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Silver-containing nanomaterials are of interest for their antibiotic properties,

for a wide range of applications from medicine to consumer products.

However, much remains to be learnt about the degradation of such materials

and their effects on human health. While most analyses involve measurement

of total silver levels, it is important also to be able to measure concentrations

of active free Ag(I) ions. We report here the preparation of a coumarin-based

probe, thiocoumarin silver sensor 1 (TcAg1), that responds reversibly to the

addition of silver ions through the appearance of a new fluorescence emission

peak at 565 nm. Importantly, this peak is not observed in the presence of

Hg(II), a common interferent in Ag(I) sensing. To establish the utility of this

sensor, we prepared silver-doped phosphate glasses with demonstrated bac-

tericidal properties, and observed the Ag(I) release from these glasses in

solutions of different ionic strength. TcAg1 is therefore a useful tool for the

study of the environmental and medical effects of silver-containing materials.
1. Introduction
Silver is widely used in industrial applications due to its conductivity and mal-

leability properties [1], as well as in medicine as an antibiotic coating and in

wound treatment [2–5]. Because of its antibacterial properties, the use of

silver coatings and nanoparticles is widespread in both the clinic and in every-

day household items such as clothes, the lining of washing machines and

refrigerators. In addition to their well-reported bactericidal properties [6,7],

silver nanoparticles have also found application as imaging agents [8,9] and

drug delivery vehicles [10,11]. The high toxicity of silver is crucial for the

unique antibacterial properties of this metal, but there is concern about the

effect of aquatic silver pollution on freshwater invertebrates [12] and fish [13].

The degradation products of silver nanoparticles in waterways are very differ-

ent from those of elemental silver pollutants and there is therefore much interest

in better understanding this speciation and its effects [14].

The apparent toxicity of silver is not directly correlated to total silver con-

centration, but is due primarily to the free Ag(I) ion itself [13,15];

environmental samples generally show lower toxicity of silver relative to lab-

oratory standards with the same total concentration, due to the silver being

bound or chelated to organic and inorganic ligands in the environmental

samples [16–18]. In terms of silver nanoparticles and their use in medicine,

Ag(I) release is the primary reason for bacterial toxicity; nanoparticle size
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Figure 1. (a) Structure of thiocoumarin TcAg1; (b) structure of coumarin derivative after desulfurization (coumarin 6).
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and morphology indirectly influence toxicity, mostly by

modulating the release of Ag(I) [19]. In the chloride-rich

environments of in vitro buffers and biological systems

alike, the extremely poor solubility of silver chloride results

in very low (less than 1 ppb) equilibrium concentrations of

free Ag(I) ions [20,21], and bacterial toxicity therefore relies

on high potency or very high local Ag(I) concentration at

the site of dissolution. As the concentration and rate of

Ag(I) release are critical to toxicity and bactericidal efficacy,

the ability to easily monitor free Ag(I) over time is of great

interest. Furthermore, the ability to monitor release of Ag(I)

from consumer products is critical to maintaining levels

that are safe to humans and do not lead to the rapid develop-

ment of resistance to silver by bacteria.

Traditional instrument methods for measuring silver

include inductively coupled plasma-mass spectrometry and

-optical emission spectrometry (ICP-MS and ICP-OES,

respectively), flame and graphite furnace atomic absorption

spectrometry (FAAS and GFAAS), and voltammetry [22,23].

These techniques have some restrictions, including interfer-

ence at low analyte concentrations, and require sample

preparation or digestion and complex instruments and

trained operators. Importantly, these techniques lack the abil-

ity to differentiate between metallic silver, precipitated silver

salts and complexes and free Ag(I). In general, for metal-

sensing applications, optical detection approaches using

selective sensors have been shown to be simple and cost-

effective, with sensitivity to oxidation state and coordination

environment [24,25]. Fluorescent probes should therefore

provide an avenue for efficient monitoring of biologically

relevant Ag(I) species at low concentrations.

