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ABSTRACT

Background

Evidence indicates that sleep duration predicts increases in BMI over time and
thus, may lead to obesity. However, this relationship has not been explored to
the same extent in the opposite direction and it is unclear whether there is a
causal association between sleep duration and BMI, or vice versa. Bidirectional
epidemiological methods can establish the direction of this association and
genetic epidemiological methods may shed light on whether variation in BMI

causes changes in sleep duration.

Methods

Observational, bidirectional analyses were carried out using the English
Longitudinal Study of Ageing (ELSA) (Chapter 3) and a Norwegian community
sample of children (Chapter 4). A genome-wide association study (GWAS) of
sleep duration was then undertaken, with the aim of replicating previous, as well
as identifying novel, loci (Chapter 5). A large-scale Mendelian randomization
(MR) study was subsequently conducted, using genetic variants associated with
BM], to investigate the causal association between BMI and sleep duration in
~142,000 individuals; this was followed by polygenic risk score (PRS) analyses to

investigate shared genetic aetiology between the two traits (Chapter 6).
Key findings

In older adults, higher BMI was associated with very small decreases in sleep
duration, over 4-year follow-up; there was no association in the opposite
direction from sleep duration to change in BMI. There was no association in
either direction, between BMI and objective sleep duration in the sample of
Norwegian children. The GWAS of sleep duration did not have sufficient power
to replicate previous, or identify novel genetic variants for sleep duration, yet
effects were consistent with those of previous GWA studies. The heritability of

self-reported sleep duration was 7%, which is also in line with previous GWAS.



MR findings suggested that it is uncertain whether a causal relationship exists
between BMI and sleep duration and thus, triangulation of results is necessary. A
polygenic risk score of BMI was negatively associated with sleep duration,
showing some evidence of shared genetic aetiology; however, the variance

explained was only 0.02%.

Conclusions

This thesis suggests that BMI and sleep duration are weakly associated and that
using a combination of approaches is invaluable in helping us understand this
relationship. In older adults, it appeared that prospectively, BMI predicted small
changes in sleep duration, whilst in children there was no prospective
relationship in either direction. Findings from the GWAS suggest that the
heritability of self-reported sleep duration was low. Using MR it was not possible
to firmly conclude whether BMI causes changes in sleep duration or not and
therefore, more research is needed to determine this. Also, BMI and self-reported
sleep duration do not appear to have much underlying common genetic

aetiology.



IMPACT STATEMENT

The insight gained from this thesis serves to inform future research for
investigators interested in how adiposity might affect our sleep and/or vice versa
across the life course. In general, this is an important area as obesity has now
reached alarming proportions across the world. Also, there is evidence to suggest
that at least in Western countries, we are not getting sufficient sleep and the
quality of our sleep is decreasing, with the pressures and stress of modern life.
There is still a lot of work to be done, in terms of the relationship between other
measures of adiposity (besides BMI) and body composition and other sleep
parameters (besides duration). This future research is likely to be in the areas of
epidemiology, genetic epidemiology, causal inference, psychology and biology,
amongst others. In relation to impact outside of academia, findings from this
thesis suggest that people should be aware of what the benefits are of getting
sufficient sleep, as well as maintaining a healthy weight, due to the negative
health outcomes associated with insufficient sleep and with being overweight or
obese. However, this work does not advocate that improved sleep is necessarily a
guaranteed benefit of weight loss, or that weight loss is likely to occur as a result

of getting sufficient sleep.

Throughout my PhD I disseminated findings as they emerged and gave a range of
presentations, which are listed later (pages 16-17). I presented at a variety of
events, which included conferences, workshops and seminars. Although most of
my presentations were national, I also disseminated my work internationally,
with presentations in Norway and Uruguay. Also, the work carried out in Chapter
3 is published in a peer-reviewed journal, the work in Chapter 4 will be submitted
for publication and the work in Chapters 5 and 6 contributed to a scientific paper

which is currently under review in a scientific journal.
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1 OBESITY: INTRODUCTION, ASSOCIATION WITH
SLEEP DURATION AND AIMS OF THE THESIS

1.1 BRIEF INTRODUCTION AND OVERVIEW OF CHAPTER
CONTENTS

Research published within the last ten to fifteen years suggests that adiposity is
largely associated with shorter sleep duration. However, little is known about
whether greater adiposity causes changes in sleep duration, or whether
insufficient/prolonged sleep might cause changes in weight. It may be possible to
use genetic epidemiological methods to investigate the causal nature of this
relationship. The work undertaken in this thesis used a combination of
observational and genetic epidemiology to examine the complex relationship
between BMI and sleep duration. However, before this literature is reviewed, it is
necessary to describe the genetics of both BMI and sleep duration, with emphasis

on recent findings from genome-wide association studies (GWAS).

Obesity is a medical condition characterised by an excess of adiposity, often
leading to decreased quality of life, morbidity and/or mortality, due to related
physical and psychological complications. It is a complex trait, influenced by both
genetic and environmental factors. Obesity is a major public health concern, as the
global epidemic of obesity (‘globesity’) has now reached alarming rates across both

the developed and developing world.

In this chapter, there is a brief introduction to obesity with current prevalence
estimates. Next there is an overview of heritability using twin studies, followed by
GWAS studies. The subsequent two sections describe the main approaches to
measuring both adiposity and sleep duration, outlining pros and cons of each
method, with a focus on the measures used in this thesis. This is followed by a brief
synopsis of the key environmental determinants of obesity, in which the link with
sleep duration is introduced. The next section summarises the literature on the
molecular genetic determinants of sleep duration, centred on findings from

GWAS. The subsequent section provides a detailed review of the extant literature
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on the association of adiposity with sleep duration, separately for children and
adults. This chapter ends with the rationale for this research and a description of

the aims and objectives of the thesis, followed by a chapter summary.

1.2 BACKGROUND

Being obese is associated with an elevated risk of developing type II diabetes
mellitus (T2DM), cardiovascular disease (CVD), hypertension, stroke, certain types
of cancer, metabolic syndrome’, dyslipidemia and osteoarthritis?> and an elevated
risk of Vitamin D deficiency3. More recently, evidence suggests an association
between obesity and psychological outcomes, specifically psychological distress+
and common mental disorders (CMDs) such as depression5-7 and anxiety5-9, as well

as poorer cognitive function'.

The prevalence of obesity has been rising steadily in the developed and non-
developed world and was formally acknowledged as an epidemic by a WHO
consultation in 1997". The most recent systematic analysis of 128.9 million
children, adolescents and adults, across 200 countries, estimated that the number
of obese girls increased from 5 million to 50 million, whilst the number of obese
boys increased from 6 million to 74 million, between 1975 and 2016™. During this
g1-year period, the worldwide number of obese women increased from 69 million
to 390 million, and the number of men with obesity increased from 31 million to
281 million. Additionally, 213 million children and adolescents, as well as 1.30

billion adult men and women, were in the overweight but not obese range.

Obesity rates in the UK have increased drastically over the last four decades, such
that in 1975 1.7 million men and 2.1 million women, were obese, compared with
6.8 million men and 7.7 million women in 20143. Today the UK is ranked as the
second country in Western Europe with the most excess adiposity, after

Germany?®.

Obese individuals were once described as gluttonous and lacking in self-control;

therefore, treatment and prevention of obesity aimed to target individual
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behaviour". However, obesity arises, not only due to environmental factors, but

also to genetic ones.

1.3 HERITABILITY

Heritability is the extent to which phenotypic variation in a trait can be accounted
for by genetic variation in a specific population, at a particular point in time'. It is
important to differentiate between narrow and broad sense heritability; the former
refers to the proportion of a trait that is accounted for by additive genetics, whilst
the latter refers to the proportion of a trait that is due to all genetic variance.
Heritability is commonly estimated by comparing the resemblance between
monozygotic (MZ - identical twins, who share 100% of their genes) and dizygotic

(DZ - non-identical twins, who share 50% of their genes) twins®.

1.3.1 Twin studies and heritability

Twin studies have proved invaluable in uncovering the genetic basis of complex
traits. Their main aim is to unravel and quantify the contributions of genetic,
shared environmental (factors shared completely by twin pairs, that contribute to
their similarity, such as maternal gestational weight gain or family socioeconomic
status) and non-shared environmental factors (factors unique to each twin in a
pair that contribute to differences between twins) to such traits. The twin
method compares the similarity of MZ and DZ twins, who usually grow up in very
similar environments'¢. Similarity is measured statistically using a correlation
coefficient and as such, if the correlation for MZ twin pairs is larger than the
correlation for DZ twin pairs, it is taken as evidence that individual differences in
the trait of interest (for example BMI) have some genetic basis'®. A systematic
review and meta-analysis of 88 published twin studies suggests that heritability
estimates of BMI are high, ranging between 47% to 9o%, and that heritability of

BMI is higher at younger ages".

1.3.2 Molecular genetic approaches and heritability
With the advent of GWAS (summarised below in section 1.4) in the last ten to
fifteen years, researchers discovered that it was possible to also estimate genomic

heritability, from the aggregated effects of all measured genetic variation
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primarily in the form of single nucleotide polymorphisms (SNPs). SNPs represent
single base pair changes in a DNA sequence'®; thus two individuals may differ in
one nucleotide, which could lead to phenotypic variation. For example, these
differences could mean that person A has different susceptibility to a particular
disease from person B. However, variance explained by single SNPs identified
from GWAS appear to explain only a small proportion of the heritability for the
majority of traits, even when added together to create genetic risk scores

including all identified risk variants.

To address this and enable the estimation of variance explained by all SNPs (SNP
heritability) on a chromosome, or genome-wide SNPs, a set of tools called
genome-wide complex trait analysis (GCTA) was created by a group of
researchers (explained in more detail in the Methods section of Chapter 5).
GCTA can also be used to estimate the SNP linkage disequilibrium (LD) structure
(the non-random association of alleles at a particular locus, i.e. the correlation
between SNPs), genetic relationships (using all of the autosomal SNPs, on
chromosomes 1 to 22, GCTA can estimate genetic relationships between all of the
individuals in a given sample), perform GWAS simulation, and estimate genetic
correlations between traits (the extent to which the same SNPs are associated
with variation in two traits, i.e. shared genetic aetiology). However, as GCTA
requires individual-level genotype data to perform analyses, LD Score regression
(LDSC) was developed recently to overcome this issue, allowing SNP heritability

estimation using GWAS summary statistics?°.

1.4 GENOME-WIDE ASSOCIATION STUDIES (GWAS)

A GWAS is a hypothesis-free approach which aims to find common genetic
variants that are associated with variation in a particular trait. In GWAS, SNPs
are used as regional genomic markers. A tag SNP is a variant whose alleles
(different forms of a gene) ‘tag’ other SNPs that are in the surrounding LD region.
SNPs included in GWAS usually have a minor allele frequency (MAF - the extent
to which the less common allele occurs in the population) of at least 1%, as the
aim is to analyse common genetic variants and those with a MAF of <1% are

considered to be rare variants.
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GWAS flourished with the completion of the Human Genome Project in 2003 and
the International HapMap Project in 2005, as researchers developed new
technologies that made it possible to carry out this type of research. The GWAS
method advocates a ‘common disease, common variant’ hypothesis, that
common genes are likely to influence common disorders®, and has become
increasingly popular since it first emerged more than a decade ago. There are
now dozens of GWAS published in major journals every month, as methods have
become more accessible, costs of genotyping have reduced, and the field of

Genetic Epidemiology has grown into a largely collaborative one.

The first published GWAS by Klein and colleagues®> aimed to identify
polymorphisms associated with age-related macular degeneration (AMD), one of
the major causes of blindness in older adults and only one SNP was found to be
associated with AMD. This was, at least, partly related to the narrow coverage of
SNPs genotyped, which only contained 116,204 genome-wide tagging SNPs.
However, researchers are now able to include many more millions of SNPs in
GWAS, due to better genotyping arrays. Genotype imputation is the statistical
inference of unobserved genotypes, which is done using known haplotypes in the

population of interest>3 (more details are included in Chapter 2).

Researchers predicted that the GWAS approach would elucidate causal genetic
variants associated with complex traits. However, this quickly proved not to be
the case for most of these traits*4 and the term ‘missing heritability’ was thus
adopted to refer to this mismatch between the high variance explained from
genetic variation in twin studies, and the low variance explained from the SNPs
identified through GWAS?>4. One of the main issues is that as GWAS began to
emerge it was apparent that individual SNPs had, for the most part, very small
effects. This is directly related to statistical power in GWAS; the conventional p-
value threshold used in GWAS is p<5x10°8, which is particularly stringent because
millions of associations are tested to examine whether each SNP has an effect on
the trait of interest and thus, this multiple test correction is required (p<5x107®
applies a Bonferroni correction for millions of tests at an alpha level of 0.05).

Therefore, it is sometimes difficult to detect SNPs of larger effects, even with
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sizeable samples. For a GWAS to successfully uncover common variants of small
effect, even larger sample sizes are required. Further important challenges
proposed were: insufficient power to detect gene-gene and gene-environment

interactions, and poorly detected rarer variants with potentially larger effects.

These issues in GWAS are applicable to both BMI and sleep duration, as
illustrated below in the sections entitled: GWAS of obesity-related traits and
GWAS of sleep duration.

1.5 GENETIC DETERMINANTS OF OBESITY
1.5.1 Heritability of obesity-related traits using twin studies

Nearly 30 years ago a study showed that the BMI within-pair correlations for MZ
twins were 0.70 for males and 0.66 for females>®, while correlations within DZ
were considerably lower (0.30 for males and o0.50 for females), indicating that
genetic variation contributes importantly to individual difference in BMI. Further
evidence comes from studies of adopted children, whose weight correlate more
highly with that of their biological, as opposed to adoptive, parents?’. This

suggests that human body weight has an important genetic basis.

1.5.2 Genome-wide Association Studies (GWAS) of obesity-related traits

GWAS use contemporary molecular genetic methods to estimate the heritability
of complex traits, for example, GCTA* and more recently, LDSC regressions,
GCTA and LDSC regression estimate heritability by considering the contribution
of each single nucleotide polymorphism (SNP) measured in the study. Therefore,
GWAS find substantially lower heritability estimates than twin studies for obesity-
related traits. For example, the largest and most recent GWAS estimate of the

heritability of BMI was 21%2.

Moreover, GWAS have proved very successful in identifying specific genetic
variants associated with obesity-related traits>29-3%. Exactly a decade ago a
genome-wide scan for type-2 diabetes-associated genes found that a variant in
the intron of the fat mass and obesity associated (FTO) gene, on chromosome 16
(rs9939609), predisposes to diabetes through its effect on BMI. This finding was

ground-breaking at the time and was subsequently replicated in 38,759
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individuals across thirteen cohorts. Notably, rs9939609 is associated with altered
BMI and obesity in children by the age of seven, indicating an upward trajectory
for fat mass. In humans, the FTO gene is predominantly expressed in several
nuclei of the hypothalamus, the primary centre for energy homeostasis3°. FTO
spans over 400kb and rs9939609 is located in its first and largest intron3°. It was
recently discovered that variants in the FTO gene exert their action on adipocyte
function by targeting the Iroquois-class homeobox protein 3 (IRX-3) and the
Iroquois-class homeobox protein 5 (IRX-5)37. Evidence from mice, humans and in
vitro studies indicate that the IRX3 promoter region interacts with the FTO
obesity-associated noncoding region. Obesity SNPs are associated with IRX3, but
not with expression of FTO, as knockout of IRX3 in mice results in a significant
decrease in body weight, greater activation of brown adipose tissue and higher
levels of energy expenditure3®. A study in humans showed that the SNP rs1421085
(an intron in the FTO gene) caused activation of IRX3 and IRX5 expression and a
shift to energy-storing white adipocytes from energy-dissipating beige
adipocytes?”. This suggests that rsi421085 may play a role in genetic
predisposition for obesity, but this study was only carried out in lean healthy

adults.

Following this large-scale GWAS in 2007, various other independent studies in
both adults and children from different ethnic populations, including Europeans
39-44) Asians#548 and Africans#9-53 found associations between FTO SNPs and
obesity-related traits, such as larger hip circumference, body weight and waist to
hip ratio3°. A GWAS carried out in >4,000 Sardinians found that for example, the
1859930506 SNP, within the FTO gene, showed strong associations with BMI, hip
circumference and weight54. The association between rs9930506 and BMI was
replicated both in a European American population (n=1,496) and in a Hispanic
American population (n=839), with very modest sample sizes. At the time, these
authors estimated that approximately another 250 unknown loci of similar effect
size to those they described, alongside a larger number of loci with smaller effects

on BMI, had yet to be identified.
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Common variants in the region near the melanocortin-4 receptor (MC4R) gene
were also found to be associated with fat mass, weight and increased risk of
obesity when analysing GWAS from 16,876 individuals of European ancestry3".
Specifically, the strongest reported signal for BMI was located near MC4R, which
was confirmed in 60,352 adults. This finding is important as it implicates the

MC4R gene, mutations of which result in monogenic severe childhood obesity3'.

Associations between BMI and variants within or near the MC4R and FTO genes
were further confirmed, alongside 6 novel loci near the following genes: TMEM:18,
KCTD15, GNPDA2, SH2B1, MTCH2 and NEGRz>>. Another genome-wide scan of
>30,000 individuals (predominantly Icelandic, N=25,000) also replicated
previously associated BMI variants, and found an additional 7 SNPs on
undiscovered pathways32. These novel BMI variants are located within or near the
brain derived neurotrophic factor (BDNF) gene, of which rs6265 had been

previously implicated in eating behaviour33 and BM34.

The Genetic Investigation of ANthropometric Traits (GIANT) Consortium
subsequently performed a much larger two-stage meta-analysis of 249,796
European individuals and identified 18 novel loci associated with BMI35, bringing
the total number to 32. Particularly motivating was the novel association between
BMI and 7a copy number variant (CNV) near the G protein-coupled receptor,
class C, group 5, member B (GPRC5B) gene, which is thought to modulate insulin
secretion, and greater protein expression is associated with type-2 diabetes3®. Of
the remaining 17 novel loci, interestingly, some mapped near important
hypothalamic energy balance regulatory genes, including: MC4R,
proopiomelanocortin (POMC), SH2B adapter protein 1 (SH2B1) and BDNF genes.
Another of these novel loci is located nearby the gastric inhibitory polypeptide
receptor (GIPR) gene, suggesting a potential link between incretins (metabolic

hormones), insulin secretion and human body weight regulation.

