1(Ω× (0, T )×D).

Then

1

2
‖Y (t)‖2 +

∫ t

0

〈
AY (s), Y (s)

〉
ds+

∫ t

0

∫
D

g(s, x)Y (s, x) dx ds

=
1

2
‖Y0‖2 +

1

2

∫ t

0

‖G(s)‖2L 2(U,H) ds+

∫ t

0

Y (s)G(s) dW (s) ∀t ∈ [0, T ].

Proof. Since the resolvent of A1 is ultracontractive by assumption, there exists m ∈ N such
that

(I + δA1)−m : L1(D)→ H ∀δ > 0.

Using a superscript δ to denote the action of (I + δA1)−k, we have

Y δ(t) +

∫ t

0

AY δ(s) ds+

∫ t

0

gδ(s) ds = Y δ0 +

∫ t

0

Gδ(s) dW (s) ∀t ∈ [0, T ],

where gδ ∈ L1(0, T ;H), hence the classical Itô formula yields, for every δ > 0,

1

2
‖Y δ(t)‖2 +

∫ t

0

〈
AY δ(s), Y δ(s)

〉
ds+

∫ t

0

∫
D

gδ(s, x)Y δ(s, x) dx ds

=
1

2
‖Y δ0 ‖

2
+

1

2

∫ t

0

‖Gδ(s)‖2L 2(U,H) ds+

∫ t

0

Y δ(s)Gδ(s) dW (s) ∀t ∈ [0, T ].

We are now going to pass to the limit as δ → 0. By the assumptions on A and the regularity
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properties of Y , g, Y0, and G, one has

Y δ(t)→ Y (t) in H ∀t ∈ [0, T ],

Y δ → Y in L2(0, T ;V ),

AY δ → AY in L2(0, T ;V ′),

gδ → g in L1(0, T ;L1(D)),

Y δ0 → Y0 in H,

Gδ → G in L2(Ω;L2(0, T ; L 2(U,H))).

This implies ∫ t

0

〈
AY δ(s), Y δ(s)

〉
ds −→

∫ t

0

〈
AY (s), Y (s)

〉
ds

and ∫ t

0

‖Gδ(s)‖2L 2(U,H) ds −→
∫ t

0

‖G(s)‖2L 2(U,H) ds.

Using the dominated convergence theorem, it is not difficult to check that ‖Y δGδ−Y G‖2L 2(U,R)

converges to zero in probability, hence also (along a subsequence)∫ t

0

Y δ(s)Gδ(s) dW (s) −→
∫ t

0

Y (s)G(s) dW (s).

Finally, the symmetry assumption on j ensures that (gδY δ) is uniformly integrable on (0, T )×D,
so that ∫ t

0

∫
D

gδ(s, x)Y δ(s, x) dx ds→
∫ t

0

∫
D

g(s, x)Y (s, x) dx ds.

We shall also need a simplified version of an Itô formula in the variational setting, due to
Pardoux, for functions more general than the square of the H-norm. For its proof (in a more
general context) we refer to [72, p. 62-ff.].

Proposition 4.3.2. Let Y ∈ L0(Ω;L2(0, T ;V )) be such that

Y (t) = Y0 +

∫ t

0

v(s) ds+

∫ t

0

G(s) dW (s)

for all t ∈ [0, T ], where Y0 ∈ L0(Ω,F0,P;H) and

v ∈ L0(Ω;L1(0, T ;H))⊕ L0(Ω;L2(0, T ;V ′))

is adapted and G ∈ L2(Ω × (0, T ); L 2(U,H)) is progressively measurable. Then, for any F ∈
C2
b (H) ∩ C1

b (V ′), one has

F (Y (t)) = F (Y0) +

∫ t

0

DF (Y (s))v(s) ds+

∫ t

0

DF (Y (s))G(s) dW (s)

+
1

2

∫ t

0

Tr
(
G∗(s)D2F (Y (s))G(s)

)
ds

for every t ∈ [0, T ], P-almost surely.

The previous Itô formula can be extended to processes satisfying weaker integrability con-
ditions, in analogy to Proposition 4.3.1.
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Proposition 4.3.3. Let Y ∈ L0(Ω;L2(0, T ;V )) ∩ L0(Ω;L∞(0, T ;H)) be such that

Y (t) = Y0 +

∫ t

0

Av(s) ds+

∫ t

0

g(s) ds+

∫ t

0

G(s) dW (s)

for all t ∈ [0, T ], where Y0 ∈ L0(Ω,F0,P;H) and

v ∈ L0(Ω;L2(0, T ;V )), g ∈ L0(Ω;L1(0, T ;L1(D)))

are adapted and G ∈ L2(Ω × (0, T ); L 2(U,H)) is progressively measurable. Then, for any
F ∈ C2

b (H) ∩ C1
b (V ′) ∩ C1

b (L1(D)), one has

F (Y (t)) = F (Y0) +

∫ t

0

〈Av(s), DF (Y (s))〉 ds+

∫ t

0

∫
D

g(s)DF (Y (s)) ds

+

∫ t

0

DF (Y (s))G(s) dW (s) +
1

2

∫ t

0

Tr
(
G∗(s)D2F (Y (s))G(s)

)
ds

for every t ∈ [0, T ], P-a.s..

Proof. Since the resolvent of A1 is ultracontractive by assumption, there exists m ∈ N such
that

(I + δA1)−m : L1(D)→ H ∀δ > 0.

Using a superscript δ to denote the action of (I + δA1)−m, we have

Y δ(t) = Y δ0 +

∫ t

0

Avδ(s) ds+

∫ t

0

gδ(s) ds+

∫ t

0

Gδ(s) dW (s) ∀t ∈ [0, T ],

where Avδ + gδ ∈ L0(Ω;L1(0, T ;H)) ⊕ L0(Ω;L2(0, T ;V ′)). Hence, by Proposition 4.3.2, for
every δ > 0 we have

F (Y δ(t)) = F (Y δ0 ) +

∫ t

0

〈Avδ(s), DF (Y δ(s))〉 ds+

∫ t

0

∫
D

gδ(s)DF (Y δ(s)) ds

+

∫ t

0

DF (Y δ(s))Gδ(s) dW (s) +
1

2

∫ t

0

Tr
(
(Gδ)∗(s)D2F (Y δ(s))Gδ(s)

)
ds

for every t ∈ [0, T ], P-almost surely. Let us pass to the limit as δ → 0 in the previous equation.
It is clear from the fact that Y (t), Y0 ∈ H and the continuity of F that

F (Y δ(t))→ F (Y (t)), F (Y δ0 )→ F (Y0).

Moreover, since vδ + δAvδ = v in V , taking the duality pairing with Avδ ∈ V ′, we have

〈Avδ, vδ〉+ δ‖Avδ‖2 = 〈Avδ, v〉 ≤ ‖A‖L (V,V ′)‖v
δ‖V ‖v‖V ,

from which, by coercivity of A,

‖vδ‖V ≤
‖A‖L (V,V ′)

C
‖v‖V ∀δ > 0.

Taking into account that v ∈ L2(0, T ;V ), we deduce that vδ → v weakly in L2(0, T ;V ). Since
Y δ → Y in L2(0, T ;H), by continuity of A and the fact thatDF ∈ Cb(H,V ), we have Avδ → Av
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weakly in L2(0, T ;V ′) and DF (Y δ)→ DF (Y ) in L2(0, T ;V ), hence∫ t

0

〈Avδ(s), DF (Y δ(s))〉 ds −→
∫ t

0

〈Av(s), DF (Y (s))〉 ds.

Furthermore, since Y δ(t)→ Y (t) in H for every t ∈ [0, T ], recalling that DF ∈ Cb(H,L∞(D))

and gδ → g in L1(0, T ;L1(D)), we have (possibly along a subsequence)∫
D

gδ(s)DF (Y δ(s)) −→
∫
D

g(s)DF (Y (s)) for a.e. s ∈ (0, T ).

Taking into account that
∫
D
gδDF (Y δ) ≤ ‖DF‖Cb(H,L∞(D))‖g‖L1(D) ∈ L1(0, T ), by the domi-

nated convergence theorem we then have∫ t

0

∫
D

gδ(s)DF (Y δ(s)) ds −→
∫ t

0

∫
D

g(s)DF (Y δ(s)) ds.

Moreover, since Y δ(t)→ Y (t) in H for every t ∈ [0, T ], recalling that D2F ∈ C(H,L (H)) and
Gδ → G in L2(Ω;L2(0, T ; L 2(U,H))), we have (possibly along a subsequence)

Tr
(
(Gδ)∗(s)D2F (Y δ(s))Gδ(s)

)
→ Tr

(
G∗(s)D2F (Y (s))G(s)

)
for a.e. s ∈ (0, T ).

Since Tr
(
(Gδ)∗D2F (Y δ)Gδ

)
≤ ‖D2F‖C(H,L (H))‖G‖

2
L 2(U,H) ∈ L1(0, T ), the dominated conver-

gence theorem yields∫ t

0

Tr
(
(Gδ)∗(s)D2F (Y δ(s))Gδ(s)

)
ds −→

∫ t

0

Tr
(
G∗(s)D2F (Y (s))G(s)

)
ds.

Finally, by the Davis inequality and the ideal property of Hilbert-Schmidt operators, we have

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

DF (Y δ(s))Gδ(s) dW (s)−
∫ t

0

DF (Y (s))G(s) dW (s)

∣∣∣∣
. E

(∫ T

0

∥∥DF (Y δ(s))Gδ(s)−DF (Y (s))G(s)
∥∥2

L (U,R)
ds

)1/2

. E

(∫ T

0

‖DF (Y δ(s))‖2‖Gδ(s)−G(s)‖2L 2(U,H) ds

)1/2

+ E

(∫ T

0

‖DF (Y δ(s))−DF (Y (s))‖2‖Gδ(s)‖2L 2(U,H) ds

)1/2

≤ ‖DF‖C(H,H)‖G
δ −G‖L2(Ω;L2(0,T ;L 2(U,H)))

+ E

(∫ T

0

‖G(s)‖2L 2(U,H)‖DF (Y δ(s))−DF (Y (s))‖2 ds

)1/2

,

where the first term on the right-hand side converges to 0 because

Gδ → G in L2(Ω;L2(0, T ; L 2(U,H))).

Similarly, since DF (Y δ) → DF (Y ) a.e., it follows by the dominated convergence theorem
that the second term on the right-hand side converges to zero as well. Therefore, passing to
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subsequence if necessary, one has∫ t

0

DF (Y δ(s))Gδ(s) dW (s) −→
∫ t

0

DF (Y (s))G(s) dW (s).

4.3.2 Differentiability with respect to the initial datum for solutions
to equations in variational form

Let g ∈ C2
b (R) and consider the equation

dX +AX dt = g(X) dt+GdW, X(0) = x,

in the variational sense, where A satisfies the hypotheses of Section 4.2, G ∈ L 2(U,H), and
x ∈ H.

For compactness of notation we write E in place of C([0, T ];H) ∩ L2(0, T ;V ). The above
equation admits a unique variational solution Xx ∈ L2(Ω;E). Here and in the following we
often use superscripts to denote the dependence on the initial datum. We are going to provide
sufficient conditions ensuring that the solution map x 7→ Xx belongs to C2

b (H;L2(Ω;E)). The
problem of regular dependence on the initial datum for equations in the variational setting does
not seem to be addressed in the literature. On the other hand, several results are available
for mild solutions (see, e.g., [26, 29, 59]), where an approach via the implicit function theorem
depending on a parameter is adopted. Here we proceed in a more direct and, we believe, clearer
way. The results are non-trivial (and probably not easily accessible via the implicit function
theorem) in the sense that the solution map is Fréchet differentiable even though, as is well
known, the superposition operator associated to g is never Fréchet differentiable unless g is
affine. The first and second Fréchet derivative of the solution map shall be denoted by DX
and D2X, respectively. These are maps with domain H and codomain L (H,L2(Ω;E)) and
L2(H;L2(Ω;E)), respectively. Here and in the following we denote the space of continuous
bilinear mappings from H ×H to a Banach space F by L2(H;F ).

We begin with first-order differentiability.

Theorem 4.3.4. The solution map x 7→ Xx : H → L2(Ω;E) is continuously (Fréchet) differ-
entiable with bounded derivative. Moreover, for any h ∈ H, setting Yh := (DX)h, one has

Y ′h +AYh = g′(Xx)Yh, Yh(0) = h, (4.3.2)

in the variational sense.

Proof. Classical (deterministic) results imply that (4.3.2) admits a unique solution Yh ∈ E for
P-a.e. ω ∈ Ω. Since Xx is an adapted process and h is non-random, it follows that Yh is itself
adapted. Alternatively, and more directly, one can apply the stochastic variational theory to
(4.3.2), deducing that Yh ∈ L2(Ω;E) is adapted. Let us set, for compactness of notation,

Xε := Xx+εh, zε :=
1

ε
(Xε −X)− Yh,

where ε is an arbitrary real number. Elementary calculations show that

zε(t) +

∫ t

0

Azε(s) ds =

∫ t

0

(1

ε

(
g(Xε(s))− g(X(s))

)
− g′(X(s))Yh(s)

)
ds.

Writing
g(Xε)− g(X) = g(X + εYh)− g(X) + g(Xε)− g(X + εYh)
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yields

1

ε

(
g(Xε)− g(X)

)
− g′(X)Yh =

1

ε

(
g(X + εYh)− g(X)

)
− g′(X)Yh

+
1

ε

(
g(Xε)− g(X + εYh)

)
=: Rε + Sε.

By the integration-by-parts formula applied to the equation for zε we get

1

2
‖zε(t)‖2 +

∫ t

0

〈Azε(s), zε(s)〉 ds =

∫ t

0

〈Rε(s), zε(s)〉 ds+

∫ t

0

〈Sε(s), zε(s)〉 ds,

where 〈Sε, zε〉 ≤ ‖Sε‖‖zε‖ and, by the Lipschitz continuity of g,

‖Sε‖ ≤ ‖g‖Ċ0,1

1

ε

∥∥Xε −X − εYh
∥∥ = ‖g‖Ċ0,1‖zε‖,

so that 〈Sε, zε〉 ≤ ‖g‖Ċ0,1‖zε‖2. Since 〈Rε, zε〉 ≤
(
‖Rε‖2 + ‖zε‖2

)
/2, we are left with

1

2
‖zε(t)‖2 +

∫ t

0

〈Azε(s), zε(s)〉 ds

≤
(
1/2 + ‖g‖Ċ0,1

) ∫ t

0

‖zε(s)‖2 ds+
1

2

∫ t

0

‖Rε(s)‖2 ds.

For an arbitrary t > 0 one has, by the coercivity of A,

1

2
‖zε‖2C([0,t];H) + C

∫ t

0

‖zε(s)‖2V ds

≤
(
1 + 2‖g‖Ċ0,1

) ∫ t

0

‖zε‖2C([0,s];H) ds+

∫ t

0

‖Rε(s)‖2 ds,

hence also, by Fubini’s theorem and Gronwall’s inequality,

E‖zε‖2C([0,T ];H) ≤ e
(2+4‖g‖Ċ0,1 )T E

∫ T

0

‖Rε(s)‖2 ds.

It is clear from the hypotheses on g and the definition of Rε that Rε → 0 in L0(Ω× [0, T ]×D) as
ε→ 0 for every s ∈ [0, T ]. Moreover, it follows by the Lipschitz continuity of g and elementary
estimates that |Rε| . ‖g‖Ċ0,1 |Yh|, where Yh ∈ L2(Ω× [0, T ]×D). The dominated convergence
theorem thus yields

lim
ε→0

E
∫ T

0

‖Rε(s)‖2 ds = 0.

Since

C E
∫ T

0

‖zε(s)‖2V ds ≤
(
1 + 2‖g‖Ċ0,1

)
T E‖zε‖2C([0,T ];H) + E

∫ T

0

‖Rε(s)‖2 ds,

we conclude that
lim
ε→0

∥∥zε∥∥L2(Ω;E)
= 0.

This proves that the solution map is differentiable in every direction of H, and that its direc-
tional derivative in the direction h ∈ H is given by the (unique) solution Yh to (4.3.2). It is
then clear that the map h 7→ Yh is linear. Let us prove that it is also continuous: in analogy to
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computations already carried out above, the integration-by-parts formula yields

1

2
‖Yh(t)‖2 +

∫ t

0

〈AYh(s), Yh(s)〉 ds = ‖h‖2 +

∫ t

0

〈g′(Xx(s))Yh(s), Yh(s)〉 ds,

from which one infers

∥∥Yh∥∥2

C([0,t];H)
+
∥∥Yh∥∥2

L2(0,t;V )
. ‖h‖2 +

∫ t

0

∥∥Yh∥∥2

C([0,s];H)
ds,

hence also, by Gronwall’s inequality and elementary estimates,

∥∥Yh∥∥E . ‖h‖.

It is important to note that this inequality holds P-a.s. with a non-random implicit constant
that depends only on T and on the Lipschitz constant of g, but not on the initial datum x.
From this it follows that ∥∥Yh∥∥Lp(Ω;E)

.T ‖h‖ ∀p ≥ 0,

hence, in particular, that h 7→ Yh is the Gâteaux derivative of x 7→ Xx. Setting Y x := h 7→ Yh,
we are going to prove that the map

H −→ L (H,L2(Ω;E))

x 7−→ Y x

is continuous. This implies, by a well-known criterion (see, e.g., [3, Theorem 1.9]), that x 7→ Xx

is Fréchet differentiable with Fréchet derivative (necessarily) equal to Y x. Let (xn) ⊂ H be a
sequence converging to x in H, and write for simplicity Xn := Xxn , Y n := Y xn , X := Xx, and
Y := Y x, with a subscript h to denote their action on a fixed element h ∈ H. One has

Y nh (t)− Yh(t) +

∫ t

0

A(Y nh (s)− Yh(s)) ds = xn − x+

∫ t

0

(
g′(Xn)Y nh − g′(X)Yh

)
(s) ds,

for which the integration-by-parts formula yields

1

2

∥∥Y nh (t)− Yh(t)
∥∥2

+ C

∫ t

0

∥∥Y nh (s)− Yh(s)
∥∥2

V
ds

≤ 1

2
‖xn − x‖2 +

∫ t

0

〈
g′(Xn)Y nh − g′(X)Yh, Y

n
h − Yh

〉
(s) ds,

where

〈
g′(Xn)Y nh − g′(X)Yh, Y

n
h − Yh

〉
=
〈
g′(Xn)(Y nh − Yh), Y nh − Yh

〉
+
〈
(g′(Xn)− g′(X))Yh, Y

n
h − Yh

〉
,

so that, by elementary estimates,

∥∥Y nh (t)− Yh(t)
∥∥2

+ 2C

∫ t

0

∥∥Y nh (s)− Yh(s)
∥∥2

V
ds

≤ ‖xn − x‖2 +
(
2‖g‖Ċ0,1 + 1

) ∫ t

0

∥∥Y nh (s)− Yh(s)
∥∥2
ds

+

∫ t

0

∥∥(g′(Xn(s))− g′(X(s))
)
Yh(s)

∥∥2
ds.
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Taking the supremum in time, Gronwall’s inequality implies

∥∥Y nh − Yh∥∥E . ‖xn − x‖+
∥∥(g′(Xn)− g′(X))Yh

∥∥
L2(0,T ;H)

,

where the implicit constant depends on C, T and on the Lipschitz constant of g. Furthermore,
since, as observed above, h 7→ Yh is a linear bounded map from H to C([0, T ];H) P-a.s. with
non-random operator norm, i.e.

sup
‖h‖≤1

‖Yh‖C(0,T ];H) .T,g 1,

one has
E sup
‖h‖≤1

∥∥(g′(Xn)− g′(X))Yh
∥∥
L2(0,T ;H)

. E
∥∥g′(Xn)− g′(X)

∥∥
C(0,T ];H)

,

and the last term converges to zero as n→∞ by the dominated convergence theorem, because
Xn → X in L2(Ω;C([0, T ];H)) and g ∈ C2

b (in particular, g′ is Lipschitz-continuous). It
immediately follows that x 7→ Y x is a continuous map on H with values in L (H,L2(Ω;E)).
Furthermore, since we have shown that ‖Y xh ‖Lp(Ω;E) . ‖h‖ for all p ≥ 0 with a constant
independent of x, we conclude that x 7→ Xx is of class C1

b from H to L2(Ω;E).

To establish the second-order Fréchet differentiability of x 7→ Xx, it is convenient to consider
the equation

Z ′hk +AZhk = g′(X)Zhk + g′′(X)YhYk, Zhk(0) = 0, (4.3.3)

where h, k ∈ H and Yh, Yk are the solutions to (4.3.2) with initial conditions h and k, respec-
tively. This is manifestly the equation formally satisfied by the second-order Fréchet derivative
of x 7→ Xx evaluated at (h, k).

In order to prove that (4.3.3) is well-posed, we need the following lemma, which is probably
well known, but for which we could not find a reference, except for the classical case where
f ∈ L2(0, T ;V ′) (see, e.g., [50]).

Lemma 4.3.5. Let y0 ∈ H, f ∈ L1(0, T ;H), and ` ∈ L∞((0, T ) × D). Then there exists a
unique

y ∈ C([0, T ];H) ∩ L2(0, T ;V )

such that

y(t) +

∫ t

0

Ay(s) ds = y0 +

∫ t

0

`(s)y(s) ds+

∫ t

0

f(s) ds ∀t ∈ [0, T ].

Moreover, one has, for every t ∈ [0, T ],

1

2
‖y(t)‖2 +

∫ t

0

〈Ay(s), y(s)〉 ds =
1

2
‖y0‖2 +

∫ t

0

∫
D

`(s)|y(s)|2 ds+

∫ t

0

〈f(s), y(s)〉 ds.

Proof. Let (fn) be a sequence in L2(0, T ;H) such that fn → f in L1(0, T ;H) as n → ∞. By
the variational theory of deterministic equations, for every n ∈ N there exists a unique

yn ∈ H1(0, T ;V ′) ∩ L2(0, T ;V ) ↪→ C([0, T ];H)

such that

y′n(t) +Ayn(t) = `(t)yn(t) + fn(t) in V ′ for a.e. t ∈ (0, T ) , yn(0) = y0.
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Therefore, for every n, m ∈ N, the integration-by-parts formula and an easy computation show
that

‖yn(t)− ym(t)‖2 + 2C

∫ t

0

‖yn(s)− ym(s)‖2V ds

≤ 2‖`‖L∞((0,T )×D)

∫ t

0

‖yn(s)− ym(s)‖2 ds

+ 2

∫ t

0

〈fn(s)− fm(s), yn(s)− ym(s)〉 ds

≤ 2‖`‖L∞((0,T )×D)

∫ t

0

‖yn(s)− ym(s)‖2 ds

+ 2‖yn − ym‖C([0,t];H)‖fn − fm‖L1(0,T ;H)

for every t ∈ [0, T ]. By the Young inequality we infer then that, for every ε ≥ 0,

‖yn − ym‖2C([0,t];H) + ‖yn − ym‖2L2(0,t;V )

. ε‖yn − ym‖2C([0,t];H) +
1

4ε
‖fn − fm‖2L1(0,T ;H) +

∫ t

0

‖yn − ym‖2C([0,s];H) ds

for every t ∈ [0, T ], from which, thanks to Gronwall’s inequality,

‖yn − ym‖C([0,T ];H)∩L2(0,T ;V ) . ‖fn − fm‖L1(0,T ;H).

We deduce that there exists y ∈ C([0, T ];H) ∩ L2(0, T ;V ) such that

yn → y in C([0, T ];H) ∩ L2(0, T ;V ).

It clear follows from y ∈ L2(0, T ;V ) and A ∈ L (V, V ′) that Ay ∈ L2(0, T ;V ′) and Ayn → Ay

in L2(0, T ;V ′) as n→∞. Moreover, we also have that

1

2
‖yn(t)‖2 +

∫ t

0

〈Ayn(s), yn(s)〉 ds

=
1

2
‖y0‖2 +

∫ t

0

∫
D

`(s)|yn(s)|2 ds+

∫ t

0

〈fn(s), yn(s)〉 ds

for all t ∈ [0, T ]. Hence the last assertion follows letting n → ∞. The uniqueness of y is a
consequence of the monotonicity of A.

In order to prove second-order Fréchet differentiability of the solution map x 7→ Xx we need
to make the further assumption that V is continuously embedded in L4(D). This is satisfied,
for instance, if V = H1

0 and d ≤ 4. In fact, by the Sobolev embedding theorem, H1
0 ↪→ L2∗ ,

where
1

2∗
=

1

2
− 1

d

for d ≥ 3 and 2∗ = +∞ otherwise.
We proceed as follows: first we establish well-posedness for equation (4.3.3), and then we

show that its unique solution identifies D2X.

Proposition 4.3.6. Assume that V is continuously embedded in L4(D). Then equation (4.3.3)
admits a unique variational solution Zhk for any h, h ∈ H. Moreover, the map

Zx : H ×H → L2(Ω, E), (h, k) 7→ Zxhk
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is bilinear and continuous for any x ∈ H, and there exists a positive constant M > 0 such that

‖Zx‖L2(H;L2(Ω;E)) ≤M ∀x ∈ H.

Proof. Hölder’s inequality and the boundedness of g′′ yield

‖g′′(X)YhYk‖ ≤ ‖g′′‖Ċ0,1‖Yh‖L4(D)‖Yk‖L4(D) . ‖Yh‖V ‖Yk‖V ,

so that g′′(X)YhYk ∈ L1(0, T ;H) since Yh, Yk ∈ L2(0, T ;V ). Hence, Lemma 4.3.5 implies that
there is a unique

Zhk ∈ C([0, T ];H) ∩ L2(0, T ;V )

such that, for every t ∈ [0, T ],

Zhk(t) +

∫ t

0

AZhk(s) ds =

∫ t

0

g′(X(s))Zhk(s) ds+

∫ t

0

g′′(X(s))Yh(s)Yk(s) ds.

Let us show that (h, k) 7→ Zhk is a continuous bilinear map. The bilinearity is clear from
equation (4.3.3). Moreover, testing by Zhk and using the coercivity of A we have that

‖Zhk(t)‖2 +

∫ t

0

‖Zhk(s)‖2V ds

. ‖g‖C1
b

∫ t

0

‖Zhk(s)‖2 ds+ ‖g‖C2
b

∫ t

0

‖Yh(s)‖V ‖Yk(s)‖V ds

≤ ‖g‖C1
b

∫ t

0

‖Zhk(s)‖2 ds+ ‖g‖C2
b
‖Yh‖L2(0,T ;V )‖Yk‖L2(0,T ;V )

.T ‖g‖C1
b

∫ t

0

‖Zhk(s)‖2 ds+ ‖g‖C2
b
‖h‖‖k‖

and Gronwall’s inequality yields

‖Zxhk‖L2(Ω;C([0,T ];H))∩L2(Ω;L2(0,T ;V )) . ‖h‖‖k‖ ∀h, k, x ∈ H,

from which the last assertion follows.

Theorem 4.3.7. Assume that V is continuously embedded in L4(D). Then the solution map
x 7→ Xx is of class C2

b from H to L2(Ω;E).

Proof. We are going to prove first that the Fréchet derivative of the solution map is Gâteaux-
differentiable, with Gâteaux derivative equal to Zx := (h, k) 7→ Zxhk, then we shall then show
that x 7→ Zx is continuous and bounded as a map from H to L2(H;L2(Ω;E)).

Step 1. Let x ∈ H be arbitrary but fixed, and consider the family of maps zε ∈ L2(H;L2(Ω;E)),
indexed by ε ∈ R, defined as

zε : (h, k) 7−→ zεhk :=
1

ε

(
Y x+εk
h − Y xh

)
− Zxhk.

Elementary manipulations based on the equations satisfied by Y x and Zx show that

zεhk(t) +

∫ t

0

Azεhk(s) ds

=

∫ t

0

(g′(Xε)Y εh − g′(X)Yh
ε

− g′(X)Zhk − g′′(X)YhYk

)
(s) ds,
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where the integrand on the right-hand side can be written as Rε + Sε, with

Rε =
(g′(Xε)− g′(X)

ε
− g′′(X)Yk

)
Yh,

Sε =
(
g′(Xε)

Y εh − Yh
ε

− g′(X)Zhk

)
.

Further algebraic manipulations show that Rε = R′ε +R′′ε and Sε = S′ε + S′′ε , where

R′ε :=
(g′(X + εYk)− g′(X)

ε
− g′′(X)Yk

)
Yh,

R′′ε :=
g′(Xε)− g′(X + εYk)

ε
Yh,

S′ε := g′(X)zεhk,

S′′ε :=
(
g′(Xε)− g′(X)

)Y εh − Yh
ε

.

The integration-by-parts formula and obvious estimates yield

1

2
‖zεhk(t)‖2 + C

∫ t

0

‖zεhk(s)‖2V ds

≤ ‖g‖Ċ0,1

∫ t

0

‖zεhk(s)‖2V ds+

∫ t

0

〈
Rε + S′′ε , z

ε
hk

〉
(s) ds,

Taking the supremum on both sides, one is left with, thanks to Young’s inequality,

‖zεhk‖
2
C([0,t];H) + ‖zεhk‖

2
L2(0,t;V )

. δ‖zεhk‖
2
C([0,t];H) +

∫ t

0

‖zεhk‖
2
C([0,s];H) ds+

1

δ
‖Rε + S′′ε ‖

2
L1(0,T ;H)

for all δ > 0, from which it follows, taking δ sufficiently small and applying Gronwall’s inequality,

E‖zεhk‖
2
E . E‖Rε‖2L1(0,T ;H) + E‖S′′ε ‖

2
L1(0,T ;H).

We are going to show that the right-hand side tends to zero as ε → 0. Since g ∈ C2
b , it is

evident that R′ε → 0 almost everywhere as ε→ 0 as well as that

|R′ε| ≤ 2‖g′′‖∞
∣∣YkYh∣∣.

Since

sup
‖h‖≤1

‖YhYk‖L1(0,T ;H) . sup
‖h‖≤1

‖Yh‖L2(0,T ;V )‖Yk‖L2(0,T ;V ) . sup
‖h‖≤1

‖h‖‖k‖ ≤ ‖k‖,

the dominated convergence theorem yields

lim
ε→0

sup
‖h‖≤1

E
∥∥R′ε∥∥2

L1(0,T ;H)
= 0.

Moreover, we have

|R′′ε | ≤ ‖g′′‖∞

∣∣∣∣Xx+εk −Xx

ε
− Y xk

∣∣∣∣|Y xh |,
so that

‖R′′ε‖L1(0,T ;H) .

∥∥∥∥Xx+εk −Xx

ε
− Y xk

∥∥∥∥
L2(0,T ;V )

‖Y xh ‖L2(0,T ;V ),
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where ‖Y xh ‖L2(0,T ;V ) . ‖h‖, hence, by Theorem 4.3.4,

sup
‖h‖≤1

E‖R′′ε‖
2
L1(0,T ;H) . E

∥∥∥∥Xx+εk −Xx

ε
− Y xk

∥∥∥∥2

L2(0,T ;V )

→ 0

Finally, from

|S′′ε | ≤ ‖g′′‖∞

∣∣∣∣Xx+εk −Xx

ε

∣∣∣∣|Y x+εk
h − Y xh |

we deduce

‖S′ε‖L1(0,T ;H) .

∥∥∥∥Xx+εk −Xx

ε

∥∥∥∥
L2(0,T ;V )

∥∥Y x+εk
h − Y xh

∥∥
L2(0,T ;V )

.

Since (Xx+εk −Xx)/ε → Y xk in E as ε → 0 and x 7→ Y xh is continuous from H to E, we infer
that ‖S′ε‖L1(0,T ;H) → 0. Moreover, it follows from

∥∥Y x+εk
h − Y xh

∥∥
L2(0,T ;V )

≤ 2‖h‖

that

sup
‖h‖≤1

‖S′ε‖L1(0,T ;H) .
∥∥∥Xx+εk −Xx

ε

∥∥∥
L2(0,T ;V )

.

Recalling that, by Theorem 4.3.4, (Xx+εk −Xx)/ε→ Y xk in L2(Ω;E) as ε→ 0, this implies

lim
ε→0

sup
‖h‖≤1

E
∥∥S′′ε ∥∥2

L1(0,T ;H)
= 0.

We thus conclude that
lim
ε→0

sup
‖h‖≤1

∥∥zεhk∥∥L2(Ω;E)
= 0 ∀k ∈ H,

i.e. the directional derivative of x 7→ Y x : H 7→ L (H,L2(Ω;E)) exists for all directions and
is given by the map x 7→ Zx : H → L2(H;L2(Ω;E)). Since we have already proved that
(h, k) 7→ Zxhk is bilinear and continuous, we infer that x 7→ Y x is Gâteaux differentiable with
derivative Zx.

Step 2. In order to conclude that x 7→ Y x is Fréchet differentiable (with derivative necessarily
equal to Z) it is enough to show, in view of a criterion already mentioned, that the map

x 7−→ Zx

H −→ L2(H;L2(Ω;E))

is continuous. Let (xn)n ⊆ H be a sequence converging to x in H. We have, writing Zn in
place of Zxn for simplicity,

(Znhk − Zhk)′ +A(Znhk − Zhk) = g′(Xn)Znhk − g′(X)Zhk + g′′(Xn)Y nh Y
n
k − g′′(X)YhYk,

with initial condition Znhk(0)−Zhk(0) = 0. The right-hand side of the equation can be written
as R =

∑
i≤4Ri, with

R1 := g′(Xn)(Znhk − Zhk), R2 := (g′(Xn)− g′(X))Zhk,

R3 := g′′(Xn)(Y nh Y
n
k − YhYk), R4 := (g′′(Xn)− g′′(X))YhYk,
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so that, by the integration-by-parts formula,

1

2
‖Znhk(t)− Zhk(t)‖2 + C

∫ t

0

‖Znhk(s)− Zhk(s)‖2V ds ≤
∫ t

0

〈
R,Znhk − Zhk

〉
(s) ds,

where ∫ t

0

〈R1, Z
n
hk − Zhk〉(s) ds ≤ ‖g′‖∞

∫ t

0

‖Znhk(s)− Zhk(s)‖2 ds,

and, for i 6= 1, by Young’s inequality,∫ t

0

〈Ri, Znhk − Zhk〉(s) ds ≤
∥∥Znhk − Zhk∥∥C([0,t];H)

∥∥Ri∥∥L1(0,t;H)

≤ δ
∥∥Znhk − Zhk∥∥2

C([0,t];H)
+

1

δ

∥∥Ri∥∥2

L1(0,t;H)
.

By an argument based on the Gronwall’s inequality already used several times we obtain

∥∥Znhk − Zhk∥∥2

E
.
∥∥R2 +R3 +R4

∥∥2

L1(0,T ;H)
,

where ‖R2‖ ≤ ‖g′′‖∞‖(Xn −X)Zhk‖ and, by the bilinearity of Z,

∥∥(Xn −X)Zhk
∥∥
L1(0,T ;H)

.
∥∥Xn −X

∥∥
L2(0,T ;V )

∥∥Zhk∥∥L2(0,T ;V )

.
∥∥Xn −X

∥∥
L2(0,T ;V )

‖h‖‖k‖,

from which it follows

sup
‖h‖,‖k‖≤1

E
∥∥(Xn −X)Zhk

∥∥2

L1(0,T ;H)
.
∥∥Xn −X

∥∥
L2(Ω;L2(0,T ;V ))

→ 0

because x 7→ Xx is continuous from H to L2(Ω;E). Moreover, since ‖R3‖ ≤ ‖g′′‖∞‖Y nh Y nk −
YhYk‖, we have, recalling that V ↪→ L4,

∥∥R3

∥∥
L1(0,T ;H)

≤
∥∥Y nh − Yh∥∥L2(0,T ;V )

∥∥Yk∥∥L2(0,T ;V )

+
∥∥Y nk − Yk∥∥L2(0,T ;V )

∥∥Y nh ∥∥L2(0,T ;V )
,

where both terms on the right-hand side tend to zero because Y nh → Yh in L2(0, T ;V ) for all
h ∈ H. The estimate ∥∥Y nh Y nk − YhYk∥∥L1(0,T ;H)

. ‖h‖‖k‖

then implies, by the dominated convergence theorem,

sup
‖h‖,‖k‖≤1

E
∥∥R3

∥∥2

L1(0,T ;H)
. sup
‖h‖,‖k‖≤1

E
∥∥Y nh Y nk − YhYk∥∥2

L1(0,T ;H)
→ 0.

It remains to consider R4: it is clear that (g′′(Xn) − g′′(X))YhYk → 0 almost everywhere by
the continuity of g′′, and, as before,

∥∥(g′′(Xn)− g′′(X))YhYk
∥∥
L1(0,T ;H)

. ‖g′′‖∞‖h‖‖k‖,

hence the dominated convergence theorem yields

sup
‖h‖,‖k‖≤1

E
∥∥R4

∥∥2

L1(0,T ;H)
→ 0.
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We have thus proved that, as n→∞,

∥∥Zn − Z∥∥
L2(H;L2(Ω;E))

= sup
‖h‖,‖k‖≤1

∥∥Znhk − Zhk∥∥L2(Ω;E)
→ 0.

Recalling that x 7→ Zx is bounded onH, we conclude that x 7→ Xx is twice Fréchet-differentiable
with continuous and bounded derivatives.

4.4 Invariant measures

Throughout this section, we consider equation (4.1.1) with X0 ∈ H. Since all coefficients do not
depend explicitly on ω ∈ Ω, it follows by a standard argument that the solution X to (4.1.1) is
Markovian. Let P = (Pt)t≥0 be the transition semigroup defined by

(Ptϕ)(x) := Eϕ(Xx(t)) ∀x ∈ H, ϕ ∈ Cb(H).

We shall assume from now on that the pair (A,B) satisfies the coercivity condition

〈Ax, x〉 ≥ 1

2
‖B(x)‖2L 2(U,H) + C‖x‖2V − C0 ∀x ∈ V, (4.4.4)

with C0 > 0 a constant.

Theorem 4.4.1. The set of invariant measures for the transition semigroup (Pt)t is not empty.

Proof. Let (X, ξ) be the unique strong solution to (4.1.1). For every t ≥ 0 one has, by Propo-
sition 4.3.1,

1

2
‖X(t)‖2 +

∫ t

0

〈AX(s), X(s)〉 ds+

∫ t

0

∫
D

ξ(s)X(s) ds

=
1

2
‖x‖2 +

1

2

∫ t

0

∥∥B(X(s))
∥∥2

L 2(U,H)
ds+

∫ t

0

X(s)B(X(s)) dW (s).

Let us show that the stochastic integralM := XB(X) ·W on the right-hand side of this identity
is a martingale. For this it suffices to show that E[M,M ]

1/2
T is finite: one has, by the ideal

property of Hilbert-Schmidt operators and the Cauchy-Schwarz inequality,

E[M,M ]
1/2
T = E

(∫ T

0

∥∥XB(X)
∥∥2

L 2(U,R)
ds

)1/2

≤ E
∥∥X∥∥

L∞(0,T ;H)

(∫ T

0

∥∥B(X)
∥∥2

L 2(U,H)
ds

)1/2

≤
(
E
∥∥X∥∥2

L∞(0,T ;H)

)1/2
(
E
∫ T

0

∥∥B(X)
∥∥2

L 2(U,H)
ds

)1/2

,

where the last term is finite thanks to Theorem 4.2.1 and the assumption of linear growth on
B. Therefore, recalling that, for any r, s ∈ R, j(r) + j∗(s) = rs if and only if s ∈ β(r), one has,
taking the coercivity condition (4.4.4) into account,

C E
∫ t

0

‖X(s)‖2V ds+ E
∫ t

0

∫
D

j(X(s)) ds+ E
∫ t

0

∫
D

j∗(ξ(s)) ds ≤ 1

2
‖x‖2 + C0t (4.4.5)

for all t ≥ 0. Let x = 0. For any t ≥ 0 the law of the random variable X(t) is a probability
measure on H, which we shall denote by πt. We are now going to show that the family of
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measures (µt)t>0 on H defined by

µt : E 7−→ 1

t

∫ t

0

πs(E) ds

is tight. The ball Bn in V of radius n ∈ N is a compact subset of H, because the embedding
V ↪→ H is compact. Moreover, Markov’s inequality and (4.4.5) yield

µt(B
c
n) =

1

t

∫ t

0

πs(B
c
n) ds =

1

t

∫ t

0

P
(
‖X(s)‖2V > n2

)
ds

≤ 1

tn2

∫ t

0

E‖X(s)‖2V ds ≤
1

Ctn2
C0t =

C0

Cn2
,

hence also
sup
t>0

µt(B
c
n) ≤ C0

Cn2
→ 0 as n→∞.

It follows by Prokhorov’s theorem that there exists a probability measure µ onH and a sequence
(tk)k∈N increasing to infinity such that µtk converges to µ in the topology σ(M1(H), Cb(H)) as
k →∞. Furthermore, µ is an invariant measure for the transition semigroup P , thanks to the
Krylov-Bogoliubov theorem.

We are now going to prove integrability properties of all invariant measures, which in turn
provide information on their support. We start with a (relatively) simple yet crucial estimate.

Proposition 4.4.2. Let µ be an invariant measure for the transition semigroup (Pt). Then
one has ∫

H

‖x‖2 µ(dx) ≤ K2C0

C
,

where K is the norm of the embedding V ↪→ H.

Proof. We are going to apply the Itô formula of Proposition 4.3.2 to the process X and the
function Gδ : x 7→ gδ

(
‖x‖2

)
, where gδ ∈ C2

b (R+) is defined as

gδ(r) =
r

1 + δr
, δ > 0,

so that
g′δ(r) =

1

(1 + δr)2
, g′′δ (r) = − 2δ

(1 + δr)3
,

whence

gδ
(
‖X(t)‖2

)
+ 2

∫ t

0

g′δ
(
‖X(s)‖2

)(
〈AX(s), X(s)〉+ 〈ξ(s), X(s)〉

)
ds

− 2

∫ t

0

g′′δ
(
‖X(s)‖2

)∥∥X(s)B(X(s))
∥∥2

L 2(U,R)
ds

= gδ
(
‖x‖2

)
+ 2

∫ t

0

g′δ
(
‖X(s)‖2

)
X(s)B(X(s)) dW (s)

+

∫ t

0

g′δ
(
‖X(s)‖2

)∥∥B(X(s))
∥∥2

L 2(U,R)
ds.
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Since g′δ > 0 and g′′δ < 0, the coercivity condition (4.4.4) and the monotonicity of β imply

gδ
(
‖X(t)‖2

)
+ 2

∫ t

0

g′δ
(
‖X(s)‖2

)(
C‖X(s)‖2V − C0

)
ds

≤ gδ
(
‖x‖2

)
+ 2

∫ t

0

g′δ
(
‖X(s)‖2

)
X(s)B(X(s)) dW (s).