Recent efforts to prepare fluorescent sensors for Ag(I)

have included systems based on gold nanoparticles [26],

carbon dots [27,28] and polyoxy-derivatized perylenediimide

[29]. More traditional metal-sensing systems, involving a

silver-selective receptor coupled to a fluorophore [30], have

used a range of donor atoms for the soft Ag(I), from hard

nitrogen and oxygen donors [31] to the very soft tellurium

[32]. In sensing Ag(I), there is a particular challenge in achiev-

ing selectivity over other metal ions, with the main

interferents being iron and copper [33,34], and mercury

[35,36]. One approach to overcoming this interference is to

seek spectral distinction of two similar ions, as has previously

been achieved for an aggregation-induced emission sensor

that responds to both silver and mercury [36].

Our interest is in developing sensors for monitoring the

release of Ag(I) from silver-containing nanomaterials. For

time-based studies we were particularly interested in

identifying reversible sensors, which could sense not only

increases in Ag(I) concentration but also respond to sub-

sequent decreases in Ag(I) concentration. We have

previously observed that sulfur-rich receptors designed for

the sensing of Cu(I) showed some response to Ag(I) [37],
and we have therefore been interested in using sulfur donor

groups for the detection of silver. In this present study, we

investigated thiocoumarin compounds, which have been

reported as reaction-based mercury probes [38]. The response

of the thiocoumarins to Hg(II), and to a lesser extent to

Au(III) [39], occurs via desulfurization of the thiocarbonyl

(figure 1a) to a carbonyl, yielding the brightly fluorescent

oxo-coumarin derivative (figure 1b, coumarin 6). Other inves-

tigated metals ions did not catalyse this reaction, but notably

the authors reported the appearance of a longer-wavelength

peak upon addition of Ag(I). We therefore sought to investi-

gate whether the thiocoumarin compound reported by Choi

and co-workers [39], which we will refer to as TcAg1

(figure 1a), could act as a silver sensor via an orthogonal sig-

nalling mechanism to the reported Hg(II)-catalysed

desulfurization.
2. Experimental methods
2.1. General experimental methods
All solvents used were laboratory grade and were used with-

out further purification unless otherwise stated. Milli-Q water

was used to prepare all aqueous solutions. Reagents were

purchased from Sigma Aldrich, Alfa Aesar and Combi-

blocks. Analytical thin layer chromatography was performed

on commercially prepared silica plates (Merck Kieselgel 60,

0.25 mm F254). Flash column chromatography was performed

using Davisil 230–400 mesh Kieselgel 60 silica eluting with

solvents as described. Commercial materials were used as

received unless otherwise noted.

2.2. Instrumentation
1H NMR spectra were recorded at 298 K using a Bruker

Avance III 400. 13C NMR spectra were recorded on the

same spectrometer at a frequency of 101 MHz. NMR data

are referenced to residual solvent signal and processed

using Topspin (Bruker). Chemical shifts (d) are expressed in

parts per million (ppm). Abbreviations used to describe

NMR spectra are: s (singlet), d (doublet), t (triplet), q (quar-

tet), m (multiplet) and/or br (broad). Mass spectrometry

was performed on a Bruker AmaZon SL ion trap mass

spectrometer.

ICP-MS measurements were performed using a Perkin

Elmer Nexion 300X. Samples were digested in conc. HNO3

overnight at room temperature before dilution with Milli-Q

water to a 1 mg l21 to 1 mg l21 (i.e. 1 ppb – 1 ppm) concen-

tration range. Calibration curves were constructed with Ag

as a mixed standard using a Hamilton autodiluter. Internal

standards Sc, Rh and Ir were infused inline via a mixing

block with all samples and standards. All elements were

measured in standard mode.
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Figure 2. Fluorescence emission spectra of TcAg1; (a) 100 mM in THF, lex ¼ 470 nm, with 10 eq. of metal ion; (b) 100 mM in THF, lex ¼ 530 nm, with 10 eq.
of metal.
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Fluorescence measurements were performed on a Perki-

nElmer Enspire Plate Reader or a CaryEclipse 4000

fluorometer. pH studies were performed using 20 mM MES

buffer (pH 5.5–6) and 20 mM chloride-free HEPES buffer

(pH 7–9). Binding affinity was calculated using BindFit

v. 0.5 (supramolecular.org).
2.3. Preparation of Ag(I)-doped phosphate-based
glasses (AgPBGs)