A more recent GWAS and Metabochip meta-analysis of BMI in 339,224
individuals revealed a total of 97 genetic loci, of which 56 were novel®. Taken
together, these loci account for 2.7% of the variation in BMI. These findings

provide further support for the roles of key obesity-related molecules including
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BDNF and MC4R. Moreover, there appears to be overlap between loci associated

with BMI and genes and pathways involved in neurodevelopment.

1.6 INTRODUCTION TO SLEEP AND CONSEQUENCES OF SHORT
SLEEP

Human adults spend on average one third of their lives asleep. Sleep is defined as
the shift in consciousness which leads to involuntary processes and is required by
humans on a daily basis. Sleep is crucial for preserving psychological and physical
well-being and is not simply a lifestyle choice; like eating and breathing, it is a
necessity. Important sleep dimensions include: duration, defined as the number
of hours slept per night, timing or chronotype, which refers to individuals’ sleep
schedule, and sleep quality, which refers to an individual’s satisfaction with their

sleep.

Similarly to obesity, sleep is a particularly complex phenotype, not solely because
of how it manifests itself but also because of how it is regulateds®. Hence it is
crucial to understand the mechanisms by which sleep is regulated, which are
twofold: homeostatic and circadian’. This is also known as Borbely’s two-process

model>®, and it is the dominant model of sleep regulation.

The homeostatic process increases as a function of hours of wakefulness and
decreases as we sleep. Therefore, the longer we are awake, sleep pressure or the
‘homeostatic drive’ increases and the desire to sleep becomes greater. Once we
fall asleep, this pressure is relieved and because it is a cyclic process it repeats
itself, with sleep pressure increasing again during wakefulness and then
decreasing once we fall asleep again, and so on. Although the specific
biochemical process that controls homeostasis is less well understood than the
circadian process, research suggests that sleep pressure intensifies due to a build
of the molecule adenosine. Adenosine is a nucleoside (an organic compound,
which is released during the breakdown of nucleic acids) and it is currently the
only known substance that contributes to sleep regulation during homeostasis.
Adenosine accumulates in the brain for as long as we stay awake and makes us

feel sleepy, as it binds to cells in the forebrain and inhibits their activity. During
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sleep adenosine decreases and glycogen energy stores take its place. However,
stimulants such as caffeine block the effects of adenosine and thus keep us

awake.

The circadian process influences the duration, quality and timing of sleep onset
and offset, and is governed by the ‘biological clock’, whose cycle lasts
approximately 24 hours. The biological clock acts as an internal pacemaker and
regulates the timing of sleep as well as other physiological rhythms that play a
role in sleep, such as body temperature and secretion of melatonin and cortisol.
It is located in the suprachiasmatic nucleus (SCN), which is a very small region of
the hypothalamus and comprises approximately 20,000 nerve cells that respond
to light through the retina and optic nerve. The 24-hour light-dark cycle is the
most important external cue that synchronises the biological clock to the timing
of the natural rotation of the Earth, and therefore this cycle helps regulate the
homeostatic and circadian processes, whereby decreased sleep pressure
corresponds to the circadian process that promotes wakefulness. External factors
such as temperature, physical activity and dietary intake can also affect the

timing of the biological clock.

Human infants and children spend a large amount of their time asleep, which
then tends to plateau in adulthood. Young adults and adults require between
seven and nine hours of sleep for optimal health, whilst older adults should sleep
between seven to eight hours per night. However, sleep curtailment has
increased in the UK and has coincided with the obesity epidemic. Evidence
suggests that the proportion of people sleeping for less than the recommended
amount is increasing and that due to insufficient sleep the UK economy loses
200,000 working days per year at a cost of £40 billion5°. Germany, another large
European economy, also loses 200,000 working days per year, at a cost of $60

billion, due to insufficient sleep5°.

Important predictors of reduced sleep are smoking and alcohol consumption,
whilst physical inactivity predicts short sleep duration®. Furthermore, meta-
analyses of published studies find that short sleep duration (usually defined as

less than or equal to five hours, or in some studies less than six hours per night)
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is predictive of diagnosis or death from CHD and stroke®, as well as greater risk
of T2D%263, hypertension® and all-cause mortality®>¢, On the other hand,
although less prevalent than short sleep, long sleep (usually defined as more than
eight or nine hours per night) is also associated with greater risk of CHD, stroke,

total CVD®, T2D6263,

1.6.1 The Sleep Cycle

Mammalian sleep is divided into two broad categories: Non-Rapid Eye Movement
(NREM) sleep and Rapid Eye Movement (REM) sleep. The sleep cycle is made up
of four sequential stages (Figure 1.1), which alternate between NREM and REM
sleep in such a way that throughout a typical night the cycle is repeated
approximately every ninety minutes. The initial stage NREM stage is
characterised by light sleep and drifting between wakefulness and sleep. The
onset of sleep occurs during the second stage, whereby we become disengaged
from our surroundings, and body temperature decreases. Stage 3, or slow-wave
sleep (SWS) is regarded as the stage when the most restorative and deep sleep is
experienced. As blood pressure decreases, breathing becomes slower, muscle
tone is reduced, there is an increase of blood supply to muscles, growth and
repair of tissue occurs, energy is restored, and hormones are released (for
example, Growth hormone). REM sleep is characteristic of the fourth stage and
happens for the first time approximately ninety minutes after falling asleep,
recurring every ninety minutes thereafter. This type of sleep supplies energy to
the brain and body, which allows the brain to be active for dreaming, and the
body is immobilised and relaxed, as muscle tone is reduced even further. It is

crucial to experience all four stages of sleep in order to wake up feeling rested.
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Figure 1.1 The Sleep Cycle®

75% of the night 25% of the night

1.7 GENETIC DETERMINANTS OF SLEEP DURATION

1.7.1 Heritability of sleep duration using twin studies

Currently, a modest body of research exists in the area of human sleep genetics,
which has shown that specific sleep phenotypes (duration, timing, quality) are
heritable®®. Twin studies have estimated that genetic factors account for between

30% to 50% of the variance in the duration, quality and patterns of sleep® -7,

1.7.2 GWAS of sleep duration

GWAS have described SNPs that are associated with distinct measures of sleep,
however they remain largely un-replicated®®7>-74, and the effect sizes of the
identified SNPs are very small. However, the variant reported to have the largest
effect size to date accounted for approximately 5% of the variation in sleep
duration?, yet this has not been replicated in subsequent studies. A more recent
and much larger GWAS of sleep duration found that the maximum variance

explained by a single variant was 0.07%74.

The first GWAS of sleep duration was published in 2007. Seven hundred and forty
nine participants were genotyped for 100,000 SNPs, and the analyses examined
associations between these SNPs and self-reported usual sleep duration?>. Only
one intergenic SNP on chromosome 13 (rs6599077) was associated with sleep

duration at p=1.4x107. This means that no SNPs were associated with sleep
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duration at genome-wide significance, but this SNP was significant at a genome-

wide suggestive level of significance.

More recently, three GWAS of sleep phenotypes have been published. The first
GWAS to focus on self-reported sleep duration alone had one SNP (rs11046205)
reach genome-wide significance 73, which is an intronic variant in the adenosine
triphosphate-binding cassette, sub-family C, member 9 (ABCC9) gene. This gene
is involved in encoding a potassium channel (Karp), which contributes to energy
metabolism; it has also been associated with Cantt syndrome and dilated
cardiomyopathy7>7°, However, neither of these conditions are related to sleep.
Another GWAS performed on 2,323 Australian individuals found no genome-
wide significant SNPs for self-reported sleep duration, sleep time, latency, quality
or depth®. Seven SNPs, however, were suggestive of associations and these seven
variants are located on different chromosomes and nearby or within distinct

genes.

The next GWAS was carried out in 47,180 individuals of European ancestry and
found seven loci associated with self-reported sleep duration, 4 of which are on
chromosome 2 and 3 on chromosome 6 74. A further 1 loci were suggestive of
associations with sleep duration but did not reach the genome-wide significant
threshold. The strongest is an intergenic variant, located on chromosome 2 near
the paired box thyroid-specific transcription factor (PAX8). PAX8 encodes a
nuclear protein, which is involved in the expression of thyroid-specific genes, as
well as thyroid follicular cell development 77, whereas the Cobalamin Synthase W
Domain-Containing Protein 2 gene (CBWD2) is highly expressed in the brain, but
remains poorly characterised 74. This association was found to be in the same
direction in an African-American sample, although it was not genome-wide

significant (p=9.3*104).

The most recent GWAS of self-reported sleep duration was performed in 127,573
UK Biobank participants, from which three genome-wide significant variants
emerged”®. The main distinctions between this study, by Jones et al7® and that of
Gottlieb and colleagues?# were the following: the sample size was almost three

times greater; SNP heritability was estimated and, rather than combining several
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studies in a meta-analysis they were able to use a single, very large sample. Only
three novel loci were found to be associated with self-reported sleep duration:
1r$62158211, 1517190618 and rs1380703 on chromosome 2. The effect alleles for each
of these two SNPs were associated with a 2-minute decrease in sleep duration,
whilst the effect allele for rs1380703 was associated with a 1.5-minute increase in
sleep duration. rs62158211 is an intron in the PAX8 gene and is in high LD with
two variants previously reported by Gottlieb and colleagues’+. Thus, Jones et al.
(2016)7® were the first to replicate an association in the same region as previously
reported. rs17190618 and rs1380703 are both intronic variants within the Vaccinia
Related Kinase 2 (VRK2) gene. GWAS have found this gene to be associated with
schizophrenia?? and epilepsy®° although not these specific sleep duration

variants.

The current GWAS literature suggests that there are three SNPs associated with
self-reported sleep duration. The most recent study in the UK Biobank?® was
substantially larger than earlier studies, but still only managed to uncover two
novel loci, with one replicated from previous research. Thus, to date there are

only three SNPS associated with self-reported sleep duration.

In terms of how these studies have contributed to our understanding of the
biology of sleep, the PAX8 gene (for which SNPs associated with sleep duration
were identified in the GWASs by both the CHARGE and the UKB studies)
encodes a protein which is involved in the expression of thyroid-related genes.
PAXS is associated with hypothyroidism and patients that do not receive
treatment for this disease are more likely to have obstructive sleep apnoea (OSA)
episodes®. Mutations in the PAX8 gene, amongst others, may result in the
thyroid stimulating hormone receptor (TSHR) gene being only partially activated.
Whilst this is important, as the prevalence of hypothyroidism is approximately
2% (UK)?®, the PAX8 gene is not highly expressed in the hypothalamus, for

example, which is responsible for the regulation of sleep in the brain.

Variants in the VRK2 gene have been associated with schizophrenia, a psychiatric
illness which is known to have consequences for patients’ sleep®. Evidence

suggests that sleep disturbances may contribute to the onset of psychosis in



young people®4. However, similarly to the PAX8 gene pathways, this may not be
so informative when it comes to the average sleep duration of the population, as
these pathways relate to specific diseases, such as schizophrenia and
hypothyroidism. Thus, more research is needed to uncover common genes that

may predispose to increases or decreases in sleep duration.

1.8 MEASURING ADIPOSITY AND SLEEP DURATION

1.8.1 Brief overview of adiposity measures

Numerous methods exist for measuring adiposity, yet they vary in accuracy and
cost. The most common measurements include: body mass index (BMI), waist
circumference (WC), waist-to-hip ratio (WHR), bioelectrical impedance and
skinfold thickness®. However, magnetic resonance imaging (MRI), computerized
topography (CT) and dual energy X-ray absorptiometry (DEXA) are the most
widely used “reference measurements” 5. BMI, WC and WHR are all simple to
collect, as well as inexpensive, which is also the main reason these measures are
most commonly used in large-scale scientific studies. MRl and CT and DEXA
scans are more likely to be employed in validation studies of body measurement
methods. It is well accepted that CT and MRI imaging provide the highest
accuracy when it comes to measuring organ, tissue, whole-body fat mass, in

addition to lean mass and bone mass®s.

In this thesis, the main measurement of adiposity analysed was BMI, the reasons
for which are: accessible datasets all had measured BMI (as opposed to BMI
calculated from self-reported height and weight); and to date, a total of 97
genetic variants have been associated with BMI®S. This is important when using
genetic epidemiological methods, such as Mendelian Randomisation, to

investigate causality between a given exposure and outcome (Chapter 6).

1.8.1.1 Body Mass Index (BMI)

BMI is calculated by dividing weight by height squared (kg/m?). A BMI equal to
or greater than 25 kg/m?is in the overweight range, whilst individuals with a BMI
equal to or greater than 30 kg/m? are classed as obese. BMI is the most commonly

employed measure of adiposity because it is easy to calculate, cost-effective, has
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standardized cut-off points, is typically highly correlated with body fat levels, and
is predictive of chronic diseases and early mortality®. BMI also benefits from
reliable reference data for children; children’s adiposity varies with age and sex so
these factors must be taken into account when using paediatric BMI, and this is

done by comparing the child’s BMI to reference data®’.

However, the reliability of BMI in adults as a measure of adiposity has been
questioned due to its lack of ability to differentiate between fat and fat-free mass,
for instance, bone and muscle mass*#39. Other disadvantages of BMI are: it is an
indirect measurement of adiposity; it has a reduced ability to predict body fat in
older adults compared to younger and middle-aged adults®9°; its nonlinear
relationship with percentage of body fat, and that it differs for men and women;
and its weak sensitivity and specificity%°. Regarding sensitivity, some research
suggests that BMI can lead to false-negative results and in terms of specificity,
one study observed that BMI incorrectly classified 8% of all men and 7% of all

women as obese, using standard BMI cut-off points®°.

1.8.2 Brief overview of sleep duration measures

Sleep duration can be measured in several ways, which broadly fit into subjective
and objective methods. Self-reported sleep duration usually involves asking how
many hours individuals sleep per night, whilst objective sleep studies either
monitor participants in a laboratory setting or ask them to wear a device to track
their sleep duration. The most widely known objective sleep duration methods
are: polysomnography (PSG) and actigraphy. PSG is considered to be the gold
standard for the diagnosis of some sleep disorders®. Actigraphic sleep duration is
measured using a wearable wrist or waist device and a questionnaire is usually
administered alongside it. This questionnaire aids interpretation of the
actigraphic data, as it asks questions about whether individuals are equally as
active/inactive and whether they have been ill during the time that they wear the

actigraph.

The research carried out in this thesis predominantly used self-reported sleep

duration measures, with the exception of actigraphy-measured sleep duration in



the TESS study (Chapter 4). Thus, in this section there is a description of

actigraphy and self-reported sleep duration.

1.8.2.1 Self-reported sleep duration

Self-report sleep duration is widely used in epidemiological research. . Other
dimensions of sleep such as disturbance and quality are commonly measured by
means of reliable and valid scales, for example the Pittsburgh Sleep Quality Index
(PSQI)92, the Epworth Sleepiness Scale (ESS) 93 or the Jenkins Sleep Scale (JSS)9%4.

A sleep duration item also forms part of some of these questionnaires.

The main advantages of self-report sleep duration measures are: they are
inexpensive and easy to administer, particularly in large studies, as one or two
questions can usually be asked as part of a larger questionnaire; they are simple
to code and to analyse, as a typical question asks about the number of hours an
individual sleeps for, thus researchers can choose to use this or for example,
convert to minutes if required. The majority of studies measure sleep using self-
report, due to these advantages, thus comparison with other research is always
possible. Also, as mentioned earlier, these measures have criterion validity as
evidence shows that both self-reported short and long sleep duration are
predictive of CHD® (short sleep RR=1.48, long sleep RR=1.38), stroke® (short
sleep RR= 115, long sleep RR=1.65), type-2 diabetes mellitus® (short sleep
RR=1.09, long sleep RR=1.14) and mortality®® (short sleep RR=1.12, long sleep
RR=1.22).

However, there are also limitations of using subjective sleep duration. First, there
is potential for measurement error, as people might not accurately report how
many hours they sleep for various reasons. For instance, they may not know and
may be inclined to guess, they may have irregular sleep patterns making it
difficult to estimate, or they may not want to provide a true report if they have
atypical sleep durations (short or long sleep, for example). Second, some
individuals may report the number of hours they sleep from the time they
actually go to bed, rather than the time they fall asleep. This time between full
wakefulness and sleep onset is known as sleep latency and is distinct from sleep

duration. Notably, though, most normal sleepers, who do not suffer from a sleep
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disorder (particularly, insomnia) report similar sleep duration estimates to those
observed in the laboratory, under polysomnography (PSG)%. Third, the
correlation between objective and subjective sleep duration was reported to be
around o0.45 by Lauderdale and colleagues®®, whilst another study found that in
34% of participants there was a discrepancy of an hour or more between sleep
diaries and actigraphic sleep duration’, and more recently, a correlation of only

0.3 was found between subjective and actigraphic sleep duration9.

1.8.2.2 Actigraphy

Actigraphy has been used for more than twenty-five years in the assessment of
sleep/wake states®. An actigraph is conventionally worn on the wrist of the non-
dominant arm and continuously detects and records body movement
(predominantly acceleration), and stores the information for long periods of time
100 However, waist-worn actigraphs are also used for the measurement of sleep
parameters, as well as for the detection of movement and activity. In addition, it
is now possible to also collect data using applications on smartphones, as well as

smart watches.

Actigraphy is popular for determining patterns of sleep and circadian rhythms
and, unlike PSG, does not require subjects to spend time in a laboratory, can be
worn for several weeks, is more affordable for data collection in large-scale
studies and is less invasive than PSG, particularly for use in infant and elderly
populations™. Although PSG is regarded as the gold standard for measuring
sleep/wake behaviours, actigraphy can in fact, provide more reliable
measurements, as data are collected over several days, rather than for one or two
nights in the laboratory=. It is also likely to be more ecologically valid, as
actigraphy measures habitual sleep in an individual’s usual environment, as
opposed to in a lab, which is an unnatural setting to sleep in and could affect

sleep.