Taking into account that |g′δ| ≤ 1, the stochastic integral is a martingale, exactly as in the proof
of Theorem 4.4.1, hence has expectation zero, so that

EGδ(X(t)) + 2C E
∫ t

0

g′δ
(
‖X(s)‖2

)
‖X(s)‖2V ds ≤ Gδ(x) + 2Ct.

By definition of (Pt) we have PtGδ(x) = EGδ(X(t)), from which it follows, by the boundedness
of Gδ and by definition of invariant measure,

C

∫
H

E
∫ t

0

g′δ
(
‖X(s)‖2

)
‖X(s)‖2V ds µ(dx) ≤ C0t.

Denoting the norm of the embedding V ↪→ H by K, we get∫
H

∫ t

0

E
‖X(s)‖2(

1 + δ‖X(s)‖2
)2 ds dµ ≤ K2C0

C
t.

Let fδ : r 7→ r/(1 + δr)2, δ > 0, and Fδ := fδ ◦ ‖·‖2. Then

E
‖X(s)‖2(

1 + δ‖X(s)‖2
)2 = PsFδ,

hence, by Tonelli’s theorem and invariance of µ,∫
H

∫ t

0

E
‖X(s)‖2(

1 + δ‖X(s)‖2
)2 ds dµ =

∫ t

0

∫
H

PsFδ dµ ds = t

∫
H

Fδ dµ ≤
K2C0

C
t.

Taking the limit as δ → 0, the monotone convergence theorem yields∫
H

‖x‖2 µ(dx) ≤ K2C0

C
.

In order to state the next integrability results for invariant measures, we need to define the
following subsets of H:

J :=
{
u ∈ H : j(u) ∈ L1(D)

}
,

J∗ :=
{
u ∈ H : ∃ v ∈ L1(D) : v ∈ β(u) a.e. in D and j∗(v) ∈ L1(D)

}
,

whose Borel measurability will be proved in Lemma 4.4.4 below.

Theorem 4.4.3. Let µ be an invariant measure for the transition semigroup P . Then one has∫
H

‖u‖2V µ(du) +

∫
H

∫
D

j(u)µ(du) +

∫
H

∫
D

j∗(β0(u))µ(du) ≤ K2C0

2C
+ C0,

where K is the norm of the embedding V ↪→ H. In particular, µ is concentrated on V ∩ J ∩ J∗.
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Proof. Let us introduce the functions Φ, Ψ, Ψ∗ : H → R+ ∪ {+∞} defined as

Φ : u 7−→ ‖u‖2V 1V (u) +∞ · 1H\V (u),

Ψ : u 7−→
(∫

D

j(u)
)

1J(u) +∞ · 1H\J(u),

Ψ∗ : u 7−→
(∫

D

j∗(β0(u))
)

1J∗(u) +∞ · 1H\J∗(u),

as well as their approximations Φn, Ψn, Ψ∗n : H → R+∪{+∞}, n ∈ N, defined as (here Bn(V )

denotes the ball of radius n in V )

Φn : u 7−→


‖u‖2V if u ∈ Bn(V ),

n2 if u ∈ H \Bn(V ),

Ψn : u 7−→


∫
D
j(u) if

∫
D
j(u) ≤ n,

n otherwise,

and

Ψ∗n : u 7−→


∫
D
j∗(β1/n(u)) if

∫
D
j∗(β1/n(u)) ≤ n,

n otherwise.

One obviously has ∫
H

Φn dµ =

∫ 1

0

∫
H

Φn dµ ds,

as well as, by invariance of µ and boundedness of Φn,∫
H

Φn dµ =

∫
H

PsΦn dµ,

thus also, by Tonelli’s theorem (Φn ≥ 0 and P is positivity preserving, being Markovian)∫
H

Φn dµ =

∫ 1

0

∫
H

PsΦn dµ ds =

∫
H

∫ 1

0

EΦn(X(s)) ds dµ.

The same reasoning also yields∫
H

Ψn dµ =

∫
H

∫ 1

0

EΨn(X(s)) ds dµ,

∫
H

Ψ∗n dµ =

∫
H

∫ 1

0

EΨ∗n(X(s)) ds dµ,

with

EΦn(X(s)) = E
(
‖X(s)‖2V ∧ n

2
)
≤ E‖X(s)‖2V ,

EΨn(X(s)) = E
(
n ∧

∫
D

j(X(s))
)
≤ E

∫
D

j(X(s)),

EΨ∗n(X(s)) = E
(
n ∧

∫
D

j∗(β1/n(X(s)))
)
≤ E

∫
D

j∗(ξ(s)),

where, in the last inequality, we have used the fact that for every r ∈ D(β) = R the sequence
{βλ(r)}λ converges from below to β0(r), where β0(r) is the unique element in β(r) such that
|β0(r)| ≤ |y| for every y ∈ β(r) (note that the uniqueness of β0(r) follows from the maximal
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monotonicity of β). Thanks to estimate (4.4.5) we have, by Tonelli’s theorem,

C

∫ 1

0

(
EΦn(X(s)) + EΨn(X(s)) + EΨ∗n(X(s))

)
ds

≤ C E
∫ 1

0

‖X(s)‖2V ds+ E
∫ 1

0

∫
D

j(X(s)) ds+ E
∫ 1

0

∫
D

j∗(ξ(s)) ds

≤ 1

2
‖x‖2 + C0,

therefore, integrating with respect to µ and taking the previous proposition into account,∫
H

(
CΦn + Ψn + Ψ∗n

)
dµ ≤ 1

2

∫
H

‖x‖2 µ(dx) + C0 ≤
K2C0

2C
+ C0

uniformly with respect to n. Since Φn and Ψn converge pointwise and monotonically from
below to Φ and Ψ, respectively, the monotone convergence theorem yields∫

H

Φ dµ ≤ C0(K2 + 2C)

2C2
,

∫
H

Ψ dµ ≤ C0(K2 + 2C)

2C
,

hence, in particular, µ(V ) = µ(J) = 1. Similarly, note that β1/n ∈ β((I + (1/n)β)−1) and 0 ∈
β(0) imply that |β1/n| converges pointwise to |β0| monotonically from below as n→∞, hence
the same holds for the convergence of j∗(β1/n) to j∗(β0) because j∗ is convex and continuous
with j∗(0) = 0. Therefore Ψ∗n converges to Ψ pointwise monotonically from below as n→∞.
We conclude, again by the monotone convergence theorem, that Ψ∗ ∈ L1(H,µ), thus also that
µ(J∗) = 1.

As mentioned above, the sets J and J∗ are Borel measurable.

Lemma 4.4.4. The sets

J :=
{
u ∈ H : j(u) ∈ L1(D)

}
,

J∗ :=
{
u ∈ H : ∃ v ∈ L1(D) : v ∈ β(u) a.e. in D and j∗(v) ∈ L1(D)

}
,

belong to the Borel σ-algebra of H.

Proof. Setting, for every n ∈ N,

Jn :=
{
u ∈ H :

∫
D

j(u) ≤ n
}
,

J∗n :=
{
u ∈ H : ∃ v ∈ L1(D) : v ∈ β(u) a.e. in D and

∫
D

j∗(v) ≤ n
}
,

it is immediately seen that

J =

∞⋃
n=1

Jn and J∗ =

∞⋃
n=1

J∗n.

Moreover, the lower semicontinuity of convex integrals implies that Jn is closed in H for every
n, hence Borel-measurable, so that J ∈ B(H). Let us show that, similarly, J∗n is also closed in
H for every n ∈ N: if (uk)k ⊂ J∗n and uk → u in H, then for every k there exists vk ∈ L1(D)

with vk ∈ β(uk) and ∫
D

j∗(vk) ≤ n ∀k ∈ N.
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Since j∗ is superlinear at infinity, this implies that the family (vk)k is uniformly integrable in D,
hence by the Dunford-Pettis theorem also weakly relatively compact in L1(D). Consequently,
there is a subsequence (vki)i and v ∈ L1(D) such that vki → v weakly in L1(D). The weak
lower semicontinuity of convex integrals easily implies that∫

D

j∗(v) ≤ lim inf
i→∞

∫
D

j∗(vki) ≤ n .

Let us show that v ∈ β(u) almost everywhere in D: by definition of subdifferential, for every
k ∈ N and for every measurable set E ⊆ D we have∫

E

j(uk) +

∫
E

vk(z − uk) ≤
∫
E

j(z) ∀z ∈ L∞(D).

By Egorov’s theorem, for any ε > 0 there exists a measurable set Eε ⊆ D with |Ecε | ≤ ε and
uk → u uniformly in Eε. Taking E = Eε in the last inequality, letting k →∞ we get∫

Eε

j(u) +

∫
Eε

v(z − u) ≤
∫
Eε

j(z) ∀z ∈ L∞(D),

which in turn implies by a classical localization argument that

j(u) + v(z − u) ≤ j(z) a.e. in Eε, ∀z ∈ R.

Hence, by the arbitrariness of ε, v ∈ β(u) almost everywhere in D, thus also u ∈ J∗n. This
implies that J∗n is closed in H for every n, therefore also that J∗ ∈ B(H).

The estimates proved above implies that the set of ergodic invariant measures is not empty.

Theorem 4.4.5. There exists an ergodic invariant measure for the transition semigroup (Pt).

Proof. Recall that, as it follows by the Krein-Milman theorem, for a Markovian transition
semigroup the set of ergodic invariant measures coincides with the extreme points of the set of
all invariant measures (see, e.g., [2, Thm. 19.25]). Let I be the set of all invariant measures
for P : by Theorem 4.4.1, we know that I is not empty and we need to show that I admits at
least an extreme point. Let us prove that I is tight. By Theorem 4.4.3, we know that there
exists a constant N such that ∫

H

‖x‖2V µ(dx) ≤ N ∀µ ∈ I .

Therefore, using the notation of the proof of Theorem 4.4.1, by Markov inequality

sup
µ∈I

µ(Bcn) = sup
µ∈I

µ
(
{x ∈ H : ‖x‖V > n}

)
≤ 1

n2
sup
µ∈I

∫
H

‖x‖2V µ(dx) ≤ N

n2
→ 0

as n→∞. Hence I is tight, and thus admits extreme points.

Under a very mild growth condition on the drift one can also obtain uniqueness.

Theorem 4.4.6. If β is superlinear, i.e. if there exists c > 0 and δ > 0 such that

(y1 − y2)(x1 − x2) ≥ c|x1 − x2|2+δ ∀(xi, yi) ∈ β, i = 1, 2,

then there exists a unique invariant measure µ for the transition semigroup P . Moreover, µ is
strongly mixing.
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Proof. For any x, y ∈ H, by Itô’s formula, the monotonicity of A, the superlinearity of β, and
Jensen inequality we have

E‖X(t; 0, x)−X(t; 0, y)‖2 + c̃

∫ t

0

(
E‖X(t; 0, x)−X(t; 0, y)‖2

)1+ δ
2 ≤ ‖x− y‖2

for a positive constant c̃. Denoting by y(·; y0) the solution to the Cauchy problem

y′ + y1+ δ
2 = 0, y(0) = y0 ≥ 0,

one can easily check that

c(t) := sup
y0≥0

y(t; y0)→ 0 as t→∞

and that c(t) ≥ 0 for every t ≥ 0. We deduce that

E
∥∥X(t; 0, x)−X(t; 0, y)

∥∥2 ≤ c(t) ∀t ≥ 0.

Let µ be an invariant measure for P . For any ϕ ∈ C1
b (H) we have∣∣∣∣Ptϕ(x)−

∫
H

ϕ(y)µ(dy)

∣∣∣∣2 ≤ ‖Dϕ‖2∞ ∫
H

E‖X(t; 0, x)−X(t; 0, y)‖2 µ(dy)

≤ ‖Dϕ‖2∞c(t)

uniformly in x, and since C1
b (H) is dense in L2(H,µ), we deduce that for any x ∈ H∣∣∣∣Ptϕ(x)−

∫
H

ϕ(y)µ(dy)

∣∣∣∣2 → 0

as t → ∞ for every ϕ ∈ L2(H,µ). We have thus shown that P admits a unique invariant
measure, which is strongly mixing as well.

4.5 The Kolmogorov equation

Throughout this section we shall assume that β is a function, rather than just a graph.
Let P = (Pt)t≥0 be the Markovian semigroup on Bb(H) generated by the unique solution

to (4.1.1), as in the previous section, and µ be an invariant measure for P . Then P extends
to a strongly continuous linear semigroup of contractions on Lp(H,µ) for every p ≥ 1. These
extensions will all be denoted by the same symbol. Let −L be the infinitesimal generator in
L1(H,µ) of P , and −L0 be Kolmogorov operator formally associated to (4.1.1), i.e.

[L0f ](x) = −1

2
Tr
(
D2f(x)B(x)B∗(x)

)
+ 〈Ax,Df(x)〉+ 〈β(x), Df(x)〉,

for x ∈ V ∩ J∗, where f belongs to a class of sufficiently regular functions introduced below.
Our aim is to characterize the “abstract” operator L as the closure of the “concrete” operator
L0. Even though this will be achieved only in the case of additive noise, some intermediate
results will be proved in the more general case of multiplicative noise.

Let us first show that L0 is a proper linear (unbounded) operator on L1(H,µ) with domain

D(L0) :=
{
f : V → R : f ∈ C1

b (V ′) ∩ C2
b (H) ∩ C1

b (L1(D))
}
.
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Here f ∈ C1
b (V ′) means that, for any x ∈ V and v′ ∈ V ′, |Df(x)v′| ≤ N‖v′‖V ′ , with the

constant N independent of x and v′, and that x 7→ Df(x) ∈ C(V ′, V ). Analogously, f ∈
C1
b (L1(D)) means that, for any x ∈ V and k ∈ L1(D), there is a constant N independent

of x and k such that |Df(x)k| ≤ N‖k‖L1(D) and x 7→ Df(x) ∈ C(L1(D), L∞(D)). For any
f ∈ C2

b (H), one has, recalling the linear growth condition on B,

Tr
(
D2f(x)B(x)B∗(x)

)
. ‖B(x)‖2L 2(U,H) . 1 + ‖x‖2,

and ‖·‖2 ∈ L1(H,µ). Moreover, since A ∈ L (V, V ′), one has ‖Ax‖V ′ . ‖x‖V , so that, for any
f ∈ C1

b (V ′), ∣∣〈Ax,Df(x)〉
∣∣ ≤ ‖Ax‖V ′ sup

x∈V
‖Df(x)‖V . ‖x‖V ,

hence x 7→ 〈Ax,Df(x)〉 ∈ L1(H,µ) because ‖·‖2V ∈ L1(H,µ). Similarly, writing

∣∣〈β(x), Df(x)〉
∣∣ ≤ ∥∥j∗(β(x))

∥∥
L1(D)

+
∥∥j(Df(x))

∥∥
L1(D)

and recalling that x 7→ ‖j∗(β(x))‖L1(D) ∈ L1(H,µ) by Theorem 4.4.3, it is enough to consider
the second term on the right-hand side: for any f ∈ C1

b (L1(D)), supx∈V ‖Df(x)‖L∞(D) is finite,
hence, recalling that j ∈ C(R), we infer that j(Df(x)) is bounded pointwise in D, thus also in
L1(D), uniformly over x ∈ V . In particular, we have that x 7→ ‖j(Df(x))‖L1(D) ∈ L1(H,µ).

Let us now show that the infinitesimal generator −L restricted to D(L0) coincides with the
operator −L0 defined above. Indeed, by Proposition 4.3.3, for every g ∈ D(L0) we have

g(Xx(t)) +

∫ t

0

〈AXx(s), Dg(Xx(s))〉 ds+

∫ t

0

〈β(Xx(s)), Dg(Xx(s))〉 ds

= g(x) +
1

2

∫ t

0

Tr[B∗(Xx(s))D2g(Xx(s))B(Xx(s))] ds

+

∫ t

0

Dg(Xx(s))B(Xx(s)) dW (s),

from which we infer, taking expectations and applying Fubini’s theorem,

Ptg(x)− g(x)

t
= −1

t

∫ t

0

PsL0g(x) ds ∀x ∈ V ∩ J∗.

Since g ∈ D(L0), we have that L0g ∈ L1(H,µ), as proved above. Therefore, recalling that P is
strongly continuous on L1(H,µ), we have that t 7→ PtL0g is continuous from [0, T ] to L1(H,µ).
Hence, letting t→ 0, we have

Ptg − g
t

→ −L0g in L1(H,µ),

which implies that L = L0 on D(L0).

We are now going to construct a regularization of the operator L0. For any λ ∈ (0, 1), let

βλ : R→ R, βλ :=
1

λ

(
I − (I + λβ)−1

)
,

be the Yosida approximation of β. Denoting a sequence of mollifiers on R by (ρn), the function
βλn := βλ ∗ ρn is monotone and infinitely differentiable with all derivatives bounded. Let us
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consider the regularized equation

dXλn +AXλn dt+ βλn(Xλn) dt = B(Xλn) dW (t), Xλn(0) = x. (4.5.6)

Since βλn is Lipschitz-continuous, equation (4.5.6) admits a unique strong (variational) solution
Xx
λn ∈ L2(Ω;E), where, as before, E := C([0, T ];H) ∩L2(0, T ;V ). Furthermore, the generator

of the transition semigroup Pλn = (Pλnt )t≥0 on Bb(H) defined by Pλnt f(x) := E f(Xx
λn(t)),

restricted to C1
b (V ′) ∩ C2

b (H), is given by −Lλn0 , where

[Lλn0 f ](x) = −1

2
Tr
(
D2f(x)B(x)B∗(x)

)
+ 〈Ax,Df(x)〉+ 〈βλn(x), Df(x)〉, x ∈ V.

This follows arguing as in the case of L0 (even using the simpler Itô formula of Proposition 4.3.2,
rather than the one of Proposition 4.3.3).

Let us now consider the stationary Kolmogorov equation

αv + Lλn0 v = g, g ∈ D(L0), α > 0. (4.5.7)

In view of the well-known relation between (Markovian) resolvents and transition semigroups,
one is led to considering the function

vλn(x) := E
∫ ∞

0

e−αtg(Xx
λn(t)) dt,

which is the natural candidate to solve (4.5.7). If we show that vλn ∈ C1
b (V ′)∩C2

b (H), then an
application of Itô’s formula (in the version of Proposition 4.3.2) shows that indeed vλn solves
(4.5.7). We are going to obtain regularity properties of vλn via pathwise differentiability of the
solution map x 7→ Xλn of the regularized stochastic equation (4.5.6). From now on we shall
restrict our considerations to the case of additive noise, i.e. we assume that B ∈ L 2(U,H)

is non-random. Moreover, we shall assume that V is continuously embedded in L4(D). The
latter assumption is needed to apply the second-order differentiability results of §4.3.2. We
recall that, thanks to Theorems 4.3.4 and 4.3.7, the solution map x 7→ Xλn : H → L2(Ω;E) is
Lipschitz continuous and twice Fréchet differentiable. Moreover, denoting its first order Fréchet
differential by

DXλn : H → L (H,L2(Ω;E)),

for any h ∈ H the process Yh := (DXλn)h ∈ L2(Ω;E) satisfies the linear deterministic equation
with random coefficients

Y ′h(t) +AYh(t) + β′λn(Xλn(t))Yh(t) = 0, Yh(0) = h. (4.5.8)

Similarly, denoting the second order Fréchet differential of x 7→ Xλn by

D2Xλn : H → L2(H;L2(Ω;E)),

for any h, k ∈ H the process Zhk := D2Xλn(h, k) ∈ L2(Ω;E)) satisfies the linear deterministic
equation with random coefficients

Z ′hk(t) +AZhk(t) + β′λn(Xλn(t))Zhk(t) + β′′λn(Xλn(t))Yh(t)Yk(t) = 0, Zhk(0) = 0. (4.5.9)

We shall need the following result on the connection between variational and mild solutions



Singular semilinear equations: long-time behaviour 111

in the deterministic setting. We recall that A2 denotes the part of A on H.

Lemma 4.5.1. Let F : [0, T ]×H → H be Lipschitz continuous in the second variable, uniformly
with respect to the first, with F (·, 0) = 0, and u0 ∈ H. If u ∈ C([0, T ];H) ∩ L2(0, T ;V ) and
v ∈ C([0, T ];H) are the (unique) variational and mild solution to the problems

u′ +Au = F (·, u), u(0) = u0, and v′ +A2v = F (·, v), v(0) = u0,

respectively, then u = v.

Proof. Let us first assume that u′ + Au = f and v′ + A2v = f , where f ∈ L2(0, T ;H). Then
we have

u(t) +

∫ t

0

Au(s) ds = u0 +

∫ t

0

f(s) ds,

v(t) = S(t)u0 +

∫ t

0

S(t− s)f(s) ds

for all t ∈ [0, T ], where S is the the semigroup generated on H by −A2. Let us show that u = v.
For m ∈ N, applying (I + εA2)−m to the second equation we have (with obvious meaning of
notation)

v′ε +A2vε = fε, vε(0) = uε0

in the strong sense, since vε ∈ C([0, T ];D(Am2 )). In particular, vε is also a variational solution
of the equation

v′ε +Avε = fε, vε(0) = uε0.

By construction we have that vε → v in C([0, T ];H); moreover, since fε → f in L2(0, T ;H)

and uε0 → u0 in H, arguing as in the proof of Lemma 4.3.5 we have also that vε → u in
C([0, T ];H) ∩ L2(0, T ;V ). Since mild and variational solutions are unique, we conclude that
u = v. We shall now extend this argument to the case where u and v are the unique variational
and mild solutions to the equations

u′ +Au = F (·, u), v′ +A2v = F (·, v), u(0) = v(0) = u0,

respectively. Setting f := F (·, v), thanks to the assumptions on F we have that f ∈ L2(0, T ;H),
hence v is a mild solution to v′+A2v = f , v(0) = u0. It then follows by the previous argument
that v is also the unique variational solution to v′ +Av = f , v(0) = u0. Therefore

u′ +Au = F (·, u), v′ +Av = F (·, v), u(0) = v(0) = u0

in the variational sense. Using the integration-by-parts formula, the Lipschitz continuity of F ,
and Gronwall’s inequality, it is then a standard matter to show that u = v.

The following estimates are crucial.

Proposition 4.5.2. One has, for every x, h, k ∈ H and t > 0,

‖Y xh ‖C([0,t];H)∩L2(0,t;V ) . ‖h‖,

‖Zxhk‖C([0,t];H)∩L2(0,t;V ) .λ,n ‖h‖‖k‖,

‖Y xh ‖C([0,t];L1(D)) ≤ ‖h‖L1(D).
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Regarding A as an unbounded operator on V ′, assume that there exists δ ∈ (0, 1) and η > 0

such that H = D((ηI +A)δ). Then

‖Y xh (t)‖H . (1 ∨ t−δ)‖h‖V ′ .

Proof. Let Ω′ ⊆ Ω with P(Ω′) = 1 be such that (4.5.8) holds true for all t ∈ [0, T ] and all
ω ∈ Ω′. Let ω ∈ Ω′ be fixed. Recalling that A is coercive and that β′λn is positive because βλn
is increasing, taking the scalar product with Yh(t) in (4.5.8) and integrating in time yields

1

2

∥∥Y xh (t)
∥∥2

+ C

∫ t

0

‖Y xh (s)‖2V ds ≤
1

2
‖h‖2

for all t ∈ [0, T ], and the first estimate is thus proved. The second estimate follows directly
from Proposition 4.3.7. Furthermore, denoting the Yosida approximation of the part of A in H
by Aε, let Y xhε ∈ C([0, T ];H) be the unique strong solution to the equation

Y ′hε(t) +AεYhε(t) + β′λn(Xλn(t))Yhε(t) = 0, Yhε(0) = h.

Let (σk) be a sequence of smooth increasing functions approximating pointwise the (maximal
monotone) signum graph, and σ̂k be the primitive of σk with σ̂k(0) = 0. Taking the scalar
product of the previous equation with σk(Y xhε) and integrating in time we get, for every t > 0,∫

D

σ̂k(Y xhε(t)) +

∫ t

0

〈AεY xhε(s), σk(Y xhε(s))〉 ds

+

∫ t

0

∫
D

β′λn(Xλn(s))σk(Y xhε(s))Y
x
hε(s) ds ≤

∫
D

σ̂k(h).

Since, as k →∞, σk(Y xhε) converges a.e. to a measurable function wε ∈ sgn(Y xhε) and σ̂ → | · |,
letting k →∞ we get, for every t ≥ 0,

‖Y xhε(t)‖L1(D) +

∫ t

0

〈AεY xhε(s), wε(s))〉 ds ≤ ‖h‖L1(D) ∀t ∈ [0, T ].

Recalling that A2 extends to an m-accretive operator on L1(D), the second term on the left-
hand side is non-negative, and taking into account that Y xhε → Y xh in C([0, T ];H) as ε → 0,
the third inequality follows. Finally, since Yh is the unique variational solution to (4.5.8), by
Lemma 4.5.1 we have that Yh is also mild solution to the same equation, i.e.

Y xh (t) = S(t)h−
∫ t

0

S(t− s)β′λn(Xx(s))Y xh (s) ds ∀t ∈ [0, T ], P-a.s.

Recall that−A generates an analytic semigroup on V ′ extending S, denoted by the same symbol.
Since H = D((ηI + A)δ), we have ‖S(t)h‖ . t−δ‖h‖V ′ for every t > 0. By the contractivity of
S in H we also have, for every t > 0,

‖Y xh (t)‖ . t−δ‖h‖V ′ + ‖β′λn‖∞
∫ t

0

‖Y xh (s)‖ ds

from which Gronwall’s inequality implies

‖Y xh (t)‖ . t−δ‖h‖V ′ + ‖β′λn‖∞
∫ t

0

s−δe‖β
′
λn‖∞(t−s)‖h‖V ′ ds.
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Therefore we have, for every t ∈ [0, 1],

‖Y xh (t)‖ . t−δ‖h‖V ′ + ‖β′λn‖∞e
‖β′λn‖∞‖h‖V ′

∫ 1

0

s−δ ds

=

(
t−δ +

11+δ

1 + δ

)
‖h‖V ′ . (1 + t−δ)‖h‖V ′

as well as, for every t ≥ 1,

‖Y xh (t)‖ ≤ ‖Y xh (1)‖ . 1−δ‖h‖V ′ = ‖h‖V ′ ,

which implies the last estimate.

Lemma 4.5.3. Let α > 0 and g ∈ C1
b (V ′) ∩ C2

b (H) ∩ C1
b (L1(D)). For every n ∈ N and

λ ∈ (0, 1), the function vλn : H → R defined as

vλn(x) := E
∫ +∞

0

e−αtg(Xx
λn(t)) dt

belongs to D(L0) and solves (4.5.7). Moreover, there exists a positive constant M , independent
of λ and n, such that

‖vλn‖C1
b (H)∩C1

b (L1(D)) ≤M (4.5.10)

for all n ∈ N and λ ∈ (0, 1).

Proof. Since g ∈ C1
b (H), for any h ∈ H we have, by the first estimate of Proposition 4.5.2,

D (g(Xx
λn(t))h = Dg(Xx

λn(t))DXx
λn(t)h = Dg(Xx

λn(t))Y xh (t)

≤ ‖Dg‖C(H;H)‖Y
x
h ‖C([0,T ];H) ≤ ‖Dg‖C(H;H)‖h‖,

hence, by the dominated convergence theorem, vλn ∈ C1
b (H) and

Dvλn(x)h = E
∫ +∞

0

e−αtDg(Xx
λn(t))Y xh (t) dt. (4.5.11)

The uniform boundedness of ‖vλn‖C1
b (H) in λ and n follows directly from these computations.

Similarly, using the fact that g ∈ C2
b (H) and the second estimate of Proposition 4.5.2, we have,

for every k ∈ H,

D(D(g(Xx
λn(t))h)k = D2g(Xx

λn(t))(Y xh (t), Y xk (t)) +Dg(Xx
λn(t))Zxhk(t)

≤ ‖D2g‖C(H;L2(H;R))‖Y
x
h ‖C([0,T ];H)‖Y

x
k ‖C([0,T ];H)

+ ‖Dg‖C(H,H)‖Z
x
hk‖C([0,T ];H)

.λ,n ‖g‖C2
b
‖h‖‖k‖,

hence, by the dominated convergence theorem, vλn ∈ C2
b (H) and

D2vλn(x)(h, k) = E
∫ +∞

0

e−αt
(
D2g(Xx

λn(t))Y xh (t)Y xk (t) +Dg(Xx
λn(t))Zxhk(t)

)
dt. (4.5.12)

Moreover, using the third estimate of Proposition 4.5.2 and the fact that g ∈ C1
b (L1(D)), it
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follows by Hölder’s inequality and (4.5.11) that

Dvλn(x)h ≤ E
∫ +∞

0

e−αt‖Dg‖C(H;L∞(D))‖Y
x
h (t)‖L1(D) dt

≤ 1

α
‖Dg‖C(H;L∞(D))‖h‖L1(D),

which implies that vλn ∈ C1
b (L1(D)) and the estimate (4.5.10). Finally, by the last estimate of

Proposition 4.5.2 and the fact that g ∈ C1
b (V ′), we have

Dvλn(x)h ≤ E
∫ +∞

0

e−αt‖Dg‖C(H;V )‖Y
x
h (t)‖V ′ dt

. ‖Dg‖C(H;V )‖h‖V ′
∫ +∞

0

(1 ∨ t−δ)e−αt dt.

Since t 7→ (1 ∨ t−δ)e−αt belongs to L1(0,+∞), we have

Dvλn(x)h .λ,n ‖h‖V ′ ,

thus also vλn ∈ C1
b (V ′).

Let us show now that vλn solves (4.5.7). Indeed, since g ∈ C2
b (H)∩C1

b (V ′), by Itô’s formula
in the version of Proposition 4.3.2 we get

g(Xx
λn(t)) +

∫ t

0

〈AXx
λn(s), Dg(Xx

λn(s))〉 ds+

∫ t

0

〈βλn(Xx
λn(s)), Dg(Xx

λn(s))〉 ds

= g(x) +
1

2

∫ t

0

Tr[B∗(Xx
λn(s))D2g(Xx

λn(s))B(Xx
λn(s))] ds

+

∫ t

0

Dg(Xx
λn(s))B(Xx

λn(s)) dW (s)

for every t > 0. Thanks to the boundedness of Dg, taking expectations and using Fubini’s
theorem we deduce that, for every α > 0 and x ∈ V ,

e−αt E g(Xx
λn(t)) + αE

∫ t

0

e−αsg(Xx
λn(s)) ds−

∫ t

0

Pλns Lλn0 g(x) ds = g(x).

Since g ∈ Cb(H), it is clear that, as t → +∞, the first and second term on the left-hand side
converge to zero and αvλn(x), respectively, hence, by difference, we deduce that∫ t

0

Pλns Lλn0 g(x)→
∫ +∞

0

Pλns Lλn0 g(x) ds.

Letting then t→ +∞ we infer that

αvλn(x)−
∫ +∞

0

e−αtPλnt Lλn0 g(x) dt = g(x),

hence
αvλn(x)− Lλn0 vλn(x) = g(x) ∀x ∈ V.

Lemma 4.5.4. One has

lim
λ→0

lim
n→∞

∥∥L0vλn − Lλn0 vλn
∥∥
L1(H,µ)

= 0.
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Proof. By definition of L0 and Lλn0 , the claim amounts to showing that

lim
λ→0

lim
n→∞

∫
H

∣∣〈βλn(x)− β(x), Dv(x)
〉∣∣µ(dx)→ 0.

Since βλn is Lipschitz-continuous with Lipschitz constant bounded by 1/λ for every n ∈ N, we
have ∣∣〈βλ(x)− βλn(x), Dv(x)

〉∣∣ . 1

λ
‖x‖,

so that, recalling that ‖·‖ ∈ L2(H,µ) and βλn → βλ pointwise as n → ∞, the dominated
convergence theorem yields

lim
n→∞

∫
H

∣∣〈βλ(x)− βλn(x), Dv(x)
〉∣∣µ(dx) = 0.

Since Dvλn(x) is bounded in L∞(D) uniformly over λ, n and x by estimate (4.5.10), one has

∣∣(β(x)− βλ(x)
)
Dv(x)

∣∣ . ∣∣β(x)− βλ(x)
∣∣,

hence (
β(x)− βλ(x)

)
Dvλn(x)→ 0

in L0(D) as λ → 0 for every x ∈ V . Recalling the definition of η in §4.2, we deduce that
j∗(η|β(x)|) ∈ L1(D). Appealing to Young’s inequality in the form

a|b| ≤ j(a) + j∗(|b|) ∀a, b ∈ R,

we have
η|β(x)|+ η|βλ(x)| ≤ 2j(1) + j∗(η|β(x)|) + j∗(η|βλ(x)|)

hence also, since j∗ is increasing on R+ and |βλ| ≤ |β|,∣∣(β(x)− βλ(x)
)
Dvλn(x)

∣∣ . j(1) + j∗(η|β(x)|).

which belongs to L1(D) for every x ∈ J∗. Therefore, by the dominated convergence theorem,

lim
λ→0

〈
β(x)− βλ(x), Dv(x)

〉
= 0

for every x ∈ H ∩ J∗. Using again the uniform boundedness in L∞(D) of vλn(x) we also have

∣∣〈β(x)− βλ(x), Dvλn(x)
〉∣∣ . 1 +

∫
D

j∗(δ|β(x)|),

where the right-hand side belongs to L1(H,µ) by Theorem 4.4.3. A further application of the
dominated convergence theorem thus yields

lim
λ→0

∫
H

∣∣〈β(x)− βλ(x), Dvλn(x)
〉∣∣µ(dx) = 0.

We are now in the position to state and prove the main result of this section, that gives a
positive answer to the problem of L1-uniqueness for the Kolmogorov operator L0. The question
is whether the extension to L1(H,µ) of the transition semigroup P , generated by the solution
to the stochastic equation (4.1.1), is the only strongly continuous semigroup on L1(H,µ) whose
infinitesimal generator is an extension of the Kolmogorov operator L0. Recall that, apart of the
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standing assumptions of §4.2, we are also assuming that β is a function, B is non-random and
does not depend on the unknown, V is continuously embedded in L4(D), and H is the domain
of a fractional power of (a shift of) A, seen as the negative generator of an analytic semigroup
in V ′.

Theorem 4.5.5. The generator L of the extension to L1(H,µ) of the transition semigroup P
is the closure of L0 in L1(H,µ).

Proof. Since the extension of the transition semigroup P to L1(H,µ) is contractive, it follows
by the Lumer-Phillips theorem that L is m-accretive. As L coincides with L0 on D(L0), this
implies that L0 is accretive in L1(H,µ), hence, in particular, closable. We are going to show
that the image of αI+L0 is dense in L1(H,µ) for all α > 0. Let f ∈ L1(H,µ) and ε > 0. Since
D(L0) is dense in L1(H,µ), there exists g ∈ D(L0) such that ‖f − g‖L1(H,µ) < ε/2. Setting, for
any n ∈ N and λ ∈ (0, 1),

vλn(x) :=

∫ ∞
0

e−αt E g(Xx
λn(t)) dt,

if follows by Lemma 4.5.3 that vλn ∈ D(L0) and that

αvλn(x) + Lλn0 vλn(x) = g(x)

for every x ∈ V ∩ J ∩ J∗, hence also

αvλn(x) + L0vλn(x)− g(x) = L0vλn(x)− Lλn0 vλn(x).

Thanks to Lemma 4.5.4, there exist λ0 > 0 and n0 ∈ N such that

∥∥L0vλ0n0 − L
λ0n0
0 vλ0n0

∥∥
L1(H,µ)

< ε/2,

hence, setting ϕ := vλ0n0
,

∥∥αϕ+ L0ϕ− f
∥∥
L1(H,µ)

≤
∥∥αϕ+ L0ϕ− g

∥∥
L1(H,µ)

+
∥∥f − g∥∥

L1(H,µ)
< ε.

As ε > 0 was arbitrary, it follows that the image of αI + L0 is dense in L1(H,µ). Since
L0 is closable, the Lumer-Phillips theorem implies that −L0, the closure of −L0 in L1(H,µ),
generates a strongly continuous semigroup of contractions in L1(H,µ). Recalling that L is
an extension of L0, it follows again by the Lumer-Phillips theorem that L = L0 (see, for
instance, [34, Theorem 1.12]).



Chapter 5

Singular semilinear equations:
regularity

In this chapter, we prove a regularity result for the equation

dX(t) +AX(t) dt+ β(X(t)) dt 3 B(t,X(t)) dW (t) , X(0) = X0. (5.0.1)

In particular, we show how the smoothness of the solution improves (as well as of invariant
measures, if they exist) if the initial datum and the diffusion coefficient are smoother, without
any further regularity assumption on the (possibly singular) monotone drift term β. For exam-
ple, if A (better said, the part of A in H) is self-adjoint, the solution has paths belonging to
the domain of A in H if X0 and B, roughly speaking, take values in the domain of A1/2. This
implies that X is a strong solution in the classical sense, not just in the variational one. The
results of this chapter are part of the joint work [63] with Carlo Marinelli.

We are going to show that the regularity of the solution to equation (5.0.1) improves,
if the initial datum and the diffusion coefficient are smoother, irrespective of the (possible)
singularity of the drift coefficient β. In particular, we provide sufficient conditions implying
that the variational solution to (5.0.1) is also an analytically strong solution, in the sense that
it takes values in the domain of the part of A in H (see §3.3). If the solution to (5.0.1) generates
a Markovian semigroup on Cb(H) admitting an invariant measure, we also show that improved
regularity of the solution carries over to further regularity of the invariant measure, in the sense
that its support is made of smoother functions.

Theorem 5.0.1. Assume that the hypotheses of §3.2 are satisfied, that A is symmetric and
that

X0 ∈ L2(Ω,F0,P;V ), B(·, X) ∈ L2(Ω;L2(0, T ; L 2(U, V ))). (5.0.2)

Then the unique solution (X, ξ) to the equation (5.0.1) satisfies

X ∈ L2(Ω;C([0, T ];H)) ∩ L2(Ω;L∞(0, T ;V )) ∩ L2(Ω;L2(0, T ;D(A2))).

For the proof we need the following positivity result.

Lemma 5.0.2. Let Aλ and βλ be the Yosida approximations of A2 and β, respectively. One
has 〈

Aλu, βλ(u)
〉
≥ 0 ∀u ∈ H.

Proof. Let jλ : R → R be the positive convex function defined as jλ(x) :=
∫ x

0
βλ(y) dy. Then,
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for any u, v ∈ L2(D),
jλ(v)− jλ(u) ≥ j′λ(u)(v − u)

a.e. in D, hence, integrating over D,∫
D

jλ(v)−
∫
jλ(u) ≥

〈
βλ(u), v − u

〉
.

Choosing v = (I + λA2)−1u, one has u− v = λAλu, thus also

λ
〈
βλ(u), Aλu

〉
≥
∫
jλ(u)−

∫
jλ((I + λA2)−1u).

Since A1 is an extension of A2 and u ∈ L1(D), Jensen’s inequality for sub-Markovian operators
and accretivity of A1 in L1(D) imply∫

jλ((I + λA2)−1u) ≤
∫

(I + λA2)−1jλ(u) ≤
∫
jλ(u).

Proof of Theorem 5.0.1. For any λ > 0, let Jλ and Aλ be the resolvent and the Yosida approx-
imations of A2, the part of A in H, as defined in §3.3. That is,

Jλ := (I + λA2)−1, Aλ :=
1

λ
(I − Jλ).

We recall that Jλ and Aλ are bounded linear operators on H, that Jλ is a contraction, and that
Aλ = AJλ.

Setting G := B(·, X), let us consider the equation

dXλ(t) +AλXλ(t) dt+ βλ(Xλ(t)) dt = G(t) dW (t), Xλ(0) = X0.

Since Aλ is bounded and βλ is Lipschitz-continuous, it admits a unique strong solution

Xλ ∈ L2(Ω;C([0, T ];H)),

for which Itô’s formula for the square of the H-norm yields

1

2
‖Xλ(t)‖2 +

∫ t

0

〈
AλXλ(s), Xλ(s)

〉
ds+

∫ t

0

∫
D

βλ(Xλ(s))Xλ(s) ds

=
1

2
‖X0‖2 +

1

2

∫ t

0

‖G(s)‖2L 2(U,H) ds+

∫ t

0

Xλ(s)G(s) dW (s)

for all t ∈ [0, T ] P-almost surely. Writing

Xλ = JλXλ +Xλ − JλXλ = JλXλ + λAλXλ

and recalling that Aλ = AJλ and that A is coercive, we have, after taking supremum in time
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and expectation,

1

2
E
∥∥Xλ

∥∥2

C([0,T ];H)
+ C E

∫ T

0

∥∥JλXλ(s)
∥∥2

V
ds

+ λE
∫ T

0

‖AλXλ(s)‖2 ds+ E
∫ T

0

∫
D

βλ(Xλ(s))Xλ(s) ds

≤ 1

2
E‖X0‖2 +

1

2
E
∫ T

0

∥∥G(s)
∥∥2

L 2(U,H)
ds+ E sup

t∈[0,T ]

∣∣∣∣∫ t

0

Xλ(s)G(s) dW (s)

∣∣∣∣,
where, by Lemma 3.4.1, the last term on the right-hand side is bounded by

εE‖Xλ‖2C([0,T ];H) + Cε E
∫ T

0

∥∥G(s)
∥∥2

L 2(U,H)
ds,

so that, rearranging terms and choosing ε small enough, we deduce that there exists a constant
N > 0 independent of λ such that

∥∥Xλ

∥∥2

L2(Ω;C([0,T ];H))
+
∥∥JλXλ

∥∥2

L2(Ω;L2(0,T ;V ))
+
∥∥βλ(Xλ)Xλ

∥∥
L1(Ω×(0,T )×D)

< N. (5.0.3)

Moreover, let us introduce the function

ϕλ : H −→ [0,+∞[,

u 7−→ 1

2
〈Aλu, u〉.