AgPBGs were produced using NaH2PO4 (BDH, �98%), P2O5

(Sigma, �97%) and CaCO3 (BDH, �98.5%). For the prep-

aration of silver-containing PBGs, Ag2SO4 (Sigma, 99.99%)

was also used. The required amount of each reagent was

weighed and added to a fused silica crucible. The crucible

was then placed in a preheated furnace at 11008C for 1 h,

after which the molten glass was poured into graphite

moulds, which had been preheated to 3508C. The glass

samples were allowed to cool to room temperature, and the

resulting glass rods cut into discs by using a rotary diamond

saw (Testbourne Ltd, Basingstoke, UK).
2.4. Inhibition of microbial growth by silver-doped
phosphate-based glasses

AgPBGs (1 and 5 mol % Ag) were investigated for their abil-

ity to inhibit microbial growth using a disc diffusion

methodology (BSAC Disc Diffusion Method for Antimicro-

bial Susceptibility Testing, Version 4, 2005). Iso-sensitest

agar (Oxoid, Basingstoke, UK) plates were inoculated with

a standardized culture of Staphylococcus aureus (NCTC

6571), Escherichia coli (NCTC 10418) and Candida albicans
(NCPF 3179). Columbia agar (Oxoid, Basingstoke, UK) with

2% NaCl plates were inoculated with MRSA-16. In the case

of the anaerobic bacterium Clostridium difficile, Wilkins-

Chalgren agar plates supplemented with 5% horse blood

(E & O Laboratories, UK) were used. AgPBGs discs of

5 mm diameter and 2 mm thickness were then placed on

the inoculated plates. Discs not containing any silver were

used as negative controls. These plates were then incubated

overnight in air at 378C. The diameters of any zones that

had formed around the discs were measured in triplicate

using calipers.
2.5. Effect of silver concentration on planktonic
Staphylococcus aureus, Escherichia coli and Candida
albicans growth

Staphylococcus aureus, E. coli and C. albicans cells were inoculated

into 10 ml of nutrient broth and incubated overnight at 378C
with 200 r.p.m. agitation in an orbital shaker (Stuart Scientific,

UK). The overnight cultures were used to inoculate a 5 ml

volume of phosphate-buffered saline (PBS; Oxoid) to a standar-

dized optical density of 0.03 at a wavelength of 600 nm (OD600).

AgPBGs discs of 12 mm diameter and 1 mm thickness were

added to each tube, with the silver-free disc used as a control.

The tubes were then incubated at 378C. At various time inter-

vals (up to 120 h) aliquots were removed and turbidity

measurements were conducted at 600 nm. At each time interval

serial dilutions of the suspensions were carried out in PBS. Fifty

microlitres of the suspension and each dilution was spread onto

MacConkey agar (Oxoid, Basingstoke, UK) plates. The plates

were then incubated aerobically at 308C for 48 h. For each

type of disc, viable counts (colony forming units; CFUs) were

conducted in triplicate.
2.6. Studies of Ag-doped phosphate glass
Discs of phosphate glass (15 mm diameter; 2 mm thickness)

were placed in plastic specimen tubes. Each tube was filled

with 50 ml of deionized water (pH 7+0.5) or PBS saline sol-

ution (0.01 M, pH 7.4) and placed in a circulating water bath

at 208C or 378C. At various time points (1, 6, 24, 48, 72, 96

and 120 h), a 250 ml aliquot of solution was removed and

diluted with 240 ml of THF, before 10 ml of TCAg1 stock sol-

ution in THF was added (10 mM final concentration of

TCAg1) and a fluorescence measurement was taken. At each

time point the phosphate glass samples were taken out of

their respective containers and excess moisture was removed

by blotting the samples dry with tissue before they were

weighed. All the phosphate glass samples were returned into

the same solution placed back into the water bath.
2.7. Synthetic methods
Compounds coumarin 6 [38], TCAg1 [38] and 3-(2-benzox-

azolyl)-7-(diethylamino)-2H-1-benzopyran-2-one [40] were

prepared according to literature procedures (see electronic

supplementary material, scheme S1).
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2.7.1. 3-(2-Benzoxazolyl)-7-(diethylamino)-2H-1-benzopyran-2-
one (TCAgO)