Whilst data are being recorded via actigraphs it is possible to continue with daily
activities and enables individuals to remain in their natural sleep environments.
Actigraphs are now used in the clinical diagnosis and evaluation of insomnia,

extreme sleepiness, restless legs syndrome and circadian rhythm disorders™=.
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When using actigraphy, algorithms are employed to calculate sleep and wake

periods, based on individuals’ activity patterns'.

However, there are also disadvantages of using actigraphy for the measurement
of sleep duration. These devices are unable to reliably differentiate sleep stages,
are more expensive than self-report sleep duration measures, have at times
shown poor specificity in the measurement of sleep duration, and can sometimes
over- or underestimate sleep duration. For example, in a study by Paquet and
colleagues™+ actigraphy showed an overall less than 50% specificity in
determining sleep and also overestimated duration of sleep, in comparison with
PSG. In another study of sixty-eight adult females, actigraphy underestimated
sleep durations by an average of 68 minutes in those who slept for less than five
hours'2, This may be due to sleep disturbances causing increases in nocturnal

movements and thus, leading to the actigraph underestimating duration of sleep.

1.9 BMI AND SLEEP DURATION

Obesity arises as a result of an energy imbalance, whereby energy intake
increases relative to energy expenditure'®s. Aside from the physical and
psychological health complications associated with obesity, which are mentioned
earlier in section 1.2, an intriguing link between adiposity and sleep duration has
been reported more recently, in both children and adults'*®'*7. As the focus of
this thesis is on BMI in relation to sleep duration, the literature reviewed pertains

only to this association, rather than other measures of adiposity.

Both the PubMed and Web of Science databases were searched for relevant
literature of the relationship between BMI and sleep duration in adults and
children. Below is a detailed review of the literature, firstly in adults and then in

children, followed by summary tables of key findings.

1.9.1 Literature Review Part I: current evidence in adults for the
association between BMI and sleep duration
An extensive literature exists linking BMI and sleep duration in adults, particularly

published in the last ten to fifteen years. Whilst cross-sectional evidence has
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uncovered a consistent relationship between the two, longitudinal studies are

limited and have yielded mixed findings.

1.9.1.1 Cross-sectional studies using self-reported measures of sleep
Table 1.1 summarises the key cross-sectional studies in adults that have used
subjective sleep duration. There has been one systematic review, and one
systematic review with meta-analysis'®®'°7 of the cross-sectional association
between sleep duration and BMI in adults. An early review of the literature found
that short sleep appeared to be independently associated with increased weight
in adults in 17 of 23 cross-sectional studies™®. Of the 23 studies included in the
review, 11 observed a clear relationship between short sleep duration and higher
BMI, with two studies reporting mixed findings, due to an effect in one sex and
not the other. Five studies found no evidence of an association between short
sleep and greater weight, with one study reporting a relationship between short
sleep and decreased weight. Furthermore, six studies suggested that the
association is U-shaped, such that both short and long sleep are implicated in the

risk of obesity.

The only study to report that shorter sleep is associated with lower BMI was a
Japanese cohort of over 100,000 participants°®. Mean BMIs were 22.9, 22.6, 22.9
and 22.7 kg/m? in men who slept <4, 5, 6 and 7 hours, respectively; in women
these hours of sleep corresponded to mean BMIs of 22.6, 22.9, 22.9 and 22.9
kg/m?2. Importantly, though, these average BMIs are indicative of a lean sample
and thus, might not be directly comparable to populations such as the USA or
UK.

As mentioned above, U-shaped associations between sleep duration and BMI
have been suggested by a few studies. Analysis of the American Sleep Heart
Health Study (SHHS), indicated that the highest mean BMIs were observed in
individuals who reported sleeping for less than six hours, six to seven hours or >9
hours®. Respondents who slept for between seven and eight hours, or eight to

nine hours had the lowest mean BMIs (28.4 kg/m?), in comparison with those
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who slept for less than six hours and had the highest average BMIs (29.1 kg/m?).
The overall sample had a mean age of 63 years and 52% of respondents were
hypertensive. The highest proportion of individuals who had any CVD was

observed in the shortest sleep duration group (< 6 hours), at 23%.

Findings from Canadian individuals, aged between 21 and 64 years (N=740)
indicated that, compared to normal sleepers (seven to eight hours), those who
reported sleeping for five to six hours, as well as those who slept for nine to ten

hours, had increased odds of obesity, ORs=1.69 and 1.38, respectively'®.

Studies included in Patel et al.’s review'® that yielded null findings are described
in more detail later in this literature review. A systematic review with meta-
analysis of 604,509 adults, published at approximately the same time as the
review by Patel and colleagues'®, concluded that there was a cross-sectional
association between short sleep and an increased risk of obesity (pooled
OR=1.55)"7 across 18 studies of adults. They also observed a pooled effect size for
short sleep duration of -0.35 kg/m? change in BMI per hour of sleep change.
These findings were obtained through linear analyses of these data, whilst non-
linear associations were not considered. Although these two reviews'©®°7 largely
reached the same conclusion, Patel et al.’s'°¢ interpretation was slightly more
tentative (as discussed earlier, they stated that findings in adults were more
mixed than those in children). This could be because they considered different
types of cross-sectional associations in their review, such as linear and non-linear,

whereas Cappuccio’s’” meta-analysis only examined linear relationships.

Since the reviews by Patel et al.'* and Cappuccio and colleagues'®?, several other
cross-sectional studies on BMI and sleep duration in adults have been published.
A study of 1,224 twins (mean age of 37), also showed that short sleep was
associated with higher BM], after controlling for genetic and shared
environmental effects”.. In this study, analyses were carried out in two ways. First,
twins were treated as individuals and to account for the correlation structure of
the data, generalised estimating equations (GEEs) were used. Then, they
extended the GEE model and modelled within- and between-pair associations of

sleep duration and BMI. Finally, within and between analyses were repeated after
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stratifying by twin zygosity. Importantly, this study used both self-reported sleep
duration and height/weight data, which the authors acknowledged as an

important limitation.

Sleep duration and BMI were also inversely associated in 1,248 American middle-
aged respondents™®. In a subsample (n=441) of these respondents, actigraphic
sleep duration was also assessed; the results of this part of the study are discussed
below in section 1.9.1.3 (‘Studies of BMI and sleep using objectively-measured

sleep duration’).

Data from 5,021 British civil servants, aged between 34 and 55, also found an
inverse association between sleep duration and BMI. Specifically, short sleep (<5
hours) was associated with higher BMI, as well as an increased risk of obesity
(OR=1.65), compared with those who slept for seven hours™. Even after
controlling for obstructive sleep apnoea (OSA) and physical inactivity, the cross-
sectional association between obesity and sleep duration remained, in a sample
of 7,641 adults*. Theorell-Haglow and colleagues3 also observed that in the all-
female Sleep and Health Study, short sleepers (<6 hours) had significantly higher

average BMIs than long sleepers (=9 hours).

Dashti and colleagues also observed that in 14,906 adults in the CHARGE
consortium longer usual sleep duration was associated with lower BMI"4. The
most recently published study in 1,615 UK adults (mean age of 43 years) from the
National Diet and Nutrion Survey Rolling Programme (NDNS-RP), also supports
a negative association between sleep duration and BMI, having observed an effect
of -0.46 kg/m? per additional hour of sleep®s. This finding emerged from linear
analyses, as their cubic spline modelling yielded no relationship between sleep

duration and BMI in this sample.

However, there have also been studies that have found no relationship between
sleep duration and BMI. A Japanese population-based cohort of 10,000 adults
found no association between sleep duration and BMI"®. However, respondents
were largely lean, with a mean BMI of 23 kg/m?, their average age was 55 years

and, at baseline, average sleep duration was 7.6 hours.
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Two studies of older adults designed to investigate predictors of sleep duration
found that BMI and sleep duration were unrelated. The first study analysed data
from 8,001 participants aged 55 and over across seven European countries"’.
Obesity was not associated with being in the lowest fifth percentile of night time
sleep duration (defined as sleep duration in the lowest fifth percentile respective
to the age group). However, being underweight (BMI <19kg/m?) was predictive of
long night time sleep (95 percentile respective to age). Importantly, though,
these findings could be due to a few factors. For example, perhaps the use of
weight categories (i.e. underweight, normal weight, overweight, obese), rather
than modelling BMI as a continuous outcome might mean that information is
lost and it thus becomes more difficult to find an association. This was also one
of the first studies to investigate the relationship between BMI and sleep duration
in older adults and also of importance, is that 21% of the sample were aged 75
years or over. Also, the paper did not report the prevalence of overweight and
obesity in this sample, which would have been important to know, in order to
compare it to other studies (i.e. they may be quite lean or quite

overweight/obese), as this can have an impact on the findings.

The second study, in a community sample of 1,026 French adults over the age of
60, found that, as the obese were more likely to nap during the day, there was no
evidence of an association between total sleep duration and obesity"8. Therefore,
one potential explanation is that this association between BMI and sleep duration
only in the obese group may have been because they were more likely to sleep for
longer during the day (one hour or more, on average). This is in line with
research which suggests that obese individuals are more likely to sleep for longer
during the day"9 and have shorter night time sleep durations'°. Also, similarly to
the study described above, the authors treated both BMI (exposure) and sleep
duration (outcome) as categorical variables and although they were able to
discern that being in the obese category was a risk factor for very short sleep (<4
and a half hours), it is possible that categorising continuous measures could
contribute to loss of information, making it harder to find an association.

Findings from both of these studies, albeit null, are in line with some research
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that shows this association to weaken as a function of age®*2* (described below

in1.9.1.4).
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Table 1.1 Summary table of cross-sectional findings in adults using subjective sleep

duration
Type of Authors Year Sample size Outcome Main findings**
article/study
11/23 - negative relationship
between sleep duration & BMI
Systematic review  Patel & Hu 2008 1,275,797 BMI 2/23 - mixed: effects in only

(23 studies) one sex
4/23 - no relationship
between sleep duration & BMI
1/23 - short sleep duration
~>decreased weight
6/23 - U-shaped relationship:
short/long sleep duration >
risk of obesity

Systematic review Pooled OR for association
w/meta-analysis Cappuccio 2008 605,509 BMI/obesity  between short sleep &

(18 studies) et al. increased risk of obesity = 1.55
Pooled continuous effect size
for association between short
sleep & BMI = -0.35 kg/m>*

Observational Watson et 2010 1,224 BMI Shorter sleep associated with
study (in twins)  al. higher BMI
Observational 1,248 BMI Shorter sleep associated with
study higher BMI
Observational Stranges et 2008 5,021 BMI/obesity  Shorter sleep associated with
study al. higher BMI
Shorter sleep associated with
increased risk of obesity
Observational Theorell- 2012 7,641 BMI Shorter sleepers had
study Haglow et significantly higher BMI than
al. long sleepers
Observational Dashti et al. 2015 14,906 BMI Longer sleep duration
study associated with lower BMI
Observational Potter et al. 2017 1,615 BMI Shorter sleep duration
study associated with lower BMI
Null findings
Observational Amagai et 2004 10,000 BMI Respondents were mostly lean
al. (mean BMI=23 kg/m?), mean
sleep duration was 7.6 hours,
both potentially indicative of
a healthy sample
Observational Ohayon et 2004 8,001 BMI BMI was categorised, 21% of
al. the sample were 75 years or
older

Observational Ohayon et 2005 1,026 BMI Obese individuals slept longer

al. during the day & less at night,

both sleep duration & BMI
were categorised

Note. *Did not consider non-linear association; **all effects significant/not

significant at p<o.0s5.



1.9.1.2 Prospective studies using self-reported measures of sleep
duration
Cross sectional studies of the association of BMI and sleep duration suggest
predominantly positive associations with some evidence of non-linear and sex
specific associations. However, the longitudinal evidence is equivocal, as some
studies find no relationship between sleep duration and future BMI, whilst others
fail to observe an association in some age groups. To date, only one meta-analysis
and one review on the prospective relationship between BMI and sleep duration
in adults have been published, which indicate that a negative association exists
between sleep at baseline and weight gain, at follow-up'°®23, The prospective
literature of BMI and subjective sleep duration in adults is summarised in Table

1.2.

Patel et al. (2008)°° reported two studies that indicated that this relationship
weakened with age?22, Briefly, Gangwisch and colleagues*>? observed that the
ORs for obesity associated with short sleep (<4 hours) compared to seven hours
were 3.21, 1.81 and 1.71 for those aged 32-49, 50-67 and 68-86, respectively. Hasler
et al's” findings showed that the obesity ORs for less than six hours sleep at age

29 was 8.1 cross-sectionally, whilst it was 4.6 at age 34.

Prospective analysis over 16 years in 68,183 women from the Nurses’ Health Study
(NHS) found that the lowest BMI was observed in women whose sleep duration
was between seven and eight hours a night. Further, women who slept <5 hours
gained 1.14 kg more than women who consistently slept for 7 hours, over the 16-

year period'>+.

The findings of one study suggest that longer sleep duration increases the risk of
weight gain in 740 adults™. Over six-year follow-up findings indicated that the
risk of becoming obese was 27% for short (five to six hours), and 21% for long
sleepers (nine to 10 hours), in comparison to those who slept for seven to eight
hours per night; thus, providing evidence of a U-shaped, rather than a linear

association. The authors stated that these findings show that emphasis should be
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placed on recommending normal durations of sleep (seven to eight hours), rather

than merely advocating that people sleep for longer.

There has been some prospective research in adults that has yielded null
findings. The longitudinal association between sleep duration and weight gain
disappeared for 1,648 Japanese males, after adjusting for time-invariant
unobserved confounders®®. The authors referred to genetic factors as potential
time-invariant unobserved confounders (those which cannot be measured as part
of a study), whilst other studies have also suggested social, parental and
environmental factors as time-invariant confounders®7*28, To account for this
type of confounder, Nishiura and colleagues carried out two types of analysis on
their data. First, they used a generalised estimating equation (GEE), which uses
the population-averaged model and subsequently, they performed fixed-effects
(FE) modelling. Whilst both models can account for within-person changes in
repeated measurements over one wave, the GEE model assumes independence
between measured exposures with error terms, yet the FE model explicitly allows
for the covariance between exposures and time-invariant unobserved factors (for
example, genetics) to be non-zero™. It was then assumed that any difference that
emerged between the coefficients from the two models would mean that residual
confounding cannot be discounted, and the FE model should provide a less
biased result. The most important finding was that the GEE model (population-
averaged) suggested a longitudinal, negative relationship between sleep duration
and BM], but the FE model yielded no association. It was therefore suggested that
the longitudinal association of sleep duration with changes in BMI may
frequently be overestimated by such unobserved time-invariant factors, as
opposed to misclassified sleep duration and that therefore, the net effect of sleep

duration on BMI may not be as large as the effect found by some studies.

Stranges and colleagues failed to find a prospective association between short
sleep duration and changes in body mass index, or with obesity incidence in the
Whitehall II study'?. They stated that although they did not find a significant

prospective relation, their results were in concert with those described earlier, for
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example, by Hasler et al.”*, and Gangwisch et al.*2, whose research suggested that

the association between sleep duration and BMI weakens with age.

Table 1.2 Summary table of prospective findings in adults using subjective sleep

duration
Type of Authors Year  Sample  Outcome Follow-up Main findings *
article/study size period
Positive findings
Observational Chaputet 2007 740 BMI 6 years U-shaped relationship:
study al. short/long sleep duration < +
BMI/+ risk of obesity
Systematic Patel & 2008 78,267 BMI 9,13&16 3/3 - short sleep duration
review Hu years associated with increased risk of
(3 studies) obesity
Meta-analysis Wuetal. 2014 197,906 Obesity 1to 12 Pooled OR for association
(1 studies) years between short sleep duration &
obesity = 1.25 (8/u studies, as 3
affected heterogeneity)
Null findings
Type of Authors Year  Sample  Outcome Follow-up Possible reasons for null
article/study size period association
Observational Nishiura 2014 1,648 BMI 3 years Authors used an FE* model as a
study etal. second approach, which accounts
for time-invariant covariates (e.g.
genetics)
Observational Stranges 2008 5,021 BMI 5 years In line with some previous
study et al. research, which suggests that the

association weakens with age

Note. FE=fixed effects; *all effects significant/not significant at p<o.os.

1.9.1.3 Studies of BMI and sleep using objectively-measured sleep
duration

It has been suggested that employing objective measures of sleep duration may

help to elucidate a more accurate relationship between sleep and obesity °¢ and

prevent potential misclassification of sleep duration, as evidence has shown

systematic discrepancies between self-reported sleep and sleep measured using

actigraphy®°. There have only been three studies in adults using objective sleep

measurements, to date. These are summarised in Table 1.3 below.

1.9.1.3.1 Cross-sectional studies
A U-shaped association between sleep duration — measured with actigraphy -

and BMI and obesity, was also found in a study of 983 elderly adults. Compared
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to normal sleepers (7 to 8 hours), short sleepers (<5 hours) and long sleepers (>8
hours) were more likely to be obese, ORs=2.76 and 2.93, respectively3°. However,
the authors also measured sleep disturbance and found that after adjusting for it
the association between short sleep duration and obesity was no longer
significant, whereas there was no change to the relationship between long sleep
and obesity. Importantly, there was no association between self-reported sleep
duration and BMI/obesity in this study, thus the findings differed according to

measurement method for sleep duration.

Objective measures were used by a Brazilian study to examine the association
between BMI and sleep duration, in 1,042 adults®', and found that those with a
higher BMI had shorter sleep durations. Furthermore, a study by Mezick and
colleagues™® measured actigraphic sleep duration in 441 respondents of the
MIDUS study in which they found that shorter sleep was related to a higher BMI.
This finding supported the association between self-reported sleep duration and

BMI yielded by an analysis of the entire sample (1,248 respondents).