The linearity and the boundedness of Aλ immediately implies that ϕλ ∈ C2(H) with Dϕλ(u) =

Aλ, and, by linearity, D2ϕλ(u) = Aλ, for all u ∈ H (in the latter statement Aλ has to be
considered as an element of L2(H), the space of bounded bilinear maps on H). Itô’s formula
applied to ϕλ(Xλ) then yields

ϕλ(Xλ(t)) +

∫ t

0

∥∥AλXλ(s)
∥∥2
ds+

∫ t

0

〈
AλXλ(s), βλ(Xλ(s))

〉
ds

= ϕλ(X0) +
1

2

∫ t

0

Tr
(
G∗(s)D2ϕλ(Xλ(s))G(s)

)
ds+

∫ t

0

AλXλ(s)G(s) dW (s)

for every t ∈ [0, T ] P-almost surely. Writing, as before, Xλ = JλXλ + λAλXλ, the coercivity of
A implies that

ϕλ(Xλ) =
1

2

〈
AλXλ, Xλ

〉
≥ C

2

∥∥JλXλ

∥∥2

V
+

1

2
λ
∥∥AλXλ

∥∥2
&
∥∥JλXλ

∥∥2

V
.

The continuity of Jλ on V (see Lemma 3.3.1) instead implies

ϕλ(X0) =
〈
AJλX0, X0

〉
≤
∥∥A∥∥

L (V,V ′)

∥∥JλX0

∥∥
V

∥∥X0

∥∥
V
.
∥∥A∥∥

L (V,V ′)

∥∥X0

∥∥2

V
.

Denoting a complete orthonormal basis of U by (uk)k, we have, recalling again the continuity
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of Jλ on V and that D2ϕλ(u) = Aλ for all u ∈ H,

Tr
(
G∗D2ϕλ(Xλ)G

)
=

∞∑
k=0

〈
G∗D2ϕλ(Xλ)Guk, uk

〉
U

=

∞∑
k=0

〈
AλGuk, Guk

〉
=

∞∑
k=0

〈
AJλGuk, Guk

〉
≤
∥∥A∥∥

L (V,V ′)

∞∑
k=0

∥∥JλGuk∥∥V ∥∥Guk∥∥V
.
∥∥A∥∥

L (V,V ′)

∞∑
k=0

∥∥Guk∥∥2

V
=
∥∥A∥∥

L (V,V ′)

∥∥G∥∥2

L 2(U,V )
.

Moreover, by Lemma 3.4.1,

E
(
(AλXλG) ·W

)∗
T
. εE sup

t∈[0,T ]

∥∥AλXλ(t)
∥∥2

V ′
+N(ε)E

∫ T

0

∥∥G(s)
∥∥2

L 2(U,V )
ds

≤ ε
∥∥A∥∥2

L (V,V ′)
E sup
t∈[0,T ]

∥∥JλXλ(t)
∥∥2

V
+N(ε)E

∫ T

0

∥∥G(s)
∥∥2

L 2(U,V )
ds

for every ε > 0. Taking supremum in time and expectations in the Itô formula for ϕλ(Xλ),
choosing ε small enough we obtain, thanks to the previous lemma and hypothesis (5.0.2), that
there exists a constant N > 0 independent of λ, such that

∥∥JλXλ

∥∥2

L2(Ω;L∞(0,T ;V ))
+
∥∥AλXλ

∥∥2

L2(Ω;L2(0,T ;H))
< N. (5.0.4)

Reasoning as in Chapter 2, it follows by (5.0.3) that

Xλ −→ X weakly in L2(Ω;L2(0, T ;H)),

JλXλ −→ X weakly in L2(Ω;L2(0, T ;V )),

βλ(Xλ) −→ ξ weakly in L1(Ω× (0, T )×D),

where (X, ξ) is the unique solution to (3.1.1). Moreover, by (5.0.4) we have

JλXλ −Xλ = λAλXλ −→ 0 in L2(Ω;L2(0, T ;H)),

hence, P-almost surely and for almost every t ∈ (0, T ), JλXλ(t) converges to X(t) in H. Since
the function ‖·‖2V is lower semicontinuous on H, we infer that

‖X(t)‖2V ≤ lim inf
λ→0

∥∥JλXλ(t)
∥∥2

V

for almost every t. Hence, taking supremum in time and expectation, we deduce that

X ∈ L2(Ω;L∞(0, T ;V )).

Moreover, by (5.0.4) we also have

AλXλ −→ η weakly in L2(Ω;L2(0, T ;H)),

hence, since JλXλ → X weakly in L2(Ω;L2(0, T ;V )), by the continuity and the linearity of A
we necessarily have η = AX, hence X ∈ L2(Ω;L2(0, T ;D(A2))).

As last result we show that if the solution to (5.0.1) generates a Markovian semigroup
P = (Pt)t≥0 on Cb(H) admitting an invariant measure, then the improved regularity of so-
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lutions given by Theorem 5.0.1 implies better integrability properties also for the invariant
measures. Existence and uniqueness of invariant measures, ergodicity, and the Kolmogorov
equation associated to (5.0.1) were studied in Chapter 4. In particular, we recall the following
result. The set of invariant measures of P will be denoted by M .

Proposition 5.0.3. Assume that the hypotheses of §3.2 are satisfied, that X0 ∈ H is non-
random, and that B is non-random and time-independent. Then the solution X to (5.0.1)
is Markovian and its associated transition semigroup P admits an ergodic invariant measure.
Moreover, there exists a positive constant N such that∫

H

‖u‖2V µ(du) +

∫
H

∫
D

j(u)µ(du) +

∫
H

∫
D

j∗(β0(u))µ(du) < N ∀µ ∈M .

If β is superlinear, there exists a unique invariant measure for P , which is strongly mixing as
well.

Theorem 5.0.4. Assume that the hypotheses of §3.2 are satisfied and that

B : H → L 2(U, V ), ‖B(v)‖L 2(U,V ) . 1 + ‖v‖V .

If A is symmetric, then there exists a positive constant N such that∫
H

‖Au‖2 µ(du) < N ∀µ ∈M .

In particular, every µ ∈M is concentrated on D(A2), i.e. µ(D(A2)) = 1.

Proof. For every x ∈ V , let (Xx, ξx) be the unique strong solution to (3.1.1) with initial datum
x. Setting G := B(Xx), Itô’s formula for ϕλ(Xλ) as in the proof of the previous theorem yields

ϕλ(Xλ(t)) +

∫ t

0

∥∥AλXλ(s)
∥∥2
ds+

∫ t

0

〈
AλXλ(s), βλ(Xλ(s))

〉
ds

= ϕλ(x) +
1

2

∫ t

0

Tr
(
G∗(s)D2ϕλ(Xλ(s))G(s)

)
ds+

∫ t

0

AλXλ(s)G(s) dW (s).

Since AλXλ ∈ L2(Ω;L∞(0, T ;H)) and G ∈ L2(Ω;L2(0, T ; L 2(U,H))), the last term on the
right hand side is a martingale; hence, taking expectations and recalling that ϕλ(x) . ‖x‖2V ,
it follows by Lemma 5.0.2 and by the estimates obtained in the proof of the previous theorem
that

E
∫ t

0

∥∥AλXλ(s)
∥∥2
ds . ‖x‖2V + E‖G‖2L2(0,t;L 2(U,V )).

Since this holds for every λ > 0, letting λ→ 0 and recalling that, as in the proof of the previous
theorem, AλXλ converges to AX weakly in L2(Ω;L2(0, T ;H)), a weak lower semicontinuity
argument and the linear growth assumption on B yield

E
∫ t

0

∥∥AXx(s)
∥∥2
ds . 1 + ‖x‖2V (5.0.5)

for every t ∈ [0, T ] and x ∈ V . Let us introduce the function F : H → [0,+∞] defined as

F (u) :=

‖Au‖
2 if u ∈ D(A2),

+∞ if u ∈ H \ D(A2),
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and the sequence of functions (Fn)n∈N, Fn : H → [0,+∞), defined as

Fn(u) :=
∥∥A1/nu

∥∥2 ∧ n2.

It is easily seen that Fn ∈ Cb(H) for all n ∈ N and that Fn converges pointwise to F from
below. Therefore, for any invariant measure µ, it follows by Fubini’s theorem that∫

H

Fn(x)µ(dx) =

∫ 1

0

∫
H

Fn(x)µ(dx) ds =

∫ 1

0

∫
H

PsFn(x)µ(dx) ds

=

∫
H

∫ 1

0

E
(∥∥A1/nX

x(s)
∥∥2 ∧ n2

)
ds µ(dx)

≤
∫
H

E
∫ 1

0

∥∥A1/nX
x(s)

∥∥2
ds µ(dx)

Recalling that ‖Aλu‖ ≤ ‖Au‖ for all u ∈ H, it follows by (5.0.5) that∫
H

Fn(x)µ(dx) . 1 +

∫
H

‖x‖2V µ(dx).

Since ‖·‖2V ∈ L1(H,µ) by Theorem 4.4.3, we get∫
H

Fn(x)µ(dx) . N

for a positive constant N , independent of n and µ. Letting n → ∞, by the monotone conver-
gence theorem we deduce that F ∈ L1(H,µ), hence F is finite µ-almost everywhere in H, and
in particular µ(D(A2)) = 1.



Chapter 6

Divergence-type equations with
singular reaction term

We prove well-posedness for doubly nonlinear parabolic stochastic partial differential equations
of the form

dXt − div γ(∇Xt) dt+ β(Xt) dt 3 B(t,Xt) dWt,

where γ and β are the two nonlinearities, assumed to be multivalued maximal monotone op-
erators everywhere defined on Rd and R respectively, and W is a cylindrical Wiener process.
Using variational techniques, uniform estimates (both pathwise and in expectation) and com-
pactness results, well-posedness is proved under the classical Leray-Lions conditions on γ and
with no restrictive smoothness or growth assumptions on β. The operator B is assumed to be
Hilbert-Schmidt and to satisfy some classical Lipschitz conditions in the second variable.

The results presented in this chapter are part of the work [75], recently published in Journal
of Differential Equations.

6.1 The problem: literature and main goals

In this chapter, we consider the boundary value problem with homogeneous Dirichlet conditions
associated to a doubly nonlinear parabolic stochastic partial differential equation on an smooth
bounded domain D ⊆ Rd of the type

dXt − div γ(∇Xt) dt+ β(Xt) dt 3 B(t,Xt) dWt in D × (0, T ) , (6.1.1)

X(0) = X0 in D , (6.1.2)

X = 0 on ∂D × (0, T ) , (6.1.3)

where γ and β are two maximal monotone operators everywhere defined on Rd and R, respec-
tively, W is a cylindrical Wiener process, and B is a random time-dependent Hilbert-Schmidt
operator (we will state the complete assumptions on the data in the next section). We prove ex-
istence of global solutions as well as a continuous dependence result using variational techniques
(see e.g. the classical works [46,71,72] about the variational approach to SPDEs).

The problem (6.1.1)–(6.1.3) is very interesting from the mathematical point of view: as a
matter of fact, the equation presents two strong nonlinearities. The first one is represented by
γ within the divergence operator: in this case, we will need to assume some classical growth
assumptions (the so-called Leray-Lions conditions) in order to recover a suitable coercivity
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on a natural Sobolev space. The other nonlinearity is represented by the operator β: this is
treated as generally as possible, with no restriction on the growth and regularity. Because
of this generality, the concept of solution and the appropriate estimates are more difficult to
achieve, as we will see. We point also out that dealing with maximal monotone graphs makes
our analysis absolutely exhaustive. As a matter of fact, in this way we include in our treatment
any continuous increasing function β (with any order of growth), as well as every increasing
function with a countable number of jumps: indeed, it is a standard matter to see that if β is
an increasing function on R with jumps in {xn}n∈N, one can obtain a maximal monotone graph
by setting β(xn) = [β−(xn), β+(xn)]. Finally, very mild assumptions on the noise are required,
so that our results fit to any reasonable random time-dependent Hilbert-Schmidt operator B;
in the case of multiplicative noise, only classical Lipschitz continuity hypotheses are in order.

The noteworthy feature of the results contained in this chapter is that problem (6.1.1)–(6.1.3)
is very general and embraces a wide variety of specific sub-problems which are interesting on
their own: consequently, we provide with our treatment a unifying analysis to several cases of
parabolic SPDEs. Let us mention now some of these and the main related literature.

If γ is the identity on Rd, the resulting equation is the classical semilinear SPDE driven
by the Laplace operator dX − ∆X dt + β(X) dt 3 B dWt, which has been widely studied.
For example, in Chapter 2, global existence results of solutions are provided in the semilinear
case, with the laplacian being generalized to any suitable linear operator: here, the idea is
to doubly approximate the problem, in order to recover more regularity on β and B, to find
then appropriate estimates on the approximated solutions and finally to pass to the limit in
the equation. Moreover, in [28], mild solutions are obtained under the strong hypotheses that
β is a polynomial of odd degree m > 1 and B can be written as (−∆)−

s
2 for a suitable s;

in [9], existence of mild solutions is proved with no restrictive hypotheses on the growth of β,
but imposing some strong continuity assumptions on the stochastic convolution. In [58], well-
posedness is established for the semilinear problem in a Lq setting, with β having polynomial
growth.

If γ is the monotone function on Rd given by γ(x) = |x|p−2x, x ∈ Rd, for a certain p ≥ 2,
then the term represented by the divergence in (6.1.1) is the usual p-Laplacian: in this case,
our equation becomes dX −∆pX dt + β(X) dt 3 B dWt, where ∆p· := div(|∇ · |p−2∇·). This
problem is far more interesting and complex than the semilinear case since −∆p is nonlinear
for any p > 2 and consequently (6.1.1) becomes doubly nonlinear in turn. Among the extensive
literature dealing with this problem, we can mention [54] for example, where the stochastic
p-Laplace equation is studied in the singular case p ∈ [1, 2), and [55] as well.

Let us now briefly outline the structure of the chapter.

In section 6.2, we state the precise assumptions of the work and we accurately describe the
general setting: here, the main hypotheses are stated and the variational setting is presented.
Furthermore, we outline the four main results: the first theorem ensures that problem (6.1.1)–
(6.1.3) admits global solutions in a suitable weak variational way in the case of additive noise,
the second one is the very natural continuous dependence property with respect to the initial
datum and B, the third is the existence result in case of multiplicative noise and the last
one states the continuous dependence property with respect to the initial datum in case of
multiplicative noise.

Section 6.3 contains the proof of the existence theorem with additive noise: the main idea
is to introduce two approximations on the problem. The first approximation depends on a
parameter λ and it is made on the maximal monotone operators β and γ, considering the
Yosida approximations, as usual; moreover, a correction term is added in order to recover
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a suitable coercivity when λ is fixed, and that is going to vanish when taking the limit as
λ ↘ 0. The second approximation depends on a parameter ε and is made on the operator
B in order to gain more regularity on the noise. The double approximation is very similar to
the one performed in Chapter 2. The general idea is that given a fixed approximation in ε,
the approximated noise is regular enough to allow us to pass to the limit pathwise in λ: once
this first step is carried out, suitable probability estimates allow us to pass to the limit also
in ε. More specifically, the proof of existence consists in obtaining uniform estimates on the
approximated solutions, independently of the approximations, and then passing to the limit
in the approximated problem. To this purpose, we will recover pathwise estimates which are
uniform in λ (but not in ε), and global estimates also in expectation which are uniform both in
λ and in ε. The passage to the limit is carried out in two steps: the first is on λ and it is made
pathwise, while the second is made on ε and is made globally also in probability. The main idea
is to use Itô’s formula and some sharp testings to obtain L1 estimates on the nonlinear terms
in β and rely on the Dunford-Pettis theorem to recover a weak compactness, being inspired in
this sense by some calculations performed in [9].

Section 6.4 is devoted to proving the continuous dependence result for the additive noise
case, which easily follows from the definition of solution itself and a generalized Itô formula,
which is accurately proved in the Section 6.7.

Section 6.5 contains the proof of the main result, which ensures that the problem with
multiplicative noise is well-posed: here, we build the global solutions step-by-step, proving at
each iteration accurate contraction estimates and using classical fixed-points arguments. The
continuous dependence follows from the generalized version of Itô’s formula contained in Section
6.7.

The Sections 6.6 and 6.7 contain a version of a variational integration-by-parts formula and
the generalized Itô formula, which are widely used throughout: the first one is made pathwise
and it is used when passing to the limit on λ in order to identify the limit of the nonlinearity
in γ, while the second is a direct generalization of the classical Itô formula in a variational
setting, and it is needed in the passage to the limit on ε and in the proof of the continuous
dependence. The idea of the proof is to identify accurate approximations on the processes which
have to satisfy appropriate conditions, such as linearity, smoothness properties and suitable
asymptotical behaviours: in this sense, appropriate elliptic approximations are performed.

6.2 Setting and main results

In this section we state the precise assumptions on the data of the problem and the concept of
solution. Moreover, we present the main results which will be proved in the subsequent sections.

In the sequel, (Ω,F ,F,P) is a filtered probability space, where the filtration F = (Ft)t∈[0,T ] is
assumed to satisfy the so-called “usual conditions” (i.e. it is saturated and right continuous) and
T > 0 is the fixed final time; moreover, D ⊆ Rd is a smooth bounded domain andQ := D×(0, T )

is the corresponding space-time cylinder. Furthermore, we set

H := L2(D)

and we use the symbol (·, ·) for the standard inner product of H. We write “·” for the usual
scalar product in Rd.
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We can now specify the main hypotheses of this chapter. First of all, we introduce

γ : Rd → 2R
d

maximal monotone , D(γ) = Rd , 0 ∈ γ(0)

β : R→ 2R maximal monotone , D(β) = R , 0 ∈ β(0)

W cylindrical Wiener process on U ,

where U is a suitable separable Hilbert space. Now, it is clear that the function

j : R→ [0,+∞) proper, convex, lower semicontinuous , ∂j = β , j(0) = 0

is well defined; furthermore, we make the assumption that also γ is a subdifferential, i.e. that
there exists

k : Rd → [0,+∞) proper, convex, lower semicontinuous , ∂k = γ , k(0) = 0 .

We denote by k∗ and j∗ the convex conjugate functions of k and j, respectively, we also assume
that j is even, i.e.

j(x) = j(−x) for every x ∈ R.

Remark 6.2.1. The symmetry hypothesis on j is needed in order to prove the generalized Itô
formula for the solutions of our problem, which will be strongly used throughout the proofs.
However, this can be weakened: the main point is that we only need j to grow at the same rate
both at +∞ and at −∞ (cf. [12, p. 429]), i.e.

lim sup
|x|→+∞

j(x)

j(−x)
< +∞ .

Now, for every δ ∈ (0, 1), we introduce the resolvents and the Yosida approximations of γ
and β as

Jδ := (Id + δγ)−1 , Rδ := (I1 + δβ)−1 ,

γδ :=
Id − Jδ

δ
, βδ :=

I1 −Rδ
δ

,

where the symbol Im stands for the identity in Rm for any m ∈ N.
As we have anticipated, we need to make some assumptions on the growth of γ, namely the

so-called Leray-Lions conditions, which are widely required in the classical literature on elliptic
and parabolic PDEs (the reader can refer here to [16–18] for classical examples). More in detail,
we suppose that there are positive constants K, D1, D2 and an exponent p ∈ [2,+∞) such that

sup{|y| : y ∈ γ(r)} ≤ D1

(
1 + |r|p−1

)
for every r ∈ Rd ,

y · r ≥ K|r|p −D2 for every r ∈ Rd , y ∈ γ(r) .

In the sequel, we will write q := p
p−1 ∈ (1, 2] for the conjugate exponent of p.

Finally, we set
V := W 1,p

0 (D)

and define the divergence operator in the variational sense:

−div : Lq(D)d → V ∗ , 〈−div u, v〉 :=

∫
D

u · ∇v , u ∈ Lq(D)d , v ∈ V ,
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where we have used the symbol 〈·, ·〉 for the duality pairing between V and V ∗. Here and in
the sequel, we make the natural identification H ∼= H∗, so that H is continuously embedded in
V ∗: for every u ∈ H and v ∈ V , we have 〈u, v〉 = (u, v). Taking these remarks into account, we
have

V
c
↪→ H ↪→ V ∗ ,

where the first inclusion is also dense. Moreover, we set

V0 := Hk
0 (D) , k :=

[
max

{
d

2
, 1 +

d

2
− d

p

}]
+ 1 :

note that with this particular choice of k, the classical results on Sobolev embeddings (see [10,
Thm. 1.5] and [43, Thm. 219]) ensure that

V0 ↪→ V densely , V0 ↪→ L∞(D) ,

so that we have
V0 ↪→ V ∩ L∞(D) , V ∗, L1(D) ↪→ V ∗0 .

We can now state the four main results of the chapter, which ensure that problem (6.1.1)–
(6.1.2) is well-posed, both with additive and multiplicative noise.

Theorem 6.2.2. Assume that

X0 ∈ L2 (Ω,F0,P;H) , (6.2.4)

B ∈ L2
(
Ω× (0, T ); L 2(U,H)

)
progressively measurable , (6.2.5)

γ is single-valued ; (6.2.6)

then there exist

X ∈ L2 (Ω;L∞(0, T ;H)) ∩ Lp (Ω× (0, T );V ) , X ∈ Cw ([0, T ];H) P-a.s. , (6.2.7)

η ∈ Lq (Ω× (0, T )×D)
d
, (6.2.8)

ξ ∈ L1 (Ω× (0, T )×D) , (6.2.9)

where X and ξ are predictable, η is adapted, and the following relations hold:

X(t)−
∫ t

0

div η(s) ds+

∫ t

0

ξ(s) ds = X0 +

∫ t

0

B(s) dWs

in L1(D) ∩ V ∗, ∀ t ∈ [0, T ] , P-a.s. ,
(6.2.10)

η ∈ γ(∇X) a.e. in Ω× (0, T )×D , (6.2.11)

ξ ∈ β(X) a.e. in Ω× (0, T )×D , (6.2.12)

j(X) + j∗(ξ) ∈ L1 (Ω× (0, T )×D) . (6.2.13)

Furthermore, if hypothesis (6.2.6) is not assumed, then the same conclusion is true replacing
conditions (6.2.7) and (6.2.10) with, respectively,

X ∈ L∞
(
0, T ;L2(Ω;H)

)
∩ Lp (Ω× (0, T );V ) ∩ Cw

(
[0, T ];L2(Ω;H)

)
, (6.2.14)
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X(t)−
∫ t

0

div η(s) ds+

∫ t

0

ξ(s) ds = X0 +

∫ t

0

B(s) dWs

in L1(D) ∩ V ∗, ∀ t ∈ [0, T ] , P-a.s.
(6.2.15)

Remark 6.2.3. The integral equation (6.2.10) is satisfied in the dual space V ∗0 , but X is not
V0-valued, so that the results provided are not a direct generalization of the classical concept
of variational solution (cf. [56]): we can define them as a weaker type of variational solution,
in which the integral expression holds in a dual space V ∗0 , but the solution takes values only in
a space larger than V0 (V in our case). Nevertheless, the integral formulation (6.2.10) can be
seen as an identity in L1(D), so that the choice of V0 turns out to be only a technical device
a posteriori. The fact that one cannot expect classical variational solutions for this type of
problem is due to fact that no hypotheses on the growth of β are assumed (in contrast to a
large part of the literature).

Remark 6.2.4. Let us comment on hypothesis (6.2.6). The fact that γ is single-valued (thus
a continuous function) is needed in order to prove uniqueness for our problem, which in turn
ensures some reasonable measurability properties for the processes X, η and ξ, as we will show
later on. On the other side, if we do not require (6.2.6), the measurability of the solutions cannot
be shown using the same argument, but it has to be recovered in a different way: however, in
this case, the formulation that one obtains is weaker than the previous one, since the passage
to the limit has to be carried out in Ω×D, with t ∈ [0, T ] fixed, and the solution X is found is
a larger space.

Theorem 6.2.5. Assume that

X1
0 , X

2
0 ∈ L2 (Ω,F0,P;H) , (6.2.16)

B1, B2 ∈ L2
(
Ω× (0, T ); L 2(U,H)

)
progressively measurable . (6.2.17)

If hypothesis (6.2.6) holds and (X1, η1, ξ1), (X2, η2, ξ2) are any two corresponding solutions
satisfying (6.2.7)–(6.2.13), then there is a constant C > 0 (independent of the above quantities)
such that

‖X1 −X2‖L2(Ω;L∞(0,T ;H))

≤ C
∥∥X1

0 −X2
0

∥∥
L2(Ω;H)

+ C ‖B1 −B2‖L2(Ω×(0,T );L 2(U,H)) .
(6.2.18)

In this setting, if X1
0 = X2

0 and B1 = B2, then X1 = X2, η1 = η2 and ξ1 = ξ2. Moreover,
if hypothesis (6.2.6) is not assumed and (X1, η1, ξ1), (X2, η2, ξ2) are any two corresponding
solutions satisfying (6.2.8)–(6.2.9) and (6.2.11)–(6.2.15), then

‖X1 −X2‖L∞(0,T ;L2(Ω;H))

≤
∥∥X1

0 −X2
0

∥∥
L2(Ω;H)

+ ‖B1 −B2‖L2(Ω×(0,T );L 2(U,H)) .
(6.2.19)

In this setting, if X1
0 = X2

0 and B1 = B2, then X1 = X2 and −div η1 + ξ1 = − div η2 + ξ2.

Remark 6.2.6. The uniqueness result strongly depends on the assumption (6.2.6). Indeed, if
(6.2.6) is in order, uniqueness holds for the three solution components, separately; on the other
side, if we do not assume (6.2.6), we can only recover uniqueness for X and the joint process
−div η + ξ. Moreover, note that the nonlinearity γ prevents us from finding a continuous
dependence estimate also in the space Lp(Ω × (0, T );V ) for any p > 2. Nevertheless, if p = 2

and γ is the identity, the operator −∆ is linear and we can recover continuous dependence also
in L2(Ω× (0, T );V ), for which we refer to Chapter 2.
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Theorem 6.2.7. Assume that

X0 ∈ L2 (Ω,F0,P;H) , (6.2.20)

B : Ω× [0, T ]×H → L 2(U,H) progressively measurable , (6.2.21)

∃ LB > 0 : ‖B(ω, t, x1)−B(ω, t, x2)‖L 2(U,H) ≤ LB ‖x1 − x2‖H
for every (ω, t) ∈ Ω× [0, T ] , x1, x2 ∈ H ,

(6.2.22)

∃ RB > 0 : ‖B(ω, t, x)‖L 2(U,H) ≤ RB (1 + ‖x‖H)

for every (ω, t, x) ∈ Ω× [0, T ]×H .
(6.2.23)

If hypothesis (6.2.6) holds, then there exists a triplet (X, η, ξ) satisfying conditions (6.2.7)–
(6.2.9), (6.2.11)–(6.2.13) and

X(t)−
∫ t

0

div η(s) ds+

∫ t

0

ξ(s) ds = X0 +

∫ t

0

B(s,X(s)) dWs

in L1(D) ∩ V ∗, ∀ t ∈ [0, T ] , P-a.s.
(6.2.24)

If hypothesis (6.2.6) is not assumed, then the same conclusion is true replacing (6.2.7) with
(6.2.14), and condition (6.2.24) with

X(t)−
∫ t

0

div η(s) ds+

∫ t

0

ξ(s) ds = X0 +

∫ t

0

B(s,X(s)) dWs

in L1(D) ∩ V ∗, ∀ t ∈ [0, T ] , P-a.s.
(6.2.25)

Theorem 6.2.8. Let X1
0 , X

2
0 satisfy condition (6.2.16). If (6.2.6) holds, and (X1, η1, ξ1) and

(X2, η2, ξ2) are any two corresponding solutions satisfying (6.2.7)–(6.2.9), (6.2.11)–(6.2.13) and
(6.2.24), then there is a constant C > 0 (independent of the above quantities) such that

‖X1 −X2‖L2(Ω;L∞(0,T ;H)) ≤ C
∥∥X1

0 −X2
0

∥∥
L2(Ω;H)

. (6.2.26)

In this setting, if X1
0 = X2

0 , then X1 = X2, η1 = η2 and ξ1 = ξ2. Moreover, if hypothesis
(6.2.6) is not assumed and (X1, η1, ξ1), (X2, η2, ξ2) are any two corresponding solutions satisfy-
ing (6.2.8)–(6.2.9), (6.2.11)–(6.2.14) and (6.2.25), then there is a constant C > 0 (independent
of the above quantities) such that

‖X1 −X2‖L∞(0,T ;L2(Ω;H)) ≤ C
∥∥X1

0 −X2
0

∥∥
L2(Ω;H)

. (6.2.27)

In this setting, if X1
0 = X2

0 , then X1 = X2 and −div η1 + ξ1 = −div η2 + ξ2.

Remark 6.2.9. It is worth recalling the classical approach to problem (6.1.1)–(6.1.3) in the
deterministic case and the main differences with the stochastic case. The corresponding deter-
ministic problem is

∂u

∂t
− div γ(∇u) + β(u) 3 f , u(0) = u0 ,

with homogeneous boundary conditions for u: here, the classical approach consists in proving
that the sum of the two operators −div(∇·) and β(·) is m-accretive in a suitable space. To this
end, it is well-known that if (i) E is a Banach space with uniformly convex dual E∗, (ii) A and
B are two m-accretive sets in E ×E, (iii) D(A)∩D(B) 6= ∅, (iv) 〈Au, J(Bλu)〉E ≥ 0 for every
u ∈ D(A) and λ ∈ (0, 1) (where J : E → E∗ is the duality mapping of E and Bλ is the Yosida
approximation of B), then A + B is m-accretive in E × E (see [10, Prop. 3.8]). If we take for
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example E = Ls(D) for 1 < s < +∞, A = −div γ(∇·), B = β(·) with their natural domains,
we only need to check (iv), since (i)–(iii) are clearly satisfied. To this aim, we need to handle
the term ∫

D

−div γ(∇u)φ(βλ(u)) ,

where φ(r) = |r|s−2r, r ∈ R, using integration by parts. The first problem occurs if s < 2, since
in this case the derivative of φ explodes at 0; if s ≥ 2, we can proceed formally and recover∫

D

φ′(βλ(u))β′λ(u)γ(∇u) · ∇u ≥ 0 .

The main difficulty is that βλ is not differentiable, so that one needs to rely on some generalized
chain-rules for Lipschitz functions or suitable mollifications of βλ. The problem can be seen
then as a particular case of the general one

∂u

∂t
+Au 3 f ,

with A purely nonlinear (multivalued) operator, for which one can rely on several classical
well-posedness results. However, the corresponding general problem in the stochastic case, i.e.

du+Audt 3 B dWt ,

does not have a direct counterpart in terms of existence and uniqueness: as a consequence, in
our case the proof of m-accretivity is not sufficient to ensure well-posedness, so that one needs
to deal with the problem “by hand”. To this end, the variational approach is in order.

6.3 Existence with additive noise

In this section we prove the two existence results contained in Theorem 6.2.2: as already
mentioned, we are going to approximate the problem using two different parameters. Uniform
estimates are then proved and we obtain global solutions to the original problem by passing to
the limit in a suitable topology.

6.3.1 The approximated problem

Thanks to (6.2.5), for every ε ∈ (0, 1) there exists an operator

Bε ∈ L2
(
Ω× (0, T ); L 2(U, V0)

)
(6.3.28)

such that:
Bε → B in L2

(
Ω× (0, T ); L 2(U,H)

)
as ε↘ 0 , (6.3.29)

‖Bε‖L2(Ω×(0,T );L 2(U,H)) ≤ ‖B‖L2(Ω×(0,T );L 2(U,H)) for every ε ∈ (0, 1) . (6.3.30)

Indeed, if k is chosen as in the definition of V0 in the previous section, then the operator
(I − ε∆)−k maps H into V0 for every ε > 0, so that it suffices to take Bε := (I − ε∆)−kB.
With this particular choice, using the fact that the operator (I − ε∆)−k : H → H is a linear
contraction converging to the identity in the strong operator topology as ε ↘ 0 and the ideal
property of L 2(U ;H) in L (U,H), we have that (6.3.28)–(6.3.30) are satisfied.
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For every λ ∈ (0, 1) and ε ∈ (0, 1), let us consider the approximated problem

dXε
λ − div[γλ(∇Xε

λ) + λ∇Xε
λ] dt+ βλ(Xε

λ) dt = Bε dWt in D × (0, T ) ,

Xε
λ(0) = X0 in D ,

whose integral formulation is given by

Xε
λ(t)−

∫ t

0

div[γλ(∇Xε
λ(s))] ds− λ

∫ t

0

∆Xε
λ(s) ds+

∫ t

0

βλ(Xε
λ(s)) ds

= X0 +

∫ t

0

Bε(s) dWs

(6.3.31)

in H−1(D), for every t ∈ [0, T ], P-almost surely, where here the divergence operator −div :

L2(D)d → H−1(D) and the laplacian is intended in the usual variational way, i.e.

−∆ : H1
0 (D)→ H−1(D) , 〈−∆u, v〉H1

0 (D) :=

∫
D

∇u · ∇v , u, v ∈ H1
0 (D) .

A unique solution to the approximated problem (6.3.31) can be easily obtained using the
classical results contained in [46] (see also [56, Thm. 4.2.4]). In fact, the operator

Aλ : H1
0 (D)→ H−1(D) , Aλ : φ 7→ −div[γλ(∇φ) + λ∇φ] + βλ(φ) , (6.3.32)

is well-defined thanks to the Lipschitz continuity of βλ and γλ, and problem (6.3.31) is the
variational formulation with respect to the Gelfand triple H1

0 (D) ↪→ H ↪→ H−1(D) of the
following:

dXε
λ +AλX

ε
λ dt = Bε dWt in (0, T )×D , (6.3.33)

Xε
λ(0) = X0 in D . (6.3.34)

In this setting, we need to check that the operator Aλ satisfies the classical properties of hemi-
continuity, monotonicity, coercivity and boundedness, in order to recover solutions of (6.3.31).
The following lemma is straightforward.

Lemma 6.3.1. The following conditions are satisfied for every λ ∈ (0, 1).

(H1) (Hemicontinuity). For all u, v, x ∈ H1
0 (D), the following map is continuous:

s 7→ 〈Aλ(u+ sv), x〉H1
0 (D) , s ∈ R .

(H2) (Monotonicity). For all u, v ∈ H1
0 (D),

〈Aλu−Aλv, u− v〉H1
0 (D) ≥ 0 .

(H3) (Coercivity). There exists C1 > 0 such that, for all v ∈ H1
0 (D),

〈Aλv, v〉H1
0 (D) ≥ C1 ‖v‖2H1

0 (D) .

(H4) (Boundedness). There exists C2 > 0 such that, for all v ∈ H1
0 (D),

‖Aλv‖H−1(D) ≤ C2 ‖v‖H1
0 (D) .
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Proof. For all u, v, x ∈ H1
0 (D) we have

〈Aλ(u+ sv), x〉H1
0 (D)

=

∫
D

γλ(∇(u+ sv)) · ∇x+ λ

∫
D

∇(u+ sv) · ∇x+

∫
D

βλ(u+ sv)x ,

so that (H1) is satisfied thanks to the Lipschitz continuity of γλ and βλ. Secondly, (H2)
trivially holds using the monotonicity of γλ and βλ. Moreover, for all v ∈ H1

0 (D), thanks to
the monotonicity of γλ and βλ, and the fact that γ(0) 3 0 and β(0) 3 0, we have

〈Aλv, v〉H1
0 (D) =

∫
D

γλ(∇v) · ∇v + λ

∫
D

|∇v|2 +

∫
D

βλ(v)v ≥ λ
∫
D

|∇v|2 ,

so that (H3) holds true thanks to the Poincaré inequality. Finally, using the Lipschitz continuity
of βλ and γλ and the Hölder inequality, we have for all u, v ∈ H1

0 (D)

〈Aλv, u〉H1
0 (D) =

∫
D

γλ(∇v) · ∇u+ λ

∫
D

∇v · ∇u+

∫
D

βλ(v)u

≤
(

1

λ
+ λ

)
‖∇v‖H ‖∇u‖H +

1

λ
‖v‖H ‖u‖H ≤

(
2

λ
+ λ

)
‖v‖H1

0 (D) ‖u‖H1
0 (D) ,

from which (H4) follows.

Lemma 6.3.1 ensures that, for all ε, λ ∈ (0, 1), there exists a unique adapted process

Xε
λ ∈ L2 (Ω;C ([0, T ];H)) ∩ L2

(
Ω× (0, T );H1

0 (D)
)

(6.3.35)

such that

Xε
λ(t)−

∫ t

0

div[γλ(∇Xε
λ(s))] ds− λ

∫ t

0

∆Xε
λ(s) ds+

∫ t

0

βλ(Xε
λ(s)) ds

= X0 +

∫ t

0

Bε(s) dWs

(6.3.36)

in H−1(D), for every t ∈ [0, T ], P-almost surely.

6.3.2 A priori estimates I

Here we prove uniform pathwise estimates on Xε
λ, independent of λ (but not of ε), which will

allow us to pass to the limit as λ↘ 0 in the approximated problem (6.3.36) with ε fixed.

Let us define, for any ε ∈ (0, 1),

W ε
B(t) :=

∫ t

0

Bε(s) dWs , t ∈ [0, T ] . (6.3.37)

Thanks to the Burkholder-Davis-Gundy inequality and condition (6.2.5) we deduce

W ε
B ∈ L2 (Ω;L∞(0, T ;V0)) . (6.3.38)

In particular, recalling that V0 ↪→ V ∩ L∞(D), we have that

W ε
B(ω) ∈ Lp(0, T ;V ) ∩ L∞(Q) for P-almost every ω ∈ Ω . (6.3.39)
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Equation (6.3.36) can be rewritten as

∂t (Xε
λ −W ε

B) (t)− div [γλ(∇Xε
λ(t)) + λ∇Xε

λ(t)] + βλ(Xε
λ(t)) = 0 in H−1(D)

for every t ∈ [0, T ], for any ω out of a set of probability 0 (the symbol ∂t for the derivative with
respect to time makes sense only if applied to the difference Xε

λ−W ε
B). Fix now ω and test by

Xε
λ(t)−W ε

B(t) (see [8, §1.3]): we obtain

1

2
‖Xε

λ(t)−W ε
B(t)‖2H +

∫ t

0

∫
D

γλ(∇Xε
λ(s)) · ∇(Xε

λ(s)−W ε
B(s)) ds

+ λ

∫ t

0

∫
D

∇Xε
λ(s) · ∇ (Xε

λ(s)−W ε
B(s)) ds

+

∫ t

0

∫
D

βλ(Xε
λ(s))(Xε

λ(s)−W ε
B(s)) ds =

1

2
‖X0‖2H .

(6.3.40)

Using the identity Id = λγλ + Jλ and rearranging terms in the previous relation, we have

1

2
‖Xε

λ(t)−W ε
B(t)‖2H +

∫ t

0

∫
D

γλ(∇Xε
λ(s)) · Jλ (∇Xε

λ(s)) ds

+ λ

∫ t

0

∫
D

|γλ (∇Xε
λ(s))|2 ds+ λ

∫ t

0

∫
D

|∇Xε
λ(s)|2 ds

+

∫ t

0

∫
D

βλ(Xε
λ(s))(Xε

λ(s)−W ε
B(s)) ds

=
1

2
‖X0‖2H +

∫ t

0

∫
D

γλ (∇Xε
λ(s)) · ∇W ε

B(s) ds+ λ

∫ t

0

∫
D

∇Xε
λ(s) · ∇W ε

B(s) ds .

Using the generalized Young inequality of the form ab ≤ δ p−1
p a

p
p−1 +Cδ,pb

p (for any a, b, δ > 0

and a certain Cδ,p > 0) on the second term on the right-hand side, thanks also to hypotheses
on γ and the properties of the resolvent we deduce for every t ∈ [0, T ] that

1

2
‖Xε

λ(t)−W ε
B(t)‖2H +K

∫ t

0

‖Jλ (∇Xε
λ(s))‖pLp(D) ds+ λ

∫ t

0

‖γλ (∇Xε
λ(s))‖2H ds

+ λ

∫ t

0

‖∇Xε
λ(s)‖2H ds+

∫ t

0

∫
D

βλ(Xε
λ(s))(Xε

λ(s)−W ε
B(s)) ds

≤ C ′ + 1

2
‖X0‖2H + δ

(p− 1)D1

p

∫ t

0

‖Jλ (∇Xε
λ(s))‖pLp(D) ds

+ Cδ,p

∫ t

0

‖∇W ε
B(s)‖pLp(D) ds+

λ

2

∫ t

0

‖∇Xε
λ(s)‖2H ds+

λ

2

∫ t

0

‖∇W ε
B(s)‖2H ds

for a positive constants C ′ independent of λ and ε. Hence, choosing δ = Kp
2D1(p−1) , we get that,

for every t ∈ [0, T ],

‖Xε
λ(t)‖2H +

K

2

∫ t

0

‖Jλ (∇Xε
λ(s))‖pLp(D) ds+ λ

∫ t

0

‖γλ (∇Xε
λ(s))‖2H ds

+
λ

2

∫ t

0

‖∇Xε
λ(s)‖2H ds+

∫ t

0

∫
D

βλ(Xε
λ(s))(Xε

λ(s)−W ε
B(s)) ds

≤ C ′ + 1

2
‖X0‖2H + Cp ‖W ε

B‖
p
Lp(0,T ;V ) +

1

2
‖W ε

B‖
2
L∞(0,T ;H)

+
1

2
‖W ε

B‖
2
L2(0,T ;H1

0 (D))

(6.3.41)

for a positive constant Cp independent of λ and ε. Denoting by jλ : R → [0,+∞) the proper,
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convex, lower semicontinuous function such that βλ = ∂jλ and jλ(0) = 0, one has that jλ ≤ j

and jλ(x)↗ j(x) for every x ∈ R (recall that R = D(β) ⊆ D(j)). Hence, for every x, y ∈ R we
have that

βλ(x)(x− y) ≥ jλ(x)− jλ(y) ≥ jλ(x)− j(y) .