To a solution of 3-(2-benzoxazolyl)-7-(diethylamino)-2H-1-

benzopyran-2-one (28.3 mg, 0.085 mmol) in degassed

toluene (15 ml) was added Lawesson’s reagent (530 mg,

1.31 mmol). The orange mixture was heated at reflux for

3 days, under a nitrogen atmosphere. The red mixture was

removed from the heat and allowed to cool to room temp-

erature. The solvent was removed under reduced pressure

to give a red oil which was purified by flash column chrom-

atography (SiO2; 2% methanol in dichloromethane) to afford

TCAgO (22 mg, 73%) as a red oil. Rf ¼ 0.39 (2% methanol in

dichloromethane); 1H NMR (400 MHz, CDCl3) d 8.27

(s, 1H), 7.84–7.78 (m, 1H), 7.63–7.58 (m, 1H), 7.42 (d, J ¼
8.7 Hz, 1H), 7.38–7.33 (m, 2H), 6.73–6.65 (m, 2H), 3.47

(q, J ¼ 7.2 Hz, 4H), 1.25 (t, J ¼ 7.2 Hz, 6H) ppm; 13C NMR

(101 MHz, CDCl3) d 192.0, 152.9, 150.6, 141.7, 139.8, 130.4,

125.2, 124.4, 120.2, 119.8, 111.1, 110.7, 110.3, 96.6, 45.3,

12.5 ppm; HRMS ESI [C20H19N2O2S]þ requires: 351.11618,

found: 351.11622.
3. Results and discussion
3.1. Spectroscopic studies
When we treated TcAg1 with AgNO3 and excited at 470 nm,

two emission peaks were observed at 511 nm and 565 nm

(figure 2a). The shorter wavelength peak corresponds to
the coumarin, which is a product of desulfurization, and

the longer wavelength peak was envisaged to be due to

non-covalent association of Ag(I). The excitation maximum

for this Ag(I) responsive peak was 530 nm. Upon excitation

at this wavelength, TcAg1 showed minimal response in the

absence of metal, or when treated with Hg(II) or a range of

other metal ions (figures 2b and 3). Fluorescence titrations

revealed a binding affinity for Ag(I) of 9.1 � 104M (elec-

tronic supplementary material, figure S1) and a limit of

detection of 0.13 mM (electronic supplementary material,

figure S2). This limit of detection is comparable to that docu-

mented in previous studies of fluorescent silver sensors,

which typically report values between 5 nM and 5 mM

[27,41–45].

To ensure practical application of the probe to environ-

mental or medical uses, it was important that the probe

function in an aqueous medium. With our interest in moni-

toring release of silver from nanomaterials, we did not

require operation in 100% aqueous systems, and instead per-

formed all subsequent experiments in a 1 : 1 aqueous and

organic solvent mixture. Addition of increasing amounts of

silver led to increasing intensity of the emission peak at

565 nm (figure 4), but monitoring the 511 nm emission

peak (with excitation at 470 nm) revealed negligible for-

mation of the carbonyl derivative upon silver addition

(electronic supplementary material, figure S3). The effect of

pH on TcAg1 response to Ag(I) was assessed using non-

complexing buffer solutions [46,47]. The fluorescence

response remained consistent over the range of pH 6 to pH

8 (electronic supplementary material, figure S4). At higher

pH values, a precipitate, presumed to be Ag2O, was

observed.

We then investigated the reversibility of the interaction of

TcAg1 with Ag(I). In 1 : 1 THF/H2O, the probe could be

converted from ‘on’ to ‘off’ via precipitation of silver with

chloride or complexation of the silver with organic thiol-

bearing ligands (figure 5a). This process could be cycled

(figure 5b), although with less than 100% return of fluor-

escence with each cycle due to accumulation of a small but

detectable amount of desulfurized product. This result high-

lights the difference in response of TcAg1 to Ag(I) and Hg(II),

with the latter causing an irreversible fluorescence change.

We therefore sought to further understand the nature of the

specific interaction between TcAg1 and Ag(I).
3.2. Investigation of binding mode
Job’s analysis did not show a standard profile with a single

maximum (electronic supplementary material, figure S5a),

instead indicating more complex coordination equilibria in

solution, with maxima observed for both the 2 : 1 and 1 : 1

complexes. However, examination of titration data between

0 and 3 equivalents of Ag(I) shows a clear slope change at

1 equivalent, consistent with the predominance of a 1 : 1 com-

plex (electronic supplementary material, figure S5b). The

coordination of Ag(I) to the benzothiazole moiety, probably

through the nitrogen, was expected to restrict the rotation

of the benzothiazole, increasing the planarity of the conju-

gated system to result in the longer wavelength emission.