As illustrated above, there is very little epidemiological cross-sectional research
that has exploited objective sleep duration in adults. Whilst both of the studies
described yielded results in line with the majority of studies which employ self-
reported sleep duration, more research is needed to confirm these findings. Some
studies, however, have found no cross-sectional relationship between BMI and
sleep duration. Lauderdale and colleagues3> were amongst the first to examine
BMI and sleep duration employing objective sleep measurements, in a sample of
38 to 50 year-olds from the CARDIA Study. However, their inverse, weak
correlation between sleep duration and BMI was not statistically significant. In
this study, average sleep duration was only 6.1 hours, which is lower than usual
for a population-based study. This may be reflective of the differences in
ethnicity that they observed, for example, mean sleep duration in White women
was 6.7 hours, whilst in Black men it was 5.1 hours. These disparities appeared
not to be explained by social position as those with a higher income and
education spent less time asleep. Also notable was that the sample size was not

particularly large, with a total n of 669.
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1.9.1.3.2 Prospective studies

It appears that to date, the only prospective study of BMI and objectively-
measured sleep duration was carried out in the CARDIA Sleep Study™3. Sleep
duration did not predict significant prospective changes in BMI in the CARDIA
Sleep Study3. Lauderdale and colleagues observed that cross-sectionally, shorter
sleep (<4.5 hours) was associated with the highest BMIs, whilst those who slept
for more than seven and a half hours had the lowest BMIs. Thus, their cross-
sectional results were in concert with several previous studies. However, their
longitudinal analyses showed that over 5-year follow-up actigraphic sleep

duration did not predict changes in BML.

There are some potential explanations for these null findings. Firstly,
respondents’ mean age at baseline was 45 years, thus at follow-up their average
age was around 50 years. As mentioned earlier, there is evidence to suggest that
the magnitude of the association between sleep duration and BMI weakens with
age™2t122 Secondly, it is possible that five years was not sufficient to observe a
significant change in BMI, as BMI tends to be fairly stable. Thirdly, this study was
conducted in a sample of only 667 individuals, which may have been

underpowered to detect small changes in BMI over time.
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Table 1.3 Summary table of literature in adults using objective sleep duration

Type of Authors Year Sample Outcome Main findings/ possible reasons for null
article/study size findings
Positive findings - cross-sectional
Observational Van den 2008 983 BMI U-shaped relationship: short/long sleep
Berg et al. duration - risk of obesity (not
significant after adjustment for sleep
disturbance)
Observational Moraes et 2013 1,042 BMI Short sleep duration associated with
al. higher BMI
Observational Mezick et 2014 441 BMI Short sleep duration associated with
al. higher BMI
Null findings - cross-sectional
Observational Lauderdale 2006 669 BMI Mean sleep duration was low (6.1 hours);
et al. modest sample size; ethnic differences
observed between White and Black
individuals
Null findings - prospective
Observational Lauderdale 2009 667 BMI Association weakens with age*; follow-
(5-year follow- etal. up may not have been long enough;
up) modest sample size

Note. *mean age at baseline was 45 years (50 years at follow-up); *all effects

significant/not significant at p<o.05.

1.9.1.4 Sex differences in the association of BMI with
(objective/subjective) sleep duration in adults
As mentioned above, there is some evidence to suggest that the association
between BMI and sleep duration might be moderated by sex. For example, a
study of 35,247 Japanese adults showed that both short and long sleep duration
were associated with a weight increase and risk of obesity at one-year follow-up
in males, but not in females4. Of the non-obese men at baseline, 5.8% became
obese after a year and the adjusted ORs for those who slept less than five hours

and five to six hours were 1.91 and 1.50, respectively.

It is possible that this study found no prospective effect in women because new
overweight and obesity at one-year follow-up were, according to the authors,
both quite low in women, at 12.5% and 2.4%, respectively. However, 12.5%
appears, in fact, to be quite a high proportion of incident overweight at one-year
follow-up. The overall percentage of obesity and overweight in women at follow-
up was not reported. However, a comparison was drawn between a previous

study of 24,456 Japanese women, which found that 19.4% of them were obese and
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the National Government’s 2006 Health and Nutrition Survey found that 21.4% of
women over the age of 20 were obese. Therefore, it might be valuable to perform
further prospective analyses in this sample to carry out further follow-up of the

women in this sample.

Mezick and colleagues found evidence of an inverse association between
actigraphy-measured sleep duration and BMI, which appeared to be stronger in
females"®. They observed that although there was an association in the overall
sample, sex moderated the effect of actigraphic sleep duration on BMI. Thus, in
stratified analyses actigraphy-assessed sleep duration was associated with higher
BMI in women only. This was in contrast to self-reported sleep duration, for

which there was no effect modification by gender on BMI.

1.9.1.5 Summary of evidence in adults

The cross-sectional systematic reviews and meta-analysis, to date, have largely
found that shorter sleep is associated with a higher BMI and increased odds of
being obese. Prospective research has yielded mixed findings in adults, such that
some support the cross-sectional literature. It is possible that this discrepancy in
findings is due to differences between studies. For example, studies categorise
sleep duration differently, some studies use BMI and/or sleep duration as
categorical instead of continuous and there are disparities in adjustment for
covariates across studies. Also, importantly, as mentioned earlier the association
between BMI and sleep duration appears to weaken with age (although few

studies have been carried out in older adults).

Some cross-sectional and prospective studies observe a U-shaped relationship,
such that both short and long duration of sleep are related to higher BMI and
greater odds of obesity. However, the majority of studies have found a linear
association, yet this is also potentially a result of most studies having not
explored non-linear relationships in their data. Thus, more research is needed, in
which the linear and non-linear, cross-sectional and prospective associations of

BMI with sleep duration are explored in detail, in large, representative samples.
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Furthermore, some studies have observed no association between sleep duration
and BMI/increased risk of obesity, whilst certain studies find a cross-sectional,
but not a prospective relationship. Moderation by sex has also been suggested by
some research and a few studies have found an association between sleep
duration and BMI in one sex, but not the other, for which some explanations

have been explored earlier (in section 1.9.1.4).

Importantly, to date, studies have neither investigated the bidirectional
relationship of BMI with sleep duration, nor have they performed causal
modelling of this association. Thus, the direction of this association in adults
remains unclear and whether BMI causes changes in sleep duration, or sleep

duration might cause changes in BMI is also uncertain.

1.9.2 literature Review Part Il: current evidence in children for the
association between BMI and sleep duration
There is a large body of literature on the relationship between BMI and sleep
duration in children. The majority of the evidence points toward a clear link
between the two, particularly in terms of long-term weight gain as a result of
shorter sleep'©61°7135136 However, these studies have predominantly investigated
whether sleep duration is associated with future higher BMI and risk of obesity
and only two studies373® to date, have examined the bidirectional relationship
between sleep duration and BMI (discussed below). At the end of this literature
review, tables are provided to summarise the evidence in children (Tables 1.4, 1.5
and 1.6). Cross-sectional and prospective studies that use subjective sleep
duration are summarised in Tables 1.4 and 1.5, respectively, whilst research that

uses objective sleep duration is summarised in Table 1.6.

1.9.2.1 Cross-sectional studies using subjective sleep duration

A summary table of the cross-sectional paediatric literature of BMI and subjective
sleep duration is provided below (Table 1.4). Cross-sectional evidence in children
predominantly supports an association between lower sleep duration and greater
weight and adiposity'°61°713914°, The first meta-analysis (that of Cappuccio and

colleagues, the adult findings of which are discussed earlier) of obesity and sleep
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duration in children'? included 30,002 children from 12 cross-sectional studies
and concluded that shorter sleep was associated with significantly greater odds of
obesity (pooled OR=1.89). In addition, two systematic reviews°%35, another meta-

analysis®> and a further review'#° also concluded the same.

Some studies classified short sleep as <10 hours or <10 hours, whilst others
defined it as <8 hours per day, <6 hours per night or <3 hours. Irrespective of this
variability in defining sleep duration, results were consistent across paediatric
studies, which might be because studies used age-specific cut-offs for short sleep
duration, as a form of standardisation. This association appeared to be stronger
in children, when compared to studies in adults, which were less uniform,
suggesting that this relationship may weaken with age, when drawing specific
comparisons between paediatric studies and geriatric studies. This was further
supported by evidence which shows that the cross-sectional association of short
sleep with weight weakened with increased age in two studies**?2, This was in
contrast to the claim made by Cappuccio and colleagues in the earlier meta-
analysis, whereby they stated that effects were of similar magnitude between

children and adults'7.

However, as the meta-analyses and systematic reviews described above did not,
of course, include studies that emerged after their publication, these are reviewed
separately. Pileggi and colleagues# investigated BMI in relation to parent-
reported sleep duration in 10-year old children and found that children
categorised as short sleepers had significantly higher BMI standard deviation
scores (SDS) (0.77 kg/m?), as compared to normal sleepers. In a sample of obese
7- to 16-year-olds it was apparent that those who slept fewer hours (n=50) were at
significantly higher risk of severe obesity#2. However, it was unclear how many

hours of sleep was classified as short sleep in this study.

A recent Chinese study of 8,760 children aged between 6 and 18 years found
that short sleep duration (defined as <7 hours) was associated with obesity
among girls, but in boys this effect was only apparent in those aged between 13
and 18 years. They also observed that the odds of obesity in relation to short sleep

were decreased in boys between 6 and 12 years of age. Although Cao and
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colleagues™# overall findings are comparable to those of studies from other
countries, it is important to consider these differences in the categorisation of
sleep duration. Recent findings from 6,576 Chinese children'#4, 303 Mexican
American children'4, 17,769 Japanese children'4® and 1,810 Chilean school
children'47 also support a cross-sectional relationship sleep duration and

BMI/increased risk of obesity.

Findings from most cross-sectional research are suggestive of a relationship
between shorter sleep and higher BMI and risk of overweight/obesity. However,
for different reasons, some studies have reported null associations between sleep
duration and obesity measures. Klingenberg and colleagues4® observed no
association between parent-reported sleep duration and BMI in a sample of 211
Danish 3-year olds, in analyses adjusted for multiple covariates. The lack of effect
could possibly be because families in this sample tended to have high educational
attainment, were wealthy and all resided in the Copenhagen region of Denmark,
as well as the small sample size (n=31u1). This has implications for
representativeness of their findings, in particular due to the potential lower risk

of becoming obese and developing poor sleep habits, for example.

A recent study of 1,929 8-year old Peruvian children found that 42% percent of
the sample were short sleepers (<10 hours) and had a 15% greater prevalence of
obesity, compared to normal sleepers (10-11 hours)49. However, after adjustment
for several child and family-related factors (maternal and paternal education,
maternal weight, location and wealth index), they found no significant
relationship between sleep duration and overweight or obesity. A potential
explanation put forward for the lack of association included the definition of
short vs. normal sleep duration was more conservative than other studies that

yielded a significant effect.

A study of 3,086 Chinese children aged between seven and fourteen years found
that, although those who were overweight or obese were less likely to sleep
longer at the weekends, to compensate for insufficient sleep during the week,

there was no significant relationship between weekday sleep duration and the



odds of being overweight or obese'>*. One possible explanation for this finding

could be cultural factors that are not relevant to studies of Western children.

In summary, very few studies have reported null findings of the association

between BMI and sleep duration in children. It is therefore important to note the

potential reasons (discussed above) for these findings, i.e. they had low

prevalence of obesity, were of particularly high SES and/or defined short and long

sleep distinctly from other studies that did find an effect.

Table 1.4 Summary table of cross-sectional findings in children using subjective

sleep duration

Type of Authors Year  Sample  Outcome Main findings/possible reasons for null
article/study size findings
Systematic Cappuccioet 2008 30,002 BMI 12/12 - shorter sleep duration associated
review w/meta- al. with greater odds of obesity (pooled
analysis (12 OR=1.89)
studies)
Systematic Chen et al. 2008 44,228 BMI 1/1 - shorter sleep duration associated
review w/meta- with increased risk of obesity (pooled
analysis (11 OR=1.58)
studies)
Systematic Patel & Hu 2008 26,997 BMI 1/1 - shorter sleep duration associated
review (1 with increased risk of obesity
studies)
Systematic Liu et al. 2012 20,244 BMI 25/25 - shorter sleep duration associated
review (25 with overweight/obesity
studies)
Observational Pileggi et al. 2013 542 BMI Shorter sleep duration associated with
study higher BMI
Observational Cao et al. 2015 8,760 BMI Shorter sleep duration associated with
study obesity in girls only
Observational Meng et al. 2012 6,576 BMI Shorter sleep duration associated with
study higher BMI
Observational Sakamoto et 2017 17,769 BMI Shorter sleep duration associated with
study al. increased risk of obesity
Observational =~ Agueroetal. 2016 1,810 BMI Shorter sleep duration associated with
study increased risk of obesity
Null findings
Observational Klingenberg 2013 211 BMI Families of high SES; all residents in urban
study etal. area
Observational Carrillo- 2014 1,929 BMI Authors suggested low prevalence of
study Larco et al. overweight/obesity (but in fact totalled
21% so not that low)
Observational Zhang et al. 2015 3,086 BMI In Chinese culture children are under
study strict parental surveillance, irrespective of

whether they are of normal
weight/overweight/obese & all children
appear to have insufficient sleep, not only
overweight/obese children

*All effects significant/not significant at p<o.o5.
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1.9.2.2 Prospective studies using subjective sleep duration

Prospective studies of BMI and subjective sleep duration are summarised in Table
1.5 below. Systematic reviews and meta-analyses of prospective studies are largely
in line with findings from the cross-sectional literature, such that shorter sleep is
associated with changes in BMI and an increased risk of obesity06:107:139:140,151-153,
However, discrepancies exist between studies regarding sex differences
(described in 1.9.2.8 below), and there is some evidence for a U-shaped, as

opposed to a linear association.

Patel and Hu** published the first systematic review of paediatric prospective
studies and observed a strong and consistent relationship between shorter sleep
and future obesity risk. Although the authors concluded that there is a
longitudinal association between shorter sleep and increased risk of weight gain
and obesity, they based this on the only two longitudinal studies that had been
published at the time. Briefly, one of these studies followed 8,234 children from
three to seven years of age and observed ORs for obesity of 1.45, 1.35 and 1.04 for
those who slept either <10.5 hours, between 10.5 to 10.9 hours and 11 to 11.9 hours,
compared to 12-hour sleepers's. The other study found that in 150 children aged
between three and five years at baseline, the risk of becoming overweight at age
nine and a half years, was predicted by short sleep duration. Those who became
overweight slept for approximately 30 minutes less than the normal weight
children's®. Importantly, though, Patel and Hu acknowledged that neither of
these studies adjusted for weight at the time when sleep duration data were

collected, thus did not measure actual changes in weight.

The conclusion that shorter sleep confers an increased risk of overweight and
obesity was supported by another systematic review with meta-analysis published
the same yearss. Subsequently, in 2015 two further systematic reviews with meta-
analyses emerged'>"*52. Fatima and colleagues™ found that sleep duration was
inversely associated with future BMI in children, such that those who have
shorter sleep durations are approximately twice as likely (OR=2.15) to become
overweight/obese compared to their normal-sleeping counterparts. The authors

stated that their findings concurred with those of previous meta-analyses, yet
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they observed a stronger effect and speculated that this was because they
weighted more heavily the three studies that used objective sleep duration,
measured (rather than self- or parent-reported) BMI and had at least a three-year
follow-up period. A further systematic review and meta-analysis'>* of 25 studies
with a total of 56,584 children also found that over an average of 3.4 years follow-
up, those who slept for approximately 10 hours, compared to those who slept 12
hours, were 75% more likely to be overweight/obese (OR=1.76). Additionally,
these children had relatively greater annual BMI gain (0.13 kg/m?) for every hour

decrease in sleep duration.

The most recent meta-analyses of the association of sleep duration and change in
BMI (and other measures of adiposity) support the notion that short sleep is
associated with increases in future BMI'53'57. However, there is heterogeneity in
these meta-analyses which may be related to a number of factors including the
definition of short and long sleep, length of follow-up time, geographic location,

and ethnic group.

1.9.2.3 Bidirectional, prospective studies of BMI and sleep duration
When reviewing this literature, it was apparent that studies have largely
investigated the prospective association between sleep duration and BMI over
time, rather than vice versa, with the exception of two studies that have examined
potential bidirectionality. This research is important, as it attempts to ascertain
the direction of this association, which in turn, provides information on whether
children’s sleep duration might change as a consequence of being
overweight/obese, or whether the reverse might be true'>®. Only two studies to
date have investigated the bidirectional, longitudinal relationship between BMI
and sleep duration in children3738, Although these studies were included in
some of the meta-analyses described earlier they will be described here

separately.

The first to investigate the bidirectional relationship of BMI with sleep duration
were Hiscock and colleagues, who observed that, in Australian children, BMI did
not predict changes in sleep duration, or vice versa®’. They performed two sets of

cross-sectional and prospective analyses in 3,857 infants and 3,844 children. The
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infants were between zero and one year of age at baseline, and age two to three
years at follow-up; the children were aged between four and five years at baseline,
and six to seven at follow-up. Prevalence of overweight was around 15% and
obesity 5%, at each follow-up, but the authors observed no longitudinal
association in either direction; from ages zero/one to two/three years, or four/five
to six/seven years. Cross-sectionally, however, they found that obese six/seven-
year-olds slept for 30 minutes less than their underweight, normal weight and

overweight peers.

These negative findings contrasted with numerous epidemiological studies and
this could be due to at least two reasons. Firstly, the authors used 24-hour time
diaries to collect data on sleep duration whilst the majority of previous research
at the time had used parent-reported sleep duration and it is this measure, rather
than time diary reports, that predict obesity. Therefore, this could mean that
their results were, in fact, more accurate than studies that use parent-reported
sleep duration. However, the study used a bespoke measure to ascertain sleep,
which has not been used in other studies and for which no validity or reliability

measures were provided and may mean that the findings are uncertain.