Applying this inequality to the last term on the left-hand side of (6.3.41), we deduce that, for
every t ∈ [0, T ],

‖Xε
λ(t)‖2H +

K

2

∫ t

0

‖Jλ (∇Xε
λ(s))‖pLp(D) ds+ λ

∫ t

0

‖γλ (∇Xε
λ(s))‖2H ds

+
λ

2

∫ t

0

‖∇Xε
λ(s)‖2H ds+

∫ t

0

∫
D

jλ(Xε
λ(s)) ds

. 1 + ‖X0‖2H + ‖W ε
B‖

2
Lp(0,T ;V ) + ‖W ε

B‖
2
L∞(0,T ;H)

+ ‖W ε
B‖

2
L2(0,T ;H1

0 (D)) +

∫
Q

j(W ε
B) .

Note that all the terms on the right-hand side are finite P-almost surely: for the first five, this
is immediate thanks to (6.2.4) and (6.3.39), while j(W ε

B) ∈ L1(Q) since W ε
B ∈ L∞(Q). Using

the positivity of jλ we deduce that for P-almost every ω ∈ Ω there exists a positive constant
M = Mω,ε, independent of λ, such that, for every λ ∈ (0, 1),

‖Xε
λ(ω)‖L∞(0,T ;H) ≤Mω,ε , (6.3.42)

‖Jλ (∇Xε
λ(ω))‖Lp(Q) ≤Mω,ε , (6.3.43)

λ1/2 ‖γλ (∇Xε
λ(ω))‖L2(Q) ≤Mω,ε , (6.3.44)

λ1/2 ‖∇Xε
λ(ω)‖L2(Q) ≤Mω,ε . (6.3.45)

Finally, by the hypotheses on γ and the properties of the resolvent we also have∫
Q

|γλ(∇Xε
λ)|q ≤ D1

∫
Q

(1 + |Jλ(∇Xε
λ)|)p ,

so that by (6.3.43) it follows (possibly redefining Mω,ε) that, for every λ ∈ (0, 1),

‖γλ(∇Xε
λ(ω))‖Lq(Q) ≤Mω,ε . (6.3.46)

6.3.3 A priori estimates II

In this section we prove some estimates in expectation on Xε
λ independent both of λ and ε.

The main tool is a version of Itô’s formula in a variational framework.

Thanks to conditions (6.2.4)–(6.2.5) and (6.3.35)–(6.3.36), we can apply Itô’s formula (see
[56]), obtaining

1

2
‖Xε

λ(t)‖2H +

∫ t

0

∫
D

γλ(∇Xε
λ(s)) · ∇Xε

λ(s) ds

+ λ

∫ t

0

∫
D

|∇Xε
λ(s)|2 ds+

∫ t

0

∫
D

βλ(Xε
λ(s))Xε

λ(s) ds

=
1

2
‖X0‖2H +

1

2

∫ t

0

‖Bε(s)‖2L 2(U,H) ds+

∫ t

0

(Xε
λ(s), Bε(s) dWs)

(6.3.47)
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for every t ∈ [0, T ], P-almost surely, which yields, by definition of γλ,

1

2
‖Xε

λ(t)‖2H +K

∫ t

0

‖Jλ (∇Xε
λ(s))‖pLp(D) ds+ λ

∫ t

0

‖γλ (∇Xε
λ(s))‖2H ds

+ λ

∫ t

0

‖∇Xε
λ(s)‖2H ds+

∫ t

0

∫
D

βλ(Xε
λ(s))Xε

λ(s) ds

≤ C ′′ + 1

2
‖X0‖2H +

1

2
‖Bε(s)‖2L2(0,T ;L 2(U,H)) + sup

t∈[0,T ]

∣∣∣∣∫ t

0

(Xε
λ(s), Bε(s) dWs)

∣∣∣∣
for a constant C ′′ > 0, independent of ε and λ. Thanks to Davis’ inequality, the Hölder and
Young inequalities, and condition (6.3.30), we have for some c, c̃ > 0

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

(Xε
λ(s), Bε(s) dWs)

∣∣∣∣ ≤ cE
(∫ T

0

‖Xε
λ(s)‖2H ‖B

ε(s)‖2L 2(U,H) ds

)1/2


≤ cE
[
‖Xε

λ‖L∞(0,T ;H) ‖B
ε‖L2(0,T ;L 2(U,H))

]
≤ 1

4
‖Xε

λ‖
2
L2(Ω;L∞(0,T ;H)) + c̃ ‖B‖2L2(Ω×(0,T );L 2(U,H)) ;

consequently, taking the supremum in t ∈ [0, T ] and expectations, we obtain

1

4
‖Xε

λ‖
2
L2(Ω;L∞(0,T ;H)) +K ‖Jλ (∇Xε

λ)‖pLp(Ω×(0,T )×D)

+ λ ‖γλ (∇Xε
λ)‖2L2(Ω×(0,T )×D) + λ ‖∇Xε

λ‖
2
L2(Ω×(0,T )×D) +

∫
Ω×Q

βλ(Xε
λ)Xε

λ

≤ C ′′ + 1

2
‖X0‖2L2(Ω;H) +

3

2
‖B‖2L2(Ω×(0,T );L 2(U,H)) .

(6.3.48)

We infer that there exists a constant N > 0, independent of λ and ε, such that

‖Xε
λ‖L2(Ω;L∞(0,T ;H)) ≤ N , (6.3.49)

‖Jλ (∇Xε
λ)‖Lp(Ω×(0,T )×D) ≤ N , (6.3.50)

λ1/2 ‖γλ (∇Xε
λ)‖L2(Ω×(0,T )×D) ≤ N , (6.3.51)

λ1/2 ‖∇Xε
λ‖L2(Ω×(0,T )×D) ≤ N , (6.3.52)

for every ε, λ ∈ (0, 1). Finally, by the assumptions on γ we also have∫
Ω×Q

|γλ(∇Xε
λ)|q ≤ D1

∫
Ω×Q

(1 + |Jλ(∇Xε
λ)|)p ,

so that by (6.3.50) it follows (possibly redefining N) that, for every ε, λ ∈ (0, 1),

‖γλ(∇Xε
λ)‖Lq(Ω×(0,T )×D) ≤ N . (6.3.53)

6.3.4 A priori estimates III

In this section we prove uniform estimates on the term βλ(Xε
λ), independent of λ (with ε

fixed), which are useful to recover a suitable weak compactness. We rely on some computations
performed in [9] to obtain some L1 estimates, the classical results by de la Vallée-Poussin about
uniform integrability and on the Dunford-Pettis theorem.

Firstly, let us fix ω ∈ Ω. The properties of the resovent and the monotonicity of βλ imply
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that
j(RλX

ε
λ) + j∗(βλ(Xε

λ)) = βλ(Xε
λ)RλX

ε
λ ≤ |βλ(Xε

λ)| |Xε
λ| = βλ(Xε

λ)Xε
λ .

Consequently, from inequality (6.3.41) evaluated at time T and the previous relation, recalling
(6.3.39) and using the generalized Young inequality of the form ab ≤ j(2a) + j∗(b/2) for any
a, b ∈ R, we deduce that P-almost surely we have∫

Q

j∗(βλ(Xε
λ)) ≤

∫
Q

βλ(Xε
λ)Xε

λ

≤ C ′ + 1

2
‖X0‖2H + Cp ‖W ε

B‖
p
Lp(0,T ;V ) +

1

2
‖W ε

B‖
2
L∞(0,T ;H)

+
1

2
‖W ε

B‖
2
L2(0,T ;H1

0 (D)) +

∫
Q

βλ(Xε
λ)W ε

B

≤ C ′ + 1

2
‖X0‖2H + Cp ‖W ε

B‖
p
Lp(0,T ;V ) +

1

2
‖W ε

B‖
2
L∞(0,T ;H)

+
1

2
‖W ε

B‖
2
L2(0,T ;H1

0 (D)) + ‖j (2W ε
B)‖L1(Q) +

1

2

∫
Q

j∗ (βλ(Xε
λ)) .

All the terms on the right hand side are finite thanks to (6.2.4) and (6.3.39): hence, since j∗ is
even by assumption, we have proved that

‖j∗ (|βλ(Xε
λ(ω))|)‖L1(Q) = ‖j∗ (βλ(Xε

λ(ω)))‖L1(Q) ≤
∫
Q

βλ(Xε
λ(ω))Xε

λ(ω) ≤Mω,ε (6.3.54)

for P-almost every ω ∈ Ω; moreover, since D(β) = R, we have that

lim
|r|→+∞

j∗(r)

|r|
= +∞.

Hence, using then the criterion by de la Vallée-Poussin for uniform integrability combined with
the Dunford-Pettis theorem, we deduce that, for P-almost every ω ∈ Ω and for every ε ∈ (0, 1),

{βλ(Xε
λ)(ω)}λ∈(0,1) is weakly relatively compact in L1 (Q) . (6.3.55)

Finally, let us obtain the corresponding information also in expectation. It easily follows
from (6.3.48) that there exists a constant N > 0, independent of λ and ε, such that

‖βλ(Xε
λ)Xε

λ‖L1(Ω×(0,T )×D) ≤ N for every ε, λ ∈ (0, 1) ;

hence, in analogy to the derivation of (6.3.54), we get∫
Ω×Q

j∗(βλ(Xε
λ)) ≤ ‖βλ(Xε

λ)Xε
λ‖L1(Ω×(0,T )×D) ≤ N for every ε, λ ∈ (0, 1) . (6.3.56)

Since j∗ is even and superlinear at infinity, the criterion by de la Vallée-Poussin and the Dunford-
Pettis theorem imply that

{βλ(Xε
λ)}ε,λ∈(0,1) is weakly relatively compact in L1(Ω× (0, T )×D) . (6.3.57)

6.3.5 Passage to the limit as λ↘ 0

In this section, we pass to the limit as λ ↘ 0 in the approximated problem (6.3.36) with
ε ∈ (0, 1) being fixed: the idea is to pass to the limit pathwise as λ ↘ 0. Throughout the
section, ε ∈ (0, 1) and ω ∈ Ω are fixed.
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First of all, conditions (6.3.42)–(6.3.46) and (6.3.55) ensure that there exist

Xε(ω) ∈ L∞ (0, T ;H) ,

Y ε(ω) ∈ Lp(Q)d ,

ηε(ω) ∈ Lq(Q)d ,

ξε(ω) ∈ L1 (Q)

and a sequence {λn}n∈N (which clearly depends on ε and ω as well) such that as n→∞

Xε
λn(ω)

∗
⇀ Xε(ω) in L∞ (0, T ;H) , (6.3.58)

Jλn
(
∇Xε

λn(ω)
)
⇀ Y ε(ω) in Lp(Q)d , (6.3.59)

γλn(∇Xε
λ(ω)) ⇀ ηε(ω) in Lq(Q)d , (6.3.60)

βλn(Xε
λn(ω)) ⇀ ξε(ω) in L1 (Q) (6.3.61)

and also as λ↘ 0 that

λγλ(∇Xε
λ(ω))→ 0 in L2(Q)d , (6.3.62)

λ∇Xε
λ(ω)→ 0 in L2(Q)d . (6.3.63)

In particular, since λ2|γλ(∇Xε
λ)|2 = |∇Xε

λ − Jλ(∇Xε
λ)|2, from (6.3.62) we have that∫

Q

|∇Xε
λ − Jλ(∇Xε

λ)|2(ω)→ 0 as λ↘ 0 ,

which together with (6.3.59) implies that ∇Xε
λn

(ω) ⇀ Y ε in L2(Q)d; hence, we deduce

Xε(ω) ∈ Lp (0, T ;V ) ,

Y ε = ∇Xε and as a consequence (possibly renominating {λn}n∈N)

Jλn
(
∇Xε

λn(ω)
)
⇀ ∇Xε(ω) in Lp(Q)d , (6.3.64)

∇Xε
λn(ω) ⇀ ∇Xε(ω) in L2(Q)d . (6.3.65)

The second step is to prove a strong convergence for Xε
λ. To this purpose, equation (6.3.36)

can be rewritten on the path starting from ω as

∂t (Xε
λ −W ε

B) (t)− div γλ(∇Xε
λ(t))− λ∆Xε

λ(t) + βλ(Xε
λ(t)) = 0 in H−1(D)

for every t ∈ [0, T ]: we estimate the different terms of the previous relation in the larger space
L1(0, T ;V ∗0 ). Recalling that L1(D), H−1(D), V ∗ ↪→ V ∗0 , using the fact that ‖−div v‖V ∗ ≤
‖v‖Lq(D) for every v ∈ Lq(D)d (thanks to definition of divergence) and that ‖−∆v‖H−1(D) ≤
‖∇v‖L2(D) for every v ∈ H1

0 (D), using conditions (6.3.45)–(6.3.46) and (6.3.55), we deduce that
for every λ ∈ (0, 1)

‖−div γλ(∇Xε
λ(ω))‖L1(0,T ;V ∗0 ) ≤ c ‖γλ(∇Xε

λ(ω))‖Lq(Q) ≤Mω,ε ,

‖−λ∆Xε
λ‖L1(0,T ;V ∗0 ) ≤ cλ ‖∇X

ε
λ‖L2(Q) ≤Mω,ε ,

‖βλ(Xε
λ(ω))‖L1(0,T ;V ∗0 ) ≤ c ‖βλ(Xε

λ(ω))‖L1(Q) ≤Mω.ε ,
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for a certain constant c > 0 and renominating the constant Mω,ε at each passage. Hence, we
deduce by difference that

‖∂t (Xε
λ −W ε

B) (ω)‖L1(0,T ;V ∗0 ) ≤Mω,ε for every λ ∈ (0, 1) . (6.3.66)

At this point, we can recover a strong convergence using some classical compactness results with
ω ∈ Ω being fixed. Since by (6.3.65) the family {Xε

λn
(ω)}n∈N is bounded in L2(0, T ;H1

0 (D)),
thanks also to (6.3.66) we can apply Lemma 1.4.3 to recover that the set F is relatively compact
in L2(0, T ;H). Hence, there exists Xε

B(ω) ∈ L2(0, T ;H) such that

(Xε
λn −W

ε
B)(ω)→ Xε

B(ω) in L2(0, T ;H) as n→∞ ,

possibly updating the sequence {λn}n∈N. Using condition (6.3.58) and the fact thatW ε
B is fixed

with respect to λ, we infer that

(Xε
λn −W

ε
B)(ω)

∗
⇀ (Xε −W ε

B)(ω) in L∞(0, T ;H) as n→∞ ,

and for uniqueness of the weak limit we have Xε
B(ω) = (Xε −W ε

B)(ω) a.e. in Q. As a conse-
quence, we have that

Xε
λn(ω)→ Xε(ω) in L2(0, T ;H) as n→∞ . (6.3.67)

We are now ready to pass to the limit as λ ↘ 0 in (6.3.36): in particular, we are going to
show that for every ε ∈ (0, 1) we have

Xε(t)−
∫ t

0

div ηε(s) ds+

∫ t

0

ξε(s) ds = X0 +

∫ t

0

Bε(s) dWs

in V ∗0 , ∀ t ∈ [0, T ] , P-a.s. ,
(6.3.68)

ηε ∈ γ(∇Xε) a.e. in Q , P-almost surely , (6.3.69)

ξε ∈ β(X) a.e. in Q , P-almost surely , (6.3.70)

j(Xε) + j∗(ξε) ∈ L1(Q) , P-almost surely . (6.3.71)

Firstly, let ε ∈ (0, 1) and ω ∈ Ω be fixed as usual. Let w ∈ V0 and recall the fact that
V0 ↪→ L∞(D) ∩ V : then, thanks to (6.3.58), (6.3.60), (6.3.63) and (6.3.61), for almost every
t ∈ (0, T ) we have ∫

D

Xε
λn(t)w →

∫
D

Xε(t)w ,∫ t

0

∫
D

γλn(∇Xε
λn(s)) · ∇w ds→

∫ t

0

∫
D

ηε(s) · ∇w ds ,

λn

∫ t

0

∫
D

∇Xε
λn(s) · ∇w ds→ 0 ,∫ t

0

∫
D

βλn(Xε
λn(s))w ds→

∫ t

0

∫
D

ξε(s)w ds ,

as n → ∞. Hence, taking these remarks into account, letting n → ∞ in equation (6.3.36)
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evaluated with λn, we obtain exactly

Xε(t)−
∫ t

0

div ηε(s) ds+

∫ t

0

ξε(s) ds = X0 +

∫ t

0

Bε(s) dWs in V ∗0

for almost every t ∈ (0, T ) , P-almost surely .

Since all the terms except the first are continuous with respect to time, we deduce a posteriori
that Xε(ω) ∈ C ([0, T ];V ∗0 ) P-almost surely. Since also Xε(ω) ∈ L∞(0, T ;H), by Lemma 1.4.1
we deduce that

Xε ∈ Cw ([0, T ];H) P-almost surely . (6.3.72)

Hence, the last integral relation holds for every t ∈ [0, T ] and (6.3.68) is proved.

Secondly, let us show (6.3.70). By (6.3.67) we can assume that Xε
λn

(ω) → Xε(ω) a.e. in
Q as n → ∞, from which, since Rλn is a contraction, we deduce also that RλnXε

λn
(ω) →

Xε(ω) a.e. in Q. Moreover, by (6.3.61), we also know that βλn(Xε
λn

(ω)) ∈ β(RλnX
ε
λn

(ω)) and
βλn(Xε

λn
(ω)) ⇀ ξε(ω) in L1(Q). Consequently, since {βλn(Xε

λn
(ω))Xε

λn
(ω)}n∈N is bounded in

L1(Q) thanks to (6.3.54), we can apply Lemma 1.3.14, with the choices Y = Q, µ the Lebesgue
measure on Q, yn = Xε

λn
and gn = RλnX

ε
λn

, to infer (6.3.70).

Furthermore, by definition of βλn we have Xε − RλnXε
λn

= (Xε −Xε
λn

) + λnβλn(Xε
λn

), so
that thanks to (6.3.61) and (6.3.67) we deduce that RλnXε

λn
(ω)→ Xε(ω) in L1(Q): hence, by

the weak lower semicontinuity of the convex integrals and conditions (6.3.61) and (6.3.54), we
have that∫

Q

[j(Xε(ω)) + j∗(ξε(ω))] ≤ lim inf
n→∞

∫
Q

[
j(RλnX

ε
λn(ω)) + j∗(βλn(Xε

λn)(ω))
]

= lim inf
n→∞

∫
Q

RλnX
ε
λn(ω)βλn(Xε

λn(ω)) ≤ lim inf
n→∞

∫
Q

Xε
λn(ω)βλn(Xε

λn(ω)) ≤Mω,ε ,

so that also (6.3.71) is proved. Let us also point out that condition (6.3.70) implies ξεXε =

j(Xε) + j∗(ξε) almost everywhere on Q, so that from the very last calculations, using the fact
that Rλn is a contraction and the monotonicity of βλ, we have

ξε(ω)Xε(ω) ∈ L1(Q) ,

∫
Q

ξε(ω)Xε(ω) ≤ lim inf
n→∞

∫
Q

βλn(Xε
λn(ω))Xε

λn(ω) . (6.3.73)

Finally, let us show that (6.3.69) holds: in the next passages, we will omit to write ω to
simplify notations. From equation (6.3.40) evaluated at time T , recalling conditions (6.3.58),
(6.3.60), (6.3.61), (6.3.63), (6.3.73) and (6.3.38), we get that

lim sup
n→∞

∫
Q

γλn(∇Xε
λn) · ∇Xε

λn =
1

2
‖X0‖2H + lim

n→∞

∫
Q

γλn(∇Xε
λn) · ∇W ε

B

+ lim
n→∞

λn

∫
Q

∇Xε
λn · ∇W

ε
B + lim

n→∞

∫
Q

βλn(Xε
λn)W ε

B

− 1

2
lim inf
n→∞

∥∥Xε
λn(T )−W ε

B(T )
∥∥2

H
− lim
n→∞

λn
∥∥∇Xε

λn

∥∥2

H
− lim inf

n→∞

∫
Q

βλn(Xε
λn)Xε

λn

≤ 1

2
‖X0‖2H +

∫
Q

ηε · ∇W ε
B +

∫
Q

ξεW ε
B −

1

2
‖Xε(T )−W ε

B(T )‖2H −
∫
Q

ξεXε .

At this point, thanks to conditions (6.3.68)–(6.3.71), we can prove that the following testing
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formula holds:

1

2
‖Xε(T )−W ε

B(T )‖2H +

∫
Q

ηε · ∇(Xε −W ε
B) +

∫
Q

ξε(Xε −W ε
B) =

1

2
‖X0‖2H . (6.3.74)

Remark 6.3.2. The proof of (6.3.74) relies on sharp approximations of elliptic type and is
very technical: hence, we omit it here in order not to make the treatment heavier. The reader
can refer to Section 6.6 for a complete and rigorous proof of (6.3.74).

Hence, thanks to (6.3.74), the last set of inequalities can be read as

lim sup
n→∞

∫
Q

γλn(∇Xε
λn) · ∇Xε

λn ≤
∫
Q

ηε · ∇Xε ,

from which, using the definition of γλn and condition (6.3.62) we deduce that

lim sup
n→∞

∫
Q

γλn(∇Xε
λn) · Jλn

(
∇Xε

λn

)
= lim sup

n→∞

∫
Q

[
γλn(∇Xε

λn) · ∇Xε
λn − λn|γλn(∇Xε

λn)|2
]

= lim sup
n→∞

∫
Q

γλn(∇Xε
λn) · ∇Xε

λn − lim
n→∞

λn

∫
Q

∣∣γλn(∇Xε
λn)
∣∣2 ≤ ∫

Q

ηε · ∇Xε .

This last inequality together with (6.3.59) and (6.3.60) implies condition (6.3.69) thanks to the
usual tools of monotone analysis.

6.3.6 Measurability properties of the solutions

In this section, we show that the solution components Xε, ηε and ξε constructed in the previous
section have also some regularity with respect to ω. Moreover, we prove uniform estimates with
respect to ε: to this purpose, we will use the results of Sections 6.3.3 and 6.3.4, as well as
natural lower semicontinuity properties.

First of all, note that, a priori, Xε, ηε and ξε are not even measurable processes, because
of the way they have been build (the sequence λn could depend on ω as well). To show
measurability, we need to prove uniqueness for problem (6.3.68)–(6.3.71). Hence, let (Xε

1 , η
ε
1, ξ

ε
1)

and (Xε
2 , η

ε
2, ξ

ε
2) satisfy conditions (6.3.68)–(6.3.71): taking the difference of (6.3.68) and setting

Y ε := Xε
1 −Xε

2 , ζε := ηε1 − ηε2 and ψε := ξε1 − ξε2 we have

Y ε(t)−
∫ t

0

div ζε(s) ds+

∫ t

0

ψε(s) ds = 0 for every t ∈ [0, T ] , P-a.s.

By convexity we have j(Y ε/2) + j∗(ψε/2) ≤ 1
2 (j(Xε

1) + j(Xε
2) + j∗(ξε1) + j∗(ξε2)), where the

right-hand side is in L1(Q): hence, using the same argument as in Section 6.6 with X0 = 0 and
B = 0, we infer that

1

2
‖Y ε(t)‖2H +

∫ t

0

∫
D

ζε(s) · ∇Y ε(s) ds+

∫ t

0

∫
D

ψε(s)Y ε(s) ds = 0 .

The monotonicity of γ and β implies that Y ε = 0. Moreover, in view of (6.2.6), γ is a continuous
function. This implies that ζε = 0 and the first integral expression becomes

∫ t
0
ψε(s) ds = 0 for

every t ∈ [0, T ], so that also ψε = 0 and uniqueness is proved.
At this point, we are ready to prove that the sequence {λn}n∈N constructed in the previous

section can be chosen independent of ω: more precisely, we can prove that for any sequence
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{λn}n∈N decreasing to 0, conditions (6.3.58)–(6.3.61) and (6.3.64)–(6.3.65) hold. Indeed, let
{λn}n∈N be any sequence decreasing to 0 and fix ω ∈ Ω: then, for every subsequence of
{λn}n∈N (which we still denote with the same symbol for sake of simplicity), the estimates
(6.3.42)–(6.3.46) hold. Proceeding as in Section 6.3.5 and invoking the uniqueness, we can then
extract a further sub-subsequence (depending on ω) along which the same weak convergences to
Xε, ηε and ξε hold. This implies that the convergences (6.3.58)–(6.3.61) and (6.3.64)–(6.3.65)
are true for the original sequence {λn}n∈N, which does not depend on ω.

Now, let us prove some measurability properties of the processes Xε, ηε and ξε. First of
all, since Xε

λn
→ Xε in L2(0, T ;H) P-almost surely, it is clear that Xε is predictable (since

so are Xε
λn

for every n ∈ N). Secondly, let us focus on ξε: we prove that βλn(Xε
λn

) ⇀ ξε in
L1(Ω× (0, T )×D). To this aim, for any g ∈ L∞(Q), setting

F ελn :=

∫
Q

βλn(Xε
λn)g , F ε :=

∫
Q

ξεg ,

we know that F ελn → F ε P-almost surely: let us show that F ελn ⇀ F ε in L1(Ω). Indeed, for any
h ∈ L∞(Ω), if we define

j∗0 (·) := j∗ (·/M) , M :=
1

(1 ∨ ‖g‖L∞(Q))(1 ∨ ‖h‖L∞(Ω))
,

by the Jensen inequality we have that

E
[
j∗0 (F ελnh)

]
= E

[
j∗0

(∫
Q

βλn(Xε
λn)gh

)]
≤ CT,|D|E

∫
Q

j∗0 (βλn(Xε
λn)gh) ≤

∫
Ω×Q

j∗(|βλn(Xε
λn)|) ,

where the last term is bounded uniformly in n by (6.3.56). Consequently, since j∗0 is still
superlinear at infinity, by the de la Vallée-Poussin criterion, we deduce that {F ελnh}n∈N is
uniformly integrable on Ω: taking also into account that F ελnh→ F εh P-almost surely, Vitali’s
convergence theorem ensures that F ελnh → F εh in L1(Ω). Since this is true for any h and g,
this implies that βλn(Xε

λn
) ⇀ ξε in L1(Ω× (0, T )×D). By Mazur’s Lemma there is a sequence

made up of convex combinations of βλn(Xε
λn

) which converge strongly ξε in L1(Q), P-almost
surely. This ensures that ξε is predictable (since so are βλ(Xε

λ) for every n). Finally, using a
similar argument, one can show also that ηε is adapted.

It is now time to prove some uniform estimates with respect to ε. By (6.3.58)–(6.3.61),
(6.3.64) and the estimates (6.3.49)–(6.3.53), using the lower semicontinuity of the norm, we
have

‖Xε(ω)‖L∞(0,T ;H) ≤ lim inf
n→∞

∥∥Xε
λn(ω)

∥∥
L∞(0,T ;H)

,

‖∇Xε(ω)‖Lp(Q) ≤ lim inf
n→∞

∥∥Jλn (∇Xε
λn(ω)

)∥∥
Lp(Q)

,

‖ηε(ω)‖Lq(Q) ≤ lim inf
n→∞

∥∥γλn (∇Xε
λn(ω)

)∥∥
Lq(Q)

,

‖ξε(ω)‖L1(Q) ≤ lim inf
n→∞

∥∥βλn(Xε
λn(ω))

∥∥
L1(Q)

.
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Taking expectations and using (6.3.49)–(6.3.53) and (6.3.57), the Fatou’s lemma implies

E ‖Xε‖2L∞(0,T ;H) ≤ lim inf
n→∞

∥∥Xε
λn

∥∥2

L2(Ω;L∞(0,T ;H))
≤ N ,

E ‖∇Xε‖pLp(Q) ≤ lim inf
n→∞

∥∥Jλn (∇Xε
λn

)∥∥p
Lp(Ω×Q)

≤ N ,

E ‖ηε‖qLq(Q) ≤ lim inf
n→∞

∥∥γλn (∇Xε
λn

)∥∥q
Lq(Ω×Q)

≤ N ,

E ‖ξε‖L1(Q) ≤ lim inf
n→∞

∥∥βλn(Xε
λn)
∥∥
L1(Ω×Q)

≤ N ,

for a certain positive constant N independent of ε. Hence, we have also proved that

Xε ∈ L2 (Ω;L∞(0, T ;H)) ∩ Lp (Ω× (0, T );V ) , (6.3.75)

ηε ∈ Lq (Ω× (0, T )×D)
d
, ξε ∈ L1 (Ω× (0, T )×D) (6.3.76)

and that the following estimates hold:

‖Xε‖L2(Ω;L∞(0,T ;H))∩Lp(Ω×(0,T );V ) ≤ N for every ε ∈ (0, 1) , (6.3.77)

‖ηε‖Lq(Ω×(0,T )×D) ≤ N for every ε ∈ (0, 1) , (6.3.78)

‖ξε‖L1(Ω×(0,T )×D) ≤ N for every ε ∈ (0, 1) . (6.3.79)

Moreover, since βλn(Xε
λn

) ⇀ ξε in L1(Q) as n → ∞, P-almost surely, by the weak lower
semicontinuity of the convex integral we have∫

Q

j∗(ξε) ≤ lim inf
n→∞

∫
Q

j∗
(
βλn(Xε

λn)
)

P-almost surely :

hence, thanks to the Fatou lemma and condition (6.3.56), we deduce that∫
Ω×Q

j∗(ξε) ≤ lim inf
n→∞

∫
Ω×Q

j∗
(
βλn(Xε

λn)
)
≤ N ,

where N is independent of ε. Consequently, since j∗ is even, we have that {j∗(ξε)}ε∈(0,1)

is bounded in L1(Ω × Q): hence, since j∗ is superlinear at ∞, the classical results by de la
Vallée-Poussin and the Dunford-Pettis theorem ensure that

{ξε}ε∈(0,1) is weakly relatively compact in L1(Ω× (0, T )×D) . (6.3.80)

Similarly, RλnXε
λn
→ Xε in L1(Q) and j(RλXε

λ) ≤ j(RλXε
λ)+j∗(βλ(Xε

λ)) = βλ(Xε
λ)Xε

λ: hence,
the weak lower semicontinuity of the convex integrals, Fatou’s lemma and condition (6.3.56)
imply ∫

Ω×Q
j(Xε) ≤ lim inf

n→∞

∫
Ω×Q

j
(
RλnX

ε
λn

)
≤ sup
ε,λ∈(0,1)

‖βλ(Xε
λ)Xε

λ‖L1(Ω×Q) ≤ N .

Taking these remarks into account, we have also obtained that

‖j(Xε)‖L1(Ω×(0,T )×D) + ‖j∗(ξε)‖L1(Ω×(0,T )×D) ≤ N for every ε ∈ (0, 1) . (6.3.81)

6.3.7 Passage to the limit as ε↘ 0

In this section, we pass to the limit as ε↘ 0 in the sub-prolem (6.3.68)–(6.3.71) and we recover
global solutions to the original problem: to this end, the passage to the limit takes place also
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in probability, as we have already anticipated.

First of all, thanks to (6.3.77)–(6.3.79), we deduce that there exist

X ∈ L∞
(
0, T ;L2(Ω;H)

)
∩ Lp (Ω× (0, T );V ) ,

η ∈ Lq (Ω× (0, T )×D)
d
, ξ ∈ L1 (Ω× (0, T )×D) ,

and a sequence {εn}n∈N with εn ↘ 0 as n→∞ such that

Xεn ∗
⇀ X in L∞

(
0, T ;L2(Ω;H)

)
, (6.3.82)

Xεn ⇀ X in Lp (Ω× (0, T );V )) , (6.3.83)

ηεn ⇀ η in Lq (Ω× (0, T )×D)
d
, (6.3.84)

ξεn ⇀ ξ in L1 (Ω× (0, T )×D) . (6.3.85)

Let us prove a strong convergence for Xε: given ε, δ ∈ (0, 1), consider equation (6.3.68)
evaluated for ε and δ. Then, taking the difference we have

Xε(t)−Xδ(t)−
∫ t

0

div(ηε(s)− ηδ(s)) ds+

∫ t

0

(
ξε(s)− ξδ(s)

)
ds

=

∫ t

0

(Bε(s)−Bδ(s)) dWs in V ∗0 for every t ∈ [0, T ] , P-a.s .

Now, notice that thanks to the symmetry and the convexity of j and j∗, we have

j

(
Xε −Xδ

2

)
+ j∗

(
ξε − ξδ

2

)
≤ 1

2

(
j(Xε) + j(Xδ) + j∗(ξε) + j∗(ξδ)

)
,

where the term on the right hand side is in L1(Ω × (0, T ) × D) thanks to (6.3.81): hence,
recalling also condition (6.3.72) we can apply Proposition 6.7.1 with the choices Y = Xε −Xδ,
f = ηε − ηδ, g = ξε − ξδ, T = Bε −Bδ and α = 1/2 to infer that

1

2

∥∥Xε(t)−Xδ(t)
∥∥2

H
+

∫ t

0

∫
D

(
ηε(s)− ηδ(s)

)
·
(
∇Xε(s)−∇Xδ(s)

)
ds

+

∫ t

0

∫
D

(
ξε(s)− ξδ(s)

) (
Xε(s)−Xδ(s)

)
ds

=
1

2

∫ t

0

∥∥Bε(s)−Bδ(s)∥∥2

L 2(U,H)
ds+

∫ t

0

(
(Xε −Xδ)(s), (Bε −Bδ)(s) dWs

)
for every t ∈ [0, T ], P-almost surely. Now, proceeding exactly as in Section 6.3.3, we take the
supremum in t and expectations, use the monotonicity of γ and β together with (6.3.69)–(6.3.70)
and the Davis inequality, so that we have

∥∥Xε −Xδ
∥∥2

L2(Ω;L∞(0,T ;H))
≤ c

∥∥Bε −Bδ∥∥2

L2(Ω×(0,T );L 2(U,H))

for every ε, δ ∈ (0, 1), for a positive constant c independent of ε: taking into account (6.3.29),
this implies that the sequence {Xε}ε∈(0,1) is Cauchy in the space L2(Ω;L∞(0, T ;H)), so that
by (6.3.82) we deduce

X ∈ L2 (Ω;L∞(0, T ;H)) (6.3.86)

and
Xε → X in L2 (Ω;L∞(0, T ;H)) , as ε↘ 0 . (6.3.87)
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We are now ready to pass to the limit in equation (6.3.68): to this purpose, fix w ∈ V0

(recall that V0 ↪→ L∞(D) ∩ V ). Then, thanks to (6.3.87), (6.3.83)–(6.3.85) and (6.3.29), for
every t ∈ [0, T ] we have as n→∞ that

E

[
ess sup

t∈(0,T )

∣∣∣∣∫
D

Xεn(t)w −
∫
D

X(t)w

∣∣∣∣
]
→ 0 ,

E
[∫ t

0

∫
D

ηεn · ∇w ds
]
→ E

[∫ t

0

∫
D

η · ∇w ds
]
,

E
[∫ t

0

∫
D

ξεn(s)w ds

]
→ E

[∫ t

0

∫
D

ξ(s)w ds

]
,

E
[∫ t

0

(w,Bεn(s) dWs)

]
→ E

[∫ t

0

(w,B(s) dWs)

]
,

so that evaluating (6.3.68) with εn and letting n→∞, we deduce

X(t)−
∫ t

0

div η(s) ds+

∫ t

0

ξ(s) ds = X0 +

∫ t

0

B(s) dWs in V ∗0 ,

for almost every t ∈ (0, T ) , P-almost surely .

Since all the terms except the first have P-almost surely continuous paths in V ∗0 , we have a
posteriori that X ∈ C ([0, T ];V ∗0 ) P-almost surely. Moreover, it is not difficult to check that the
fact that Xε ∈ Cw([0, T ];H) for every ε together with (6.3.87) readily implies

X ∈ Cw ([0, T ];H) P-almost surely , (6.3.88)

so that the integral relation holds for every t ∈ [0, T ] and (6.2.7)–(6.2.10) are proved. Further-
more, for every t ∈ [0, T ] and P-almost surely, all the terms in (6.2.10) except

∫ t
0
η(s) ds are in

L1(D) and all the terms except
∫ t

0
ξ(s) ds are in V ∗, so that by difference the integral relation

holds in L1(D) ∩ V ∗.

At this point, let us focus on (6.2.12) and (6.2.13). By (6.3.87), we may assume that
Xεn → X almost everywhere in Ω×Q; moreover, by (6.3.70) and (6.3.81) we have∫

Ω×Q
ξεXε =

∫
Ω×Q

(j(Xε) + j∗(ξε)) ≤ N ,

where N > 0 is independent of ε. Hence, {ξεXε}ε∈(0,1) is bounded in L1(Ω×Q), and recalling
also (6.3.85) we can apply Lemma 1.3.14, with the choices Y = Ω×Q, µ = P⊗LebQ, yn = Xεn

and gn = ξεn , to infer that (6.2.12) holds. Moreover, thanks to conditions (6.3.87), (6.3.85) and
(6.3.81), using the weak lower semicontinuity of the convex integrals we have that∫

Ω×Q
(j(X) + j∗(ξ)) ≤ lim inf

n→∞

∫
Ω×Q

(j(Xεn) + j∗(ξεn)) ≤ N ,

so that (6.2.13) is proved. Let us also point out that from the last inequality, thanks to (6.2.12)
and (6.3.70) we obtain ∫

Ω×Q
ξX ≤ lim inf

n→∞

∫
Ω×Q

ξεnXεn . (6.3.89)

The next thing that we need to prove is condition (6.2.11). To this end, thanks to the
regularities that we have found on the solutions, we can apply Proposition 6.7.1 to infer that
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for every t ∈ [0, T ]

1

2
‖Xεn(t)‖2L2(Ω;H) +

∫ t

0

∫
Ω×D

ηεn(s) · ∇Xεn(s) ds+

∫ t

0

∫
Ω×D

ξεn(s)Xεn(s) ds

=
1

2
‖X0‖2L2(Ω;H) +

1

2

∫ t

0

‖Bεn(s)‖2L2(Ω;L 2(U,H)) ds ,

from which, thanks to (6.3.87), (6.3.89) and (6.3.30), we have P-almost surely that

lim sup
n→∞

∫
Ω×Q

ηεn · ∇Xεn =
1

2
‖X0‖2L2(Ω;H) +

1

2
lim
n→∞

‖Bεn‖2L2(Ω×(0,T );L 2(U,H))

− 1

2
lim inf
n→∞

‖Xεn(T )‖2L2(Ω;H) − lim inf
n→∞

∫
Ω×Q

ξεnXεn

≤ 1

2
‖X0‖2L2(Ω;H) +

1

2
‖B‖2L2(Ω×(0,T );L 2(U,H)) −

1

2
‖X(T )‖2L2(Ω;H) −

∫
Ω×Q

ξX .

Now, we apply a second time Proposition 6.7.1 with the choices Y = X, f = η, g = ξ and
T = B: hence, the right hand side of the last set of inequality is exactly

∫
Ω×Q η · ∇X, so that

we have
lim sup
n→∞

∫
Ω×Q

ηεn · ∇Xεn ≤
∫

Ω×Q
η · ∇X .

This condition together with (6.3.83)–(6.3.84) and (6.3.69) implies exactly (6.2.11).

Finally, let us show that X and ξ are predictable processes, and η is adapted. At the
end of Section 6.3.6 we checked that Xε and ξε are predictable, and ηε is adapted, for every
ε ∈ (0, 1). Now, from (6.3.87) it immediately follows that also X is predictable. Moreover, by
conditions (6.3.84)–(6.3.85) and Mazur’s Lemma we can recover strong convergences for some
suitable convex combinations of {ηεn} and {ξεn}: since these are still adapted and predicable,
respectively, we can easily infer that η is adapted and ξ is predictable. This completes the
proof.

6.3.8 The further existence result

In this section we prove the last part of Theorem 6.2.2, in which condition (6.2.6) is not assumed
anymore. The idea is to to pass to the limit in a different way, using only the estimates in
expectations and avoiding the pathwise arguments.

For any λ ∈ (0, 1), consider the approximated problem

dXλ − div γλ(∇Xλ) dt− λ∆Xλ dt+ βλ(Xλ) dt 3 B dWt :

the classical variational approach in the Gelfand triple H1
0 (D) ↪→ H ↪→ H−1(D) ensures the

existence of the approximated solutions

Xλ ∈ L2 (Ω;C([0, T ];H)) ∩ L2
(
Ω× (0, T );H1

0 (D)
)
.

Using Itô’s formula and proceeding as in Sections 6.3.3 and 6.3.4, it is not difficult to prove
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that there exist a positive constant N , independent of λ, such that

‖Xλ‖L2(Ω;L∞(0,T ;H)) ≤ N , ‖Jλ(∇Xλ)‖Lp(Ω×(0,T )×D) ≤ N ,

‖γλ(∇Xλ)‖Lq(Ω×(0,T )×D) ≤ N ,

{βλ(Xλ)}λ∈(0,1) is weakly relatively compact in L1(Ω× (0, T )×D) ,

‖j(Xλ)‖L1(Ω×(0,T )×D) + ‖j∗(βλ(Xλ))‖L1(Ω×(0,T )×D) ≤ N ,

λ1/2 ‖∇Xλ‖L2(Ω×(0,T );H) ≤ N ,

λ1/2 ‖γλ(∇Xλ)‖L2(Ω×(0,T )×D) ≤ N .

We deduce that there exist

X ∈ L∞
(
0, T ;L2(Ω;H)

)
∩ Lp (Ω× (0, T );V ) ,

η ∈ Lq (Ω× (0, T )×D)
d
, ξ ∈ L1 (Ω× (0, T )×D) ,

and a sequence {λn}n∈N decreasing to 0 such that, as n→∞,

Xλn
∗
⇀ X in L∞

(
0, T ;L2(Ω;H)

)
,

Jλn (∇Xλn) ⇀ ∇X in Lp (Ω× (0, T )×D)
d
,

γλn(∇Xλn) ⇀ η in Lq (Ω× (0, T )×D)
d
,

βλn(Xλn) ⇀ ξ in L1 (Ω× (0, T )×D) .