We postulated the importance of both sulfur atoms in this

coordination: direct coordination to the thioketone on the

coumarin scaffold, and increasing the basicity of the nitrogen

of the benzothiazole ring. To test this hypothesis, we



pr
ob

e

+Ag(
I)

+Ag(
I) 

+ E
t 2
NCSSNa

0

100

200

300

400

fl
uo

re
sc

en
ce

 in
te

ns
ity

 (
ar

b.
 u

ni
ts

)

0 1 2 3 4 5
0.5

1.0

1.5

2.0

cycles

no
rm

al
iz

ed
 in

te
ns

ity

(b)(a)

Figure 5. Reversibility studies of TcAg1; (a) 10 mM TcAg1 and subsequent addition of AgNO3 (5 eq.) and diethyldithiocarbamate (10 eq.) in 1 : 1 THF/H2O; (b)
conditions as per (a) with alternate additions of Ag(I) and diethyldithiocarbamate. lex ¼ 530 nm, lem ¼ 565 nm. Emission values were normalized to the
emission peak observed for lex ¼ 470 nm, lem ¼ 510 nm.

450 500 550 600 650
0

200

400

600

800

1000

wavelength (nm)

fl
uo

re
sc

en
ce

 in
te

ns
ity

 (
ar

b.
 u

ni
ts

)

probe

Ag(I)

Hg(II)

(b)(a)

Figure 6. (a) Structure of TCAgO; (b) fluorescence spectrum of TCAgO (10 mM, 1:1 THF/H2O, lex ¼ 450 nm, 10 eq. of metal ion).

0

5

10

di
am

et
er

 o
f 

zo
ne

 (
m

m
)

S. aureus

E. coli

C. albicans

1% Ag 5% Ag

Figure 7. Disc diffusion assay conducted on 1 or 5 mol% Ag(I)-doped PBGs
against S. aureus, E. coli and C. albicans. Error bars represent the standard
deviation (n ¼ 3).

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180346

5

synthesized the benzoxazole derivative TCAgO (figure 6a) in

which the thiazolyl sulfur was replaced with an oxygen.

Titration studies showed similar spectral profiles when

either Ag(I) or Hg(II) were added, consistent with desulfuri-

zation in both cases. No additional emission peak was

observed upon silver addition, suggesting no non-covalent
interactions with Ag(I) such as that observed for TcAg1

(figure 6b). We also investigated the effect of silver addition

to coumarin 6, in which the thiocarbonyl sulfur is replaced

with oxygen (figure 1b). Added Ag(I) did not give rise to a

new fluorescence peak (electronic supplementary material,

figure S3). We can therefore conclude that both sulfur

atoms are required for the Ag(I)-binding interaction.

3.3. Silver-doped phosphate glass as a model
silver-releasing agent

Having demonstrated that TcAg1 responds reversibly to

Ag(I), we were interested in investigating its ability to moni-

tor Ag(I) release from silver-doped phosphate glass.

Phosphate-based glasses, which are broadly used in medical

applications [48], as well as silver nanoparticles [49], are of

considerable interest in combating bacterial biofilm-related

infections. In aqueous solutions, phosphate-based glasses dis-

solve over time and are considered bioresorbable and

biocompatible [50], offering a method for the controlled

release of Ag(I) [51]. Preliminary work has shown that

while effective, the antibacterial efficacy of the glass does

not vary relative to the silver content of the phosphate glass

[52]. A better understanding of silver-containing functional
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materials is required for improving their implementation and

in developing novel approaches to using these materials to

treat or prevent harmful biofilms.

To generate a system on which to test the Ag-sensing

ability of TcAg1, we prepared two glasses from 50 mol%

P2O5, 30 mol% CaO, 1 or 5 mol% Ag2O and the remainder

Na2O. The glasses were prepared by the conventional melt-

quenching process, and the melted glass was cast into

12 mm cylinders in a preheated graphite mould placed in

an annealing furnace at the required temperature.