Secondly, it is possible that the relationship between short sleep and paediatric
obesity develops slightly later, which is in line with their finding from the six-to-
seven-year-old children. One hypothesis could be that the relationship between
shorter sleep and obesity is via eating behaviour and as such, a child would need
to consume excessive amounts of food over a certain number of years (as a
consequence of short sleep), which would then lead to increased weight/risk of
obesity later. Also, it is possible that children who eat more when they are tired
are likely to have more autonomy over what, when and how they consume food,
which is a privilege that usually comes as children get older. This is supported by
epidemiological research in which shorter sleep in early life (16 months) is
associated with greater energy intake, but this effect emerges prior to the
association with weight's9. More specifically, this study by Fisher and colleagues'>

showed that there was no relationship between sleep duration and weight in this
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sample of 1,303 British children, but the association between energy intake and

sleep duration was strong.

Collings et al.38 also investigated the bidirectional relationship between BMI and
sleep duration. They analysed data from 776 South Asian and 562 White children
from the Born in Bradford-1000 (BiB-1000) cohort, at ages 12, 18, 24 and 36
months of age. Their results showed that the association between BMI and
parent-reported sleep duration was significant in both directions in South Asian
children, but the findings were null in White children®®. In the South Asian
children BMI had a two to threefold larger effect on sleep duration, rather than
the other way around (i.e. sleep duration as the exposure, which is the direction
modelled in all, but two prospective epidemiological studies, to date). Finding
that BMI and sleep duration are associated in both directions in South Asian
children requires replication in a larger and independent sample. The findings in
White children are comparable with those of the earlier study7, even though

Collings used parent-reported sleep duration, as opposed to sleep diaries.

Both of the studies described above observed no bidirectional relationship
between BMI and subjective sleep duration in White children from the UK and
Australia. Although each study used a distinct sleep duration measure (24-hour
diaries vs. parent-reported duration) these findings have yet to be replicated in a

paediatric sample using objectively-measured sleep duration.
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Table 1.5 Summary table of prospective findings in children using subjective sleep

duration
Type of Authors  Year  Sample  Outcome  Follow- Main findings*
article/study size up
period
Systematic Patel & 2008 8,384 BMI 4-45 Shorter sleep
review (2 Hu years associated with increased weight &
studies) risk of obesity
Systematic Chenet 2008 10,189 BMI 3-9 Shorter sleep associated with
review w/meta- al. years increased risk of becoming
analysis (3 overweight/obese
studies)
Systematic Fatima 2015 42,223 BMI 1-9.5 Shorter sleep associated with
review (22 etal. years higher BMI/increased risk of
studies) overweight/obesity
Meta-analysis (1 Fatima 2015 24,821 BMI 2-95 Shorter sleep associated with
studies) et al. years higher BMI/those who sleep for
less twice as likely (pooled
OR=2.15) to become
overweight/obese
Meta-analysis Ruanet 2015 56,584 BMI 0.5-10 Shorter sleep associated with
(25 studies) al. years greater odds of obesity (pooled
OR=1.76)
Meta-analysis (12 Lietal. 2017 44,200 BMI 2-15 Shorter sleep associated with
studies) years higher prospective BMI & 30%
increased risk of obesity
Meta-analysis (13 Wuetal. 2017 35,540 BMI 1-5 Shorter sleep associated with
studies) years greater odds of obesity (pooled
OR=1.71)
Bidirectional prospective studies
Observational Collings 2017 776 BMI & 18, 24 Higher BMI associated with
study et al. (South sleep and 36 decreased sleep from baseline (6
Asian) duration  months months) to 12, 18 and 24 months,
but not 36 months
AND
Longer sleep (at baseline)
associated with decreased BMI at
12, 18, 24 and 36 months
Null findings
Observational Hiscock 2014 3,844 BMI & 1-7 Sleep duration did not predict
study et al. sleep years changes in BMI, BMI did not
duration predict changes in sleep duration
Observational Collings 2017 562 BMI & 18, 24 Sleep duration did not predict
study et al. (White) sleep and 36 changes in BMI, BMI did not
duration  months predict changes in sleep duration

*All effects significant/not significant at p<o.05.

1.9.2.4 Studies using objectively-measured sleep duration

There are very few studies to date, that have used objective sleep duration to

examine its relationship with BMI in children and their findings are equivocal.
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Both cross-sectional and prospective studies that have used objective sleep

duration measures are summarised in Table 1.6 below.

1.9.2.5 Cross-sectional studies

Chaput and colleagues'® objectively measured sleep duration over seven days in
a sample of Canadian children aged 10. After adjustment for a number of lifestyle
and demographic covariates they observed that short sleepers (<10 hours) had

increased odds of overweight/obesity (OR=2.08).

In 308 American children'® between the ages of four and ten average actigraphic
sleep duration was eight hours, which is markedly below the recommended
amount for children. Analysis of both weekday and weekend sleep duration
showed that there were no differences between normal weight, overweight and
obese groups. However, the authors then examined sleep variability values within
BMI SDS groups. They found that in obese children, sleep duration was more
variable on weekends than on weekdays, in comparison with children in the
normal and overweight BMI SDS groups. Overall, shorter sleep duration was
associated with other metabolic markers, such as altered insulin, LDL and high-
sensitivity CRP and thus, the authors concluded that these might be more
important in this context (i.e. that shorter sleep might have a greater impact on

these other metabolic markers, rather than BMI).

A Swedish study of 1,231 children'®> aged between six and ten years found
objectively-measured sleep duration to be negatively associated with BMI. One
important limitation of this study was the lack of sleep diary data; thus,
evaluation of sleep times was more difficult. Research conducted in 303 mother-
child pairs using both mother-reported and objective sleep duration suggests that
BMI was associated with both of these measures'45. However, the sleep measures
were weakly correlated and the objective data appeared to provide a more
reliable estimate of children’s sleep durations'>. A 2015 study using data from
6,025 children across twelve countries from the International Study of Childhood
Obesity, Lifestyle and the Environment (ISCOLE) also showed an association
between longer sleep duration and decreased odds of obesity (OR=0.79)'3.

Findings from Wilkie and colleagues'+ are in concert with the ISCOLE data, as
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they observed a relationship between lower odds of obesity and longer sleep

duration, in 374 UK children.

In a Canadian sample of 567 10-year old children no cross-sectional association
was observed between actigraphic sleep duration and BMI'%5. As the effect of
sleep duration on BMI was no longer significant following adjustment for several
covariates (age, sex, ethnicity, family income, parental education, maturity offset,
moderate to vigorous physical activity (MVPA), sleep efficiency and sleep timing)
these findings were comparable to some previous research'® in which this effect
was diminished after adjustment for covariates. However, this sample had higher
sleep efficiencies than others that previously objectively-measured this in
children, which could in turn be explained by the fact that this cohort were
relatively lean and active. However, these high sleep efficiencies might also have
been influenced by the fact that data were collected using waist-worn actigraphy,
which may overestimate both sleep duration and sleep efficiency'®?, as compared
to wrist-worn actigraphs and this might at least, in part, explain the high sleep

efficiency values in this sample.

1.9.2.6 Prospective studies

Prospective studies that examine objective sleep duration in relation to BMI are
still scarce, with few published to date. Using data from 304 participants of the
Tucson Children’s Assessment of Sleep Apnoea study, researchers found that
those who slept less than seven and a half hours a night at age six were at
increased odds (OR=3.3) of becoming obese 5 years later, compared to those who
slept =9 hours per night®®. Additionally, short sleep was associated with a mean
BMI increase of 1.7 kg/m? at 5-year follow-up. Another study published in 2011
yielded similar results in 244 children followed from ages three to seven years'.
From baseline to follow-up each additional hour of sleep was associated with a

0.48 kg/m?reduction in BMI, as well as decreased risk of being overweight.

From reviewing the extensive paediatric literature on the relationship between
BMI and sleep duration, it is apparent that few studies collect objective sleep
data. As mentioned earlier, one underlying reason for this is that it is still too

costly to collect these data from hundreds, if not thousands, of participants.
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Table 1.6 Summary table of cross-sectional & prospective findings in children using
objective sleep duration

Type of Authors Year  Sample  Outcome Main findings/possible reasons for null
article/study size findings
Cross-sectional - positive findings
Observational Chaput et al. 2011 550 BMI Shorter sleep duration associated with
increased risk of obesity

Observational Ekstedt et al. 2013 1,231 BMI Shorter sleep duration associated with
higher BMI

Observational Martinez et 2014 303 BMI Shorter sleep duration associated with
al. higher BMI

Observational Katzmarzyk 2015 6,025 BMI Longer sleep duration associated with

et al. decreased odds of obesity.
Observational Wilkie et al. 2016 374 BMI Longer sleep duration associated with

decreased odds of obesity.

Cross-sectional - null findings

Observational Spruyt et al. 2011 308 BMI Sleep duration was more variable in obese
children on weekends vs. weekdays; sleep
duration was much lower (8 hours) than
the recommended amount for children;
shorter sleep duration was associated
with other metabolic markers, not BMI

Observational Mcneil et al. 2015 567 BMI Sample were lean & active compared to
other studies; sleep efficiency was very
high on average; waist-worn actigraphy
was used, which can overestimate sleep

duration/efficiency

Prospective - positive findings

Observational Silva et al. 2011 304 BMI Shorter sleep duration associated with
increased odds of obesity at 5-year follow-
up & with increased BMI at follow-up

Observational Carter et al. 201 244 BMI Longer sleep duration associated with
decreased BMI at 4-year follow-up

*All effects significant/not significant at p<o.05.

1.9.2.7 Sex differences in the association of obesity and
(subjective/objective) sleep duration in children
Some studies in children suggest that there is a marked difference in the
magnitude of association between BMI and sleep duration in boys and girls. For
example, one of the earlier reviews described three studies that found boys were
more likely to sleep for less hours than girls*°6. Specifically, one of these studies
observed distinct obesity ORs associated with <8 hours vs. >10 hours sleep, such
that for boys it was 5.5 and girls 2.1'7°. A UK cross-sectional study of 1,294 children
aged between 7 and 18 years revealed an association between age-adjusted BMI

and sleep duration in boys, but not girls'”. This was further supported by Chaput
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and colleagues’ work'72, which found an OR for obesity related to sleep duration

of <10 hours, compared to 12 or more hours was 3.2 in girls and 5.7 in boys.

Research conducted in 6,324 children from the Australian Health and Fitness
Survey observed a dose-response relationship between short sleep (<8 hours
sleep vs. >10 hours sleep) and odds of being overweight/obese in boys only'7.
This is in line with research from a Canadian sample, which suggested that at
ages 6 and 7, sleep duration was inversely associated with overweight/obesity in
boys, but not girls'74. They also found that sleep duration at age 2.5 years
predicted overweight/obesity in boys at ages 6 and 7. Notably, the researchers
also discovered that in boys, shorter sleep duration was associated with
unfavourable eating behaviours and thus, at age six, they were more likely to eat
at irregular times and consume too much food, too fast. This was suggestive of a
mediating effect of eating behaviours between sleep duration and

overweight/obesity in boys.

In the ISCOLE study described earlier, longer sleep duration was associated with
decreased odds of obesity in both boys and girls in this multi-country analysis'®3.
However, the OR for boys was 0.83 (17% reduction in risk), whilst for girls it was
0.75 (25% reduction in risk), a result which is important, not only because this
study was conducted across 12 countries, but also because they used objective
sleep duration. Therefore, this study’s findings differed from those of the studies
discussed above, which suggested that the effect of sleep duration on obesity risk

is greater for boys, rather than girls.

1.9.2.8 Summary of evidence in children

Both cross-sectionally and prospectively, evidence in children largely suggests
that shorter sleep is associated with higher BMI, as well as risk of
overweight/obesity. In recent years, several large-scale meta-analyses and
systematic reviews have supported this finding, yet there are some differences
across study results. These discrepancies in conclusions might be due to factors
that have been explored above, in this literature review, in more detail. For
example, similarly to adult research, there have been differences in the way that

studies define short/long sleep, the analysis of BMI as a categorical (using weight
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status categories) vs. a continuous measure and the inclusion of covariates is also
disparate. These important factors can have an impact on study findings, all of

which have been explored above in this literature review.

Some research finds that boys are, on average, more susceptible to sleep loss and
potentially, increases in BMI and greater odds of overweight/obesity, which could
perhaps be explained by evolutionary or physiological sleep differences. However,
one of these studies, which analysed data from 6,025 children across 12 countries,
found that, in fact, there was a larger effect of sleep duration on obesity risk for
girls, rather than boys. Other studies find a U-shaped relationship between sleep
duration and weight gain, for example, suggestive of a non-linear, rather than a
linear effect. However, the majority of studies have reported a linear relationship

between the two.

Unlike in adults, there have been two studies to explore the bidirectional
association of sleep duration and BMI in childhood. These studies’ findings were
identical for children of White ethnicity, in that they yielded no prospective
relationship in either direction. However, one of these studies found a
relationship in both directions (BMI predicting changes in sleep duration, as well
as sleep duration predicting changes in BMI) in children of South Asian ethnicity.
Both of these bidirectional, epidemiological studies used only subjective sleep
duration measurements; no studies have yet investigated the bidirectional
association between BMI and sleep duration using objective sleep duration.
Notably as well, no research has attempted to investigate whether the

relationship between BMI and sleep duration might be causal, in either direction.

1.9.3 Potential explanations for sex differences in both children and
adults

Eisenmann et al.”3 suggested that one explanation for sex differences in the

association between BMI and sleep duration could be that females might need to

experience greater sleep loss before they are affected, as they tend to be more

resilient to environmental stress than males, from an evolutionary perspective.

This is grounded in the theory that sex differences in early vulnerability are due
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to the natural selection of optimum maternal strategies that maximise
reproductive success, and that irrespective of medical care advances early life

environmental stressors will always disproportionately affect males'7s.

An alternative account for the difference between males and females comes from
physiological and behavioural distinctions in sleep architecture between the
sexes'7®, For example, there is some evidence that boys score more poorly on
actigraphic sleep measures; they experience more awakenings and interruptions
during sleep, whilst girls sleep for longer with fewer interruptions'”?. Further,
these sex differences might influence how insufficient sleep affects phenotypes
such as diet, eating behaviour and physical activity of boys differently from
girls'74. For example, perhaps boys are more sensitive to obesogenic eating
behaviours when they do not have the required amount of sleep for prolonged
periods. However, it might also be important to note that younger boys are likely
to have their diets and eating behaviours quite closely monitored by

parents/caregivers.

Explanations have also been offered for why some studies find an association
between sleep duration and BMI/increased risk of obesity in females, but not
males. For example, an experimental study showed that when men and women'’s
sleep was restricted to five hours per night (compared to nine hours), both sexes
were more likely to consume more calories at night, when food was available ad
libitum'78. However, men gained weight irrespective of sleep condition (five vs.
nine hours), whereas women’s weight only increased in the five-hour restricted
sleep condition, thus the authors concluded that insufficient sleep may lead to

less dietary restraint in females.

Overall, the majority of studies have observed an association between sleep
duration and BMI, irrespective of sex. However, some research shows an
association in males, but not females and vice versa and some potential biological
explanations have been explored. More research is still required to examine this
moderation by sex in very large samples and across diverse age groups. Also, the
opposite direction should be investigated to ascertain whether sex might modify

the effects of BMI on longitudinal changes in sleep duration.
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1.9.4 Proposed pathways in the literature underlying the relationship of
BMI with sleep duration
A few pathways via which sleep duration can influence the onset of obesity have
been proposed. For example, there is evidence to suggest that short sleep
duration is linked to changes in levels of the appetite hormones leptin (the
‘satiety’ hormone) and ghrelin (the ‘hunger’ hormone),°979-8! and that such
alterations in appetite could mediate the relationship between sleep duration and
obesity™®?, Spiegel et al'7? found that after two days of sleep restriction and two
days of sleep extension, during which caloric intake and physical activity were
systematically controlled, leptin (involved in the homeostatic regulation and
reduction of appetite via increased satiety) levels decreased by 18%, while ghrelin
(which increases hunger) increased by 28%, 24% and 23%, respectively.
Importantly, though, this study had a very limited sample of 12 men and did not
measure energy expenditure. This finding was, however, supported by two
studies in which short sleep duration was associated with reduced leptin'©?'®° (j.e.
reduced satiety and higher hunger), and two reported that short sleep was
associated with increased ghrelin levels®® (i.e. higher hunger). In contrast, one
of these studies saw no changes in the leptin levels of nine men, who had spent
three nights (7 hours, 4.5 hours and total deprivation) in a sleep laboratory,

181

separated by two weeks each time''. The sample analysed was particularly small

and thus this study may not have been particularly well powered to detect effects.

Another pathway that could underlie the relationship between sleep duration
and adiposity is related to certain obesity-related behaviours. In a study of 30,000
Japanese adults, although 80% reported getting enough sleep per night, 28% of
the population reported sleeping for less than six hours nightly®. Findings
further indicated that sleep loss was associated with an unhealthy lifestyle, such
as insufficient physical activity and regular snacking between meals. Further, in
the Whitehall II study Stamatakis and colleagues®+ found an association between
short sleep duration and obesity-related behaviours, such as insufficient physical

activity and reduced fruit and vegetable consumption. They suggested that
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interventions that promote physical activity and improved nutrition should also

consider sleep duration as a modifiable risk factor for obesity.

Another, more simple explanation, is that people who sleep less have more time
to eat. However, the evidence in support of this explanation is not clear-cut, as
individuals in the short and long sleep categories frequently have a higher BMI,
compared to those who have normal sleep durations. This is supported by some
evidence reviewed earlier that suggests a U-shaped relationship between BMI and
sleep duration. Some research nonetheless, suggests that at least in young
children, there may be partial support for this account. One such study examined
the relationship between sleep and energy intake in early childhood, by analysing
data from 1,303 children from the UK Gemini twin birth cohort’d. Sleep duration
data were collected from parents using a questionnaire when the children were 16
months old, whilst the diet diaries were completed when they were between 20-
21 months of age. Findings revealed that shorter night-time sleep duration was
associated with higher energy intake and that these infants consumed, on
average, 50 kilocalories (kcal) more per day than children who had optimal
durations of sleep. Although this difference appeared to be small, it equated to
approximately 5% of the daily energy intake in this sample. Further analysis of
the Gemini children showed that those sleeping for <10 hours, in fact, consumed
an average of 120 kcal (15% of the daily intake) more at night specifically,

compared to those sleeping >13 hours'®s .