Fix w ∈ L∞(Ω;V0): then, since the four last convergences imply that Xλn(t) ⇀ X(t) in
L2(Ω;H) for almost every t ∈ (0, T ), we have, as n→∞,∫

Ω×D
Xλn(t)w →

∫
Ω×D

X(t)w ,∫ t

0

∫
Ω×D

γλn(∇Xλn) · ∇w →
∫ t

0

∫
Ω×D

η · ∇w ,∫ t

0

∫
Ω×D

βλn(Xλn)w →
∫ t

0

∫
Ω×D

ξw

for almost every t ∈ (0, T ). Hence, letting n→∞, we get, for almost every t ∈ (0, T ),

X(t)−
∫ t

0

div η(s) ds+

∫ t

0

ξ(s) ds = X0 +

∫ t

0

B(s) dWs in V ∗0 , P-almost surely :

since all the terms except the first are continuous with values in L1(Ω;V ∗0 ), we infer also that
X ∈ C([0, T ];L1(Ω;V ∗0 )) and the integral relation holds for every t ∈ [0, T ]. Moreover, since we
also have X ∈ L∞(0, T ;L2(Ω;H)), by Lemma 1.4.1 we can infer that X ∈ Cw([0, T ];L2(Ω;H)).

Secondly, using the weak lower semicontinuity of the convex integrals and the estimates on
j(Xλ) and j∗(βλ(Xλ)), it is immediate to check that j(X) + j∗(ξ) ∈ L1(Ω×Q). Furthermore,
as we did at the end of Section 6.3.7, using Mazur’s lemma, we deduce also that X and ξ are
predictable, and η is adapted.

The last thing that we have to check is that η ∈ γ(∇X) and ξ ∈ β(X) a.e. in Ω × Q. To
this aim, by the second part of Proposition 6.7.1, using the notation ηλ := γλ(∇Xλ), we have
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that, for every t ∈ [0, T ],

1

2
‖Xλ(t)‖2L2(Ω;H) +

∫ t

0

∫
Ω×D

ηλ(s) · ∇Xλ(s) ds+

∫ t

0

∫
Ω×D

βλ(Xλ)(s)Xλ(s) ds

=
1

2
‖X0‖2L2(Ω;H) +

1

2

∫ t

0

‖B(s)‖2L2(Ω;L 2(U,H)) ds

and

1

2
‖X(t)‖2L2(Ω;H) +

∫ t

0

∫
Ω×D

η(s) · ∇X(s) ds+

∫ t

0

∫
Ω×D

ξ(s)X(s) ds

=
1

2
‖X0‖2L2(Ω;H) +

1

2

∫ t

0

‖B(s)‖2L2(Ω;L 2(U,H)) ds .

We deduce that

lim sup
n→∞

[∫
Ω×Q

ηλn · ∇Xλn +

∫
Ω×Q

βλn(Xλn)Xλn

]
=

1

2
‖X0‖2L2(Ω;H) +

1

2

∫ T

0

‖B(s)‖2L2(Ω;L 2(U,H)) ds−
1

2
lim inf
n→∞

‖Xλn(T )‖2L2(Ω;H)

≤ 1

2
‖X0‖2L2(Ω;H) +

1

2

∫ T

0

‖B(s)‖2L2(Ω;L 2(U,H)) ds−
1

2
‖X(T )‖2L2(Ω;H)

=

∫
Ω×Q

η · ∇X +

∫
Ω×Q

ξX .

Let us identify Rd×R with Rd+1, indicate the generic element in Rd+1 as a couple (x, y), where
x ∈ Rd and y ∈ R, and use the symbol • for the usual scalar product in Rd+1. Consider the
proper, convex and lower semicontinuous function Φ : Rd+1 → [0,+∞) given by Φ(x, y) :=

k(x) + j(y), (x, y) ∈ Rd+1: then the subdifferential of Φ is the operator Ξ : Rd+1 → 2R
d+1

given by Ξ(x, y) = {(u, v) ∈ Rd+1 : u ∈ γ(x), v ∈ β(y)}. Hence, recalling that βλ(Xλ)RλXλ =

βλ(Xλ)Xλ−λ|βλ(Xλ)|2 ≤ βλ(Xλ)Xλ and similarly ηλ · Jλ(∇Xλ) = ηλ · ∇Xλ−λ|ηλ|2, we have
proved that

lim sup
n→∞

∫
Ω×Q

(ηλn , βλn(Xλn)) • (Jλn(∇Xλn), RλnXλn) ≤
∫

Ω×Q
(η, ξ) • (∇X,X) ,

allowing us to infer that (η, ξ) ∈ Ξ(∇X,X), i.e. that η ∈ γ(∇X) and ξ ∈ β(X) a.e. in Ω × Q,
thanks to the classical results of convex analysis.

6.4 Continuous dependence on the initial datum with ad-

ditive noise

This section is devoted to the proof of the continuous dependence and uniqueness results con-
tained in Theorem 6.2.5. The main tool that we use is the generalized Itô formula contained in
Proposition 6.7.1.

We start assuming (6.2.6): let (X1
0 , B1), (X2

0 , B2), (X1, η1, ξ1), (X2, η2, ξ2) be as in Theorem
6.2.5. Then, writing relation (6.2.10) for (X1, η1, ξ1, X

1
0 , B1) and (X2, η2, ξ2, X

2
0 , B2) and taking
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the difference, P-almost surely we obtain

X1(t)−X2(t)−
∫ t

0

div [η1(s)− η2(s)] ds+

∫ t

0

(ξ1(s)− ξ2(s)) ds

=X1
0 −X2

0 +

∫ t

0

(B1(s)−B2(s)) dWs for every t ∈ [0, T ] .

Now, we note that thanks to (6.2.13) and the symmetry of j, for i = 1, 2 we have

j

(
X1 −X2

2

)
+ j∗

(
ξ1 − ξ2

2

)
≤ 1

2
[j(X1) + j(X2) + j∗(ξ1) + j(ξ2)] ,

where the right hand side is in L1(Ω× (0, T )×D): hence, we can apply Proposition 6.7.1 with
the choices Y = X1 −X2, f = η1 − η2, g = ξ1 − ξ2, T = B1 −B2 and α = 1/2 in order to infer
that for every t ∈ [0, T ]

1

2
‖X1(t)−X2(t)‖2H +

∫ t

0

∫
D

(η1(s)− η2(s)) · (∇X1(s)−∇X2(s)) ds

+

∫ t

0

∫
D

(ξ1(s)− ξ2(s)) (X1(s)−X2(s)) ds

=
1

2

∥∥X1
0 −X2

0

∥∥2

H
+

1

2

∫ t

0

‖(B1 −B2)(s)‖2L 2(U,H) ds

+

∫ t

0

((X1 −X2)(s), (B1 −B2)(s) dWs) .

Hence, taking into account (6.2.11)–(6.2.12) and the monotonicity of γ and β, we obtain

‖X1(t)−X2(t)‖2H ≤
∥∥X1

0 −X2
0

∥∥2

H
+

∫ t

0

‖B1(s)−B2(s)‖2L 2(U,H) ds

+ 2 sup
t∈[0,T ]

∣∣∣∣∫ t

0

((X1 −X2)(s), (B1 −B2)(s) dWs)

∣∣∣∣ ;

moreover, proceeding exactly as in Section 6.3.3, taking the supremum in t ∈ [0, T ] in the last
expression and then expectations, thanks to the Davis inequality and the Young inequality, we
easily obtain

‖X1 −X2‖2L2(Ω;L∞(0,T ;H)) ≤
∥∥X1

0 −X2
0

∥∥2

L2(Ω;H)
+ c ‖B1 −B2‖2L2(Ω×(0,T );L 2(U,H))

+
1

2
‖X1 −X2‖2L2(Ω;L∞(0,T ;H))

for a positive constant c, from which (6.2.18) follows. Finally, if X1
0 = X2

0 and B1 = B2, we
immediately get X1 = X2: substituting in the difference of the respective equations (6.2.10) we
have

∫ t
0

(−div(η1(s)− η2(s)) + (ξ1(s)− ξ2(s))) ds = 0 for every t. Relying now on hypothesis
(6.2.6) and proceeding as in Section 6.3.6, we easily get also η1 = η2 and ξ1 = ξ2.

Let us prove now the second part of Theorem 6.2.5, in which condition (6.2.6) is not assumed.
By the second part of Theorem 6.2.2, we have that, for every t ∈ [0, T ],

X1(t)−X2(t)−
∫ t

0

div [η1(s)− η2(s)] ds+

∫ t

0

(ξ1(s)− ξ2(s)) ds

=X1
0 −X2

0 +

∫ t

0

(B1(s)−B2(s)) dWs P-almost surely :
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hence, using the second part of Proposition 6.7.1, we infer that, for every t ∈ [0, T ],

1

2
‖X1(t)−X2(t)‖2L2(Ω;H) +

∫ t

0

∫
Ω×D

(η1(s)− η2(s)) · (∇X1(s)−∇X2(s)) ds

+

∫ t

0

∫
Ω×D

(ξ1(s)− ξ2(s)) (X1(s)−X2(s)) ds

=
1

2

∥∥X1
0 −X2

0

∥∥2

L2(Ω;H)
+

1

2

∫ t

0

‖(B1 −B2)(s)‖2L2(Ω;L 2(U,H)) ds ,

which together with the monotonicity of γ and β implies (6.2.19). Finally, if we have X1
0 =

X2
0 and B1 = B2, it is clear that X1 = X2 and, by comparison in the equation itself, also∫ t

0
(−div(η1(s)− η2(s)) + (ξ1(s)− ξ2(s))) ds = 0 for every t, as before, so that −div η1 + ξ1 =

−div η2 + ξ2.

6.5 Well-posedness with multiplicative noise

In this section, we prove the main theorem of the work, which ensures that the original problem
is well-posed also with multiplicative noise. Let us describe the approach that we will follow.

The main idea is to prove existence of solutions proceeding step-by-step: we introduce a
parameter τ > 0, we prove using contraction estimates that we are able to recover some solutions
on each subinterval [0, τ ], [τ, 2τ ], . . . [nτ, (n+1)τ ], . . . provided that τ is chosen sufficiently small,
and finally we paste together each solution on the whole interval [0, T ]. In this sense, the main
point of the argument is to prove that such a value of τ can be chosen uniformly with respect
to n, so that the procedure stops when we reach the final time T (in a finite number of steps).

6.5.1 Existence

In this section we prove the two existence results contained in Theorem 6.2.7. We start from
the first one, i.e. assuming (6.2.6). First of all, for every a, b ∈ [0, T ] with b > a and for
any progressively measurable process Y ∈ L2(Ω × (0, T ) ×D), condition (6.2.23) implies that
B(·, ·, Y ) ∈ L2(Ω×(a, b); L 2(U,H)): hence, for every Xa ∈ L2(Ω,Fa,P;H), thanks to Theorem
6.2.2 we know that there exist

Xa,b ∈ L2 (Ω;L∞(a, b;H)) ∩ Lp (Ω× (a, b);V ) , (6.5.90)

ηa,b ∈ Lq (Ω× (a, b)×D)
d
, ξa,b ∈ L1 (Ω× (a, b)×D) , (6.5.91)

such that Xa,b is adapted with P-almost surely weakly continuous paths in H and the following
relations hold:

Xa,b(t)−
∫ t

a

div ηa,b(s) ds+

∫ t

a

ξa,b(s) ds = Xa +

∫ t

a

B(s, Y (s)) dWs

in V ∗0 , for every t ∈ [a, b] , P-a.s. ,
(6.5.92)

ηa,b ∈ γ(∇Xa,b) a.e. in Ω× (a, b)×D , (6.5.93)

ξa,b ∈ β(Xa,b) a.e. in Ω× (a, b)×D , (6.5.94)

j(Xa,b) + j∗(ξa,b) ∈ L1 (Ω× (a, b)×D) , (6.5.95)

where Xa,b is unique in the sense of Theorem 6.2.5. Now, we need the following lemma.
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Lemma 6.5.1. For every τ > 0 and n ∈ N fixed, let Xnτ ∈ L2(Ω,Fnτ ,P;H) and Y1, Y2 ∈
L2(Ω× (nτ, (n+ 1)τ)×D) be progressively measurable: then, if (X1, η1, ξ1) and (X2, η2, ξ2) are
any respective solutions to (6.5.90)–(6.5.95) with the choices a = nτ , b = (n + 1)τ and same
initial value Xa = Xnτ , we have the following estimate:

‖X1 −X2‖L2(Ω×(nτ,(n+1)τ)×D) ≤
√
τLB ‖Y1 − Y2‖L2(Ω×(nτ,(n+1)τ)×D) . (6.5.96)

Proof. Taking the difference of equations (6.5.92) evaluated with i = 1, 2 and recalling the
generalized Itô formula (6.7.116), setting X := X1−X2, η := η1−η2 and ξ := ξ1− ξ2, we easily
get that for every t ∈ [mτ, (m+ 1)τ ]

1

2
‖X(t)‖2L2(Ω×D) +

∫ t

0

∫
Ω×D

η(s) · ∇X(s) ds+

∫ t

0

∫
Ω×D

ξ(s)X(s) ds

=
1

2
‖B(Y1)−B(Y2)‖2L2(Ω×(mτ,(m+1)τ);L 2(U,H)) .

Hence, using the Lipschitz continuity of B and the monotonicity of γ and β we have

1

2
‖X1 −X2‖2L∞(mτ,(m+1)τ ;L2(Ω×D)) ≤

LB
2
‖Y1 − Y2‖2L2(Ω×(mτ,(m+1)τ)×D) ,

from which (6.5.96) follows.

Now, let us build some solutions X, η and ξ in each sub-interval. To this purpose, we choose
τ > 0 such that the constant appearing in (6.5.96) is less than 1, for example

τ :=
1

2LB
.

Firstly, we focus on [0, τ ]: taking into account the remarks that we have just made, it is well
defined the function

Φ0 : L2 (Ω× (0, τ)×D)→ L2 (Ω× (0, τ)×D) , Φ0(Y ) := X , (6.5.97)

where X is the unique solution to (6.5.90)–(6.5.95) with the choices a = 0 and b = τ , with X0

given by (6.2.20). It is clear that X is a solution of problem (6.2.24) in [0, τ ] if and only if it is
a fixed point for Φ0. Thanks to the estimate (6.5.96) and the choice of τ , Φ0 is a contraction:
hence, it has a fixed point

X(0) ∈ L2 (Ω;L∞(0, τ ;H)) ∩ Lp (Ω× (0, τ);V ) ,

with P-almost surely weakly continuous paths in H, which solves (6.2.24) with certain

η(0) ∈ Lq (Ω× (0, τ)×D)
d
, ξ(0) ∈ L1 (Ω× (0, τ)×D) .

Secondly, let us focus on [τ, 2τ ], set Xτ := X(0)(τ) (which is in L2(Ω,Fτ ,P;H) since X(0)

is adapted) and define the function

Φ1 : L2 (Ω× (τ, 2τ)×D)→ L2 (Ω× (τ, 2τ)×D) , Φ1(Y ) := X , (6.5.98)

where X is the solution to (6.5.90)–(6.5.95) with the choices a = τ and b = 2τ . As we have
already done, thanks to the estimate (6.5.96) and the same choice of τ , Φ1 is a contraction:
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hence, it has a fixed point

X(1) ∈ L2 (Ω;L∞(τ, 2τ ;H)) ∩ Lp (Ω× (τ, 2τ);V ) ,

with P-almost surely weakly continuous paths in H, which is a solution of (6.2.24) with certain

η(1) ∈ Lq (Ω× (τ, 2τ)×D)
d
, ξ(1) ∈ L1 (Ω× (τ, 2τ)×D) .

Suppose by induction that we have built the triplets until stepm−1, i.e. (X(0), η(0), ξ(0)), . . . ,

(X(m−1), η(m−1), ξ(m−1)). To proceed, we focus on the interval [mτ, (m + 1)τ ], set Xmτ :=

X(m−1)(mτ) (which is in L2(Ω,Fmτ ,P;H) since X(m−1) is adapted) and define the function

Φm : L2 (Ω× (mτ, (m+ 1)τ)×D)→ L2 (Ω× (mτ, (m+ 1)τ)×D) , (6.5.99)

which maps Y into X, where X is the solution to (6.5.90)–(6.5.95) with the choices a = mτ

and b = (m+ 1)τ . Now, Φm is a contraction thanks to (6.5.96) and the choice of τ , so it has a
fixed point

X(m) ∈ L2 (Ω;L∞(mτ, (m+ 1)τ ;H)) ∩ Lp (Ω× (mτ, (m+ 1)τ);V ) :

with P-almost surely weakly continuous paths in H, which is a solution of (6.2.24) with certain

η(m) ∈ Lq (Ω× (mτ, (m+ 1)τ)×D)
d
, ξ(m) ∈ L1 (Ω× (mτ, (m+ 1)τ)×D) .

In this way, we can define the triplet (X, η, ξ) by setting, as it is natural, (X, η, ξ) :=

(X(m), η(m), ξ(m)) in Ω× [mτ, (m+ 1)τ)×D for every m ∈ N until we reach T : bearing in mind
how we have built (X(m), η(m), ξ(m)), it is clear that X, η and ξ are well-defined and solve the
problem with multiplicative noise.

Finally, if we do not assume (6.2.6), it is clear that, using the same argument, the respective
solutions constructed in this way are well-defined and satisfy conditions (6.2.14) and (6.2.25)
instead of (6.2.7) and (6.2.24), respectively.

6.5.2 Continuous dependence on the initial datum

We present here the proof of the continuous dependence results contained in the last part of
Theorem 6.2.7. Here, we repeat exactly the same argument of Section 6.4 with the choices
B1 := B(·, X1) and B2 := (·, X2).

If (6.2.6) is assumed, for any given τ > 0, the same computations on the interval (0, τ) get
us to

‖X1 −X2‖2L2(Ω;L∞(0,τ ;H))

≤ c
∥∥X1

0 −X2
0

∥∥2

L2(Ω;H)
+ c ‖B(X1)−B(X2)‖2L2(Ω×(0,τ);L 2(U,H))

for a constant c > 0 independent of τ ; using the Lipschitz continuity of B we obtain

‖X1 −X2‖2L2(Ω;L∞(0,τ ;H)) ≤ c
∥∥X1

0 −X2
0

∥∥2

L2(Ω;H)
+ cτ ‖X1 −X2‖2L2(Ω;L∞(0,τ ;H)) .

Hence, choosing for example τ = c
2 , we get the desired relation on the interval [0, τ ]. The idea is

clearly to iterate the procedure on the following intervals [τ, 2τ ], [2τ, 3τ ], . . . until we reach the
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final time T , so that (6.2.26) is proved. The important point that we have to check is that the
choice of τ can be made uniformly with respect to each sub-interval, but this is not difficult: as
a matter of fact, for any n ≥ 1, performing the same computations on [nτ, (n+ 1)τ ] we obtain

‖X1 −X2‖2L2(Ω;L∞(nτ,(n+1)τ ;H)) ≤ c ‖X1(nτ)−X2(nτ)‖2L2(Ω;H)

+ cτ ‖X1 −X2‖2L2(Ω;L∞(nτ,(n+1)τ ;H)) ,

for the same constant c, from which we deduce that the choice of τ is independent of n, and one
can easily conclude by induction on n. As we did in Section 6.4, if X1

0 = X1
0 , then by (6.2.26)

we have X1 = X2, and hypothesis (6.2.6) also ensures η1 = η2 and ξ1 = ξ2.
Secondly, if (6.2.6) is not assumed, proceeding as in the final part of Section 6.4 we get for

every t ∈ [0, T ] that

‖X1(t)−X2(t)‖2L2(Ω;H)

≤
∥∥X1

0 −X2
0

∥∥2

L2(Ω;H)
+

∫ t

0

‖(B(X1)−B(X2))(s)‖2L2(Ω;L 2(U,H)) ds ,

from which (6.2.27) follows using the Lipschitz continuity of B and the Gronwall lemma. Finally,
if X1

0 = X1
0 , then by (6.2.27) X1 = X2 and consequently −div η1 + ξ1 = −div η2 + ξ2.

6.6 An integration-by-parts formula

The aim of this section is to give a complete proof of the generalized testing formula contained
in equation (6.3.74): throughout the section, we assume to work with the notations and setting
of Section 6.3.5. Here, ε ∈ (0, 1) and ω ∈ Ω are fixed as usual.

The main point is that we cannot directly test equation (6.3.68) by Xε −W ε
B , as we did

in Section 6.3.2, since the regularity of Xε is not sufficient: more specifically, ∂t(Xε −W ε
B) is

only intended in V ∗0 and we would need that Xε −W ε
B takes values in V0, but this is not the

case. However, by condition (6.3.73) and the regularities of Xε, W ε
B and ηε, all the terms in

(6.3.74) make sense: hence, the intuitive idea is that (6.3.74) holds at least in a formal way.
To give a rigorous proof of it, a natural way could be to try to pass to the limit as λ ↘ 0 in
(6.3.40): however, it is not necessarily true in our framework that equation (6.3.40) converges
to (6.3.74) as λ ↘ 0, so this approach does not work. Hence, the idea is to see (6.3.74) as a
limit problem as δ ↘ 0, for another parameter δ, such that the approximations in δ have good
smoothing properties and behave better that the approximations in λ. In this sense, a similar
approach was presented in [12], where the approximations were built using suitable powers of
the resolvent of the Laplacian. However, in our case we have to approximate also elements
in W−1,q(D) (namely, −div ηε) and the resolvent of the laplacian does not work since −∆ is
not coercive on V : the idea is thus to identify another suitable space, in which (6.3.68) can
be intended, and to define appropriate approximations on it. To this purpose, we need some
preparatory work.

First of all, note that the operator −div : Lq(D)d → V ∗ is linear, continuous and satisfies
‖− div u‖V ∗ ≤ ‖u‖Lq(D) for every u ∈ Lq(D)d. Let us define the space

V ∗div :=
{
−div u : u ∈ Lq(D)d

}
⊆ V ∗ .

Secondly, we introduce the space V ∗div +L1(D) as the subspace of V ∗0 given by all the formal
linear combinations of elements in V ∗div and L1(D). With this notations, we can note that
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equation (6.3.68) actually holds in V ∗div + L1(D): in other words, for every t ∈ [0, T ], we have

(Xε −W ε
B) (t) +

∫ t

0

(−div ηε(s) + ξε(s)) ds = X0 in V ∗div + L1(D) . (6.6.100)

Hence, the idea is that it is sufficient to identify a way to approximate only elements in V ∗div +

L1(D), and not any element of V ∗0 , which would be much more demanding.

To this end, for every δ ∈ (0, 1), let Rδ := (I − δ∆)−1 be the resolvent of the Laplace
operator. It is well-known that for every r ∈ [1,+∞), Rδ : Lr(D) → Lr(D) is a linear
contraction converging to the identity as δ ↘ 0 in the strong operator topology (the reader can
refer to [10,15,24]). In this setting, we define the operator Rδ : Lr(D)d → Lr(D)d extending Rδ
component-by-component: consequently, we easily deduce that also Rδ is a linear contraction
on Lr(D)d converging to the identity as δ ↘ 0. With this notations, we have the following
result.

Lemma 6.6.1. For every u ∈ Lq(D)d such that −div u ∈ L1(D) (in the distributional sense),
we have

−divRδu = Rδ (−div u) .

Moreover, for every f ∈ H1(D), we have

∇Rδf = Rδ∇f .

Proof. Let us first assume that u ∈ (C∞c (D))
d: then, using the definition of Rδ and Rδ,

integration by parts and the fact that Rδ commutes with ∆, for every ϕ ∈ C∞c (D) we have

∫
D

(−div u)ϕ =

∫
D

u · ∇ϕ =

d∑
i=1

∫
D

ui
∂ϕ

∂xi
=

d∑
i=1

∫
D

(Rδui − δ∆Rδui)
∂ϕ

∂xi

=

∫
D

Rδu · ∇ϕ+ δ

∫
D

∆(divRδu)ϕ

=

∫
D

[−divRδu− δ∆(−divRδu)]ϕ .

Hence, by definition of the resolvent, we deduce that −divRδu = Rδ(−div u) for every u ∈
(C∞c (D))

d. At this point, if u ∈ Lq(D)d and −div u ∈ L1(D), the first thesis follows by
approximating u with a sequence {un}n∈N ⊆ (C∞(D))

d such that un → u in Lq(D)d and
−div un → −div u in L1(D). Finally, in a similar way, the second assertion is clearly true for
every f ∈ C∞(D): hence, given f ∈ H1(D), we can conclude by density approximating f with
a sequence {fn}n∈N ⊆ C∞(D).

Now, for every δ ∈ (0, 1), we introduce the operator

Λ1
δ : V ∗div → V ∗div

in the following way: for any given f ∈ V ∗div, with f = −div u for a certain u ∈ Lq(D)d,
we set Λ1

δf := −divRδu. Note that Λ1
δ is well-defined: indeed, if f = −div u1 = −div u2,

we have −div(u1 − u2) = 0 and by Lemma 6.6.1 we deduce that 0 = Rδ(−div(u1 − u2)) =

−div(Rδ(u1 − u2)), so that −divRδu1 = −divRδu2. Secondly, we set

Λ2
δ : L1(D)→ L1(D) , Λ2

δ := Rδ .
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The first part of Lemma 6.6.1 ensures that Λ1
δ = Λ2

δ on the intersection V ∗div ∩L1(D): hence, it
is well-defined the operator

Λδ := Λ1
δ + Λ2

δ : V ∗div + L1(D)→ V ∗div + L1(D) (6.6.101)

such that

Λδ(− div u) = −divRδu , Λδ(f) = Rδf ∀u ∈ Lq(D)d , f ∈ L1(D) , (6.6.102)

which is automatically linear.

We are now ready to build the approximations. First of all, we choose k ∈ N as in the
defintion of V0, so that the k-th power Rkδ maps H into V0 ⊆ V ∩ L∞(D). At this point, we
define

Xε
δ := RkδXε , W ε

δ := RkδW ε
B , ηεδ := Rk

δη
ε , ξεδ := Rkδξε , Xδ

0 := RkδX0 :

then, taking into account the properties of Rδ and Rδ and the second part of Lemma 6.6.1, by
the regularities of the processes in play we have as δ ↘ 0 that

Xε
δ (t)→ Xε(t) in H ∀ t ∈ [0, T ] , Xε

δ → Xε in Lp (0, T ;V ) (6.6.103)

W ε
δ (t)→W ε(t) in H ∀ t ∈ [0, T ] , W ε

δ →W ε
B in Lp (0, T ;V ) , (6.6.104)

ηεδ → ηε in Lq (Q)
d
, ξεδ → ξε in L1(Q) , (6.6.105)

Xδ
0 → X0 in H . (6.6.106)

Now, applying the operator Λkδ to equation (6.6.100), we get for every t ∈ [0, T ] that

(Xε
δ −W ε

δ ) (t)−
∫ t

0

div ηεδ(s) ds+

∫ t

0

ξεδ(s) ds = Xδ
0 . (6.6.107)

With our choice of k, it now makes sense to test by Xε
δ −W ε

δ : it easily follows that

1

2
‖Xε

δ (T )−W ε
δ (T )‖2H +

∫
Q

∇ηεδ · ∇ (Xε
δ −W ε

δ ) +

∫
Q

ξεδ (Xε
δ −W ε

δ ) =
1

2

∥∥Xδ
0

∥∥2

H
, (6.6.108)

from which, taking into account (6.6.103)–(6.6.106), we deduce that

lim
δ↘0

∫
Q

ξεδ (Xε
δ −W ε

δ ) =
1

2
‖X0‖2H −

1

2
‖(Xε −W ε

B)(T )‖2H −
∫
Q

∇ηε · ∇ (Xε −W ε
B) . (6.6.109)

In order to evaluate the limit in the previous expression, we take advantage of Vitali convergence
theorem: to this purpose, thanks to (6.6.103)–(6.6.105), we can assume with no restriction that
ξεδ → ξε and Xε

δ − W ε
δ → Xε − W ε

B almost everywhere in Q. Let us show that {ξεδ(Xε
δ −

W ε
δ )}δ∈(0,1) is uniformly integrable in Q: thanks to the generalized Jensen inequality for the

positive operator Rδ (see [40,41] for references), we have

±ξεδ(Xε
δ −W ε

δ ) ≤ j (±(Xε
δ −W ε

δ )) + j∗(ξεδ) = j (Xε
δ −W ε

δ ) + j∗(ξεδ)

≤ Rkδ [j (Xε −W ε
B) + j∗(ξε)] a.e. in Q .

Now, since j(Xε −W ε
B), j∗(ξε) ∈ L1(Q) thanks to (6.3.71) and (6.3.39), the right hand side

of the previous expression converges in L1(Q) and consequently it is uniformly integrable in
Q: we deduce that also {ξεδ(Xε

δ −W ε
δ )}δ∈(0,1) is uniformly integrable in Q. Hence, by Vitali
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convergence theorem, we infer that

ξεδ (Xε
δ −W ε

δ )→ ξε (Xε −W ε
B) in L1(Q) as δ ↘ 0 ,

so that passing to the limit in (6.6.109) we recover exactly (6.3.74).

6.7 The generalized Itô formula

In this section, we prove a generalized Itô formula, which is widely used in Sections 6.3.7 and
6.4: we collect the general result in the following proposition.

Proposition 6.7.1. Assume the following conditions:

Y0 ∈ L2 (Ω,F0,P;H) , (6.7.110)

T ∈ L2
(
Ω× (0, T ); L 2(U,H)

)
progressively measurable , (6.7.111)

Y ∈ L2 (Ω;L∞(0, T ;H)) ∩ Lp (Ω× (0, T );V ) , Y ∈ Cw ([0, T ];H) P-a.s. , (6.7.112)

f ∈ Lq (Ω× (0, T )×D)
d
, g ∈ L1 (Ω× (0, T )×D) , (6.7.113)

∃ α > 0 : j(αY ) + j∗(αg) ∈ L1 (Ω× (0, T )×D) , (6.7.114)

Y (t)−
∫ t

0

div f(s) ds+

∫ t

0

g(s) ds = Y0 +

∫ t

0

T (s) dWs in V ∗0 (6.7.115)

for every t ∈ [0, T ], P-almost surely. Then, the following Itô formula holds

1

2
‖Y (t)‖2H +

∫ t

0

∫
D

f(s) · ∇Y (s) ds+

∫ t

0

∫
D

g(s)Y (s) ds

=
1

2
‖Y0‖2H +

1

2

∫ t

0

‖T (s)‖2L 2(U,H) ds+

∫ t

0

(Y (s), T (s) dWs)

(6.7.116)

for every t ∈ [0, T ], P-almost surely. Furthermore, if hypothesis (6.7.112) is replaced by the
weaker condition

Y ∈ L∞
(
0, T ;L2(Ω;H)

)
∩ Lp (Ω× (0, T );V ) ∩ Cw

(
[0, T ];L2(Ω;H)

)
, (6.7.117)

then instead of (6.7.116) we have the following for every t ∈ [0, T ]:

1

2
‖Y (t)‖2L2(Ω;H) +

∫ t

0

∫
Ω×D

f(s) · ∇Y (s) ds+

∫ t

0

∫
Ω×D

g(s)Y (s) ds

=
1

2
‖Y0‖2L2(Ω;H) +

1

2

∫ t

0

‖T (s)‖2L2(Ω;L 2(U,H)) ds .

(6.7.118)

Proof. We proceed exactly in the same way as in Section 6.6. If k is given by the definition of
V0 and for every δ ∈ (0, 1), Rδ and Rδ are as in Section 6.6, we define

Yδ := RkδY , Tδ := RkδT , fδ := Rk
δf , gδ := Rkδg , Y δ0 := RkδY0 :
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hence, thanks to (6.7.110)–(6.7.113) and Lemma 6.6.1 we have as δ ↘ 0

Yδ(t)→ Y (t) in H for every t ∈ [0, T ] , P-almost surely , (6.7.119)

Yδ → Y in Lp (Ω× (0, T );V ) (6.7.120)

Tδ → T in L2
(
Ω× (0, T ); L 2(U,H)

)
, (6.7.121)

fδ → f in Lq (Ω×Q)
d
, gδ → g in L1(Ω×Q) , (6.7.122)

Y δ0 → Y0 in L2(Ω;H) . (6.7.123)

Consequently, if we apply the operator Λkδ to (6.7.115), taking definition (6.6.101)–(6.6.102)
into account, we have P-almost surely that

Yδ(t)−
∫ t

0

div fδ(s) ds+

∫ t

0

gδ(s) ds = Y δ0 +

∫ t

0

Tδ(s) dWs in H , ∀ t ∈ [0, T ] .

Now, with our choice of k, we can apply the classical Itô formula (see [56] for example) to
recover that P-almost surely, for every t ∈ [0, T ],

1

2
‖Yδ(t)‖2H +

∫ t

0

∫
D

fδ(s) · ∇Yδ(s) ds+

∫ t

0

∫
D

gδ(s)Yδ(s) ds

=
1

2

∥∥Y δ0 ∥∥2

H
+

1

2

∫ t

0

‖Tδ(s)‖2L2(U,H) ds+

∫ t

0

(Yδ(s), Tδ(s) dWs) .

(6.7.124)

Now, let us focus on the stochastic integral: we have∫ t

0

(Yδ(s), Tδ(s) dWs)−
∫ t

0

(Y (s), T (s) dWs)

=

∫ t

0

(Yδ(s), (Tδ − T )(s) dWs) +

∫ t

0

((Yδ − Y )(s), T (s) dWs) ,

where thanks to the Davis inequality and (6.7.120)–(6.7.121) we have (renominating the positive
constant c)

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

(Yδ(s), (Tδ − T )(s) dWs)

∣∣∣∣
≤ cE

(∫ T

0

‖Yδ(s)‖2H ‖(Tδ − T )(s)‖2L 2(U,H) ds

)1/2


≤ c ‖Tδ − T‖L2(Ω×(0,T );L 2(U,H)) → 0

and, by the dominated convergence theorem, also

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

((Yδ − Y )(s), Ts dWs)

∣∣∣∣2

≤ cE

(∫ T

0

‖(Yδ − Y )(s)‖2H ‖Ts‖
2
L 2(U,H) ds

)1/2
→ 0 .

Hence, we have
∫ ·

0
(Yδ(s), Tδ(s) dWs) →

∫ ·
0
(Y (s), T (s) dWs) in L2(Ω;L∞(0, T )), so that conse-

quently (at least for a subsequence)∫ t

0

(Yδ(s), Tδ(s) dWs)→
∫ t

0

(Y (s), T (s) dWs) for every t ∈ [0, T ] , P-a.s.
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Hence, letting δ ↘ 0 and taking into account (6.7.119)–(6.7.123), P-almost surely we have

lim
δ↘0

∫
(0,t)×D

gδYδ =
1

2
‖Y0‖2H +

1

2

∫ t

0

‖T (s)‖2L 2(U,H) ds+

∫ t

0

(Y (s), T (s) dWs)

− 1

2
‖Y (t)‖2H −

∫
(0,t)×D

fδ · ∇Y for every t ∈ [0, T ] :

(6.7.125)

we evaluate the limit on the left hand side using Vitali’s convergence theorem. To this purpose,
by (6.7.119) and (6.7.122) we can assume with no restriction that Yδ → Y and gδ → g almost
everywhere in Ω× (0, t)×D; moreover, thanks to the generalized Jensen inequality for positive
operators (see [40,41]), we have

±α2gδYδ ≤ j (±αYδ) + j∗ (αgδ) = j (αYδ) + j∗ (αgδ) ≤ Rkδ [j(αY ) + j∗(αg)] .

Thanks to (6.7.114) and the properties of Rδ, the term on the right hand side converges
in L1(Ω × (0, t) × D), hence it is uniformly integrable: consequently, we deduce that also
{gδYδ}δ∈(0,1) is uniformly integrable, and Vitali’s convergence theorem implies that

gδYδ → gY in L1 (Ω× (0, t)×D) , as δ ↘ 0 ,

so that passing to the limit in (6.7.125) we obtain (6.7.116).
To show (6.7.118), we proceed in a very similar way: note that since (6.7.112) is replaced by
(6.7.117), then instead of (6.7.119) we have

Yδ(t)→ Y (t) in L2(Ω;H) , for every t ∈ [0, T ] .

Once we have obtained (6.7.124) as before, we observe that the stochastic integral in (6.7.124) is
a local martingale, so that there exists a sequence of increasing stopping times {τn}n∈N such that
τn ↗ ∞ and the corresponding stopped processes are martingales: hence, stopping (6.7.124)
at time τn, taking expectations and then letting n → ∞, thanks to dominated convergence
theorem we directly obtain for every t ∈ [0, T ]

1

2
‖Yδ(t)‖2L2(Ω;H) +

∫ t

0

∫
Ω×D

fδ(s) · ∇Yδ(s) ds+

∫ t

0

∫
Ω×D

gδ(s)Yδ(s) ds

=
1

2

∥∥Y δ0 ∥∥2

L2(Ω;H)
+

1

2

∫ t

0

‖Tδ(s)‖2L2(Ω;L 2(U,H)) ds .

At this point, (6.7.118) follows as before letting δ ↘ 0 in the previous equation.





Chapter 7

Singular equations in divergence
form

In this chapter, we prove existence and uniqueness of strong solutions, as well as continuous
dependence on the initial datum, for a class of fully nonlinear second-order stochastic PDEs
with drift in divergence form. Due to rather general assumptions on the growth of the nonlin-
earity in the drift, which, in particular, is allowed to grow faster than polynomially, existing
techniques are not applicable. A well-posedness result is obtained through a combination of a
priori estimates on regularized equations, interpreted both as stochastic equations as well as
deterministic equations with random coefficients, and weak compactness arguments. The result
is essentially sharp, in the sense that no extra hypotheses are needed, bar continuity of the
nonlinear function in the drift, with respect to the deterministic theory.

The results presented in this chapter are part of the joint work [67] with Carlo Marinelli, to
appear on Stochastics & Partial Differential Equations: Analysis and Computations.

7.1 The problem: literature and main goals

Let us consider the nonlinear stochastic partial differential equation

du(t)− div γ(∇u(t)) dt = B(t, u(t)) dW (t), u(0) = u0, (7.1.1)

on L2(D), where D ⊂ Rd is a bounded domain with smooth boundary. Here γ is the gradient of
a continuously differentiable convex function on Rd growing faster than linearly at infinity, the
divergence is interpreted in the usual variational sense, W is a cylindrical Wiener process, and
B is a map with values in the space of Hilbert-Schmidt operators satisfying suitable Lipschitz
continuity hypotheses. Precise assumptions on the data of the problem are given in §7.2 below.

Our main result is the well-posedness of (7.1.1), in the strong probabilistic sense, without
any polynomial growth condition on γ nor any boundedness assumption on the noise (see
Theorem 7.2.2 below). The lack of growth and coercivity assumptions on γ makes it impossible
to apply the variational approach by Pardoux and Krylov-Rozovskĭı (see [46, 72]), which is
the only known general technique to solve nonlinear stochastic PDEs without linear terms in
the drift such as (7.1.1), with the possible exception of viscosity solutions, a theory of which,
however, does not seem to be available for such equations. On the other hand, we recall that,
if γ is coercive and has polynomial growth, the results in op. cit. provide a fully satisfactory
well-posedness result for (7.1.1).

159
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The available literature dealing with stochastic equations in divergence form such as (7.1.1)
is very limited and, to the best of our knowledge, entirely focused on the case where γ satisfies
the above-mentioned coercivity and growth assumptions: see, e.g., [54] and the bibliography
of [56] for results on the p-Laplace equation, which corresponds to the case γ(x) = |x|p−1x,
and Chapter 6 on stochastic equations in divergence form with doubly nonlinear drift. The
main novelty of this chapter is thus to provide a satisfactory well-posedness result in the strong
sense for such divergence-form equations under neither coercivity nor growth assumptions on
γ. On the other hand, it is worth recalling that well-posedness results are available for other
classes of monotone SPDEs with nonlinearities satisfying no coercivity and growth conditions,
most notably the stochastic porous media equation: see, e.g., [12]. However, the structure
of divergence-form equations such as (7.1.1) is radically different. Indeed, as is well-known,
the porous media operator is quasilinear, while the divergence-type operator in (7.1.1) is fully
nonlinear. Moreover, the monotonicity properties (hence the dynamics associated to the the
solutions) are different: the porous media operator is monotone inH−1, whereas the divergence-
form operator is monotone in L2.

As is often the case in the treatment of evolution equations of monotone type, the first step
consists in the regularization of (7.1.1), replacing γ with its Yosida approximation (a monotone
Lipschitz-continuous function), thus obtaining a family of equations for which well-posedness
is known to hold (in our case, we also need to add a “small” elliptic term in the drift as well
as to smooth the diffusion coefficient B). In a second step, one proves that the solutions to
the regularized equations are compact in suitable topologies, so that, by passage to the limit in
the regularization parameters (roughly speaking), a process can be constructed that, in a final
step, is shown to actually be the unique solution to (7.1.1) and to depend continuously on the
initial datum. It is well known that the last two steps are the more challenging ones, and our
problem is no exception.

The approach we follow combines elements of the variational method and ad hoc arguments,
most notably a priori estimates on the solutions to regularized equations, weak compactness
techniques, and a generalized version of Itô’s formula for the square of the norm under minimal
integrability assumptions. A crucial role is played by a mix of pathwise and “averaged”∗ a
priori estimates. Even though the approach is reminiscent of that in Chapter 2, the problem we
consider here is of a completely different nature, and, correspondingly, new ideas are needed.
In particular, the absence of a linear term in the drift precludes the possibility of applying
a wealth of techniques available for semi-linear problems. For instance, the strong pathwise
compactness criteria used in Chapter 2 are no longer available, so that we have to rely on weak
compactness arguments only. This way one can construct a limit process, but its identification
as a solution expectedly presents major new issues with respect to the case where stronger
compactness is available. Moreover, a rather subtle measurability problem arises from the fact
that the divergence is not injective, which is the reason for assuming γ to be a continuous
monotone map, and not just a maximal monotone graph on Rd ×Rd. A (less regular) solution
to the more general problem when γ satisfies only the latter condition will appear elsewhere.
We remark that the results obtained here hold under hypotheses that are as general as those of
the deterministic theory, except for the continuity assumption on γ (see, e.g., [10, pp. 207–ff.]).