The bactericidal activity of the glasses was tested using a

disc diffusion assay. Glass discs (2 mm) were prepared from
the cylinders and placed onto agar that had been inoculated

with a bacterial or yeast strain. After 24 h, the diameter of

free agar (bearing no bacteria/yeast) around the disc was

measured as the zone of inhibition (figure 7). Both low and

high silver-content glasses showed considerable ability to

kill both Gram-positive (S. aureus, MRSA, B. cereus) and

Gram-negative (E. coli, pseudomonas) bacteria, as well as patho-

genic yeast (C. albicans). The 5% Ag-content glass showed

slightly higher activity against all strains, and subsequent

biological studies were therefore performed with this glass.

The bactericidal activity of the 5%-doped glass was

further assessed by incubating suspensions of S. aureus and

E. coli with glass discs and measuring the turbidity of the

culture as a measure of bacterial density (figure 8). While

control tubes showed the expected exponential and mainten-

ance growth phases, there was very little increase in the

turbidity of tubes containing a phosphate glass disc, confirm-

ing the high antibacterial activity of the phosphate glass. This

was further confirmed when aliquots of the suspension were

grown out on agar and colonies counted daily over the sub-

sequent 5 days. Suspensions treated with the phosphate

glass showed far fewer colonies than control suspensions at

all time points (electronic supplementary material, figure S6).
3.4. Measurements of Ag(I) release from silver-doped
phosphate glass

Having demonstrated the antibacterial and antifungal activity of

the silver phosphate glasses, we sought to measure Ag(I) release

over time using TcAg1. We incubated the two Ag(I)-doped phos-

phate glass in distilled water over the course of 5 days at
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temperatures of 208C and 378C. Aliquots were periodically taken

and tested using TcAg1, and the phosphate glass sample dried

and weighed at the same time points. As expected, the 5% Ag-

doped glass resulted in a higher fluorescence response at each

time point compared to the 1% Ag-containing glass (figure 9a).

Similarly, when comparing 5% Ag glass at 208C versus 378C,

the increased temperature resulted in a higher fluorescence

response (figure 9b), correlating to an increased phosphate

glass dissolution rate and subsequent increased Ag(I) ion release.

In each case, the fluorescence response increased up to 2 days

before plateauing, although the phosphate glass continued to

dissolve, evidenced by the continued decreasing mass of the

dried sample (electronic supplementary material, figure S7)

and the increasing total Ag(I) content of the solution as measured

by ICP-MS (electronic supplementary material, figure S8). This

was attributed to the limit of available Ag(I) species in solution,

which is the parameter measured by TcAg1. By contrast, ICP-MS

measurements, which report on total silver content, whether free

Ag(I), insoluble silver salts or complexed silver ions, show a con-

sistent increase in total silver release over 5 days (electronic

supplementary material, figure S8).

These observations were further emphasized when the Ag-

doped phosphate glass was incubated in PBS (figure 10). No

turn-on of TcAg1 was observed at any time point, although

the phosphate glass mass decreased over time at a comparable

rate to that observed in the distilled water incubation. In PBS, it

is expected that released Ag(I) would be precipitated as chloride

or phosphate salts, precluding any Ag(I) interaction with TcAg1.

These results demonstrate that TcAg1 has utility in specifically

reporting on free Ag(I) ions rather than total Ag release, and

therefore provides a valuable complementary method to

traditionally employed techniques for measuring bulk silver.
4. Conclusion
As the toxicity of silver—whether to bacteria, aquatic life or

humans—is highly dependent on its speciation, it is clear

that alternatives are needed to traditional methods that

report on bulk silver levels. Importantly, too, these new

methods must be sensitive to the low levels of labile Ag(I)
expected in environmental samples. With a sub-micromolar

detection limit and a micromolar binding affinity, we have

been able to confirm that TcAg1 is well suited to this role.

In the present study, we have used TcAg1 to study the

release of silver from Ag-doped phosphate glass, just one of

the many commonly used silver-containing nanomaterials that

could be investigated with this system. With the added advan-

tage of reversibility of response, TcAg1 could also be used in

the future to study the fluctuations in silver levels over time,

for example in environmental samples. Immobilization of the

probe onto solid surfaces would further assist in this aim.

More widespread use of this probe could provide insights into

the inconsistencies in the bactericidal efficacy of silver materials,

and aid in developing better practice in the use of these materials.
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