Another conceivable explanation, which remains untested to date, is that BMI
and sleep duration could have overlapping genetic factors. This is otherwise
known as pleiotropy, whereby the same genes influence multiple traits®6. The
reason that this potential explanation is focused on BMI, rather than waist
circumference, is that it is possible to test for pleiotropy between common
genetic variants associated with BMI and sleep duration, but not WC and sleep
duration. This is because there are now ninety-seven published and replicated
genome-wide SNPs associated with BMI?9. Testing for shared genetic pathways
between BMI and sleep duration seems plausible, as some of the genetic variants

in certain genes, such as FTO for example, are predominantly expressed in the
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hypothalamus3°. The hypothalamus is a key area in the brain involved in inducing

sleep and promotes wakefulness.

The ventrolateral preoptic nucleus (VLPO) is a cluster of neurons in the anterior

hypothalamus, which are directly connected to the brain’s arousal-promoting

centres and therefore, promote sleep by inhibiting these other arousal centres.

Thus, it is possible that one or more SNPs in these genes may lie on the causal
pathway between BMI and sleep duration and that if an individual has an
elevated genetic risk of BMI, this may then confer an increased risk of shorter
sleep duration. As mentioned earlier in this chapter, short sleep duration has
been associated with CVD®, T2D-mellitus®3'®7, hypertension®+'®8 and earlier

mortality®5°,

In summary, a few important pathways have been proposed in relation to why
BMI and sleep duration are frequently associated in the epidemiological

literature. However, it is clear that further research is required to investigate

other previously understudied pathways and mechanisms, some of which will be

explored in this thesis.
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1.10 LIMITATIONS OF THE CURRENT EVIDENCE AND RATIONALE
FOR THIS RESEARCH

The evidence reviewed here on the relationship between adiposity and sleep
duration in children and adults has important limitations, which are discussed in
this section. These limitations then lead to an outline of the rationale for the

research carried out in this thesis.

The majority of research in this area has used observational epidemiological
methods. These studies are unable to draw conclusions about causality, even
those that employ a prospective design whereby participants may have been
followed over a number of years'®9. The inability of observational studies to infer
causality is due to two main reasons. Firstly, residual confounding occurs when
unmeasured factors that may underlie associations cannot be accounted for in
analyses and, secondly, reverse causation refers to when the ‘outcome’ may
precede the ‘exposure’. Both confounding and reverse causation can be addressed
through the exploitation of genomic data, using a design called Mendelian

randomisation'9° (described in more detail in Chapter 6).

Reverse causation can also be partially addressed using approaches that examine
bidirectionality, which has been suggested regarding the association of adiposity
measures and sleep duration'>®. However, to date, this has only been investigated
in two paediatric studies’373%, and never in adults. Furthermore, there have now
been hundreds of studies that have investigated the relationship between
measures of adiposity and sleep duration, yet no studies have attempted to use
causal modelling to determine whether this association is causal, in either

direction.

There have also been far fewer studies in older adults than in children and
younger adults and none of these have used a bidirectional approach to this
question. Whilst it is important to determine what effect BMI has on sleep
duration, or vice versa, in children and young adults, it is both timely and
important to determine the nature and size of this relationship in older adults.

Although studies have suggested that the effect of sleep duration on BMI
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weakens with age, the prospective effect of BMI on sleep duration has not been
explored in older adults. The main reasons that this is important are twofold. The
ageing population is rapidly growing, with the number of people aged over sixty
expected to represent 22% of the world’s population by 2050'9". As a consequence,
the second reason for more research in older people in this area, is the need to
better understand the health of the elderly, as this is the time when disease and

frailty are most common'>.

1.11 AIMS AND OBJECTIVES OF THIS THESIS

The overarching aim of this thesis was to examine the relationship between BMI
and sleep duration using both observational and genetic epidemiological
approaches. The literature on BMI and sleep duration to date, in both children
and adults is mostly observational. It remains unclear whether BMI might
precede changes in sleep duration, or whether sleep duration precedes changes in
BMI. Also, whether this relationship is causal remains to be established, in either,
or both directions. Thus, the research undertaken in this thesis aimed to: (i)
investigate the direction of this association in both children and older adults; (ii)
understand this complex relationship at both ends of the life course; (iii) and use
causal analyses - Mendelian randomisation (MR) - to test the causal relationship
between BMI and sleep duration. MR requires robust and replicated SNPs
through GWAS (for both BMI and sleep duration), so in order to perform
bidirectional MR it was also necessary to carry out a meta-GWAS of sleep
duration (this project preceded the UKB 2016 GWAS published by Jones and

colleagues?®).

1.11.1 Hypotheses

The following hypotheses were tested in this thesis:

i) That in older adults, there would be a negative cross-sectional
association between BMI and self-reported sleep duration (Chapter 3);

ii) That in older adults, there would be a negative prospective association
between BMI and changes in self-reported sleep duration over four

years, but not in the opposite direction (Chapter 3);
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iii)

That in children, there would be a cross-sectional negative relationship
between BMI and objective sleep duration (Chapter 4);

That in children, there would be a prospective, negative association
between objective sleep duration and change in BMI and/or a negative
association between BMI and change in objective sleep duration
(Chapter 4);

That BMI may be causally associated with self-reported sleep duration,
such that a higher BMI might cause short/long sleep duration (Chapter
6).

1.11.2 Specific objectives

Investigate the bidirectional observational association between adiposity
and self-reported sleep duration, in cross-sectional and longitudinal
analyses in older adults, using data from a large English community
sample (Chapter 3).

Investigate the bidirectional, observational relationship between BMI and
objective sleep duration using a paediatric community sample (Chapter 4),
with the aim of establishing the direction of effect in early life, given that
there have only been two bidirectional studies in children, to date.
Perform a large-scale GWAS of self-reported sleep duration in three UK
population studies, as a precursor to performing a Mendelian
randomisation analysis to examine whether the association between sleep
duration and BMI is causal (Chapter 5).

Perform a large-scale Mendelian randomisation study to investigate the
potential causal effect of BMI on self-reported sleep duration, using the
most up-to-date methodologies (Chapter 6).

Discuss the key findings, strengths and limitations of this research;
potential implications for policy and practice and prospects for future

research (Chapter 7).
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Figure 1.2 Work flow for the studies carried out in Chapters 3, 4, 5 and 6 in this
thesis

. Bidirectional
study: older adults

II. Bidirectional
study: children

Genetic studies

Understand direction of
association between
BMI & sleep duration

Thesis aim: investigate
relationship between BMI &
sleep duration

Observational
studies

I. GWAS of sleep No novel/replicated

duration SNPs

IIl. Unidirectional
MR: BMI| = sleep
duration

77



2 DATASETS USED IN THIS THESIS

2.1 BRIEFINTRODUCTION AND OVERVIEW OF CHAPTER
CONTENTS

This research thesis took a multidisciplinary approach to establishing the nature
of the relationship between sleep and BMI and employed a combination of
observational and genetic epidemiological methods. To maximise power for the
genetic analyses, data from four epidemiological studies were used in this work:
ALSPAC (mothers), ELSA and UKHLS. This chapter provides an overview of the
datasets used throughout this thesis, with details of relevant phenotypic
measures [height, weight, waist circumference (only ELSA analyses in Chapter 3
used WC) and sleep duration], as well as summary statistics and information
about collection of DNA samples, genotyping quality control (QC) metrics and

genotype imputation.

The work conducted in this thesis did not involve any subject recruitment,
genotyping, QC of genetic data or genotype imputation. For the ALSPAC
mothers’ data, there was no involvement in preparation of the phenotypic sleep
duration data either. At the end of this chapter Table 2.5 presents a summary of

the phenotypic and genetic data used in this thesis.

2.2 DATASETS
2.2.1 Avon Longitudinal Study of Parents and Children (ALSPAC):

mothers
ALSPAC was established with the aim of understanding how genetic and
environmental factors influence health and development of parents and their
children. Through an existing link with the University of Bristol it was possible to
collaborate on the GWAS of sleep duration with Dr. Gibran Hemani from the
Integrative Epidemiology Unit, who cleaned the sleep duration data and

performed the analyses. Dr Hemani then uploaded the results to a secure server,
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which were then downloaded and included in the genome-wide meta-analysis,

along with two other studies.

2.2.1.1 Ethics

Ethical approval was initially granted by the Bristol and Weston Health Authority
(E1808) and then the Mothers clinic was approved by the North Somerset &
South Bristol Research Ethics Committee (08/Ho0106/96). Written informed

consent was also obtained at recruitment.

2.2.1.2 Participants

Pregnant women from a specific area in the South West of England (Avon), with
an expected delivery date between 1%t April 1991 and 31°* December 1992 were
eligible, of whom 13,761 were recruited into ALSPAC. Participants have been
followed up for more than 20 years, from the 8" gestational week; data have been
collected using self-report, health records, biological samples and physical

measurements'o3.

2.2.1.3 Phenotypic data description: sleep duration
Data from ALSPAC mothers contributed to the GWAS of self-reported sleep
duration (Chapter 5) in this thesis. Table 2.1 below provides summary statistics

for the ALSPAC phenotypic data.

Self-reported sleep duration data was collected from ALSPAC mothers by asking
them to report the number of hours and minutes they sleep for during weekdays

and weekends, then a weighted average was taken:

(weekdays x 5 + weekends x 2)

7
Although this question on sleep duration has been asked at six time points, in
this thesis sleep duration was analysed from the 2003 data collection. The six data
collections in which sleep measures were taken are 1991 (during pregnancy), 1994,
1995, 1997, 1999 and 2003. At each time point sleep duration has been collected
via questionnaire, but prior to 2003 it was measured categorically using the

following groups: o-3 hours, 4-5 hours, 6-7 hours and 8+ hours. However, in 2003,
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quantitative raw sleep duration was collected via questionnaire and ALSPAC
researchers state that it is preferable to use this measure, as some information
can be lost when categorising this kind of variable'94. For example, the fact that
all durations greater than 8 hours are in a single category might mask U-shaped

associations with other important traits'94.

Prior to performing GWAS analyses (Chapter 5) on the sleep duration phenotype,
outliers were removed and thus, respondents who reported sleeping for <4 hours
and >11.5 hours were excluded. Also, n=329 women who reported taking sleep
medication were not included in the analyses.

Table 2.1 Summary statistics for self-reported sleep duration in ALSPAC (after
cleaning, as described above)

Timepoint N Mean SD
2003 weekday 7,404 7.38 1.03
2003 weekend 7,404 8.20 116
2003 average 7,404 7.61 0.97

Note. N= number of observations, SD= standard deviation.

2.2.1.4 Genelic data
Informed consent was obtained to take DNA from blood samples and genome-

wide genotyping in 10,321 women.

2.2.1.4.1 Genotyping and QC

DNA has been collected from blood samples continuously since initial
recruitment'3. Genotyping was performed in 10,107 of the 10,321 women who had
DNA available, using the Illumina 660 W-quad array, which had a total of 557,124
SNPs prior to QC. QC metrics included removing SNPs with =5% missingness,
<1% minor allele frequency (MAF - the extent to which the less common allele
occurs in the population) and those that deviated from Hardy Weinberg
equilibrium (HWE - whereby genetic variation remains constant from generation
to generation) at 1x10°%. Individuals with missingess of =5% and those with cryptic
relatedness of >5% (Identity by state cut-off of 0.05) were also removed. Cryptic

relatedness refers to the presence of close relationships within a sample of largely
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unrelated and outbred individuals'>. Identity by state is used to describe two

identical alleles or DNA segments'95.

For the purposes of the GWAS in Chapter 5, data from 4,914 ALSPAC mothers
(out of the 10,107 with GWAS data) were analysed, as this was the maximum
number of individuals who had genetic data, as well as the sleep duration

phenotype.

2.2.1.4.2 Imputation

Genotype imputation enables the inference of unobserved genotypes, that is, in
the case of GWA studies, SNPs that have not been directly genotyped.
Imputation is done using known haplotypes (a group of genes that are inherited
together from one parent) in a particular population, which is possible, as the
DNA sequence of any two individuals is 99.5% identical. However, it is the
remaining variation (0.5%) that may lead to different disease risks. It is because
of this that common genotype imputation reference panels, such as HapMap,

1000 Genomes and the Haplotype Reference Consortium (HRC).

Imputation is performed by using the LD structure within a sample of genotyped
individuals. When choosing a reference panel it is best to select one that is a
close ancestral match to the population under study, as this increases imputation
accuracy'9®. Also, selecting a larger reference panel (for example, 1000 Genomes
over HapMap) allows a broader range of variants to be imputed with greater
accuracy'?’. Phasing (estimating haplotypes) is done to reconstruct the
haplotypes, which is then compared to one of the aforementioned reference

panels; finally, the LD structure is used to impute the missing genotypes.

In ALSPAC, genotype data were imputed to 1000 Genomes (Phase 1, version 3).
First, SNPs were flipped to the positive strand and to hgig, GRCh37. Phasing was
done using SHAPEIT, version 29899 and then imputation was performed in

IMPUTE2"7.
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2.2.2 English Longitudinal Study of Ageing (ELSA)
Data from ELSA were used throughout this thesis, with the exception of Chapter
3. ELSA is an on-going, nationally representative panel study of health and ageing

in English adults aged 50 and over.

2.2.2.1 Ethics
ELSA was granted ethical approval by the London Multicentre Research Ethics
Committee (MREC 01/2/91) and at each wave respondents provide informed

consent.

2.2.2.2 Participants

At inception ELSA had a total of 11,391 respondents (wave 1, 2002-3), who were
drawn from the Health Survey for England?°°. Data have subsequently been
collected from participants at another six waves to date: 2 (2004-5), 3 (2006-7), 4
(2008-9), 5 (2010-11), 6 (2012-13) and 7 (2014-15), whilst wave 8 data collection is
on-going. At every other wave (2, 4 and 6) a proportion of respondents undergo a
nurse visit, in which detailed clinical and biological measurements are taken, to
complement the self-reported measurements that are collected at every wave. So
far, four refreshment samples have also been introduced (waves 3, 4, 6, and 7) to
ensure that representation of the younger age group remains (those closer to 50)

(see Figure 2.1 below).
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Figure 2.1 ELSA data collection timetable

2002/03 Waver e > Original sample interviewed in HSE 1998/1999/2001
Main interview Age 50+ on 1 Mar 2002
(12,099)
2004/05 Wave 2 ------ > Nurse visit (7,666)
Main interview
(9,432)
l v
2006/07 Wave 3 ------ > Life history (7,855)  Refreshment sample (HSE 2001/02/03/04) Age 50-52
Main interview on 1 Mar 2006
(9,771)
2008/09 Wave 4 ------ > Nurse visit (8,643) Refreshment sample (HSE 2006) Age 50- 74 on 1 Mar
Main interview 2008
(11,050)
2010/11 Wave 5 ------ > Risk module (1060
Main interview approx)
(10,275)
v
2012/13 Wave 6 ------ > Nurse visit (7,731) Refreshment sample (HSE 2009/10/11) Age 50-55 on 1
Main interview Mar 2012
(10,601)
v
Wave 7
2014/15 Main interview Refreshment sample (HSE 2011/2012). Age 50-51 on 1st

(9,666)

March 2014
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2.2.2.3 Phenotypic data description: BMI & sleep duration
Table 2.2 presents summary statistics of the ELSA phenotypic data used in this

thesis.

2.2.2.3.1 BMI

At waves 2, 4 and 6, 7,666, 8,643 and 7,731 respondents received a nurse visit,
respectively (there was no nurse visit at wave 1). During these visits, the nurse
measured respondents’ height (m) and weight (kg). Standing height was
measured using a portable stadiometer standardised with head in the Frankfort
plane, whilst weight was recorded to the nearest o.1 kg, using digital scales
(Tanita). BMI was subsequently derived at each wave using the formula: weight
divided by height squared (kg/m?2). Mean BMIs for each wave are displayed in

Table 2.2, after data were cleaned for missing values.

The work in this thesis uses data from ELSA waves 4 and 6, as these included a
nurse visit and importantly, wave 4 was the first time that questions on sleep
were asked. Of the 11,050 ELSA respondents at wave 4, 8,641 were interviewed
and clinical measurements were obtained by a nurse; whilst at wave 6 there were
10,601 interviews and 7,731 nurse visits. There were no values that had to be

removed at either wave 4 or 6 in ELSA.

2.2.2.3.2 Waist circumference (WC)

During the nurse visit, two measurements of WC were taken at the midpoint
between the lower rib and the iliac crest using measuring tape. A mean of the two
measurements was then used, unless they differed by more than 3 cm, in which
case a third measurement was taken and then an average of the closest two
measurements was used. At wave 4, two individuals whose WC values were
999.99cm were removed from the data, as these values were deemed extreme and
could even be errors. WC categories were defined using the WHO definition for
risk of metabolic syndrome. Categories were as follows: Not-at-risk <8o cm
(females) and <94 cm (males), At increased risk>=80 ¢m, but <88 cm (females)
and >=94 cm, but <102 cm (males), Substantially increased risk >=88 cm

(females) and >=102 cm (males).
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2.2.2.3.3 Sleep duration

Participants were asked to self-report their sleep duration at waves 4 and 6. They
were asked: “How many hours of sleep do you have on an average weeknight?”
Mean sleep duration for waves 4 and 6 can be seen in Table 2.2, after the
variables were cleaned for missing data. Individuals who slept for < 2 hours or >12
hours were excluded (1 hour=7 individuals, 1.5 hours =1 individual, 13 hours=2
individuals, 13.5 hours=1 individual, 14 hours=2 individuals). This differed
somewhat from the phenotype inclusion criteria for ALSPAC. The decision was
made to remove the n=13 individuals who slept for <2 hours and >12 hours in
ELSA because in adults >50 years of age these values are more likely to reflect
errors and/or illness. In ALSPAC it was also more important to keep as many
participants in the sample as possible, as they contributed only to the GWAS in
this thesis (Chapter 5) for which ample power is required.