∗That is, in expectation.
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7.2 Main result

Given a positive real number T , let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space, fixed
throughout, satisfying the so-called “usual conditions”. We shall denote a cylindrical Wiener
process on a separable Hilbert space H by W .

Let D be a smooth bounded domain of Rd, and assume that a map

B : Ω× [0, T ]× L2(D) −→ L 2(H,L2(D))

is given such that, for a constant C > 0,

∥∥B(ω, t, x)−B(ω, t, y)
∥∥

L 2(H,L2(D))
≤ C

∥∥x− y∥∥
L2(D)

for all ω ∈ Ω, t ∈ [0, T ], x, y ∈ L2(D). To avoid trivial situations, we also assume that, for an
x0 ∈ L2(D), B(ω, t, x0) < C for all ω and t. This implies that B grows at most linearly in x,
uniformly over ω and t. Furthermore, the map (ω, t) 7→ B(ω, t, x)h is assumed to be measurable
and adapted for all x ∈ L2(D) and h ∈ H.

We assume that γ is the subdifferential of a continuously differentiable convex function
k : Rd → R+ such that k(0) = 0,

lim
|x|→∞

k(x)

|x|
= +∞

(i.e. k is superlinear at infinity), and

lim sup
|x|→∞

k(−x)

k(x)
<∞.

Then γ : Rd → Rd is a continuous maximal monotone map, i.e.

(
γ(x)− γ(y)

)
· (x− y) ≥ 0 ∀x, y ∈ Rn

(the centered dot stands for the Euclidean scalar product in Rd), and (the graph of) γ is maximal
with respect to the order by inclusion. Moreover, the convex conjugate function k∗ : Rd → R+

of k, defined as
k∗(y) = sup

r∈Rd

(
y · r − k(r)

)
,

is itself convex and superlinear at infinity. For these facts of convex analysis, as well as those
used in the sequel, we refer to, e.g., [42].

All assumptions on B and γ (hence also on k) are assumed to be in force from now on.

Definition 7.2.1. Let u0 be an L2-valued F0-measurable random variable. A strong solution
to equation (7.1.1) is a process u : Ω× [0, T ]→ L2(D) satisfying the following properties:

(i) u is measurable, adapted and

u ∈ L1(0, T ;W 1,1
0 (D))

(ii) B(·, u)h is measurable and adapted for all h ∈ H and

B(·, u) ∈ L2(0, T ; L 2(H,L2(D))) P-a.s.;
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(iii) γ(∇u) is an L1(D)d-valued measurable adapted process with

γ(∇u) ∈ L1(0, T ;L1(D)d) P-a.s.;

(iv) one has, as an equality in L2(D),

u(t)−
∫ t

0

div γ(∇u(s)) ds = u0 +

∫ t

0

B(s, u(s)) dW (s) P-a.s. (7.2.2)

for all t ∈ [0, T ].

Since γ(∇u) is only assumed to take values in L1(D)d, the second term on the left-hand
side of (7.2.2) does not belong, a priori, to L2(D). The identity (7.2.2) has to be interpreted
to hold in the sense of distributions, so that the term containing γ(∇u) takes values in L2(D)

by difference. In fact, the conditions on B in (i) imply that the stochastic integral in (7.2.2) is
an L2(D)-valued local martingale.

Let K be the set of measurable adapted processes φ : Ω× [0, T ]→ L2(D) such that

E sup
t≤T

∥∥φ(t)
∥∥2

L2(D)
+ E

∫ T

0

∥∥φ(t)
∥∥
W 1,1

0 (D)
dt <∞,

E
∫ T

0

∫
D

∣∣γ(∇φ(t, x))
∣∣ dx dt <∞,

E
∫ T

0

∫
D

(
k(∇φ(t, x)) + k∗(γ(∇φ(t, x)))

)
dx dt <∞.

Our main result is the following.

Theorem 7.2.2. Let u0 ∈ L2(Ω;L2(D)) be F0-measurable. Then (7.1.1) admits a strong
solution u, which is unique within K . Moreover, u has weakly continuous paths in L2(D) and
the solution map u0 7→ u is Lipschitz-continuous from L2(Ω;L2(D)) to L2(Ω;L∞(0, T ;L2(D))).

We do not know whether well-posedness continues to hold also without the condition that the
solution belongs to K . This assumption, in fact, plays a crucial role in the proof of uniqueness.

Abbreviated notation for function spaces will be used from now on: Lebesgue and Sobolev
spaces on D will be denoted without explicit mention of D itself; for any p ∈ [1,∞], Lp(Ω) will
be denoted by Lp, Lp(0, T ) by Lpt , and Lp(D) sometimes by Lpx. Mixed-norm spaces will be
denoted just by juxtaposition, e.g. LpLqtLrx to mean Lp(Ω;Lq(0, T ;Lr(D))) and L1

t,x to mean
L1([0, T ]×D).

7.3 An Itô formula for the square of the norm

We prove an Itô formula for the square of the L2-norm of a class of processes with minimal
integrability conditions. This is an essential tool to prove uniqueness of strong solutions and
their continuous dependence on the initial datum in Sections 7.5 and 7.6 below, and it is
interesting in its own right.

Proposition 7.3.1. Assume that

y(t) + α

∫ t

0

y(s) ds−
∫ t

0

div ζ(s) ds = y0 +

∫ t

0

C(s) dW (s)
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holds in L2 for all t ∈ [0, T ] P-a.s., where α ≥ 0 is a constant,

y : Ω× [0, T ]→ L2, ζ : Ω× [0, T ]→ L1, C : Ω× [0, T ]→ L 2(H,L2)

are measurable adapted processes such that

y ∈ L2L∞t L
2
x ∩ L1L1

tW
1,1
0 , ζ ∈ L1L1

t,x, C ∈ L2L2
tL

2(H,L2),

and y0 is an F0-measurable L2-valued random variable with E‖y0‖2 < ∞. If there exists a
constant c > 0 such that

E
∫ T

0

∫
D

(
k(c∇y) + k∗(cζ)

)
<∞,

then

1

2
‖y(t)‖2 + α

∫ t

0

‖y(s)‖2 ds+

∫ t

0

∫
D

ζ(s, x) · ∇y(s, x) dx ds

=
1

2
‖y0‖2 +

1

2

∫ t

0

∥∥C(s)
∥∥2

L 2(H,L2)
ds+

∫ t

0

y(s)C(s) dW (s)

for all t ∈ [0, T ] P-almost surely.

Proof. Note that div ζ ∈ (W 1,∞
0 )′, hence, by Sobolev embedding theorems and duality, there

exists a positive integer r such that div ζ ∈ H−r. Therefore, denoting the Dirichlet Laplacian
on L2(D) by ∆, there also exists a positive integer m such that (I − δ∆)−m, δ > 0, maps H−r

and (a fortiori) L2 to H1
0 ∩W 1,∞. Using the notation hδ := (I−δ∆)−mh, it is readily seen that

yδ(t) + α

∫ t

0

yδ(s) ds−
∫ t

0

div ζδ(s) ds = yδ0 +

∫ t

0

T δ(s) dW (s)

for all t ∈ [0, T ] P-a.s. as an identity in L2, for which Itô’s formula yields

1

2

∥∥yδ(t)∥∥2
+ α

∫ t

0

∥∥yδ(s)∥∥2
ds+

∫ t

0

∫
D

ζδ · ∇yδ

=
1

2

∥∥yδ0∥∥2
+

1

2

∫ t

0

∥∥Cδ(s)∥∥2

L 2(H,L2)
ds+

∫ t

0

yδ(s)Cδ(s) dW (s)

for all t ∈ [0, T ] P-almost surely. We are going to pass to the limit as δ → 0 in this identity.
The dominated convergence theorem immediately implies that, P-a.s.,

∥∥yδ(t)∥∥2 −→
∥∥y(t)

∥∥2
,∫ t

0

∥∥yδ(s)∥∥2
ds −→

∫ t

0

∥∥y(s)
∥∥2
ds,∫ t

0

∥∥Cδ(s)∥∥2

L 2(H,L2)
ds −→

∫ t

0

∥∥C(s)
∥∥2

L 2(H,L2)
ds

for all t ∈ [0, T ], and ‖yδ0‖
2 → ‖y0‖2, as δ → 0. Defining the real local martingales

Mδ := (yδCδ) ·W, M := (yC) ·W,

we are going to show that
E sup
t≤T

∣∣M δ(t)−M(t)
∣∣ −→ 0
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as δ → 0. In fact, Davis’ inequality for local martingales (see, e.g., [61]) yields

E sup
t≤T

∣∣M δ(t)−M(t)
∣∣ . E

[
Mδ −M,M δ −M

]1/2
T

= E
(∫ T

0

∥∥yδ(t)Cδ(t)− y(t)C(t)
∥∥2

L 2(H,R)
dt

)1/2

,

and one has, identifying L 2(H,R) with H and recalling that (I − δ∆)−m is contractive in L2,

∥∥yδCδ − yC∥∥
H
≤
∥∥yδCδ − yδC∥∥

H
+
∥∥yδC − yC∥∥

H

≤
(

sup
t≤T
‖y(t)‖

)∥∥Cδ − C∥∥
L 2(H,L2)

+
∥∥yδC − yC∥∥

H
,

so that

E
(∫ T

0

∥∥yδ(t)Cδ(t)− y(t)C(t)
∥∥2

H
dt

)1/2

. E sup
t≤T
‖y(t)‖

(∫ T

0

∥∥Cδ(t)− C(t)
∥∥2

L 2(H,L2)
dt

)1/2

+ E
(∫ T

0

∥∥(yδ(t)− y(t))C(t)
∥∥2

H
dt

)1/2

.

It follows by the Cauchy-Schwarz inequality that the first term on the right-hand side is domi-
nated by (

E sup
t≤T
‖y(t)‖2

)1/2
(
E
∫ T

0

∥∥Cδ(t)− C(t)
∥∥2

L 2(H,L2)
dt

)1/2

,

which converges to zero by properties of Hilbert-Schmidt operators and the dominated conver-
gence theorem. Moreover,

∥∥(yδ(t)− y(t))C(t)
∥∥2

H
.
∥∥y(t)

∥∥2∥∥C(t)
∥∥2

L 2(H,L2)

and y ∈ L∞t L2
x, C ∈ L2

tL (H,L2
x) P-a.s. imply, by dominated convergence, that∫ T

0

∥∥(yδ(t)− y(t))C(t)
∥∥2

H
dt −→ 0

P-a.s. as δ → 0. Since(∫ T

0

∥∥(yδ(t)− y(t))C(t)
∥∥2

H
dt

)1/2

. sup
t≤T
‖y(t)‖

(∫ T

0

∥∥C(t)
∥∥2

L 2(H,L2)
dt

)1/2

and, by the Cauchy-Schwarz inequality,

E sup
t≤T
‖y(t)‖

(∫ T

0

∥∥C(t)
∥∥2

L 2(H,L2)
dt

)1/2

≤
(
E sup
t≤T
‖y(t)‖2

)1/2
(
E
∫ T

0

∥∥C(t)
∥∥2

L 2(H,L2)
dt

)1/2

<∞,

again by dominated convergence it follows that

E
(∫ T

0

∥∥(yδ(t)− y(t))C(t)
∥∥2

H
dt

)1/2

−→ 0
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as δ → 0. We have thus shown that E supt≤T
∣∣Mδ(t)−M(t)

∣∣→ as δ → 0, hence, in particular,
that ∫ t

0

yδ(s)Cδ(s) dW (s) −→
∫ t

0

y(s)C(s) dW (s)

in probability as δ → 0 for all t ∈ [0, T ].

To complete the proof, we are going to show that ∇Y δ ·ζδ → ∇Y ·ζ in L1L1
t,x, which readily

implies that ∫ t

0

∫
D

∇yδ(s, x) · ζδ(s, x) dx ds −→
∫ t

0

∫
D

∇y(s, x) · ζ(s, x) dx ds

in probability for all t ∈ [0, T ]. Since ∇yδ → ∇y and ζδ → ζ in measure in Ω× (0, T )×D, in
view of Vitali’s theorem, it suffices to prove that the sequence (∇yδ · ζδ) is uniformly integrable
in Ω× (0, T )×D. One has

c2
(
∇yδ · ζδ

)
≤ k

(
c∇yδ

)
+ k∗

(
cζδ
)
,

−c2
(
∇yδ · ζδ

)
≤ k

(
c(−∇yδ)

)
+ k∗

(
cζδ
)

hence

c2
∣∣∇yδ · ζδ∣∣ . k

(
c∇yδ

)
+ k
(
c(−∇yδ)

)
+ k∗

(
cζδ
)

. 1 + k
(
c∇yδ

)
+ k∗

(
cζδ
)
,

where the second inequality follows by the hypothesis lim sup|x|→∞ k(−x)/k(x) < ∞. By
Jensen’s inequality for sub-Markovian operators (see [41, Theorem 3.4]) we also have

k
(
c∇yδ

)
= k

(
(I − δ∆)−mc∇y

)
≤ (I − δ∆)−mk

(
c∇y

)
,

k∗
(
cζδ
)

= k∗
(
(I − δ∆)−mcζ

)
≤ (I − δ∆)−mk∗

(
cζ
)
,

hence
c2
∣∣∇yδ · ζδ∣∣ . 1 + (I − δ∆)−m

(
k(c∇y) + k∗(cζ)

)
,

where the right-hand side is uniformly integrable because it converges in L1L1
t,x as δ → 0. This

yields that (∇yδ · ζδ) is uniformly integrable as well, thus concluding the proof.

7.4 Well-posedness for an auxiliary SPDE

Let V0 be a separable Hilbert space, densely and continuously embedded inH1
0 , and continuously

embedded in W 1,∞. The Sobolev embedding theorem easily implies that such a space indeed
exists.

We are going to prove that the auxiliary equation

du(t)− div γ(∇u(t)) dt = G(t) dW (t), u(0) = u0, (7.4.3)

where G is an L 2(U, V0)-valued process, is well posed.

Proposition 7.4.1. Assume that u0 ∈ L2(L2) is F0-measurable and that G : Ω × [0, T ] →



166 Chapter 7

L 2(U, V0) is measurable and adapted, with

E
∫ T

0

∥∥G(t)
∥∥2

L 2(U,V0)
dt <∞.

Then equation (7.4.3) admits a unique strong solution u such that

E sup
t≤T
‖u(t)‖2 + E

∫ T

0

∥∥u(t)
∥∥
W 1,1

0
dt <∞,

E
∫ T

0

∥∥γ(∇u(t))
∥∥
L1 dt <∞,∫ T

0

(∥∥k(∇u(t))
∥∥
L1 +

∥∥k∗(γ(∇u(t)))
∥∥
L1 dt

)
<∞ P-almost surely.

Moreover, the paths of u are P-a.s. weakly continuous with values in L2.

The assumptions of Proposition 7.4.1 are (tacitly) assumed to hold throughout the section.
The proof will be given after some preliminary results.

Let γλ : Rd → Rd, λ > 0, be the Yosida regularization of γ, i.e.

γλ :=
1

λ

(
I − (I + λγ)−1

)
, λ > 0,

and consider the regularized equation

duλ(t)− div γλ(∇uλ(t)) dt− λ∆uλ(t) dt = G(t) dW (t), uλ(0) = u0.

Since γλ is monotone and Lipschitz-continuous, it is not difficult to check that the operator

v 7−→ −
(
div γλ(∇v) + λ∆v

)
satisfies the conditions of the classical variational approach by Pardoux, Krylov and Rozovskĭi
[46, 72] on the Gelfand triple H1

0 ↪→ L2 ↪→ H−1, hence there exists a unique adapted process
uλ with values in H1

0 such that

E
∥∥uλ∥∥2

CtL2
x

+ E
∫ T

0

∥∥uλ(t)
∥∥2

H1
0
dt <∞

and

uλ(t)−
∫ t

0

div γλ(∇uλ(s)) ds− λ
∫ t

0

∆uλ(s) ds = u0 +

∫ t

0

G(s) dW (s) (7.4.4)

in H−1 for all t ∈ [0, T ].

7.4.1 A priori estimates

We are now going to establish several a priori estimates for uλ and related processes, both
pathwise and in expectation.

We begin with a simple maximal estimate for stochastic integrals that will be used several
times in the sequel.

Lemma 7.4.2. Let U , H, K be separable Hilbert spaces. If

F : Ω× [0, T ]→ L (H,K), G : Ω× [0, T ]→ L 2(U,H)
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are measurable and adapted processes such that

E sup
t≤T

∥∥F (t)
∥∥2

L (H,K)
+ E

∫ T

0

∥∥G(t)
∥∥2

L 2(U,H)
dt <∞,

then, for any ε > 0,

E sup
t≤T

∥∥∥∥∫ t

0

F (s)G(s) dW (s)

∥∥∥∥
K

≤ εE sup
t≤T

∥∥F (t)
∥∥2

L (H,K)
+N(ε)E

∫ T

0

∥∥G(t)
∥∥2

L 2(U,H)
dt.

Proof. By the ideal property of Hilbert-Schmidt operators (see, e.g., [20, p. V.52]), one has

∥∥F (s)G(s)
∥∥

L 2(U,K)
≤
∥∥F (s)

∥∥
L (H,K)

∥∥G(s)
∥∥

L 2(U,H)

≤ sup
s≤T

∥∥F (s)
∥∥

L (H,K)

∥∥G(s)
∥∥

L 2(U,H)

for all s ∈ [0, T ], hence∫ T

0

∥∥F (s)G(s)
∥∥2

L 2(U,K)
ds ≤ sup

s≤T

∥∥F (s)
∥∥2

L (H,K)

∫ T

0

∥∥G(s)
∥∥2

L 2(U,H)
ds,

where the right-hand side is finite P-a.s. thanks to the assumptions on F and G. Then (FG) ·W
is a K-valued local martingale, for which Davis’ inequality yields

E sup
t≤T

∥∥∥∥∫ t

0

F (s)G(s) dW (s)

∥∥∥∥
K

. E
[
(FG) ·W, (FG) ·W

]1/2
T

= E
(∫ T

0

∥∥F (s)G(s)
∥∥2

L 2(U,K)
ds

)1/2

≤ E sup
s≤T

∥∥F∥∥
L (H,K)

(∫ T

0

∥∥G(s)
∥∥2

L 2(U,H)
ds

)1/2

.

The proof is finished invoking the elementary inequality

ab ≤ 1

2

(
εa2 +

1

ε
b2
)

∀a, b ∈ R, ε > 0,

and choosing ε properly.

The estimate in the previous lemma will be used only in the case K = R. The more general
proof we have given is not more complicated than in the simpler case actually needed.

Lemma 7.4.3. There exists a constant N such that

∥∥uλ∥∥
L2CtL2

x
+ λ1/2

∥∥∇uλ∥∥
L2L2

t,x
+
∥∥γλ(∇uλ) · ∇uλ

∥∥
L1L1

t,x

< N
(∥∥u0

∥∥
L2L2

x
+
∥∥G∥∥

L2L2
tL

2(H,L2
x)

)
.
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Proof. Itô’s formula yields

∥∥uλ(t)
∥∥2

+ 2

∫ t

0

∫
D

γ(∇uλ(s)) · ∇uλ(s) dx ds+ 2λ

∫ t

0

∥∥∇uλ(s)
∥∥2
ds

=
∥∥u0

∥∥2
+ 2

∫ t

0

uλ(s)G(s) dW (s) +
1

2

∫ t

0

∥∥G(s)
∥∥2

L 2(H,L2)
ds,

where uλ in the stochastic integral on the right-hand side has to be interpreted as taking values
in L (L2, R) ' L2. Taking supremum in time and expectation we get

E
∥∥uλ∥∥2

CtL2
x

+ E
∫ T

0

∫
D

γλ(∇uλ(s)) · ∇uλ(s) dx ds+ λE
∥∥∇uλ∥∥2

L2
t,x

. E
∥∥u0

∥∥2
+ E

∥∥G∥∥2

L2
tL

2(H,L2))
+ E sup

t∈[0,T ]

∣∣∣∣∫ t

0

uλ(s)G(s) dW (s)

∣∣∣∣,
where, by Lemma 1.5.1,

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

uλ(s)G(s) dW (s)

∣∣∣∣ ≤ εE∥∥uλ∥∥2

CtL2
x

+N(ε)E
∫ T

0

∥∥G(s)
∥∥2

L 2(H,L2)
ds

for any ε > 0. The proof is completed choosing ε small enough and recalling that γλ is
monotone.

Lemma 7.4.4. The families (∇uλ) and (γλ(∇uλ)) are relatively weakly compact in L1L1
t,x.

Proof. Recall that, for any y, r ∈ Rd, ones has k(y)+k∗(r) = r·y if and only if r ∈ ∂k(y) = γ(y).
Therefore, since

γλ(x) ∈ ∂k
(
(I + λγ)−1x

)
= γ

(
(I + λγ)−1x

)
∀x ∈ Rn,

we deduce, by the definition of γλ, that

k
(
(I + λγ)−1x

)
+ k∗

(
γλ(x)

)
= γλ(x) · (I + λγ)−1x

= γλ(x) · x− λ
∣∣γλ(x)

∣∣2 ≤ γλ(x) · x ∀x ∈ Rd. (7.4.5)

By Lemma 7.4.3 we infer that there exists a constant N , independent of λ, such that

E
∫ T

0

∫
D

k∗
(
γλ(∇uλ)

)
≤ E

∫ T

0

∫
D

γλ(∇uλ) · ∇uλ < N.

Since k∗ is superlinear at infinity, the family (γλ(∇uλ)) is uniformly integrable on Ω×(0, T )×D
by the de la Vallée Poussin criterion (see the remark on uniform integrability at the end of
Chapter), hence relatively weakly compact in L1L1

t,x by a well-known theorem of Dunford and
Pettis.

Similarly, Lemma 7.4.3 and (7.4.5) imply that there exists a constant N , independent of λ,
such that

E
∫ T

0

∫
D

k
(
(I + λγ)−1∇uλ

)
≤ E

∫ T

0

∫
D

γλ(∇uλ) · ∇uλ < N.

Since k is superlinear at infinity, the criteria by de la Vallée Poussin and Dunford-Pettis imply
that the sequence (I + λγ)−1∇uλ is uniformly integrable on Ω × (0, T ) × D, hence relatively
weakly compact in L1L1

t,x. Moreover, since

∇uλ = (I + λγ)−1∇uλ + λγλ(∇uλ),



Singular equations in divergence form 169

the relative weak compactness of (∇uλ) immediately follows by the same property of (γλ(∇uλ))

proved above.

From now on we shall assume, without loss of generality, that λ ∈ ]0, 1].

Lemma 7.4.5. There exists Ω′ ⊆ Ω with P(Ω′) = 1 and M : Ω′ → R such that

∥∥uλ(ω)
∥∥
L∞t L

2
x

+
√
λ
∥∥∇uλ(ω)

∥∥
L2
t,x

+
∥∥kλ(∇uλ(ω))

∥∥
L1
t,x
< M(ω)

for all ω ∈ Ω′.

Proof. Setting vλ := uλ −G ·W , equation (7.4.4) can be written as

vλ(t)−
∫ t

0

div
(
γλ(∇uλ(s)) + λ∇uλ(s)

)
ds = u0,

or, equivalently, as

v′λ − div
(
γλ(∇uλ) + λ∇uλ

)
= 0, vλ(0) = u0. (7.4.6)

By Itô’s isometry and Doob’s inequality, one has

E sup
t≤T

∥∥∥∥∫ t

0

G(s) dW (s)

∥∥∥∥2

V0

. E
∫ T

0

∥∥G(s)
∥∥2

L (H,V0)
ds <∞,

hence G ·W ∈ L2L∞t H
1
0 , because V0 ↪→ H1

0 . In particular, since uλ ∈ L2L∞t H
1
0 , it follows that

vλ ∈ L2L∞t H
1
0 . Moreover, since div γλ(∇uλ) and ∆uλ belong to L2L2

tH
−1, by the previous

identity we also deduce that v′λ(ω) ∈ L2
tH
−1 for P-a.a. ω ∈ Ω. In particular, taking into

account the hypotheses on u0 and G, there exists Ω′ ⊂ Ω, with P(Ω′) = 1, such that

u0(ω) ∈ L2
x, G ·W (ω, ·) ∈ L∞t V0,

vλ(ω) ∈ L2
tH

1
0 , v′λ(ω) ∈ L2

tH
−1

for all ω ∈ Ω′. Let us consider from now on a fixed but arbitrary ω ∈ Ω′. Taking the duality
pairing of (7.4.6) by vλ and integrating (more precisely, applying Lemma 1.4.2) implies that,
for all t ∈ [0, T ],

1

2
‖vλ(t)‖2 +

∫ t

0

∫
D

γλ(∇uλ(s)) · ∇vλ(s) dx ds

+ λ

∫ t

0

∫
D

∇uλ(s) · ∇vλ(s) dx ds =
1

2
‖u0‖2,

where ‖uλ‖ ≤ ‖vλ‖+ ‖G ·W‖, hence ‖uλ‖2 ≤ 2
(
‖vλ‖2 + ‖G ·W‖2

)
, as well as

‖vλ‖2 ≥
1

2
‖uλ‖2 − ‖G ·W‖2.

Moreover, Young’s inequality yields∫
D

∇uλ · ∇vλ =
∥∥∇uλ∥∥2 −

∫
D

∇uλ · ∇(G ·W )

≥ 1

2

∥∥∇uλ∥∥2 − 1

2

∥∥∇(G ·W )
∥∥2
,
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hence also, taking into account the previous estimate,

1

2

∥∥uλ(t)
∥∥2

+ 2

∫ t

0

∫
D

γλ(∇uλ(s)) · ∇vλ(s) dx ds+ λ

∫ t

0

∥∥∇uλ(s)
∥∥2
ds

≤
∥∥u0

∥∥2
+
∥∥G ·W (t)

∥∥2
+ λ

∫ t

0

∥∥∇(G ·W (s))
∥∥2
ds.

(7.4.7)

Let kλ be the Moreau-Yosida regularization of k, i.e.

kλ(x) := inf
y∈Rd

(
k(y) +

|x− y|2

2λ

)
, λ > 0.

As is well known, kλ is a proper convex function that converges pointwise to k from below, and
∂kλ = γλ. Therefore, it follows from

γλ(x) · (x− y) ≥ kλ(x)− kλ(y) ≥ kλ(x)− k(y) ∀x, y ∈ Rd

that ∫ t

0

∫
D

γλ(∇uλ(s)) · ∇vλ(s) dx ds

=

∫ t

0

∫
D

γλ(∇uλ(s, x))(∇uλ(s, x)−∇(G ·W (s, x))) dx ds

≥
∫ t

0

∫
D

kλ(∇uλ(s, x)) dx ds−
∫ t

0

∫
D

k(∇(G ·W (s, x))) dx ds,

hence also

1

2

∥∥uλ(t)
∥∥2

+ 2

∫ t

0

∫
D

kλ(∇uλ(s, x)) dx ds+ λ

∫ t

0

∥∥∇uλ(s)
∥∥2
ds

≤
∥∥u0

∥∥2
+
∥∥G ·W (t)

∥∥2
+ λ

∫ t

0

∥∥∇(G ·W (s))
∥∥2
ds

+ 2

∫ t

0

∫
D

k(∇(G ·W (s, x))) dx ds.

Taking the supremum with respect to t yields

∥∥uλ∥∥2

CtL2
x

+
∥∥kλ(∇uλ)

∥∥
L1
t,x

+ λ
∥∥∇uλ∥∥2

L2
t,x

.
∥∥u0

∥∥2

L2
x

+
∥∥G ·W∥∥2

L∞t L
2
x

+
∥∥G ·W∥∥2

L2
tH

1
0

+
∥∥k(∇(G ·W ))

∥∥
L1
t,x
.

As already observed above, the first three terms on the right-hand side are clearly finite. More-
over, since V0 ↪→W 1,∞, one has

∥∥k(∇(G ·W ))
∥∥
L1
t,x

.T,D
∥∥k(∇(G ·W ))

∥∥
L∞t,x

<∞

by the continuity of k. Since ω was chosen arbitrarily in Ω′, the proof is completed.

Lemma 7.4.6. There exists a set Ω′, with P(Ω′) = 1, such that, for all ω ∈ Ω′, the families
(γλ(∇uλ)) and (∇uλ) are relatively weakly compact in L1

t,x.

Proof. Let Ω′ be defined as in the proof of Lemma 7.4.5, and fix an arbitrary ω ∈ Ω′. By
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(7.4.7), since vλ = uλ −G ·W , it follows that∫ t

0

∫
D

γλ(∇uλ(s)) · ∇uλ(s) dx ds

≤ 1

2
‖u0‖2 +

1

2
‖G ·W (t)‖2 +

1

2

∫ t

0

‖G ·W (s)‖2H1
0
ds

+

∫ t

0

∫
D

γλ(∇uλ(s)) · ∇(G ·W (s)) dx ds

for all t ≤ T . Thanks to Young’s inequality, convexity of k∗, and k∗(0) = 0, one has

γλ(∇uλ) · ∇(G ·W ) =
1

2
γλ(∇uλ) · 2∇(G ·W )

≤ 1

2
k∗
(
γλ(∇uλ)

)
+ k(2∇(G ·W )).

Recalling that k∗(γλ(x)) ≤ γλ(x) · x for all x ∈ Rn, rearranging terms one gets∫ T

0

∫
D

k∗(∇uλ(s)) dx ds . ‖u0‖2 + ‖G ·W (T )‖2 +

∫ T

0

‖G ·W (t)‖2H1
0
ds

+

∫ T

0

∫
D

k
(
2∇(G ·W (s))

)
dx ds,

where all terms on the right-hand side are finite, as already established in the proof of Lemma
7.4.5. Appealing again to the criteria by de la Vallée Poussin and Dunford-Pettis, we immedi-
ately infer that (γλ(∇uλ(ω, ·))) is relatively weakly compact in L1

t,x.

Denoting by M (a constant depending on ω) the right-hand side of the previous inequality,
the above estimates also yield

∥∥γλ(∇uλ) · ∇uλ
∥∥
L1
t,x

.M,

hence also, recalling that k((I + λγ)−1x) ≤ γλ(x) · x,

∥∥k((I + λγ)−1∇uλ
)∥∥
L1
t,x

.M.

This implies, in complete analogy to the previous case, that
(
(I + λγ)−1∇uλ

)
is relatively

weakly compact in L1
t,x. Since

∇uλ = λγλ(∇uλ) + (I + λγ)−1∇uλ,

the relative weak compactness of (∇uλ(ω, ·)) in L1
t,x follows immediately.

7.4.2 Proof of Proposition 7.4.1

Let ω ∈ Ω′ be arbitrary but fixed, where Ω′ is a subset of Ω with probability one, chosen as
in the proof of Lemma 7.4.5. The relative weak compactness of (γλ(∇uλ)) in L1

t,x, proved in
Lemma 7.4.6, implies that there exists η ∈ L1

t,x such that γµ(∇uµ) → η weakly in L1
t,x, where

µ is a subsequence of λ. This in turn implies that∫ t

0

div γµ(∇uµ(s)) ds −→
∫ t

0

div η(s) ds weakly in V ′0
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for all t ∈ [0, T ]. In fact, for any φ0 ∈ V0, setting φ := s 7→ 1[0,t](s)φ0 ∈ L∞t V0, recalling that
V0 ↪→W 1,∞, we have∫ t

0

〈
−div γµ(∇uµ(s)), φ0

〉
V0
ds =

∫ T

0

〈
−div γµ(∇uµ(s)), φ(s)

〉
V0
ds

=

∫ T

0

∫
D

γµ(∇uµ(s)) · ∇φ(s) ds

−→
∫ T

0

∫
D

η(s) · ∇φ(s) ds =

∫ t

0

〈
−div η(s), φ0

〉
ds

as µ → 0. Moreover,
√
λuλ is bounded in L2

tH
1
0 thanks to Lemma 7.4.5, hence, recalling that

∆ is an isomorphism of H1
0 and H−1, λ∆uλ → 0 in L2

tH
−1 as λ→ 0, in particular

λ

∫ t

0

∆uλ(s) ds −→ 0 in H−1

for all t ∈ [0, T ] as λ→ 0. Therefore, considering the regularized equation

uµ(t)−
∫ t

0

div γµ(∇uµ(s)) ds− µ
∫ t

0

∆uµ(s) ds = u0 +G ·W (t)

and passing to the limit as µ → 0, we infer that uµ(t) → u(t) weakly in V ′0 for all t ∈ [0, T ],
hence one can write

u(t)−
∫ t

0

div η(s) ds = u0 +G ·W (t) in V ′0 (7.4.8)

for all t ∈ [0, T ]. Since div η ∈ L1
tV
′
0 and G ·W ∈ L∞t V0, it immediately follows that u ∈ CtV ′0 .

Moreover, since, thanks to Lemma 7.4.5, (uµ(t)) is bounded in L2, we also have uµ(t) → u(t)

weakly in L2. In fact, let ε > 0 and ψ ∈ L2 be arbitrary. Since V0 is dense in L2, there exists
φ ∈ V0 with

∥∥ψ − φ∥∥ < ε, and one can write

∣∣〈uµ(t)− uν(t), ψ
〉∣∣ ≤ ∣∣〈uµ(t)− uν(t), ψ − φ

〉∣∣+
∣∣〈uµ(t)− uν(t), φ

〉∣∣,
where the second term on the right-hand side converges to zero as µ, ν → 0, and

∣∣〈uµ(t)− uν(t), ψ − φ
〉∣∣ ≤ ∥∥uµ(t)− uν(t)

∥∥∥∥ψ − φ∥∥ < Nε,

so that, recalling that Hilbert spaces are weakly sequentially complete, uµ(t) converges weakly
in L2, necessarily to u(t), for all t ∈ [0, T ]. This also immediately implies that u ∈ L∞t L2

x. From
this, together with u ∈ CtV ′0 , it follows in turn that u ∈ Cw([0, T ];L2) by a criterion due to
Strauss (see [79, Theorem 2.1] – here and below Cw([0, T ];E) stands for the space of space of
weakly continuous functions from [0, T ] to a Banach space E). Furthermore, since all terms in
(7.4.8) except the second one on the left-hand side take values in L2, it follows that (7.4.8) is
satisfied also as an identity in L2.

Let us show that u ∈ L1
tW

1,1
0 : the relative weak compactness of (∇uλ) in L1

t,x, proved in
Lemma 7.4.6, implies that there exists v ∈ L1

t,x such that, along a subsequence of λ which can
be assumed to coincide with µ, ∇uµ → v weakly in L1

t,x. Taking into account that uµ ∈ H1
0 for

all µ and that uµ → u weakly* in L∞t L2
x, it easily follows that v = ∇u a.e. in [0, T ] ×D and

that u ∈ L1
tW

1,1
0 .

As a next step, we are going to show that η = γ(∇u) a.e. in (0, T ) ×D. For this we shall
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need the “energy” identity proved in the following lemma.

Lemma 7.4.7. Assume that

y(t)−
∫ t

0

div ζ(s) ds = y0 + f(t) in L2 ∀t ∈ [0, T ],

where y0 ∈ L2
x, y ∈ L∞t L

2
x ∩ L1

tW
1,1
0 , ζ ∈ L1

t,x, and f ∈ L2
tV0 with f(0) = 0. Furthermore,

assume that there exists c > 0 such that

k(c∇y) + k∗(cζ) ∈ L1
t,x.

Then

∥∥y(t)− f(t)
∥∥2

+ 2

∫ t

0

∫
D

ζ(s, x) · ∇
(
y(s, x)− f(s, x)

)
dx ds =

∥∥y0

∥∥2 ∀t ∈ [0, T ].

Proof. The proof if analogous to that of Proposition 7.3.1, of which we borrow the notation
and the setup. In particular, let m ∈ N be such that

yδ(t)−
∫ t

0

div ζδ(s) ds = yδ0 + fδ(t) in L2 ∀t ∈ [0, T ],

hence, by Lemma 1.4.2,

∥∥yδ(t)− fδ(t)∥∥2
+ 2

∫ t

0

∫
D

ζδ · ∇
(
yδ − fδ

)
=
∥∥yδ0∥∥2 ∀t ∈ [0, T ],

where, as δ → 0,
∥∥yδ(t) − fδ(t)

∥∥2 →
∥∥y(t) − f(t)

∥∥2 for all t ∈]0, T ] and
∥∥yδ0∥∥2 →

∥∥y0

∥∥2.
Moreover, since yδ − fδ → y− f in L1

tW
1,1
0 and ζδ → ζ in L1

t,x, we have that, up to selecting a
subsequence,

ζδ · ∇
(
yδ − fδ

)
−→ ζ · ∇

(
y − f

)
almost everywhere in [0, T ]×D. Therefore, taking Vitali’s theorem into account, the lemma is
proved if we show that ζδ · ∇(yδ − fδ) is uniformly integrable: one has, by Young’s inequality
and convexity,

c2

2
ζδ · ∇(yδ − fδ) ≤ k

(
c/2(∇yδ −∇fδ)

)
+ k∗

(
cζδ
)

≤ 1

2
k
(
c∇yδ

)
+

1

2
k
(
c(−∇fδ)

)
+ k∗

(
cζδ
)
,

as well as

−c
2

2
ζδ · ∇(yδ − fδ) ≤ k

(
c/2(−∇yδ +∇fδ)

)
+ k∗

(
cζδ
)

≤ 1

2
k
(
c(−∇yδ)

)
+

1

2
k
(
c∇fδ

)
+ k∗

(
cζδ
)
,

hence

c2
∣∣ζδ · ∇(yδ − fδ)

∣∣ ≤ k(c∇yδ)+ k
(
c(−∇yδ)

)
+ k
(
c∇fδ

)
+ k
(
c(−∇fδ)

)
+ 4k∗

(
cζδ
)
.

It follows by Jensen’s inequality for sub-Markovian operators, recalling that (I − δ∆)−m and
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∇ commute, that

c2
∣∣ζδ · ∇(yδ − fδ)

∣∣ ≤ (I − δ∆)−m
(
k(c∇y) + k

(
c(−∇y)

)
+ k(c∇f) + k

(
c(−∇f)

)
+ 4k∗(cζ)

)
,

where k(c∇y) and k∗(cζ) belong to L1
t,x by assumption, and the same holds for k(c∇f) +

k(c(−∇f)) because f ∈W 1,∞. Moreover, note that the hypothesis lim sup|x|→∞ k(−x)/k(x) <

∞ implies that ∫ T

0

∫
D

k(c(−∇y)) . 1 +

∫ T

0

∫
D

k(∇y) <∞,

therefore, taking into account that (I − δ∆)−m is a contraction in L1, we obtain that c2|ζδ ·
∇(yδ − fδ)| is dominated by a sequence that converges in L1

t,x, which immediately implies that
ζδ · ∇(yδ − fδ) is uniformly integrable in [0, T ]×D.

As in the proof of Lemma 7.4.5, it follows from (7.4.6) and Lemma 1.4.2 that

1

2
‖vλ(t)‖2 +

∫ t

0

∫
D

γλ(∇uλ(s)) · ∇vλ(s) dx ds

+ λ

∫ t

0

∫
D

∇uλ(s) · ∇vλ(s) dx ds =
1

2
‖u0‖2

for all t ∈ [0, T ], where vλ = uλ −G ·W . This immediately implies

1

2
‖vλ(t)‖2 +

∫ t

0

∫
D

γλ(∇uλ(s)) · ∇uλ(s) dx ds

≤ 1

2
‖u0‖2 +

∫ t

0

∫
D

γλ(∇uλ(s)) · ∇(G ·W (s)) dx ds

+ λ

∫ t

0

∫
D

∇uλ(s) · ∇(G ·W (s)) dx ds,

(7.4.9)

where
lim inf
µ→0

∥∥vµ(t)
∥∥ ≥ ∥∥u(t)−G ·W (t)

∥∥ ∀t ∈ [0, T ]

by the weak lower semicontinuity of the norm and the weak convergence of uµ(t) to u(t) in L2.
Moreover, recalling that γµ(∇uµ)→ η weakly in L1

t,x and ∇(G ·W ) ∈ L∞t,x, as V0 ↪→W 1,∞, we
have ∫ t

0

∫
D

γµ(∇uµ(s)) · ∇(G ·W (s)) dx ds −→
∫ t

0

∫
D

η(s) · ∇(G ·W (s)) dx ds.

The last term on the right-hand side of (7.4.9) converges to zero as µ → 0 because (∇uµ) is
bounded in L1

t,x and ∇(G ·W ) ∈ L∞t,x. We have thus obtained

lim sup
µ→0

∫ T

0

∫
D

γµ(∇uµ(s)) · ∇uµ(s) dx ds

≤ 1

2

∥∥u0

∥∥2 − 1

2

∥∥u(T )−G ·W (T )
∥∥2

+

∫ t

0

∫
D

η(s) · ∇(G ·W (s)) dx ds.
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By Lemma 7.4.7 we have

1

2

∥∥u0

∥∥2 − 1

2

∥∥u(T )−G ·W (T )
∥∥2

+

∫ T

0

∫
D

η(s) · ∇(G ·W (s)) dx ds

=

∫ T

0

∫
D

η(s) · ∇u(s) dx ds,

which implies that

lim sup
µ→0

∫ T

0

∫
D

γµ(∇uµ) · ∇uµ dx ds ≤
∫ T

0

∫
D

η · ∇u dx ds.

Moreover, since

γµ(x) · (I + µγ)−1x = γµ(x) · x− µ|γµ(x)|2 ≤ γµ(x) · x

for all x ∈ Rn, we obtain

lim sup
µ→0

∫ T

0

∫
D

γµ(∇uµ) · (I + µγ)−1∇uµ dx ds ≤
∫ T

0

∫
D

η · ∇u dx ds,

where (I + µγ)−1∇uµ → ∇u and γµ(∇uµ) → η weakly in L1
t,x. In particular, the weak lower

semicontinuity of convex integrals yields∫ T

0

∫
D

(
k(∇u) + k∗(η)

)
≤ lim inf

µ→0

∫ T

0

∫
D

(
k((I + µγ)−1∇uµ) + k∗(γµ(∇uµ))

)
dx dt

= lim inf
µ→0

∫ T

0

∫
D

γµ(∇uµ) · (I + µγ)−1∇uµ dx dt < N,

where N = N(ω) is a constant. Recalling that γµ ∈ γ((I + µγ)−1) and γ = ∂k, we have

k((I + µγ)−1∇uµ) + γµ(∇uµ) · (z − (I + µγ)−1∇uµ) ≤ k(z) ∀z ∈ Rn.

From this it follows, again by the weak lower semicontinuity of convex integrals, that∫ T

0

∫
D

k(∇u) +

∫ T

0

∫
D

η · (ζ −∇u) ≤
∫ T

0

∫
D

k(ζ) ∀ζ ∈ L∞t,x.

Let A be an arbitrary Borel subset of (0, T )×D, z0 ∈ Rn, R > 0 a constant, and

ζR := z01A + TR(∇u)1Ac ,

where TR : Rn → Rn, is the truncation operator

TR : x 7−→


x, |x| ≤ R,

Rx/|x|, |x| > R.
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Then ζR ∈ L∞t,x, and∫
A

k(∇u) +

∫
A

η · (z0 −∇u) ≤
∫
A

k(z0)

+

∫
Ac

(
k(TR(∇u))− k(∇u)

)
+

∫
Ac
η ·
(
TR(∇u)−∇u

)
,

where TR(∇u)→ ∇u and k(TR(∇u))→ k(∇u) a.e. in (0, T )×D as R→∞, as well as

∣∣TR(∇u)−∇u
∣∣ ≤ 2

∣∣∇u∣∣, ∣∣k(TR(∇u))− k(∇u)
∣∣ . 1 + k(∇u)

(the latter inequality follows by the assumptions on the behavior of k at infinity). Since k(∇u),
k∗(η) ∈ L1

t,x, the dominated convergence theorem implies that∫
A

k(∇u) +

∫
A

η · (z0 −∇u) ≤
∫
A

k(z0)

for arbitrary z0 and A, hence also that

k(∇u) + η · (z0 −∇u) ≤ k(z0)

a.e. in (0, T ) ×D for all z0 ∈ Rn. By definition of subdifferential it follows immediately that
η = γ(∇u) a.e. in (0, T )×D.

Let us now show, still keeping ω fixed, that the limit u constructed above is unique. In
particular, since η = γ(∇u), it is also unique. Assume that there exist u1, u2 such that

ui(t)−
∫ t

0

div γ(∇ui(s)) ds = u0 +G ·W (t), i = 1, 2,

in L2 for all t ∈ [0, T ]. Setting v = u1−u2 and ζ = γ(∇u1)−γ(∇u2), it is enough to show that

v(t)−
∫ t

0

div ζ(s) ds = 0

in L2 for all t ∈ [0, T ] implies v = 0. To this aim, it suffices to note that, by Lemma 7.4.7,

1

2

∥∥v(t)
∥∥2

+

∫ t

0

∫
D

ζ · ∇v = 0

for all t ∈ [0, T ]. The monotonicity of γ immediately implies v = 0, i.e. u1 = u2, so that
uniqueness of u is proved.

The process u has been constructed for each ω in a set of probability one via limiting
procedures along sequences that depend on ω itself. Of course such a construction, in general,
does not produce a measurable process. In our situation, however, uniqueness of u allows us to
even prove that u is predictable. The following simple observation is crucial: we have proved
that from any subsequence of λ one can extract a further subsequence µ, depending on ω, such
that uµ converges to u as µ → 0, in several topologies, and that the limit u is unique. This
implies, by a classical criterion, that the same convergences hold along the original sequence λ,
which does not depend on ω. In particular, uλ(ω, t) → u(ω, t) weakly in L2 for all t ∈ [0, T ]

and for P-a.s. ω. Let us show that uλ → u weakly in L1L1
tL

2
x: for an arbitrary φ ∈ L∞L∞t L2

x,
we have 〈

uλ(ω, t), φ(ω, t)
〉
−→

〈
u(ω, t), φ(ω, t)

〉
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a.e. in Ω× [0, T ], as well as

E
∫ T

0

〈
uλ(ω, t), φ(ω, t)

〉2
dt ≤ E

∫ T

0

∥∥uλ(ω, t)
∥∥2∥∥φ(ω, t)

∥∥2
dt

≤
∥∥φ∥∥2

L∞L∞t L
2
x
E
∫ T

0

∥∥uλ(ω, t)
∥∥2
dt < N

for a constant N independent of λ, since (uλ) is bounded in L2L2
t,x by Lemma 7.4.3. Then

〈uλ, φ〉 is uniformly integrable in Ω × [0, T ] by the criterion of de la Vallée Poussin, hence
〈uλ, φ〉 → 〈u, φ〉 in L1L1

t by Vitali’s theorem. Since φ ∈ L∞L∞t L2
x is arbitrary, it follows that

uλ → u weakly in L1L1
tL

2
x. Mazur’s lemma (see, e.g., [20, p. 360]) implies that there exists a

sequence (ζn) of convex combinations of uλ such that ζn(ω, t)→ u(ω, t) in L2 in P⊗dt-measure,
hence a.e. in Ω× [0, T ] along a subsequence. Since (uλ) is a collection of L2-valued predictable
processes, the same holds for (ζn), so that the P ⊗ dt-a.e. pointwise limit u of (a subsequence
of) ζn is an L2-valued predictable process as well. We also have that u ∈ L2L∞t L

2
x, as it follows

by uλ → u in L1L1
tL

2
x and the boundedness of (uλ) in L2L∞t L

2
x.

Moreover, recalling that ∇uλ → ∇u and γλ(∇uλ) → η weakly in L1
t,x P-a.s., and that, by

Lemma 7.4.4, (∇uλ) and (γλ(∇uλ)) are bounded in L1L1
t,x, an entirely analogous argument

shows that ∇uλ → ∇u and γλ(∇uλ) → η = γ(∇u) weakly in L1L1
t,x. This implies that η is a

measurable adapted process, as well as, by weak lower semicontinuity of the norm,

E
∥∥∇u∥∥

L1
t,x
≤ lim inf

λ→0
E
∥∥∇uλ∥∥L1

t,x
<∞,

E
∥∥η∥∥

L1
t,x
≤ lim inf

λ→0
E
∥∥γλ(∇uλ)

∥∥
L1
t,x
<∞.

We can hence conclude that

u ∈ L2L∞t L
2
x ∩ L1L1

tW
1,1
0 ,

η = γ(∇u) ∈ L1L1
t,x.

Finally, Lemma 7.4.3 and (7.4.5) yield

E
∫ T

0

∫
D

(
k((I + λγ)−1∇uλ) + k∗(γλ(∇uλ))

)
< N

(
E
∥∥u0

∥∥2
+ E

∫ T

0

∥∥G(s)
∥∥2

L (H,L2)
ds
)
,

where, by the weak lower semicontinuity of convex integrals and (I + λγ)−1∇uλ → ∇u,
γλ(∇uλ)→ η weakly in L1

t,x P-a.s., one has

∫ T

0

∫
D

(
k(∇u) + k∗(η)

)
≤ lim inf

λ→0

∫ T

0

∫
D

(
k((I + λγ)−1∇uλ) + k∗(γλ(∇uλ))

)
P-a.s., hence, by Fatou’s lemma,

E
∫ T

0

∫
D

(
k(∇u) + k∗(η)

)
≤ lim inf

λ→0
E
∫ T

0

∫
D

(
k((I + λγ)−1∇uλ) + k∗(γλ(∇uλ))

)
< N

(
E
∥∥u0

∥∥2
+ E

∫ T

0

∥∥G(s)
∥∥2

L (H,L2)
ds
)
<∞.

(7.4.10)

Remark 7.4.8. The proof of uniqueness of u does not depend on γ being single-valued. In
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particular, all results on u obtained thus far, including the predictability of u, can be obtained
under the more general assumption that γ is an everywhere defined maximal monotone graph
on Rn × Rn, with γ = ∂k. However, in this more general framework, the uniqueness of η does
not follow, because the divergence is not injective. This implies that we would not be able even
to prove that η is a measurable process (with respect to the product σ-algebra of F and the
Borel σ-algebra of [0, T ]).

7.5 Well-posedness with additive noise

We are now going to prove well-posedness for the equation

du(t)− div γ(∇u(t)) dt = G(t) dW (t), u(0) = u0, (7.5.11)

where G is no longer supposed to take values in L 2(H,V0), as in the previous section, but just
in L 2(H,L2). In other words, we are considering equation (7.1.1) with additive noise.

Proposition 7.5.1. Assume that u0 ∈ L2L2
x is F0-measurable and that G : Ω × [0, T ] →

L 2(H,L2) is measurable and adapted. Then equation (7.4.3) is well posed in K . Moreover,
its solution is pathwise weakly continuous with values in L2.

Proof. Since one has (I − ε∆)−m : L2 → H2m ∩H1
0 for any m ∈ N, choosing m > 1/2 + n/4,

the Sobolev embedding theorem yields H2m ↪→ W 1,∞, hence V0 := H2m ∩ H1
0 satisfies all

hypotheses stated at the beginning of the previous section. In particular, setting

Gε := (I − ε∆)−mG,

the ideal property of Hilbert-Schmidt operators implies that Gε is an L 2(H,V0)-valued mea-
surable and adapted process such that

E
∫ T

0

∥∥Gε(s)∥∥2

L 2(H,V0)
ds . E

∫ T

0

∥∥G(s)
∥∥2

L 2(H,L2)
ds <∞.

It follows by Proposition 7.4.1 that, for any ε > 0, there exists a unique predictable process

uε ∈ L2L∞t L
2
x ∩ L1L1

tW
1,1
0

such that

ηε = γ(uε) ∈ L1L1
t,x,

k(∇uε) + k∗(ηε) ∈ L1
t,x P-a.s.,

uε ∈ Cw([0, T ];L2) P-a.s.,

satisfying

uε(t)−
∫ t

0

div ηε(s) ds = u0 +

∫ t

0

Gε(s) dW (s) (7.5.12)

in L2 for all t ∈ [0, T ].

In complete analogy to the previous section, the equation in H−1

uελ(t)−
∫ t

0

div γλ(∇uελ(s)) ds− λ
∫

0

∆uελ(s) ds = u0 +

∫ t

0

Gε(s) dW (s)
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admits a unique (variational) strong solution uελ for any ε > 0 and λ > 0. Taking into account
the monotonicity of γλ, Itô’s formula yields, for any δ > 0,

∥∥uελ(t)− uδλ(t)
∥∥2

+ λ

∫ t

0

∥∥∇(uελ(s)− uδλ(s))
∥∥2
ds

.
∫ t

0

(
uελ(s)− uδλ(s)

)(
Gε(s)−Gδ(s)

)
dW (s) +

∫ t

0

∥∥Gε(s)−Gδ(s)∥∥2

L 2(H,L2)
ds.

Taking supremum in time and expectation, it easily follows from Lemma 7.4.2 that

E sup
t≤T

∥∥uελ(t)− uδλ(t)
∥∥2

. E
∫ T

0

∥∥Gε(t)−Gδ(t)∥∥2

L 2(H,L2)
.

For arbitrary fixed ε, δ > 0, the proof of Proposition 7.4.1 shows that

uελ −→ uε weakly* in L∞t L
2
x,

∇uελ −→ ∇uε weakly in L1
t,x,

γλ(∇uελ) −→ ηε weakly in L1
t,x

P-a.s. as λ → 0, and the same holds replacing ε with δ. In particular, on a set of probability
one, uελ − uδλ → uε − uδ weakly* in L∞t L2

x as λ → 0, hence the weak* lower semicontinuity of
the norm and Fatou’s lemma imply

E
∥∥uε − uδ∥∥2

L∞t L
2
x
≤ lim inf

λ→0
E
∥∥uελ − uδλ∥∥2

L∞t L
2
x

. E
∫ T

0

∥∥Gε(s)−Gδ(s)∥∥2

L 2(H,L2))
ds.

It follows by the ideal property of Hilbert-Schmidt operators, the contractivity of (I − ε∆)−m,
and the dominated convergence theorem, that

E
∫ T

0

∥∥Gε(s)−G(s)
∥∥2

L 2(H,L2))
ds −→ 0

as ε → 0. This implies that (uε) is a Cauchy sequence in L2L∞t L
2
x, hence there exists a

predictable L2-valued process u such that uε converges (strongly) to u in L2L∞t L
2
x as ε → 0.

Moreover, by (7.4.10) there exists a constant N , independent of ε, such that

E
∫ T

0

∫
D

(
k(∇uε) + k∗(ηε)

)
dx ds

< N
(
E
∥∥u0

∥∥2
+ E

∫ T

0

∥∥Gε(s)∥∥2

L (H,L2)
ds
)

≤ N
(
E
∥∥u0

∥∥2
+ E

∫ T

0

∥∥G(s)
∥∥2

L (H,L2)
ds
)
,

(7.5.13)

where we have used again the ideal property of Hilbert-Schmidt operators and the contractivity
of (I−ε∆)−m in the last step. The sequences (∇uε) and (γ(∇uε)) are hence uniformly integrable
on Ω × [0, T ] ×D by the criterion of de la Vallée Poussin, hence relatively weakly compact in
L

1(L1
t,x) by the Dunford-Pettis theorem. Therefore, passing to a subsequence of ε, denoted by

the same symbol, there exist v and η such that ∇uε → v and γ(∇uε)→ η weakly in L1L1
t,x as
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ε→ 0. It is then straightforward to check that v = ∇u and

u ∈ L1L1
tW

1,1
0 .

An argument based on Mazur’s lemma, entirely analogous to the one used in the proof of
Proposition 7.4.1, shows that η is an L1-valued adapted process.

We can now pass to the limit as ε → 0 in (7.5.12). The strong convergence of uε to u in
L

2L∞t L
2
x implies that

ess sup
t∈[0,T ]

∥∥uε(t)− u(t)
∥∥→ 0

in probability as ε→ 0. Let φ0 ∈ V0 be arbitrary. Since V0 ↪→ L∞, one has

〈
uε(t), φ0

〉
→
〈
u(t), φ0

〉
in probability for almost all t ∈ [0, T ]. Let us set, for an arbitrary but fixed t ∈ [0, T ], φ : s 7→
1[0,t](s)φ0 ∈ L∞t V0. Recalling that ηε = γ(∇uε) → η weakly in L1L1

t,x, it follows immediately
that

−
∫ t

0

〈div ηε, φ0〉 ds =

∫ T

0

∫
D

ηε(s) · φ(s) ds

→
∫ T

0

∫
D

η(s) · ∇φ(s) ds = −
∫ t

0

〈div η(s), φ0〉 ds

weakly in L1 as ε→ 0. Doob’s maximal inequality and the convergence

E
∫ T

0

∥∥Gε(t)−G(t)
∥∥

L 2(H,L2)
−→ 0

as ε→ 0 readily yield also that Gε ·W (t)→ G ·W (t) in L2 in probability for all t ∈ [0, T ]. In
particular, since φ0 ∈ V0 and t ∈ [0, T ] are arbitrary, we infer that

u(t)−
∫ t

0

div η(s) ds = u0 +

∫ t

0

B(s) dW (s)

holds in V ′0 for almost all t. Recalling that η ∈ L1
t,x, which implies in turn that div η ∈ L1

tV
′
0 ,

it follows that all terms except the first on the left-hand side have trajectories in CtV ′0 , hence
that the identity holds for all t ∈ [0, T ]. Moreover, thanks to Strauss’ weak continuity criterion,
u ∈ CtV ′0 and u ∈ L∞t L2

x imply u ∈ Cw([0, T ];L2). Note also that all terms bar the second one
on the left-hand side are L2-valued, hence the identity holds also in L2 for all t ∈ [0, T ].

The weak convergences ∇uε → ∇u and ηε → η in L1L1
t,x and the weak lower semicontinuity

of convex integrals yield, taking (7.5.13) into account,

E
∫ T

0

∫
D

(
k(∇u) + k∗(η)

)
< N

(
E
∥∥u0

∥∥2
+ E

∫ T

0

∥∥G(s)
∥∥2

L 2(H,L2)
ds
)
.

To complete the proof of existence, we only need to show that η = γ(∇u) a.e. in Ω×(0, T )×D.
Note that, by Proposition 7.3.1, we have

1

2

∥∥uε(T )
∥∥2

+

∫ T

0

∫
D

ηε · ∇uε

=
1

2

∥∥u0

∥∥2
+

1

2

∫ T

0

∥∥Gε(s)∥∥2

L 2(H,L2)
ds+

∫ T

0

uε(s)Gε(s) dW (s)



Singular equations in divergence form 181

and

1

2

∥∥u(T )
∥∥2

+

∫ T

0

∫
D

η · ∇u

=
1

2

∥∥u0

∥∥2
+

1

2

∫ T

0

∥∥G(s)
∥∥2

L 2(H,L2)
ds+

∫ T

0

u(s)G(s) dW (s),

where, as ε → 0, ‖uε(T )‖ → ‖u(T )‖ in L2, thanks to the strong convergence of uε to u in
L

2L∞t L
2
x; ∫ T

0

∥∥Gε(s)∥∥2

L 2(H,L2)
ds −→

∫ T

0

∥∥G(s)
∥∥2

L 2(H,L2)
ds

in L2 by an (already seen) argument involving the ideal property of Hilbert-Schmidt operators;∫ T

0

uε(s)Gε(s) dW (s) −→
∫ T

0

u(s)G(s) dW (s)

in L1 as it follows by Lemma 7.4.2. In particular, we infer

lim sup
ε→0

∫ T

0

∫
D

γ(∇uε) · ∇uε

≤ 1

2

∥∥u0

∥∥2 − 1

2

∥∥u(T )
∥∥2

+
1

2

∫ t

0

∥∥G(s)
∥∥2

L 2(H,L2)
ds+

∫ t

0

u(s)G(s) dW (s)

=

∫ t

0

∫
D

η · ∇u,

hence also, by Fatou’s lemma,

lim sup
ε→0

E
∫ T

0

∫
D

γ(∇uε) · ∇uε ≤ E
∫ t

0

∫
D

η · ∇u.

Since ∇uε → ∇u and γ(∇uε) → η weakly in L1L1
t,x, recalling that γ is maximal monotone, it

follows that η ∈ γ(∇u) a.e. in Ω× (0, T )×D (see, e.g., [10, Lemma 2.3, p. 38]).

Let u01, u02 ∈ L2L2
x be F0-measurable, and G1, G2 : Ω× [0, T ]→ L 2(H,L2) be measurable

adapted processes such that

E
∫ T

0

∥∥Gi(s)∥∥2

L 2(H,L2)
ds <∞, i = 1, 2.

If ui ∈ K , i = 1, 2, are solutions to

dui − div γ(∇ui) dt = Gi dW, ui(0) = u0i,

we are going to show that

E sup
t≤T

∥∥u1(t)− u2(t)
∥∥2

. E
∥∥u01 − u02

∥∥2
+ E

∫ T

0

∥∥G1(s)−G2(s)
∥∥2

L 2(H,L2)
ds, (7.5.14)

from which uniqueness and Lipschitz-continuous dependence on the initial datum follow imme-
diately. We shall actually obtain this estimate as a special case of a more general one that will
be useful in the next section: setting

y(t) := u1(t)− u2(t), y0 := u01 − u02, F (t) := G1(t)−G2(t),
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one has

y(t)−
∫ t

0

div ζ(s) ds = y0 +

∫ t

0

F (s) dW (s),

where ζ = γ(∇u1)− γ(∇u2). Setting, for any α ≥ 0,

yα(t) := e−αty(t), ζ(t) := e−αtζ(t), Fα(t) := e−αtF (t),

the integration by parts formula yields

yα(t) +

∫ t

0

(
αyα(s)− div ζα(s)

)
ds = y0 +

∫ t

0

Fα(s) dW (s),

from which, by Proposition 7.3.1, we deduce

∥∥yα(t)
∥∥2

+ 2α

∫ t

0

∥∥yα(s)
∥∥2
ds+ 2

∫ t

0

∫
D

ζα(s) · ∇yα(s) ds

≤
∥∥y0

∥∥2
+ 2

∫ t

0

yα(s)Fα(s) dW (s) +

∫ t

0

∥∥Fα(s)
∥∥2

L 2(H,L2)
ds,

where, by monotonicity of γ, ζα ·∇yα = e−2α·(γ(∇u1)−γ(∇u2)
)
· (∇u1−∇u2) ≥ 0. Therefore,

taking the supremum in t and expectation on both sides, one has

E sup
t≤T

∥∥yα(t)
∥∥2

+ αE
∫ T

0

∥∥yα(s)
∥∥2
ds

. E
∥∥y0

∥∥2
+ E sup

t≤T

∣∣∣∣∫ t

0

yα(s)Fα(s) dW (s)

∣∣∣∣+ E
∫ T

0

∥∥Fα(s)
∥∥2

L 2(H,L2)
ds

. E
∥∥y0

∥∥2
+ E

∫ T

0

∥∥Fα(s)
∥∥2

L 2(H,L2)
ds, (7.5.15)

where the second inequality follows by an application of Lemma 1.5.1. Estimate (7.5.14) is just
the special case α = 0.

7.6 Proof of the main result

Thanks to the results established thus far, we are now in the position to prove Theorem 7.2.2.
Let v : Ω× [0, T ]→ L2 be a measurable adapted process such that

E
∫ T

0

∥∥v(s)
∥∥2
ds <∞,

and consider the equation

du(t)− div γ(∇u(t)) dt = B(t, v(t)) dW (t), u(0) = u0,

where u0 is an F0-measurable L2-valued random variable with finite second moment. The
assumptions on B imply that B(·, v) is measurable, adapted, and such that

E
∫ T

0

∥∥B(s, v(s))
∥∥2

L 2(H,L2)
ds <∞,

hence the above equation is well-posed in K by Proposition 7.5.1, which allows one to define
a map Γ : (u0, v) 7→ u. Let ui = Γ(u0i, vi), i = 1, 2, where u0i and vi satisfy the same
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measurability and integrability assumptions on u0 and v, respectively. For any α ≥ 0, (7.5.15)
and the Lipschitz continuity of B yield

E sup
t≤T

(
e−2αt

∥∥u1(t)− u2(t)
∥∥2)

+ E
∫ T

0

e−2αs
∥∥u1(s)− u2(s)

∥∥2
ds

.
1

α
E
∥∥u01 − u02

∥∥2
+

1

α
E
∫ T

0

e−2αs
∥∥B(s, v1(s))−B(s, v2(s))

∥∥2

L 2(H,L2)
ds

.
1

α
E
∥∥u01 − u02

∥∥2
+

1

α
E
∫ T

0

e−2αs
∥∥v1(s)− v2(s)

∥∥2
ds.

Choosing α large enough, it follows that, for any u0 as above, the map v 7→ Γ(u0, v) is strictly
contractive in the Banach space Eα of measurable adapted processes v such that

‖v‖Eα :=

(
E
∫ T

0

e−2αs‖v(s)‖2 ds
)1/2

.

By the Banach fixed point theorem, the map v 7→ Γ(u0, v) admits a unique fixed point u in Eα.
Since all Eα-norms are equivalent for different values of α, u belongs to E0 and, by definition
of Γ, u also belongs to K and solves (7.1.1). Taking into account that any solution to (7.1.1) is
necessarily a fixed point of v 7→ Γ(u0, v), it immediately follows that u is the unique solution to
(7.1.1) in K . Lipschitz continuity of the solution map follows from the above estimate, which
manifestly implies

E
∫ T

0

∥∥u1(s)− u2(s)
∥∥2
ds h E

∫ T

0

e−2αs
∥∥u1(s)− u2(s)

∥∥2
ds . E

∥∥u01 − u02

∥∥2
.

and

E sup
t≤T

∥∥u1(t)− u2(t)
∥∥2 h E sup

t≤T

(
e−2αt

∥∥u1(t)− u2(t)
∥∥2)

. E
∫ T

0

e−2αs
∥∥u1(s)− u2(s)

∥∥2
ds,

thus completing the proof.

7.7 A remark on uniform integrability

The classical characterization of uniform integrability by de la Vallée Poussin states that, in
the setting of a measure space (X,A) endowed with a finite measure µ, a bounded subset G of
L1(X,µ;Rn) is uniformly integrable if and only if there exists a continuous increasing convex
function ϕ : R+ → R+, with ϕ(0) = 0 and limx→∞ ϕ(x)/x =∞, such that∫

A

ϕ(|g|) dµ < 1 ∀g ∈ G

(see, e.g., [4, p. 12]).

The following criterion for uniform integrability can be proved in the same way (the proof
is included for completeness).

Lemma 7.7.1. Let F : Rd → R+ be a continuous convex function such that F (0) = 0 and

lim
|x|→∞

F (x)

|x|
=∞.
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Let G be a subset of L0(X,µ;Rd) such that F (G ) is bounded in L1(X,µ). Then G is uniformly
integrable.

Proof. We have to prove that G is bounded in L1(X,µ) and that for any ε > 0 there exists
δ > 0 such that, for any A ∈ A with µ(A) < δ,∫

A

|g| dµ < ε ∀g ∈ G .

By definition of limit, for any M > 0 there exists R (depending on M) such that |x| < F (x)/M

for all x ∈ Rd such that |x| > R. Then∫
A

|g| dµ =

∫
A∩{|g|≤R}

|g| dµ+

∫
A∩{|g|>R}

|g| dµ

≤ Rµ(A) +
1

M

∫
X

F (g) dµ

for all g ∈ G . Choosing A = X, this proves that G is bounded in L1(X,µ). Let ε > 0 be
arbitrary, and choose M such that the second-term on the right-hand side of the last inequality
is smaller than ε/2. Then δ := ε/(2R) satisfies the required condition.



Chapter 8

Singular equations in divergence
form: an alternative approach

In this chapter, we prove existence and uniqueness of strong solutions for a class of second-order
stochastic PDEs with multiplicative Wiener noise and drift of the form div γ(∇·), where γ is
a maximal monotone graph in Rd × Rd obtained as the subdifferential of a convex function
satisfying very mild assumptions on its behavior at infinity. The well-posedness result comple-
ments the corresponding one in Chapter 7 where, under the additional assumption that γ is
single-valued, a solution with better integrability and regularity properties is constructed. The
proof given here, however, is self-contained.

The results presented in this chapter are part of the joint work [64] with Carlo Marinelli, to
appear in Springer Proceedings in Mathematics & Statistics.

8.1 The problem: literature and main results

Let us consider the stochastic partial differential equation

du(t)− div γ(∇u(t)) dt 3 B(t, u(t)) dW (t), u(0) = u0, (8.1.1)

posed on L2(D), with D a bounded domain of Rd with smooth boundary. The following
assumptions will be in force: (a) γ is the subdifferential of a lower semicontinuous convex
function k : Rd → R+ with k(0) = 0 and such that

lim
|x|→∞

k(x)

|x|
= +∞, lim sup

|x|→∞

k(−x)

k(x)
< +∞

(in particular, γ is a maximal monotone graph in Rd × Rd whose domain coincides with Rd);
(b) W is a cylindrical Wiener process on a separable Hilbert space H, supported by a filtered
probability space (Ω,F , (Ft)t∈[0,T ],P) satisfying the “usual conditions”; (c) B is a map from
Ω× [0, T ]×L2(D) to L 2(H,L2(D)), the space of Hilbert-Schmidt operators from H to L2(D),
that is Lipschitz-continuous and has linear growth with respect to its third argument, uniformly
with respect to the other two, and is such that B(·, ·, a) is measurable and adapted for all
a ∈ L2(D).

Under the additional assumption that γ is a (single-valued) continuous function, we proved
in Chapter 7 that (8.1.1) admits a strong solution u, which is unique within a set of processes

185
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satisfying mild integrability conditions. The solution of Chapter 7 is constructed pathwise, i.e.
for each ω ∈ Ω, so that, as is natural to expect, measurability problems arise with respect to
the usual σ-algebras on Ω× [0, T ] used in the theory of stochastic processes. Precisely because
of such an issue we needed to assume γ to be single-valued.

The purpose of this chapter is to provide an alternative approach to establish the well-
posedness of (8.1.1) that, avoiding pathwise constructions, is simpler than that of Chapter 7
and does not need any extra assumption on γ. The price to pay is that the solution we obtain
here is less regular than that of Chapter 7. We also refer to Chapter 6 for a related result
obtained by analogous methods.

Let us define the concept of solution to (8.1.1) we shall be working with.

Definition 8.1.1. Let u0 be an L2(D)-valued F0-measurable random variable. A strong solu-
tion to equation (8.1.1) is a couple (u, η) satisfying the following properties:

(i) u is a measurable and adapted L2(D)-valued process such that

u ∈ L1(0, T ;W 1,1
0 (D)), B(·, u) ∈ L2(0, T ; L 2(U,L2(D))) P-a.s.;

(ii) η is a measurable and adapted L1(D)d-valued process such that

η ∈ L1(0, T ;L1(D)d) P-a.s. , η ∈ γ(∇u) a.e. in Ω× (0, T )×D;

(iii) one has, as an equality in L2(D),

u(t)−
∫ t

0

div η(s) ds = u0 +

∫ t

0

B(s, u(s)) dW (s) P-a.s. ∀ t ∈ [0, T ]. (8.1.2)

Note that (8.1.2) has to be intended in the sense of distributions. In particular, since
η ∈ L1(D)d, the integrand in the second term of (8.1.2) does not, in general, take values
in L2(D). However, the conditions on B imply that the stochastic integral in (8.1.2) is an
L2(D)-valued local martingale, hence the term involving the divergence of η turns out to be
L2(D)-valued by comparison.

We can now state our main result. Here and in the following k∗ : Rd → R+ is the convex
conjugate of k.

Theorem 8.1.2. Let u0 ∈ L2(Ω,F0;L2(D)). Then equation (8.1.1) admits a unique strong
solution (u, η) such that

sup
t≤T

E‖u(t)‖2L2(D) + E
∫ T

0

‖u(t)‖W 1,1
0 (D) dt <∞,

E
∫ T

0

‖η(t)‖L1(D)d dt <∞,

E
∫ T

0

(
‖k(∇u(t))‖L1(D) + ‖k∗(η(t))‖L1(D)

)
dt <∞.

Moreover, the solution map u0 7→ u is Lipschitz-continuous from the space L2(Ω;L2(D)) to
L∞(0, T ;L2(Ω;L2(D))), and u is weakly continuous as a function on [0, T ] with values in
L2(Ω;L2(D)).
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Under the extra assumption of γ being single-valued, the solution obtained in Chapter 7
is more regular in the sense that E supt≤T ‖u(t)‖2L2(D) is finite, the solution map is Lipschitz-
continuous from L2(Ω;L2(D)) to L2(Ω;L∞(0, T ;L2(D))), and u(ω, ·) is weakly continuous as
a function on [0, T ] with values in L2(D) for P-a.a. ω ∈ Ω.

8.2 Well-posedness of an auxiliary equation

The goal of this section is to prove well-posedness of a version of (8.1.1) with additive noise.
Namely, we consider the initial value problem

du(t)− div γ(∇u(t)) dt 3 G(t) dW (t), u(0) = u0, (8.2.3)

where G ∈ L2(Ω× [0, T ]; L 2(H,L2(D))) is a measurable and adapted process.

Proposition 8.2.1. Equation (8.2.3) admits a unique strong solution (u, η) satisfying the same
integrability and weak continuity conditions of Theorem 8.1.2.

We introduce the regularized equation

duλ(t)− div γλ(∇uλ(t)) dt− λ∆uλ(t) dt = G(t) dW (t), uλ(0) = u0,

where γλ : Rd → Rd, γλ := 1
λ (I − (I + λγ)−1), for any λ > 0, is the Yosida approximation of γ,

and ∆ : H1
0 (D) → H−1(D) is the (variational) Dirichlet Laplacian. Since γλ is monotone and

Lipschitz-continuous, the classical variational approach (see [46, 72] as well as [56]) yields the
existence of a unique predictable process uλ with values in H1

0 (D) such that

E‖uλ‖2C([0,T ];L2(D)) + E
∫ T

0

‖uλ(t)‖2H1
0 (D) dt <∞

and

uλ(t)−
∫ t

0

div γλ(∇uλ(s)) ds− λ
∫ t

0

∆uλ(s) ds = u0 +

∫ t

0

G(s) dW (s) (8.2.4)

P-a.s. in H−1(D) for all t ∈ [0, T ].

We are now going to prove a priori estimates and weak compactness in suitable topologies
for uλ and related processes. These will allow us to pass to the limit as λ→ 0 in (8.2.4).

For notational parsimony, we shall often write, for any p ≥ 0, Lpω, L
p
t , and Lpx in place of

Lp(Ω), Lp(0, T ), and Lp(D), respectively, and Ct to denote C([0, T ]). Other similar abbre-
viations are self-explanatory. The L2(D)-norm will be denoted simply by ‖·‖. If a function
f : D → Rd is such that each component f j , j = 1, . . . , d, belongs to Lp(D), we shall just write
f ∈ Lp(D) rather than f ∈ Lp(D)d.

Lemma 8.2.2. There exists a constant N such that

‖uλ‖L2
ωCtL

2
x

+ λ1/2‖∇uλ‖L2
t,ω,x

+ ‖γλ(∇uλ) · ∇uλ‖L1
t,ω,x,

< N
(
‖u0‖L2

ω,x
+ ‖G‖L2

t,ωL 2(H,L2
x)

)
.
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Proof. Itô’s formula for the square of the norm in L2
x yields

‖uλ(t)‖2 + 2

∫ t

0

∫
D

γ(∇uλ(s)) · ∇uλ(s) dx ds+ 2λ

∫ t

0

‖∇uλ(s)‖2 ds

= ‖u0‖2 + 2

∫ t

0

uλ(s)G(s) dW (s) +

∫ t

0

‖G(s)‖2L 2(H,L2
x) ds,

hence, taking the supremum in time and expectation,

E‖uλ‖2CtL2
x

+ E
∫ T

0

∫
D

γλ(∇uλ(s)) · ∇uλ(s) dx ds+ λE‖∇uλ‖2L2
t,x

. E‖u0‖2 + E‖G‖2L2
tL

2(H,L2
x) + E sup

t∈[0,T ]

∣∣∣∣∫ t

0

uλ(s)G(s) dW (s)

∣∣∣∣ ,
where, by Davis’ inequality (see, e.g., [61]), the ideal property of Hilbert-Schmidt operators
(see, e.g., [20, p. V.52]), and the elementary inequality ab ≤ εa2 + b2/ε ∀a, b ≥ 0, ε > 0,

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

uλ(s)G(s) dW (s)

∣∣∣∣ . E
(∫ T

0

‖uλ(s)G(s)‖2L 2(H,R) ds

)1/2

≤ εE‖uλ‖2CtL2
x

+N(ε)E
∫ T

0

‖G(s)‖2L 2(H,L2
x) ds

for any ε > 0. To conclude it suffices to choose ε small enough.

Lemma 8.2.3. The families (∇uλ) and (γλ(∇uλ)) are relatively weakly compact in L1(Ω ×
(0, T )×D).

Proof. Recall that, for any y, r ∈ Rd, ones has k(y)+k∗(r) = r·y if and only if r ∈ ∂k(y) = γ(y).
Therefore, since

γλ(x) ∈ ∂k
(
(I + λγ)−1x

)
= γ

(
(I + λγ)−1x

)
∀x ∈ Rd,

we deduce by the definition of γλ that

k
(
(I + λγ)−1x

)
+ k∗

(
γλ(x)

)
= γλ(x) · (I + λγ)−1x

= γλ(x) · x− λ |γλ(x)|2 ≤ γλ(x) · x ∀x ∈ Rd . (8.2.5)

(See, e.g., [42] for all necessary facts from convex analysis used in this note.) Hence, taking
Lemma 8.2.2 into account, there exists a constant N > 0, independent of λ, such that

E
∫ T

0

∫
D

k∗
(
γλ(∇uλ)

)
≤ E

∫ T

0

∫
D

γλ(∇uλ) · ∇uλ < N.

The assumptions on k imply that its convex conjugate k∗ is also convex, lower semicontinuous
and such that lim|y|→∞ k∗(y)/|y| = +∞. Therefore a simple modification of the criterion by de
la Vallée Poussin implies that (γλ(∇uλ)) is uniformly integrable on Ω×(0, T )×D, hence that it
is relatively weakly compact in L1

t,ω,x by the Dunford-Pettis theorem. A completely analogous
argument shows that

E
∫ T

0

∫
D

k
(
(I + λγ)−1∇uλ

)
≤ E

∫ T

0

∫
D

γλ(∇uλ) · ∇uλ < N,

hence that (I + λγ)−1∇uλ is relatively weakly compact in L1
t,ω,x. Moreover, since ∇uλ =
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(I+λγ)−1∇uλ+λγλ(∇uλ), it also follows that (∇uλ) is relatively weakly compact in L1
t,ω,x.

Thanks to Lemmata 8.2.2 and 8.2.3, there exists a subsequence of λ, denoted by the same
symbol, and processes u ∈ L∞t L2

ω,x ∩ L1
t,ωW

1,1
0 and η ∈ L1

t,ω,x such that

uλ −→ u weakly* in L∞t L
2
ω,x,

uλ −→ u weakly in L1
t,ωW

1,1
0 ,

γλ(∇uλ) −→ η weakly in L1
t,ω,x,

λuλ −→ 0 weakly in L2
t,ωH

1
0 .

as λ→ 0. Let t ∈ [0, T ] be arbitrary but fixed. The fourth convergence above implies

λ

∫ t

0

∆uλ(s) ds −→ 0 in L2
ωH
−1,

while the third yields, for any ϕ ∈ L∞ω W 1,∞,

E
∫ t

0

∫
D

γλ(∇uλ(s)) · ∇ϕdx ds −→ E
∫ t

0

∫
D

η(s) · ∇ϕdx ds,

hence E
∫ t

0

〈div γλ(∇uλ(s)), ϕ〉 ds −→ E
∫ t

0

〈div η(s), ϕ〉 ds. Therefore, recalling (8.2.4), by dif-

ference we deduce that
E〈uλ(t), ϕ〉 −→ E〈u(t), ϕ〉.

Consequently, since uλ(t) is bounded in L2
ωL

2
x, we also have that uλ(t)→ u(t) weakly in L2

ωL
2
x.

Taking the limit as λ→ 0 in (8.2.4) thus yields

u(t)−
∫ t

0

div η(s) ds = u0 +

∫ t

0

G(s) dW (s) in L1
ωV
′
0 ,

where V ′0 is the (topological) dual of a separable Hilbert space V0 embedded continuously and
densely in H1

0 , and continuously in W 1,∞. The identity immediately implies that u ∈ CtL1
ωV
′
0 .

Since u ∈ L∞t L2
ωL

2
x, it follows by Lemma 1.4.1 that u is a weakly continuous function on [0, T ]

with values in L2
ωL

2
x.

By Mazur’s lemma there exist sequences of convex combinations of γλ(∇uλ) that converge η
in (the norm topology of) L1

t,ω,x, thus also, passing to a subsequence, P⊗dt-almost everywhere
in L1

x. Similarly, since uλ → u weakly* in L∞t L2
ω,x implies that uλ → u weakly in L2

t,ω,x, there
exist sequences of convex combinations of uλ that converge to u P ⊗ dt-almost everywhere in
L2
x. Since convex combinations of (uλ) and of (γλ(∇uλ)) are (at least) predictable and adapted,

respectively, it follows that u is predictable and η is measurable and adapted. Moreover, thanks
to the weak lower semicontinuity of convex integrals, one has

E
∫ T

0

∫
D

(
k(∇u) + k∗(η)

)
<∞.

In order to show that η ∈ γ(∇u) for a.a. (ω, t, x), we need the following “energy identity”.

Lemma 8.2.4. Assume that

y(t) + α

∫ t

0

y(s) ds−
∫ t

0

div ζ(s) ds = y0 +

∫ t

0

C(s) dW (s)
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in L2
x P-a.s. for all t ∈ [0, T ], where α ∈ R, y0 ∈ L2

ω,x is F0-measurable, and

y ∈ L∞t L2
ω,x ∩ L1

t,ωW
1,1
0 , ζ ∈ L1

t,ω,x, C ∈ L2
t,ωL 2(H,L2

x)

are measurable and adapted processes such that k(c∇y) + k∗(cζ) ∈ L1
t,ω,x for a constant c > 0.

Then

E‖y(t)‖2 + 2αE
∫ t

0

‖y(s)‖2 ds+ 2E
∫ t

0

∫
D

ζ · ∇y dx ds

= E‖y0‖2 + E
∫ t

0

‖C(s)‖2L 2(H,L2
x) ds ∀t ∈ [0, T ].

Proof. Let m ∈ N be such that such that (I − δ∆)−m maps L1
x into H1

0 ∩W 1,∞, and use the
notation hδ := (I − δ∆)−mh for any h taking values in L1

x. One has

yδ(t) + α

∫ t

0

yδ(s) ds−
∫ t

0

div ζδ(s) ds = yδ0 +

∫ t

0

Cδ(s) dW (s) (8.2.6)

P-a.s. for all t ∈ [0, T ], as an equality in L2
x, for which Itô’s formula yields

‖yδ(t)‖2 + 2α

∫ t

0

‖yδ(s)‖2 ds+ 2

∫ t

0

∫
D

ζδ · ∇yδ dx ds

= ‖yδ0‖
2

+

∫ t

0

‖Cδ(s)‖2L 2(H,L2
x) ds+

∫ t

0

yδ(s)Cδ(s)dW (s).

It is evident from (8.2.6) that yδ is a continuous L2
x-valued process, hence the stochastic integral

(yδCδ) ·W on the right-hand side of the above identity is a continuous local martingale. Let
(Tn) be a localizing sequence, and multiply the previous identity by 1[[0,Tn]], to obtain, thanks
to E(yδCδ) ·W (· ∧ Tn) = 0,

E‖yδ(t ∧ Tn)‖2 + 2αE
∫ t∧Tn

0

‖yδ(s)‖2 ds+ 2E
∫ t∧Tn

0

∫
D

ζδ · ∇yδ dx ds

= E‖yδ0‖
2

+ E
∫ t∧Tn

0

‖Cδ(s)‖2L 2(H,L2
x) ds.