Table 2.2 Summary statistics of BMI and sleep duration in ELSA across waves for
all respondents (after data cleaning, as described above)

Wave N Mean (SD)

BMI (kg/m?)

2 7,225 27.93 (4.89)

4 8,262 28.27 (5.30)
7,693 28.21 (5.10)

WC (cm)

2 7,416 95.67 (13.18)
8,409 96.97 (13.65)
7,866 96.38 (13.94)

Sleep duration (hours)

10,566 6.85 (1.34)
9,964 6.84 (1.33)

Note. N=number of observations, SD=standard deviation.
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2.2.2.4 Genelic data

At waves 2 and 4 written consent was obtained to extract DNA from blood
samples (obtained during the nurse visit); from 5,662 at wave 2 and a further
1,945 individuals at wave 4. Therefore, genotype data was available for a total of

7,607 individuals.

2.2.2.4.1 Genotyping and QC

Genotyping was carried out at UCL Genomics and the QC procedure was
performed by Drs. Delilah Zabaneh and Ghazaleh Fatemifar. Genotyping was
performed in two batches (5,662 individuals from wave 2 and 1,945 from wave 4)
using the [llumina HumanOmni 2.5M platform. QC was done on each batch
separately, prior to merging them. Both SNP and individual missingness were set
to 5% and therefore, individuals who had more than 5% missing genotypes were
excluded, as well as SNPs that had more than 5% missing genotype rates. MAF
and HWE were not included in the QC and thus these checks were performed as
part of the GWAS (Chapter 5). Individuals who reported non-White/European
ethnicity were removed (n=133). It is important to remove these individuals of
different genetic ancestry (known as population stratification or substructure), as
it can lead to spurious associations due to differences in ancestry, rather than
true associations. PLINK 1.9 was used to estimate relatedness with one individual
of a related pair kept in the data, thus 40 were excluded during this QC step. A
sex check was also carried out using PLINK and discrepancies were corrected,
which means that participants’ sex was either confirmed or refuted (versus self-
reported sex), using DNA. After excluding related individuals and ethnic outliers

the total sample size with genetic data was 7,412.

2.2.2.4.1.1Imputation

Prior to imputing the genotypes, family groups with genetic relatedness
discordant with stated relationships were removed, as well as SNPs with a MAF of
<1%. Genotypes were imputed to the European component of 1000 Genomes,
Phase 1. Phasing was carried out using MaCH1 software*** and imputation was
performed in Minimac?°2. Imputation was carried out in chunks of 1000 markers,

with an overlap of 250 markers between chunks. After imputation chunks were

86



merged with the ‘best’ (highest R?) kept in the overlapped segments. All imputed

genotypes had an R?of z0.3.

2.2.3 Trondheim Early Secure Study (TESS)

Data from waves 2, 3 and 4 from the TESS study were used to investigate the
bidirectional epidemiological relationship between BMI and objective sleep
duration in children (Chapter 4). TESS comprises a prospective community
sample of children born in Trondheim, Norway, in 2003 and 2004 and its primary
aim was the assessment of mental health in children. A letter of invitation was
sent, which included the Strengths and Difficulties Questionnaire (SDQ), version
4-16> for participants’ parents to complete. This was administered because the
SDQ is a commonly-used screening tool to detect conduct and emotional

problems, which was one of the primary emphases of TESS.

2.2.3.1 Ethics
Ethical approval for TESS was granted by the Regional Committee for Medical
and Health Research Ethics, Mid-Norway. Written informed consent has been

obtained at each data collection, from children’s parents/primary caregivers.

2.2.3.2 Participants

Data have been collected from children at ages 4 (wave 1), 6 (wave 2), 8 (wave 3)
and 10 (wave 4), to date. From the 2003 and 2004 birth cohorts (N=3,456) in
Trondheim, 1,250 children were recruited into TESS at wave 1, by means of a
letter of invitation, which included the SDQ, as mentioned above. Thus, all
children in these birth cohorts were invited to participate in TESS and of the
3,456 children, 3,358 attended the well-child clinic at age four for a routine health
check, from whom the 1,250 who were recruited into TESS were drawn. Due to
the purposeful oversampling of children with behavioural and emotional
problems, sample weights are always applied in all TESS analyses. At waves 2, 3

and 4, 795, 699 and 702 children took part in the study, respectively.

2.2.3.3 Phenotypic data description: BMI & sleep duration

Summary statistics for BMI and sleep duration are presented in Table 2.3.
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2.2.3.3.1 BMI

Height (m) and weight (kg) were measured at each wave by a nurse, using a
digital stadiometer (Heightronic digiral stadiometer: QuickMedical, Model 235A)
and electronic weighing scales (Tanita BC420MA). Then BMI was calculated
using the standard formula: weight (kg) / height (m?). BMI standard deviation
scores (SDS) were derived at each age, using the British growth curve reference
for those aged between birth and 23 years®”. Mean BMIs are displayed in Table
2.3. BMI SDS at waves 2 and 3 were created by TESS researchers, yet BMI SDS
values at wave 4 were calculated as part of the work in this thesis, as this had not
previously been done. To do this, the LMS Growth®” Microsoft Excel add-in was
used, in which the raw BMI data (wave 4=age 10) were inputted and BMI SDS
values were calculated according to the British 1990 growth reference®”. A BMI
SDS value of o means that the child’s BMI is in line with the reference data
average, whilst a value >0 means they have a higher BMI than the reference data
average and values <o mean that their BMI is lower than the reference data
average. BMI SDS data are also used to derive weight status in children.
International Obesity Task Force (IOTF) weight status categories were also
derived using LMS Growth in Excel, which use age- and sex-specific BMI centile
values associated with BMIs of 25 (overweight in adults) and 30 (obese in adults)
at age 18y>°4. The BMI data had already been cleaned (by TESS Research

Assistants) and therefore, a dataset was provided that was ready for analysis.

2.2.3.3.2 Sleep duration

Sleep duration was objectively measured using the ActiGraph™ GT3X
accelerometer (Manufacturing Technology Incorporated, Fort Walton Beach, FL,
USA). Participants (children) wore the actigraphs on their hip for 7 consecutive
days, including whilst asleep, and were only required to remove them whilst
showering or bathing. Only data from participants with > 3 days of recordings
were included, as Acebo and colleagues recommend that at least 3 nights are
necessary to ascertain reliable individual differences. Sleep duration was
converted from raw data by employing Sadeh’s algorithm°5, once time in bed

and out of bed had been manually set by examining each night, using ActiLife
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software. A technician who was experienced with accelerometers set this
manually, aided by the sleep detection algorithm provided by ActiLife. Bedtime
was assumed by a sharp decrease in activity, which is characteristic of bedtime, in
so far as it is often preceded by a marked increase about 20 minutes prior to this.
Bedtime was recorded when there were approximately five consecutive epochs
with less than 100 counts per epoch. Sadeh’s algorithm automatically
differentiates prolonged sitting from sleep. In addition to actigraphy, a
questionnaire was supplied for parents to complete, asking whether participants
had been ill and more/less active than usual during the seven days of data
collection. However, parents were not asked to log children’s bedtimes and wake
times, but this will be included in TESS from age 14 onwards. TESS sleep duration
data had already been cleaned and prepared for analysis (by the actigraphy
technician) and a clean dataset was provided for the analyses in this thesis. Mean

sleep durations are displayed below in Table 2.3.

Table 2.3 Summary statistics for BMI and sleep duration in TESS across waves

Wave N Mean (SD)
BMI-SDS
2 552 -0.1 (0.88)
3 509 0.09 (0.90)
4 686 0.12 (1.01)
Sleep duration (hours)
2 674 9.62 (0.72)
3 547 9.09 (0.57)
4 633 9.19 (0.70)

Note. BMI-SDS= BMI standard deviation scores, N=number of observations,

SD=standard deviation, wave 2=age 6, wave 3=age 8, wave 4=age 10.

2.2.4 The UK Biobank Study

Summary-level data from the UK Biobank (UKB) study were used for the
Mendelian randomisation analyses in Chapter 6. UKB comprises 500,000
individuals between the ages of 40 and 69 years, who have undergone detailed

phenotyping and genotyping.
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2.2.4.1 Ethics
UKB participants provided full informed consent. More details on the complex
Ethics and Governance Framework in UKB can be found in Sudlow et al.

(2015)2°°,

2.2.4.2 Participants

The 500,000 participants were assessed between 2006 and 2010 across 22 UK
assessment centres, with the aim of covering a diversity of socioeconomic and
ethnic backgrounds. Data have been collected via self-completion touch-screen
questionnaires, a computer assisted interview, as well as functional and physical

measures and blood, saliva and urine samples.

2.2.4.3 Phenotypic data description: sleep duration

In UKB sleep duration was ascertained by asking participants for the average
number of hours that they slept in a 24-hour period. For GWAS analyses (from
which summary statistics were used in Chapter 6 for the purposes of MR), Jones
and colleagues derived their sleep duration measure by excluding those who
slept for >18 hours, then adjusted for age, sex and study centre, obtained the

model residuals and then applied an inverse-normal transformation.

2.2.5 The UK Household Longitudinal Study (UKHLS)

Data from UKHLS>°7 were used in the GWAS (Chapter 5), Mendelian
randomisation and polygenic risk score analyses (Chapter 6). UKHLS is an
ongoing, nationally representative panel study of over 40,000 UK households,

which collects social and economic data, as well as behavioural and health data.

2.2.5.1 Ethics
UKHLS received ethical approval from the University of Essex Ethics Committee
and nurse visits (waves 2 and 3) have been approved by the National Research

Ethics Service.

2.2.5.2 Participants
Data are collected annually from UKHLS respondents; it comprises a General

Population Sample (GPS), a stratified clustered random sample of representative
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UK households (joined in 2009-10) and participants from the well-established
British Household Panel Survey (BHPS)2°7. UKHLS has collected data at six
waves, to date, with 50,994 (wave 1), 54,597 (wave 2), 49,739 (wave 3), 47,157

(wave 4), 44,903 (wave 5) and 45,290 (wave 6) observations.

In addition to the main interview at waves 2 (GPS sample component) and 3
(BHPS sample component), 26,961 and 8,914 participants, respectively, were

eligible (had been interviewed in English, were aged over 16 years, were not

pregnant at the time and lived in England, Wales or Scotland) to take part in the

nurse health assessment. Thus, these participants had objective measurements of

anthropometry taken by a nurse and blood samples were also collected for

extraction of DNA. Of those eligible at wave 2, 10,175 participated and at wave 3,

5,053 participated, of whom 10,175 and 3,342 individuals provided blood samples.

2.2.5.3 Phenotypic data description: BMI & sleep duration

Table 2.4 presents summary statistics for the UKHLS phenotype data used in this

thesis.

Table 2.4 Summary statistics for BMI and sleep duration in UKHLS for participants

with phenotype data
Wave N Mean (SD)
BMI (kg/m?)
2/3 9,660 28.07 (5.60)
Sleep duration (hours)
1 5,754 6.85 (1.44)
4 8,855 6.61 (1.36)

Note. N=number of observations for individuals who were visited by a nurse,
SD=standard deviation, wave 2/3= indicates that BMIs were combined into one
variable, from the waves 2 and 3 nurse visits, as respondents had their

height/weight measured at either one of these waves.

2.2.5.3.1 BMI
Height (m) was measured during the nurse visits at waves 2 and 3, using a

portable stadiometer with the respondent’s head in the Frankfort plane. One
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measurement, to the nearest millimetre was recorded. Weight (kg) was measured
using a digital floor Tanita scale (BF 522) during the nurse visits. Participants
whose weight was greater than 130kg were asked to estimate their weight, as the
scales are not accurate above this level. However, there was only n=1 respondent
with a weight value >130 kg and they were excluded, as participants estimating
their own weight is unlikely to be reliable. Subsequently, BMI was calculated

using the standard formula (weight in kg/height?in cm).

2.2.5.3.2 Sleep duration

Self-reported sleep duration was measured at waves 1and 4. At each wave
participants were asked: “How many hours of actual sleep did you usually get at
night during the last month? This may be different than the actual number of
hours you spent in bed”. Individuals who reported sleeping for <2 hours or >12
hours were excluded (1 hour = 27 individuals, 13 hours = 1 individual, 16 hours =1
individual, 17 hours = 2 individuals, 18 hours = 1 individual). The reason for this
was that these sleep duration values were considered extreme, as it is possible
that these values were errors or could reflect illness in these respondents. Thus,

sleep duration was cleaned in the same way as in ELSA.

2.2.5.3.3 Phenotypic data included in this thesis

For the purposes of this thesis, data from UKHLS respondents were used only if
they had phenotypic data and genotypic data. This is because UKHLS was
included in both of the genetic studies (Chapters 5 and 6). Thus, Table 2.4
displays summary statistics for BMI and sleep duration for individuals who had

phenotype and genotype data.

As BMI was collected from two different nurse visits (waves 2 and 3), to maximise
the sample size for the genetic analyses, both waves were used. Thus, as different
respondents received a nurse visit at wave 2 from those in wave 3, the sample size

was maximized for BMI by combining these participants.

This collapsed variable that combined all respondents who had a BMI
measurement was provided, alongside the genetic data. Similarly, to maximise

the sample size for sleep duration from waves 1 and 4, an overall sleep duration
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variable was created that took into account respondents who had sleep duration
at either wave 1 or 4. Thus, if a participant completed the sleep duration question
at wave 1, but they were no longer in the study at wave 4, their wave 1
measurement was used, and if a participant entered the study at wave 4 and
hence, lacked sleep duration at wave 1, then their wave 4 response was analysed.
Wave 1 was prioritised, as it had a larger sample size than wave 4; specifically, at
wave 1, 5,486 respondents had both genetic data and sleep duration, whilst at
wave 4, 5,001 respondents had genetic and sleep duration data. Therefore, if a
participant had sleep duration data at wave 1, that was used for analysis, whereas
for those who did not have sleep duration measurements at wave 1, but did have

them at wave 4, those data were used.
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Genetic data

During the wave 2 and 3 nurse visits participants provided informed consent to
have a blood sample taken and to have DNA extracted from it for use in scientific
research. Of the 13,517 individuals who consented to giving a blood sample, 10,484

White/European individuals were genotyped.

2.2.5.3.4 Genotyping & QC

The genotyping and QC of the data were led by Prof. Eleftheria Zeggini’s group at
the Wellcome Trust Sanger Institute. Genotyping was done using the Illumina
Infinium HumanCoreExome BeadChip Kit, which includes a panel of more
>240,000 common and rare exonic variants, as well as >250,000 genome-wide
SNPs. Individual-level QC included the following filters: call rate of <98%, gender
discrepancies, duplicate individuals as per an identity by descent (IBD: refers to a
matching DNA segment shared by at least two people, which is inherited from a
common ancestor with no recombination, that is when offspring are produced
with trait combinations that are distinct from those of either parent) cut-off >0.9,
ethnic outliers. A total of 9,965 individuals survived this QC. During the SNP-
level QC, variants with a HWE p-value <1x10#, call rate <98%, poor genotype
clustering values (<o0.4), alongside Y-chromosome and mitochondprial variants.

This left a total of 525,314 SNPs that passed QC.

As UKHLS is a household study, further relatedness exclusions were applied prior
to GWAS analyses (Chapter 5). There are different methods for dealing with
relatedness; the chosen method here was that recommended by Yang et al.,
2010", in which an identity-by-descent cut-off is chosen to remove closely related
individuals prior to performing the main analyses 2°8. In this method, the genetic
relationship matrix (GRM) was estimated between pairs of individuals from a set
of SNPs. Then an identity by descent (IBD) cut-off of 0.025 was used, which
excludes individuals who are related up to third or fourth cousins?®. Thus, of the
original sample (n=9,994) who were genotyped and passed QC, IBD excluded

n=1,001 individuals (one per related pair).
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2.2.5.3.4.1Imputation

Prior to imputation family groups with genetic relatedness discordant with stated
relationships were removed, as well as SNPs with a MAF of <1%. Genotypes were
imputed to the European component of 1000 Genomes, Phase 1. Phasing was
carried out using MACH1 software and imputation was carried out in Minimac.
Imputation was performed in chunks of 1000 markers, with an overlap of 250
markers between chunks. Post imputation chunks were merged with the ‘best’
(highest R?) kept in the overlapped segments. All imputed genotypes had an R? of

>0.3.
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Table 2.5 Summary of datasets

Study Phenotype - n (mean, SD) n Genotyped  Imputation n for
analyses*
(chapter)
BMI** Sleep WwC Wave
duration
ALSPAC N/A 7,404 2003 4,914 (5)
(7.61, 0.97) N/A 10,321 1k Genomes
ELSA 8,262 10,566 4 5,015 (3)
(28.27, 5.30) (6.85, 1.34) 7,607 ik Genomes 6,028 (5,6)
7,693 9,964 7,866 6 5,296 (6)##
(28.21, 5.10) (6.84,1.33) (96.38
13.94)
TESS 552 (-0.11, 0.88) 674 (9.62, 2
509 (0.09, 0.90) 0.72) N/A 3 N/A N/A 794%** (4)
686 (0.12, 1.01) 547 (9.09, 4
0.57)
633 (9.19,
0.70)
UKHLS 9,660 N/A 2/3#
(28.07, 5.60) 5,574 (6.85, 1 10,484 1k Genomes 8,608 (5,6)
1.44) 4 6,811 (6)##
8,855 (6.61,
1.36)

Note. ALSPAC= Avon Longitudinal Study of Parents and Children, ELSA= English

Longitudinal Study of Ageing, TESS= Trondheim Early Secure Study, UKHLS=

UK Household Longitudinal Study, *number of individuals with complete data

for relevant analysis, **BMI-SDS, ***these analyses were performed using a

maximum likelihood approach and therefore, all available data were used, #BMI

measurements were collected at a nurse visit during either wave 2 or 3 (for

different participants), see section on UKHLS above for more details, ##number

of individuals included in observational analysis in Mendelian randomisation

study in Chapter 6.