Letting n tend to ∞, the dominated convergence theorem yields

E‖yδ(t)‖2 + 2αE
∫ t

0

‖yδ(s)‖2 ds+ 2E
∫ t

0

∫
D

ζδ · ∇yδ dx ds

= E‖yδ0‖
2

+ E
∫ t

0

‖Cδ(s)‖2L 2(H,L2
x) ds

for all t ∈ [0, T ]. We are now going to pass to the limit as δ → 0: the first and second
terms on the left-hand side and the first on the right-hand side clearly converge to E‖y(t)‖2,
2αE

∫ t
0
‖y(s)‖2 ds and E‖y0‖2, respectively. Properties of Hilbert-Schmidt operators and the

dominated convergence theorem also yield

lim
δ→0

E
∫ t

0

‖Cδ(s)‖2L 2(H,L2
x) ds = E

∫ t

0

‖C(s)‖2L 2(H,L2
x) ds

for all t ∈ [0, T ]. To conclude it then suffices to show that ∇yδ · ζδ → ∇y · ζ in L1
t,ω,x. Since

∇yδ → ∇y and ζδ → ζ in measure in Ω×(0, t)×D, Vitali’s theorem implies strong convergence
in L1

t,ω,x if the sequence (∇yδ · ζδ) is uniformly integrable in Ω× (0, t)×D. In turn, the latter
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is certainly true if (|∇yδ · ζδ|) is dominated by a sequence that converges strongly in L1
t,ω,x.

Indeed, using the assumptions on the behavior of k at infinity as well as the generalized Jensen
inequality for sub-Markovian operators (see [41]), one has

±c2ζδ · ∇yδ . 1 + k(c∇yδ) + k∗(cζδ) ≤ 1 + (I − δ∆)−m (k(c∇y) + k∗(cζ)) ,

where the sequence on the right-hand side converges in L1
t,ω,x as δ → 0 because, by assumption,

k(c∇y) + k∗(cζ) ∈ L1
t,ω,x.

Itô’s formula yields

E‖uλ(t)‖2 + 2E
∫ t

0

∫
D

γλ(∇uλ) · ∇uλ + 2λE
∫ t

0

‖∇uλ‖2

= E‖u0‖2 + E
∫ t

0

‖G(s)‖2L 2(H,L2
x) ds

and, by Lemma 8.2.4,

E‖u(t)‖2 + 2E
∫ t

0

∫
D

η · ∇u = E‖u0‖2 + E
∫ t

0

‖G(s)‖2L 2(H,L2
x) ds.

One then has

2 lim sup
λ→0

E
∫ T

0

∫
D

γλ(∇uλ(s)) · ∇uλ(s) dx ds

≤ E‖u0‖2 + E
∫ T

0

‖G(s)‖2L 2(H,L2
x) ds− lim inf

λ→0
E‖uλ(T )‖2

≤ E‖u0‖2 + E
∫ T

0

‖G(s)‖2L 2(H,L2
x) ds− E‖u(T )‖2

= E
∫ T

0

∫
D

η(s) · ∇u(s) dx ds.

Since ∇uλ → ∇u and γλ(∇uλ) → η weakly in L1
t,ω,x, this implies that η ∈ γ(∇u) a.e. in

Ω × (0, T ) ×D. We have thus proved the existence and weak continuity statements of Propo-
sition 8.2.1.

In order to show that the solution is unique, we are going to prove that any solution depends
continuously on (u0, G). Let (ui, ηi), i = 1, 2, satisfy

ui(t)−
∫ t

0

div ηi(s) ds = u0 +

∫ t

0

Gi(s) ds

in the sense of Definition 8.1.1, as well as the integrability conditions (on u and η) of The-
orem 8.1.2. Setting y := u1 − u2, y0 := u01 − u02, ζ := η1 − η2, and F := G1 − G2, one
has

y(t)−
∫ t

0

div ζ(s) ds = y0 +

∫ t

0

F (s) dW (s)

P-a.s. in L2(D) for all t ∈ [0, T ]. For any process h, let us use the notation hα(t) := e−αth(t).
For any α > 0, the integration-by-parts formula yields

yα(t) +

∫ t

0

(−div ζα(s) + αyα(s)) ds = y0 +

∫ t

0

Fα(s) dW (s),
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hence also, thanks to Lemma 8.2.4,

E‖yα(t)‖2 + 2αE
∫ t

0

‖yα(s)‖2 ds+ 2E
∫ t

0

∫
D

ζα(s) · ∇yα(s) dx ds

≤ E‖y0‖2 + E
∫ t

0

‖Fα(s)‖2L 2(H,L2
x) ds,

where ζα · ∇yα ≥ 0 by monotonicity. Therefore, taking the L∞t norm,

‖yα‖L∞t L2
ω,x

+
√
α‖yα‖L2

t,ω,x
. ‖y0‖L2

ω,x
+ ‖Fα‖L2

t,ωL 2(H,L2
x),

that is, using the notation Lpt (α) := Lp([0, T ], e−αtdt) for any p ≥ 0,

‖u1 − u2‖L∞t (α)L2
ω,x

+
√
α‖u1 − u2‖L2

t (α)L2
ω,x

. ‖u01 − u02‖L2
ω,x

+ ‖G1 −G2‖L2
t (α)L2

ωL 2(H,L2
x).

(8.2.7)

Taking α = 0 and G1 = G2 immediately yields the uniqueness of solutions (as well as Lipschitz-
continuous dependence on the initial datum). The proof of Proposition 8.2.1 is thus complete.

8.3 Proof of Theorem 8.1.2

For any v ∈ L2
t,ω,x measurable and adapted, and any F0-measurable random variable u0 ∈ L2

ω,x,
the process B(·, v) is measurable, adapted, and belongs to L2

t,ωL 2(H,L2
x), hence the equation

du(t)− div γ(∇u(t)) dt 3 B(t, v(t)) dW (t), u(0) = u0,

is well-posed in the sense of Proposition 8.2.1. Moreover, for any v1, v2 and u01, u02 satisfying
the same hypotheses on v and u0, respectively, (8.2.7) yields

‖u1 − u2‖L∞t (α)L2
ω,x

+
√
α‖u1 − u2‖L2

t (α)L2
ω,x

. ‖u01 − u02‖L2
ω,x

+ ‖B(·, v1)−B(·, v2)‖L2
t (α)L2

ωL 2(H,L2
x).

It hence follows by the Lipschitz-continuity of B that

‖u1 − u2‖L2
t (α)L2

ω,x
.

1√
α

(
‖u01 − u02‖L2

ω,x
+ ‖v1 − v2‖L2

t (α)L2
ω,x

)
, (8.3.8)

where the implicit constant does not depend on α. In particular, denoting by Γ the map
(u0, v) 7→ u, one has that v 7→ Γ(u0, v) is a strict contraction of L2

t (α)L2
ω,x for α large enough.

Therefore, by equivalence of norms, v 7→ Γ(u0, v) admits a unique fixed point in L2
t,ω,x, which

solves (8.1.1) and satisfies all integrability conditions. Such solution is unique as any solution
is a fixed point of v 7→ Γ(u0, v).

Let us show that the solution map u0 7→ u is Lipschitz-continuous: (8.3.8) yields, choosing
α large enough,

‖u1 − u2‖L2
t (α)L2

ω,x
≤ N1‖u01 − u02‖L2

ω,x
+N2‖u1 − u2‖L2

t (α)L2
ω,x

with constants N1 > 0 and 0 < N2 < 1, hence, by equivalence of norms,

‖u1 − u2‖L2
tL

2
ω,x

. ‖u01 − u02‖L2
ω,x
.
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This in turn implies, in view of (8.2.7) (with α = 0) and the Lipschitz-continuity of B,

‖u1 − u2‖L∞t L2
ω,x

. ‖u01 − u02‖L2
ω,x

+ ‖B(·, u1)−B(·, u2)‖L2
t,ωL 2(H,L2

x)

. ‖u01 − u02‖L2
ω,x

+ ‖u1 − u2‖L2
tL

2
ω,x

. ‖u01 − u02‖L2
ω,x
,

which completes the proof.

Remark. A priori estimates entirely analogous to those of Lemma 8.2.2, as well as weak com-
pactness results exactly as in Lemma 8.2.3, can be proved for the regularized equation obtained
by replacing γ with γλ+λ∇ directly in (8.1.1). It is however not immediately clear how to pass
to the limit as λ → 0 in the stochastic integrals appearing in such regularized equations with
multiplicative noise, i.e. to show that B(uλ) ·W converges to B(u) ·W in a suitable sense.





Chapter 9

Doubly singular equations in
divergence form

In this chapter, we prove well-posedness for a class of second-order SPDEs with multiplicative
Wiener noise and doubly nonlinear drift of the form −div γ(∇·) + β(·), where γ is the subdif-
ferential of a convex function on Rd and β is a maximal monotone graph everywhere defined on
R, on which neither growth nor continuity assumptions are imposed. These results provide an
effective generalization and give a unifying treatment to the theory presented in Chapters 6–7–8.

The results presented in this chapter are part of the joint work [66] with Carlo Marinelli, to
appear in Atti Accademia Nazionale Lincei. Rendiconti Lincei. Matematica e Applicazioni.

9.1 The problem: literature and main goals

Let D be a bounded domain of Rd with smooth boundary and T > 0 a fixed number. We shall
establish well-posedness in the strong sense for stochastic partial differential equations of the
type 

du(t)− div γ(∇u(t)) dt+ β(u(t)) dt 3 B(t, u(t)) dW (t) in (0, T )×D,

u = 0 in (0, T )× ∂D,

u(0) = u0 in D,

(9.1.1)

where γ ⊂ Rd ×Rd and β ⊂ R×R are everywhere-defined maximal monotone graphs, the first
one of which is assumed to be the subdifferential of a convex function k : Rd → R. Furthermore,
W is a cylindrical Wiener process on a separable Hilbert space U , and B takes values in the
space of Hilbert-Schmidt operators from U to L2(D). Precise assumptions on the data of the
problem are given in §9.2 below.

Equations with drift in divergence type, both in deterministic and stochastic settings, have a
long history and are thoroughly studied, especially because of their physical significance. From
a mathematical point of view, they are particularly interesting because they are fully nonlinear,
in the sense that they do not contain any “leading” linear term. For stochastic equations, the
first well-posedness result is most likely due to Pardoux, as an application of his general results
in [72] on monotone stochastic evolution equations in the variational setting (see also [46] for
improved results under more general assumptions on B). In this case one needs to assume

195
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β = 0 and
γ(x) · x & |x|p − 1, |γ(x)| . |x|p−1 − 1 ∀x ∈ Rd,

with p > 1 (the centered dot stands for the usual Euclidean scalar product in Rd). These are
precisely the classical Leray-Lions conditions, well known in the deterministic theory (cf. [49]).
In some special cases a simple polynomial-type β can be added: for instance, if γ corresponds
to the p-Laplacian, i.e. γ(x) = |x|p−2

x, p ≥ 2, one may consider β(x) = |x|p−2
x (cf. [56, p. 83]).

However, it is well known that if two nonlinear operators satisfy the conditions needed in the
variational setting, their sum in general does not. This phenomenon already gives rise to severe
restrictions on the class of semilinear equations with polynomial nonlinearities that can be
solved by such methods.

In some recent works we have obtained well-posedness results for (9.1.1) under much more
general hypotheses than those mentioned above. In particular, in Chapter 6 we assume that
γ still satisfies the classical Leray-Lions assumptions, but we impose no growth restriction on
β: a very mild symmetry-like condition on its behavior at infinity is shown to suffice. On the
other hand, in Chapter 7 we consider the case β = 0, with no hypotheses on the growth of γ,
but with the additional requirement that γ is single-valued (a symmetry-like assumption on γ
is needed in this case as well). Equations with more general, possibly multivalued γ, are treated
in Chapter 8, where, however, less regular solutions are obtained.

Our goal is to unify and extend the above-mentioned well-posedness results for equation
(9.1.1), thus treating the case where both γ and β can be multivalued, without any restriction
on their rate of growth. We shall also show that we can do so without loosing any regularity
of solutions with respect to the results of Chapter 7. The approach we take consists in a
combination of (deterministic and stochastic) variational techniques and weak compactness in
L1 spaces. A key feature is the construction of a candidate solution as pathwise limit, in suitable
topologies, of solutions to regularized equations. In particular, due to this type of construction,
in order to obtain measurability properties of solutions, uniqueness of limits is crucial. Roughly
speaking, we can prove that −div γ(∇u) + β(u) is unique, hence that it is measurable, but
showing that each one of them is unique (hence measurable) seems difficult, if not impossible.
This is the reason why γ was assumed to be single-valued in Chapters 6 and 7. In the general
setting of this work we thus need different ideas: let uλ, γλ, and βλ be suitable regularizations
of u, γ, and β, respectively, and set ηλ := γλ(∇uλ) and ξλ := βλ(uλ). Comparing weak limits,
obtained in different ways, of the image of the pair (ηλ, ξλ) under a continuous linear map, we
are going to prove that there exist two limiting processes η and ξ, “sections” of γ(∇u) and β(u),
respectively, that are indeed predictable and satisfy suitable uniqueness properties. One may
say that we restore uniqueness working in a suitable quotient space, although quotient spaces
do not appear explicitly.

The well-posedness result obtained here may be interesting also in the deterministic setting,
as our results extend to the doubly nonlinear case the sharpest results available for equations
with β = 0 and B = 0, whose hypotheses on γ are identical to ours (cf. [10, p. 207-ff])

The chapter is organized as follows: in Section 9.2 we state the assumptions and the main
result, which is then proved in Section 9.3.

9.2 Main result

Before stating the main result, we fix notation and introduce the necessary assumptions.

As already mentioned, D stands for a bounded domain in Rd with smooth boundary. We
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shall denote the Hilbert space L2(D) by H, its norm and scalar product by ‖·‖ and 〈·, ·〉,
respectively. We shall denote the Dirichlet Laplacian on L1(D) (as well as on L2(D), without
notationally distinguish them) by ∆.

Let (Ω,F ,P) be a probability space, endowed with a filtration (Ft)t∈[0,T ] satisfying the
so-called usual conditions, on which all random elements will be defined. Equality of stochastic
processes is meant to be in the sense of indistinguishability, unless otherwise stated. We assume
that the diffusion coefficient

B : Ω× [0, T ]×H → L 2(U,H)

is such that B(·, ·, h) is progressively measurable for all h ∈ H, and there exists a positive
constant NB such that

∥∥B(ω, t, x)
∥∥

L 2(U,H)
≤ NB

(
1 + ‖x‖

)
,∥∥B(ω, t, x)−B(ω, t, y)

∥∥
L 2(U,H)

≤ NB‖x− y‖

for all (ω, t) ∈ Ω × [0, T ] and x, y ∈ H. Moreover, let the initial datum u0 be F0-measurable
with finite second moment, i.e. u0 ∈ L2(Ω,F0;H).

Let k : Rd → R+ be a convex function with k(0) = 0 such that

lim sup
|x|→+∞

k(x)

k(−x)
< +∞, lim

|x|→+∞

k(x)

|x|
= +∞

(we shall call the second condition superlinearity at infinity). Then its subdifferential γ := ∂k

is a maximal monotone graph in Rd ×Rd. We assume that the domain of γ coincides with Rd,
which implies that k∗, the convex conjugate of k, is superlinear at infinity as well. Moreover,
let j : R→ R+ be a further convex function with j(0) = 0 such that

lim sup
|x|→+∞

j(x)

j(−x)
< +∞,

whose subdifferential β := ∂j is an everywhere defined maximal monotone graph in R× R, so
that j∗ is superlinear at infinity. All notions of convex analysis and from the theory of maximal
monotone operators used thus far and in the sequel are standard and are treated in detail, for
instance, in [10].

We can now give the notion of solution to (9.1.1) that we are going to work with. Throughout
the work, V0 is a separable Hilbert space continuously embedded in bothW 1,∞(D) and H1

0 (D):
for instance one can take, thanks to Sobolev embedding theorems, V0 := Hk

0 (D) for k ∈ N
sufficiently large. Moreover, the divergence operator is defined as

div : L1(D)d −→ V ′0

f 7−→
[
g 7→ −〈f,∇g〉

]
,

which is thus linear and bounded. In fact, for any f ∈ L1(D)d and g ∈ V0,∣∣〈f,∇g〉∣∣ ≤ ∥∥f∥∥
L1(D)

∥∥g∥∥
W 1,∞ .

∥∥f∥∥
L1(D)

∥∥g∥∥
V0

because V0 is continuously embedded in W 1,∞.

Definition 9.2.1. A strong solution to (9.1.1) is a triplet (u, η, ξ), where u, η, and ξ are
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adapted processes taking values in W 1,1
0 (D) ∩ H, L1(D)d, and L1(D), respectively, such that

η ∈ γ(∇u) and ξ ∈ β(u) a.e. in Ω× (0, T )×D,

u ∈ L0(Ω;C([0, T ];H)) ∩ L0(Ω;L1(0, T ;W 1,1
0 (D))),

η ∈ L0(Ω;L1((0, T )×D)d),

ξ ∈ L0(Ω;L1((0, T )×D)),

∇u · η + uξ ∈ L0(Ω;L1((0, T )×D)),

and

〈
u, φ

〉
+

∫ ·
0

〈
η(s),∇φ

〉
ds+

∫ ·
0

〈
ξ(s), φ

〉
ds = 〈u0, φ〉+

〈∫ ·
0

B(s, u(s)) dW (s), φ

〉
for all φ ∈ V0.

The last identity in the above definition is equivalent to the validity in the dual of V0 of the
equality

u−
∫ ·

0

div η(s) ds+

∫ ·
0

ξ(s) ds = u0 +

∫ ·
0

B(s, u(s)) dW (s).

Note that u, u0 and the stochastic integrals take values in H and the third term on the left-
hand side takes values in L1(D), hence also the second term on the right-hand side belongs to
L1(D), so that the equality holds also in L1(D). The same reasoning implies that the sum of
the second and third terms on the left-hand side take values in H, so that the above equality
can also be seen as valid in H.

The main result of the chapter is the following. The proof is given in §9.3 below.

Theorem 9.2.2. There exists a strong solution (u, η, ξ) to equation (9.1.1). It is predictable
and satisfies the following properties:

u ∈ L2(Ω;C([0, T ];H)) ∩ L1(Ω;L1(0, T ;W 1,1
0 (D))),

η ∈ L1(Ω× (0, T )×D)d,

ξ ∈ L1(Ω× (0, T )×D),

∇u · η ∈ L1(Ω× (0, T )×D),

uξ ∈ L1(Ω× (0, T )×D).

Moreover, the solution map

L2(Ω,F0;H) −→ L2(Ω;C([0, T ];H))

u0 7−→ u

is Lipschitz-continuous. In particular, if (u1, η1, ξ1) and (u2, η2, ξ2) are any two strong so-
lutions satisfying the properties above, then u1 = u2 and −div η1 + ξ1 = −div η2 + ξ2 in
L2(Ω;C([0, T ];H)) and L1(Ω;L1(0, T ;V ′0)), respectively.
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9.3 Proof of Theorem 9.2.2

9.3.1 Itô’s formula for the square of the H-norm

We establish a version of Itô’s formula for the square of the H-norm in a generalized variational
setting, which will play an important role in the sequel. The result is interesting in its own
right, as it does not follow from the classical ones in [46, 72], and is apparently new for Itô
processes containing a drift term in divergence form with minimal integrability properties.

Proposition 9.3.1. Let Y , f , and g be measurable adapted processes with values in H ∩
W 1,1

0 (D), L1(D)d, and L1(D), respectively, such that

Y ∈ L0(Ω;L∞(0, T ;H)) ∩ L0(Ω;L1(0, T ;W 1,1
0 (D))),

f ∈ L0(Ω;L1((0, T )×D)d),

g ∈ L0(Ω;L1((0, T )×D)),

and there exists constants a, b > 0 such that

k(a∇u) + k∗(af) + j(bu) + j∗(bg) ∈ L0(Ω;L1((0, T )×D)).

Moreover, let Y0 ∈ L0(Ω,F0;H) and G be an L 2(U,H)-valued progressively measurable process
such that G ∈ L0(Ω;L2(0, T ; L 2(U,H))). If

Y −
∫ ·

0

div f(s) ds+

∫ ·
0

g(s) ds = Y0 +

∫ ·
0

G(s) dW (s)

as an identity in V ′0 , then

1

2
‖Y ‖2 +

∫ ·
0

∫
D

f(s) · ∇Y (s) ds+

∫ ·
0

∫
D

g(s)Y (s) ds

=
1

2
‖Y0‖2 +

1

2

∫ ·
0

‖G(s)‖2L 2(U,H) ds+

∫ ·
0

Y (s)G(s) dW (s).

Proof. The proof is essentially a combination of arguments described in great detail in Chap-
ters 3 and 7, hence we shall limit ourselves to a sketch only. Using a superscript δ to denote
the action of (I− δ∆)−m, for a sufficiently large m ∈ N, we have, thanks to Sobolev embedding
theorems and classical elliptic regularity results,

Y δ −
∫ ·

0

div fδ(s) ds+

∫ ·
0

gδ(s) ds = Y δ0 +

∫ ·
0

Gδ(s) dW (s)

as an identity of H-valued processes. Itô’s formula for Hilbert-space valued continuous semi-
martingales thus yields

1

2
‖Y δ‖2 +

∫ ·
0

∫
D

fδ(s) · ∇Y δ(s) ds+

∫ ·
0

∫
D

gδ(s)Y δ(s) ds

=
1

2
‖Y δ0 ‖

2
+

1

2

∫ ·
0

‖Gδ(s)‖2L 2(U,H) ds+

∫ ·
0

Y δ(s)Gδ(s) dW (s).

(9.3.2)
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Thanks to the assumptions on Y , f , g ad G, it easily follows that, P-a.s.,

Y δ0 −→ Y0 in H,

Y δ(t) −→ Y (t) in H ∀ t ∈ [0, T ],

fδ −→ f in L1((0, T )×D)d,

gδ −→ g in L1((0, T )×D),

Gδ −→ G in L2(0, T ; L 2(U,H)).

Similarly, using simple properties of Hilbert-Schmidt operators and the dominated convergence
theorem, it is not difficult to verify that the quadratic variation of (Y δGδ − Y G) ·W converges
to zero in probability, so that ∫ ·

0

Y δGδ dW −→
∫ ·

0

Y GdW

uniformly (with respect to time) in probability. Furthermore, thanks to the hypotheses on k

and j, the families (∇uδ · Y δ) and (gδY δ) are uniformly integrable in (0, T ) ×D P-a.s., hence
by Vitali’s theorem we also have that, P-a.s.,

fδ · ∇Y δ −→ f · ∇Y in L1((0, T )×D),

gδY δ −→ gY in L1((0, T )×D).

The proof is completed passing to the limit as δ → 0 in (9.3.2), in complete analogy to Sec-
tions 4.3 and 7.3.

Corollary 9.3.2. Under the assumptions of the previous proposition, one has

Y ∈ L0(Ω;C([0, T ];H)).

Proof. Since Y ∈ L∞(0, T ;H)∩C([0, T ];V ′0), the trajectories of Y are weakly continuous in H
(see, e.g., [79]). Moreover, by Itô’s formula one has

1

2
‖Y (t)‖2 − 1

2
‖Y (r)‖2 +

∫ t

r

∫
D

f(s) · ∇Y (s) ds+

∫ t

r

∫
D

g(s)Y (s) ds

=
1

2

∫ t

r

‖G(s)‖2L 2(U,H) ds+

∫ t

r

Y (s)G(s) dW (s)

for every r, t ∈ [0, T ]. This implies, by an argument analogous to the one used in Chapter 3.3,
that the function t 7→ ‖Y (t)‖ is continuous on [0, T ]. By a well-known criterion we thus conclude
that Y has strongly continuous trajectories in H.

9.3.2 Well-posedness in a special case

As a first step we prove existence of solutions to (9.1.1) assuming that the noise is of additive
type and that

B ∈ L2(Ω;L2(0, T ; L 2(U, V0))).

For any λ > 0, let γλ and βλ denote the Yosida approximations of γ and β, respectively, and
consider the regularized equation

duλ(t)− λ∆uλ(t) dt− div γλ(∇uλ(t)) dt+ βλ(uλ(t)) dt = B(t) dW (t), uλ(0) = u0.
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Since γλ and βλ are monotone and Lipschitz-continuous, it is not difficult to check that the
operator

φ 7−→ −λ∆φ− div γλ(∇φ) + βλ(φ)

is hemicontinuous, monotone, coercive and bounded on (H1
0 (D), H,H−1(D)), so that the clas-

sical results by Pardoux [72] provide existence and uniqueness of a variational solution

uλ ∈ L2(Ω;C([0, T ];H)) ∩ L2(Ω;L2(0, T ;H1
0 (D))).

The a priori estimates on the solution uλ contained in the next lemma can be obtained essentially
as in Chapters 2, 6 and 7.

Lemma 9.3.3. There exists a constant N independent of λ such that

‖uλ‖2L2(Ω;C([0,T ];H)) + λ‖∇uλ‖2L2(Ω;L2(0,T ;H))

+ ‖γλ(∇uλ) · ∇uλ‖L1(Ω×(0,T )×D) + ‖βλ(uλ)uλ‖L1(Ω×(0,T )×D) < N

for all λ ∈ (0, 1). Furthermore, there exists Ω′ ∈ F with P(Ω′) = 1 such that, for every ω ∈ Ω′,
there exists a constant M(ω) independent of λ such that

‖uλ(ω)‖2C([0,T ];H) + λ‖∇uλ(ω)‖2L2(0,T ;H)

+ ‖γλ(∇uλ(ω)) · ∇uλ(ω)‖L1((0,T )×D) + ‖βλ(uλ(ω))uλ(ω)‖L1((0,T )×D) < M(ω)

for all λ ∈ (0, 1).

Proof. It is an immediate consequence of the (proofs of the) Lemmata 7.4.3–7.4.6, for the part
involving γ, and Lemmata 2.4.3–2.4.6, for the part involving β.

Since

k∗(γλ(∇uλ)) ≤ k∗(γλ(∇uλ)) + k((I + λγ)−1∇uλ) = γλ(∇uλ) · (I + λγ)−1∇uλ
≤ γλ(∇uλ) · ∇uλ

and

j∗(βλ(uλ)) ≤ j∗(βλ(uλ)) + j((I + λβ)−1uλ) = βλ(uλ)(I + λβ)−1uλ ≤ βλ(uλ)uλ,

we infer that the families (k∗(γλ(∇uλ))) and (j∗(βλ(uλ))) are uniformly bounded in L1(Ω ×
(0, T ) × D). Therefore, recalling that k∗ and j∗ are superlinear, thanks to the de la Vallée-
Poussin criterion and the Dunford-Pettis theorem we deduce that the families (γλ(uλ)) and
(βλ(uλ)) are relatively weakly compact in L1(Ω× (0, T )×D)d and L1(Ω× (0, T )×D), respec-
tively. Analogously, the families (γλ(uλ(ω))) and (βλ(uλ(ω))) are relatively weakly compact in
L1((0, T )×D)d and L1((0, T )×D), respectively, for P-a.e. ω ∈ Ω.

Let Ω′ be as in the previous lemma and take ω ∈ Ω′. Then we have, along a subsequence λ′
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of λ depending on ω,

uλ′(ω) −→ u(ω) weakly* in L∞(0, T ;H),

∇uλ′(ω) −→ ∇u(ω) weakly in L1((0, T )×D)d,

λ′uλ′(ω) −→ 0 in L2(0, T ;H1
0 (D)),

γλ′(uλ′(ω)) −→ η(ω) weakly in L1((0, T )×D)d,

βλ′(uλ′(ω)) −→ ξ(ω) weakly in L1((0, T )×D),

hence, by passage to the weak limit in the regularized equation taking test functions in V0, we
have

u−
∫ ·

0

div η(s) ds+

∫ ·
0

ξ(s) ds = u0 +

∫ ·
0

B(s) dW (s). (9.3.3)

Moreover, by the lower semicontinuity of convex integrals, it also follows that

k(∇u(ω)) + k∗(η(ω)) + j(u(ω)) + j∗(ξ(ω)) ∈ L1((0, T )×D).

Arguing as in Chapters 2 and 7, one can show that the process u constructed in this way is
unique in the space L2(Ω;C([0, T ];H)). This ensures in turn that the convergences of (uλ) to
u hold along the entire sequence λ, which is independent of ω. In particular, we have that

uλ(ω) −→ u(ω) weakly in L2(0, T ;H) ∀ω ∈ Ω′.

Since (uλ) is bounded in L2(Ω × (0, T ) × D), we deduce that uλ converges weakly to u also
in L2(Ω × (0, T );H). Hence, by a direct application of Mazur’s lemma, we infer that u is
a predictable process with values in H. Unfortunately a similar argument does not apply
to η and ξ. In fact, by uniqueness of u, we can only infer from (9.3.3) that −div η + ξ is
unique: namely, assume that (ηi(ω), ξi(ω)), i = 1, 2, are weak limits in L1(0, T ;L1(D))d+1 of(
γλ(∇uλ(ω)), βλ(uλ)

)
along two subsequences of λ (depending on ω). Then

∫ t

0

(
−div(η1 − η2) + (ξ1 − ξ2)

)
ds = 0 ∀t ∈ [0, T ],

hence −div(η1− η2) + (ξ1− ξ2) = 0, or, equivalently, −div η1 + ξ1 = −div η2 + ξ2 in V ′0 for a.a.
t ∈ [0, T ]. However, this allows us to claim, setting ηλ := γλ(∇uλ) and ξλ := βλ(uλ), that

− div ηλ + ξλ −→ − div η + ξ weakly in L1(0, T ;V ′0) ∀ω ∈ Ω′

along the whole sequence λ, thanks to the same uniqueness argument already used for u. In
fact, let us set, for notational convenience,

Φ : L1(D)d+1 −→ V ′0

(v, f) 7−→ − div v + f

and ζλ := (ηλ, ξλ), ζ := (η, ξ). Note that Φ, being a linear bounded operator, can be extended
to a linear bounded operator from L1((0, T )×D)d+1 ' L1(0, T ;L1(D)d+1) to L1(0, T ;V ′0), also
when both spaces are endowed with the weak topology. Then ζλ → ζ weakly in L1((0, T )×D)d+1

implies that Φζλ → Φζ weakly in L1(0, T ;V ′0) for all ω ∈ Ω′. Such a convergence, however,
does not allow to infer that −div η+ ξ is predictable as a V ′0 -valued process. The reason is that
we may certainly find, by Mazur’s lemma, a convex combination of −div ηλ + ξλ converging
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strongly to −div η + ξ in L1(0, T ;V ′0) for all ω ∈ Ω′, but such a convex combination would
depend on ω, bringing us back to the same problem we are trying to solve.∗ In order to show
that −div η + ξ is indeed predictable, we are first going to prove that

−div ηλ + ξλ −→ − div η + ξ weakly in L1(Ω× (0, T );V ′0).

We have just shown that∫ T

0

〈
Φζλ(ω, t), φ(t)

〉
dt −→

∫ T

0

〈
Φζλ(ω, t), φ(t)

〉
dt

for all φ ∈ L∞(0, T ;V0), for all ω ∈ Ω′, where 〈·, ·〉 stands for the duality between V ′0 and
V ′′0 = V0. Let ψ ∈ L∞(Ω × (0, T );V0). Then ψ(ω, ·) ∈ L∞(0, T ;V0) for P-a.e. ω ∈ Ω. Indeed,
the set

A :=
{

(ω, t) ∈ Ω× [0, T ] : ‖ψ(ω, t)‖V0
> ‖ψ‖L∞(Ω×(0,T );V0)

}
belongs to F ⊗B([0, T ]), and, by Tonelli’s theorem,

|A| =
∫

Ω

∫ T

0

1A dt dP =

∫
Ω

Leb(Aω)P(dω),

where |A| denotes the measure of A and Aω stands for the section of A at ω, i.e.

Aω :=
{
t ∈ [0, T ] : (ω, t) ∈ A

}
,

which belongs to B([0, T ]) for P-a.e. ω ∈ Ω. Since |A| = 0, it follows that |Aω| = 0 for P-a.e.
ω ∈ Ω. This implies, by definition of A, that ψ(ω, ·) ∈ L∞(0, T ) for P-a.e. ω ∈ Ω. Consequently,
we have ∫ T

0

〈
Φζλ(ω, t), ψ(ω, t)

〉
dt −→

∫ T

0

〈
Φζ(ω, t), ψ(ω, t)

〉
dt

for P-a.e. ω ∈ Ω. To complete the argument it is then enough to show that the left-hand side,
as a subset of L0(Ω) indexed by λ, is uniformly integrable. To this end, we collect some simple
facts about uniform integrability in the following lemma.

Lemma 9.3.4. Let (X,A ,m) be a finite measure space and I an arbitrary index set.

(a) Let (fi)i∈I , (gi)i∈I ⊂ L0(X;Rn) be such that |fi| ≤ |gi| for all i ∈ I and assume that (gi)

is uniformly integrable. Then (fi) is uniformly integrable.

(b) Let (fi) ⊂ L0(X;Rn) be uniformly integrable and φ ∈ L∞(X;Rn). Then (φ · fi) ⊂ L0(X)

is uniformly integrable.

(c) Let F : Rn → R with F (0) = 0 be convex and superlinear at infinity, and (fi) ⊂ L0(X;Rn)

be such that (F ◦ fi) is bounded in L1(X). Then (fi) is uniformly integrable.

(d) Let (Y,B, n) be a further finite measure space. If (fi) ⊂ L0(X × Y,A ⊗B,m⊗ n;Rn) is
uniformly integrable, then (gi) ⊂ L0(X;Rn) defined by

gi :=

∫
Y

fi(·, y)n(dy)

is uniformly integrable.
∗We could just say that − div η + ξ is weakly measurable with respect to F and the Borel σ-algebra of

L1(0, T ;V ′0). Since this space is separable, by Pettis’ theorem we also have strong measurability. This observa-
tion, however, does not seem to imply the desired result.
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Proof. (a) is an immediate consequence of the definition of uniform integrability.

(b) Let ε > 0. By assumption, there exists δ = δ(ε) > 0 such that∫
A

∣∣fi∣∣Rn dm <
ε

‖φ‖L∞
∀A ∈ A , m(A) < δ.

Then ∫
A

∣∣φ · fi∣∣ dm ≤ ‖φ‖L∞ ∫
A

∣∣fi∣∣Rn dm < ε.

(c) is a variation of the classical criterion by de la Vallée-Poussin. A detailed proof (which
is nonetheless very close to the one in the standard one-dimensional case) can be found in
Chapter 7.

(d) Let ε > 0. By assumption, there exists δ′ = δ′(ε) > 0 such that∫
C

∣∣fi∣∣Rn dm⊗ n < ε ∀C ∈ A ⊗B, m⊗ n(C) < δ′.

Let δ := δ′/n(Y ) and A ∈ A with m(A) < δ. Then∫
A

∣∣∣∣∫
Y

fi(x, y)n(dy)

∣∣∣∣
Rn
m(dx) ≤

∫
A×Y

∣∣fi(x, y)
∣∣
Rn m(dx)n(dy) < ε

because m⊗ n(A× Y ) = m(A)n(Y ) < δn(Y ) = δ′.

Let us now resume with the main reasoning. Since∫ T

0

〈
Φζλ, ψ

〉
. ‖ψ‖L∞(Ω×(0,T );V0)

(∫ T

0

∫
D

|ηλ|+
∫ T

0

∫
D

|ξλ|
)
,

by parts (a), (b) and (d) of the previous lemma it is sufficient to show that (ηλ) and (ξλ) are
uniformly integrable in Ω×(0, T )×D. But this is true, in view of part (c) of the previous lemma,
because k∗(ηλ) and j∗(ξλ) are uniformly bounded in L1(Ω× (0, T )×D). Vitali’s theorem then
yields ∫ T

0

〈
Φζλ(ω, t), ψ(ω, t)

〉
dt −→

∫ T

0

〈
Φζ(ω, t), ψ(ω, t)

〉
dt in L1(Ω),

hence, in particular,

Φ(ηλ, ξλ) −→ Φ(η, ξ) weakly in L1(Ω× (0, T );V ′0).

Furthermore, from the uniform integrability of (ηλ) and (ξλ) in Ω × (0, T ) ×D it also follows
that, along a subsequence µ of λ,

(ηµ, ξµ) −→ (η̄, ξ̄) weakly in L1(Ω× (0, T )×D)d+1,

hence also
Φ(ηµ, ξµ) −→ Φ(η̄, ξ̄) weakly in L1(Ω× (0, T );V ′0).

An application of Mazur’s lemma yields, in complete analogy to the case of u, that η̄ and ξ̄ are
predictable processes with values in L1(D)d and L1(D), respectively. Since µ is a subsequence
of λ, by uniqueness of the weak limit we have that Φ(η, ξ) = Φ(η̄, ξ̄), i.e.

− div η + ξ = −div η̄ + ξ̄.
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This implies that the identity (9.3.3) remains true with η and ξ replaced by η̄ and ξ̄, respectively.
In other words, modulo relabelling, we can just assume, without loss of generality, that η and
ξ in (9.3.3) are predictable and that

(ηλ, ξλ) −→ (η, ξ) weakly in L1(Ω× (0, T )×D)d+1.

By weak lower semicontinuity and Lemma 9.3.3, this also implies, arguing as in Chapters 2, 6
and 7, that

u ∈ L2(Ω;L∞(0, T ;H)) ∩ L1(Ω;L1(0, T ;W 1,1
0 (D))),

η ∈ L1(Ω× (0, T )×D)d,

ξ ∈ L1(Ω× (0, T )×D),

k(∇u) + k∗(η) = ∇u · η ∈ L1(Ω× (0, T )×D),

j(u) + j∗(ξ) = uξ ∈ L1(Ω× (0, T )×D).

In order to show that η ∈ γ(∇u) and ξ ∈ β(u) a.e. in Ω × (0, T ) ×D, it suffices to prove, by
the maximal monotonicity of γ and β, that

lim sup
λ→0

E
∫ T

0

∫
D

(
ηλ · ∇uλ + ξλuλ

)
≤ E

∫ T

0

∫
D

(
η · ∇u+ ξu

)
. (9.3.4)

To this purpose, note that the ordinary Itô formula and Proposition 9.3.1 yield

1

2
E‖uλ(T )‖2 + E

∫ T

0

∫
D

(
ηλ · ∇uλ + ξλuλ

)
=

1

2
E‖u0‖2 +

1

2
E
∫ T

0

∥∥B(s)
∥∥2

L 2(U,H)
ds

and
1

2
E‖u(T )‖2 + E

∫ T

0

∫
D

(
η · ∇u+ ξu

)
=

1

2
E‖u0‖2 +

1

2
E
∫ T

0

∥∥B(s)
∥∥2

L 2(U,H)
ds,

respectively (the stochastic integrals appearing in both versions of Itô’s formula are in fact
martingales, not just local martingales, hence their expectation is zero). Since uλ(T ) ⇀ u(T )

in L2(Ω;H), one has E‖u(T )‖2 ≤ lim infλ→0 E‖uλ(T )‖2, hence, by comparison, (9.3.4) follows.
Finally, the strong pathwise continuity (in H) of u is an immediate consequence of the

corollary to Proposition 9.3.1.

Remark 9.3.5. Another way to “restore” uniqueness of limits for the pair ζλ = (ηλ, ξλ) is to
view it as element of the quotient space L1(D)d+1/M , where M := ker Φ. Note that M is a
closed subset of L1 (we suppress the superscript as well as the indication of the domain just
within this remark), as the inverse image of the closed set {0} through a continuous linear
map, hence L1/M is a Banach space. However, working with the spaces L1(0, T ;L1/M) and
L1(Ω×(0, T );L1/M) present technical difficulties due to the fact that their dual spaces are hard
to characterize. A bit more precisely, this has to do with the fact that the dual of L1(0, T ;E)

is L∞(0, T ;E′) if and only if E has the Radon-Nikodym property. This property is enjoyed by
reflexive spaces, but not by L1 spaces (see, e.g., [33]).

9.3.3 Well-posedness in the general case

Let us consider now equation (9.1.1) with general additive noise, i.e. with

B ∈ L2(Ω;L2(0, T ; L 2(U,H))).
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Thanks to classical elliptic regularity results, there exists m ∈ N such that the (I − δ∆)−m

is a continuous linear map from L1(D) to W 1,∞(D) ∩ H1
0 (D) for every δ > 0. Setting then

V0 := (I−∆)−m(H) and Bδ := (I−δ∆)−mB, we have Bδ ∈ L2(Ω;L2(0, T ; L 2(U, V0))), hence,
by the well-posedness results already obtained, the equation

duδ − div γ(∇uδ) dt+ β(uδ) dt 3 Bδ dW, uδ(0) = u0,

admits a strong solution (uδ, ηδ, ξδ). Arguing as in Chapters 2, 6 and 7, one can show using
Itô’s formula that (uδ) is a Cauchy sequence in L2(Ω;C([0, T ];H)) and that (∇uδ), (ηδ), and
(ξδ) are relatively weakly compact in L1(Ω× (0, T )×D), so that

uδ −→ u in L2(Ω;C([0, T ];H)),

uδ −→ u weakly in L1(Ω× (0, T );W 1,1
0 (D)),

ηδ −→ η weakly in L1(Ω× (0, T )×D)d,

ξδ −→ ξ weakly in L1(Ω× (0, T )×D),

from which it follows that (u, η, ξ) solves the original equation. Moreover, the strong-weak
closure of β readily implies that ξ ∈ β(u) a.e. in Ω × (0, T ) × D. Finally, arguing as in the
previous subsection, by weak lower semicontinuity of convex integrals and Itô’s formula one can
show that

lim sup
λ→0

E
∫ T

0

∫
D

ηλ · ∇uλ ≤ E
∫ T

0

∫
D

η · ∇u,

so that η ∈ γ(∇u) a.e. in Ω× (0, T )×D as well.
Continuous dependence on the initial datum is a consequence of Itô’s formula and the

monotonicity of γ and β. Finally, the generalization to the case of multiplicative noise follows
using the Lipschitz continuity of B and a classical fixed point argument. A detailed exposition
of the arguments needed to prove these claims can be found in Chapters 2, 6 and 7.
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