2.3 CHAPTER SUMMARY

e An overview of the datasets used in this thesis was provided.

e A description of each sample was given including ethics and participant

information.

e Information was provided about how the main phenotypic data analysed in

this thesis were collected: BMI and sleep duration, including summary

statistics.



Where necessary (all datasets, with the exception of TESS), an overview of the
genetic data was provided, including genotyping, QC and imputation

methods.
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3 INVESTIGATING THE BIDIRECTIONAL
ASSOCIATION OF ADIPOSITY AND SLEEP
DURATION IN OLDER ADULTS

Results from the work in this chapter are published in: Garfield, V., Llewellyn, C.
H., Steptoe, A. & Kumari, M. Investigating the Bidirectional Associations of
Adiposity with Sleep Duration in Older Adults: The English Longitudinal Study of
Ageing (ELSA). Sci. Rep. 7, (2017).

3.1 BRIEF INTRODUCTION AND OVERVIEW OF CHAPTER
CONTENTS

As mentioned in Chapter 1 when reviewing the literature on BMI and sleep
duration, it appeared that the magnitude of this relationship might differ by age
group such that associations diminish in older age groups. As stated earlier in
this thesis, it has been hypothesized that greater BMI may precede shorter sleep
duration or that shorter sleep duration may precede weight gain. Thus, it is
important to determine the direction of this association in older adults because if
the direction of this relationship is established it will enable health professionals
to understand better where to target interventions in older age groups, when

disease and frailty are most likely to occur.

Cross-sectional evidence in older adults primarily suggests that short sleep is
associated with greater adiposity’°®*7. However, the prospective relationship is
less clear in this age group. For example, analyses of the Whitehall II study found
no evidence of an association between shorter sleep duration and changes in BMI
or obesity incidence over 4 years, in a sample with a mean age of fifty-six years™,
yet prospective analysis of 3,576 Spanish older adults suggests that a sleep
duration of less than or equal to 5 hours, as well as a sleep duration of 8 or 9
hours is associated with obesity and with weight gain over a period of two years,

but only in females™.



This study is also very timely since the UK has an increasing ageing population.
Over twenty-three million people are currently aged 50 and over, which
constitutes more than a third of the UK population®". Projections suggest that by
2040, 24.2% of the population will be aged 65 or over>2. Adults between the ages
of fifty-five and sixty-four are the most likely to be obese, and whilst obesity
prevalence decreases, the percentage of overweight adults increases with age?3,
whilst sleep duration decreases as a function of age®”. Furthermore, a recent
report suggests that sleep deprivation costs the UK economy £40 billion
annually5°. These authors also reiterate the importance of sufficient sleep in

relation to decreased risk of hypertension®, T2D%87, CVD® and mortality®.

It appears that no studies have to date, tested the prospective, bidirectional
relationship between adiposity and sleep duration in a single study, in older
adults. Also, importantly, BMI may not be the most optimal adiposity indicator in
older adults, due to its reduced ability to predict body fat in this population®9°,
This is because muscle mass decreases as a function of age, which is known as
sarcopenia®®9°, Few studies have investigated the association of alternative
adiposity measures with sleep duration, such as waist circumference (WC), with
evidence emerging in favour of a cross-sectional"®*, but not a prospective
relationship®. No studies have previously examined the association between WC
and potential change in sleep duration over time, nor have they incorporated
bidirectional analyses. Also, evidence suggests that there is a relationship
between lower socioeconomic position (SEP) and sleep duration®4216-219,
depression and sleep duration®??°, SEP and obesity?**??, and BMI and
depression®> and thus, these factors should be explored as important covariates

in this relationship.

This chapter begins with specific aims for the study presented here, followed by
the methods used to examine this bidirectional relationship of adiposity and
sleep duration in older adults. There is then a description of results from both
cross-sectional and longitudinal analyses. This is followed by a discussion of the

findings, in which potential mechanisms for the association of adiposity and
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sleep duration are put forward. The discussion ends with directions for future

research and the final section of this chapter provides a summary of key points.

3.2 AIMS OF THIS CHAPTER

The aim of this chapter was to investigate the following two hypotheses: i) in
cross-sectional analyses baseline adiposity (BMI and WC) is negatively associated
with baseline sleep duration and ii) prospectively, that the relationship between
adiposity (BMI and WC) and self-reported sleep duration, would be bidirectional,
such that greater adiposity at baseline is associated with shorter sleep duration at
follow-up, and that shorter sleep duration at baseline is associated with great

adiposity at follow-up.

3.3 METHODS

For the work carried out in this chapter, I designed the study, performed all data

cleaning and all of the statistical analyses.

3.3.1 Sample: ELSA

In this study data were analysed from 5,015 respondents from waves 4 and 6 of
ELSA; inclusion of respondents was based on whether they had complete data for
measures of adiposity, sleep duration and all covariates at both waves of data
collection. Thus, after each variable was cleaned (details in Chapter 2), all
variables were merged into one file, individuals who did not have two BMI and
WC measures, two sleep duration measures and all covariates were excluded

from the analyses (n=1,090).

3.3.2 Measures

Details of how each measure was cleaned and prepared are in Chapter 2.

BMI
BMI was derived from height and weight using the standard formula: weight

divided by height squared (kg/m?).
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WC
An average of two WC measurements taken during the nurse visits at waves 4
and 6 was used (see Chapter 2). These categories were defined using the WHO

definition for risk of metabolic syndrome>4.

Sleep duration and change in sleep duration

Respondents were asked ‘How many hours of sleep do you have on an average
week night? (Further details on cleaning and preparing the measure are in
Chapter 2). Change in sleep duration from baseline to follow-up was calculated

by subtracting sleep duration at wave 6 from sleep duration at wave 4.

Covariates

Demographic, socio-economic and health behaviour measures collected at wave
4 were used as covariates in the analyses. The covariates included in these
analyses were chosen on the basis that they might be associated with the

outcome of interest (sleep duration or BMI/WC).

Demographics

Age was recorded as a continuous number (in years) until go years, with ages
above 9o collapsed to the value of 91. Socio-economic position was determined by
quintiles of non-pension wealth, which is regarded as the most salient measure of

standard of living in older age groups2.

Health behaviours

Frequency of alcohol consumption within the last 12 months [categorised to less
than daily; daily (5-7 times per week)] was measured with the question: ‘Thinking
now about all kinds of drinks, how often have you had an alcoholic drink of any
kind in the last 12 months? The category of ‘less than daily’ also included

respondents who were non-drinkers.

Participants were first asked whether they had ever been a smoker and those who
responded ‘yes’ were asked if they ‘smoke cigarettes at all nowadays’ during the

wave 4 data collection. Thus, responses were combined from these two questions
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and a third variable was derived, whereby respondents were categorised into:

never smoked, ex-smoker and current smoker.

Physical activity level (Sedentary; Low; Moderate; High) was derived by
summarising responses to the level of work activity and the ‘type and amount of
physical activity involved in daily life’ questions (how often respondents
participated in mild/moderate/vigorous sports or activities). These were
subsequently categorised into: Sedentary (mild exercise, one to three times per
week), Low (mild, but no vigorous activity at least once a week), Moderate
(moderate activity more than once a week, or vigorous activity between one to
three times per month) and High (heavy manual work or vigorous activity more

than once per week).

Health problems

Long-standing illness was assessed with the following question: ‘do you have any
long-standing illness, disability or infirmity? By long-standing I mean anything
that has troubled over a period of time, or that is likely to affect over a period of
time’, to which they could answer ‘No’ or ‘Yes’). If respondents answered ‘yes’
then a further question was asked about whether the illness/illnesses limit

activities in any way.

Depressive symptoms (measured with the Centre for Epidemiologic Studies -
Depression Scale - CESD - 8 item scale) were also assessed by questionnaire.
CES-D responses were summed (with the exception of the item: “whether
respondent felt their sleep was restless in the past week”) to obtain a total score,
which was then dichotomized using a cut-off of >=3, which has recently been
used in other ELSA publications??. Due to removal of the sleep item, it seemed
plausible to check whether retaining at cut-off of >=3 was appropriate or whether
this should be lowered to >=2. However, the cut-off of >=3 was retained, as
lowering the cut-off to >=2 meant that this was unlikely to be accurately
capturing those who had depressive symptoms because the percentage of those

without depressive symptoms changed from 67% to 2%. This was due to the large
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number of respondents who scored 2 and would thus, be classed as ‘depressed’

using this lower cut-off.

Season

As sleep duration can differ depending on the season, a dichotomous season
variable was created using the date that respondents completed their interview,
which resulted in a categorisation of o= “BST” (British Summer Time) and 1=
“GMT” (Greenwich Mean Time). However, in linear regression models adjusted
for age and sex, no association was observed between season at baseline and
sleep duration at wave 4 [B (unstandardised coefficient) = 0.022, (95% CI= -0.047;
0.091), P=0.533] or wave 6 [B= 0.009, (95% Cl= -0.079; 0.061), P=0.800], and were

therefore not included in subsequent analyses.

3.3.3 Statistical analyses

Analyses were performed in STATA, version 13.

3.3.3.1 Power calculations

Observed (post-hoc) power was calculated using G*Power, by taking the R*>values
from the simple linear regression models of exposures on outcomes in this study.
This was done in the exact same way for the cross-sectional and bidirectional
prospective regression models. The parameters used to calculate power were:
effect size 2, % error probability, total sample size and number of tested
predictors. F? for the effect size was calculated as: R? / 1 - R? by taking the R?from

simple (unadjusted) cross-sectional and prospective bidirectional models.

The alpha level was set at 0.05, the total n was 5,015 and the number of tested
predictors was 1 for cross-sectional and prospective analyses. Power calculations

indicated that there was sufficient power to detect the observed effect sizes

(Table 3.2).
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Table 3.1 Power calculations for cross-sectional and bidirectional prospective
analyses in ELSA

Model Effect % error N No. tested Power
size F*>* probability predictors
Cross-sectional 0.0025 0.05 5015 1 94.2%
Prospective 0.0041 0.05 5015 1 99.4%
BMI on sleep
duration
Prospective Sleep 0.0021 0.05 5015 1 88.6%

duration on BMI

Note. *For cross-sectional models this (F?) was calculated as: R?/ 1- R*= 0.0025 /1
- 0.0025 = 0.0025; for prospective models of BMI on sleep duration this was
calculated as: R?/1- R*>=0.0041/1- 0.0041 = 0.0041; for prospective models of
sleep duration on BMI this was calculated as: R?/ 1 - R*= 0.0021 /1 - 0.0021 =
0.0021. All of these R? values were taken from results of simple linear regression

models (exposure > outcome only) in ELSA.

3.3.3.2 Univariate associations

For examination of baseline sample characteristics sleep categories were created
to examine potential differences in adiposity and covariates, as well as to examine
linearity of adiposity, according to how much sleep participants reported. More
specifically, these categories were defined as 1= <5 up to 5.4 hours, 2= 5.5 hours
up to and including 7 hours, 3= 7.5 hours up to and including 9 hours and 4= >9

hours.

Then, one-way ANOVAs were used to compare means for age, BMI and WC,
whilst Chi-squared tests were used to examine differences in categorical
demographic variables (smoking status, alcohol consumption, long-standing
illness, wealth, sex, ethnicity and depressive symptoms) across the 4 sleep
duration groups. Depressive symptoms are also described by sex in the Results,
due to known differences in prevalence of depression in men and women?*7. Also,

two-sample t-tests were performed to examine whether there were significant
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differences between baseline and follow-up mean BMI and WC to establish the

amount of change over time.

3.3.3.3 Regression models

Regression analyses were performed to examine the linear cross-sectional and
bidirectional prospective relationships of BMI with sleep duration. BMI, WC and
sleep duration were treated as continuous variables and thus, linear models were
tested, both cross-sectionally and prospectively. In all linear regression models
the coefficients presented in Tables 3.2, 3.3 and 3.4 represent unstandardised
coefficients (B). Multicollinearity was tested in all regression models using the
variance inflation factor (VIF) to examine the extent to which predictors were
correlated. A VIF of 1 indicates no correlation, whilst values >10 are generally

cause for concern3>.

3.3.3.3.1 Cross-sectional models
To examine whether there was an inverse cross-sectional relationship between
adiposity and sleep duration, four regression models were performed, with BMI

or WC as the exposure and sleep duration as the outcome.

Model 1 was minimally-adjusted (age, sex, wealth, ethnicity). Model 2 was
adjusted for the covariates in model 1 + health behaviours (model 1 + alcohol
consumption, smoking status, physical activity levels). Model 3 was adjusted for
the covariates in model 1 + health problems (model 1 + depressive symptoms,
long-standing illness). Model 4 was the final model and was fully-adjusted for all
covariates [model 1 (demographics) + model 2 (health behaviours) + model 3
(health problems)]. These models were adjusted hierarchically to examine
whether there was confounding in the association of adiposity and sleep

duration, by important behavioural and health factors.

3.3.3.3.2 Prospective models

Prospectively, the association between baseline adiposity (BMI and WC) and
changes in sleep duration, as well as baseline sleep duration and changes in
adiposity were investigated. To examine change in sleep duration, linear

regressions were performed with adiposity measures (BMI or WC) as the
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exposure, sleep duration as the outcome, and models were adjusted for covariates
as well as baseline sleep duration. Conversely, in analyses to examine changes in
adiposity, BMI or WC at follow-up was analysed as the outcome with sleep
duration at baseline adjusted for BMI or WC at baseline as the exposure. Aside
from this difference, Models 1 to 4 were identical to the cross-sectional models

described above.

3.3.3.3.3 Non-linear models

Quadratic regression modelling was used to investigate potential non-linear
associations in cross-sectional and prospective, bidirectional relationships
between adiposity measures (BMI and WC) and sleep duration. Models were run
to examine the possible quadratic cross-sectional relationship between BMI and
WC as exposures with sleep duration (outcome) at wave 4 (baseline) of ELSA.
These models varied in adjustments, which were as follows: Model 1= age, sex,
wealth and ethnicity, Model 2= Model 1 + health behaviours (alcohol
consumption, physical activity and smoking status), Model 3= Model 1 + health
problems (depressive symptoms, long-standing illness), Model 4= Model 1 +
Model 2 + Model 3. Covariates were grouped into these categories
(demographics, health behaviours and health problems), as the aim was to
examine whether clusters of factors might affect the association between the

exposure and outcome.

As the aim of this study was to test the bidirectional association of adiposity with
sleep duration, two sets of quadratic analyses were performed on the prospective
data. To investigate whether there was a U-shaped prospective relationship
between BMI/WC at baseline and follow-up sleep duration, quadratic (BMI? and
WC(C?2) terms were created and included in the regression models. Analyses were
then performed to investigate the potential U-shaped association of sleep
duration-squared at baseline with BMI and WC at follow-up. In models where
BMI? or WC? predicted changes in sleep duration covariates were identical to the
cross-sectional models described above, but included additional adjustments for
baseline sleep duration (Model 1= demographics + baseline sleep duration; Model

2= model 1 + health behaviours + baseline sleep duration; Model 3= model 1 +

106



health problems + sleep duration; Model 4= model 1 + model 2 + model 3). In
regression models that predicted changes in adiposity (BMI or WC), a sleep
duration® term was created to test for a U-shaped association between sleep
duration and adiposity. Four models were run for BMI and WC separately, with
adjustments for covariates as above, but also included adjustments for baseline

BMI or WC to investigate change.

3.3.3.3.4 Difference in coefficients before and after adjustments for
covariates
To test for confounding of the relationship between adiposity and sleep duration
by demographics, health behaviours and health problems, the percentage
reduction in the regression coefficient following adjustment was calculated by
comparing the coefficient for each exposure from models with and without
adjustment for covariates. For example, if the unstandardised coefficient changes
from B=0.60 to B=0.40 from one model to the next, this would mean that there is

a 33% reduction in the coefficient. This is illustrated as follows:
B, =0.60 (B from Model 1)

B.=0.40 (B from Model 2)

To calculate the percentage change:

[(B. - B,) / BJ] = [(0.60 - 0.40) / 0.60] = 0.33 2 33%

3.3.3.3.5 Moderation by age and sex

Cross-sectional interactions with age and sex

To investigate potential moderation by age and sex, interaction terms between
baseline adiposity (BMI and WC) and sleep duration with age and sex were
created. Analyses were not stratified if there was no significant interaction
between these variables, as this is not common practice in epidemiological
analyses?8, nor is it statistically correct. The pursuit of stratified analysis, in the
absence of a significant interaction can yield significant subgroup effects, but

these are likely to be due to chance*?.
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Prospective interactions with age and sex

An interaction term was also created to examine the potential effect modification
of sleep duration by age and sex on adiposity measures. Then, linear regression
modelling was used to examine whether there were any differential effects of BMI
by age or sex on sleep duration and changes in sleep duration. Linear regressions
were also performed to examine whether there were any differential effects of

sleep duration by age and sex on adiposity.

3.4 RESULTS

3.4.1 Sample characteristics
Compared with all participants at wave 4 of ELSA, those included in this study
were wealthier, slightly older and less likely to report having a long-standing

illness (all p<o.05).

Table 3.1 shows baseline (wave 4) characteristics of participants, according to
their sleep duration category. It can be seen that the majority of respondents
reported sleeping between 6 to 7 hours (53.06%) or 8 to 9 hours (33.12%), whilst
only a small proportion slept for <5 hours (12.6%) and even fewer reported
sleeping for >9 hours (1.22%). Although not presented in a table, a chi-squared
test showed that there were significant differences (p<o0.001) between the number
of females vs. males, who reported depressive symptoms: 1,032 (37.16%) females
out of 2,777 vs. 578 (25.83%) males out of 2,238. This is in relation to an earlier
point about differences between males and females in prevalence estimates of

depression®?7.

One-way ANOVAs showed that there were significant differences across sleep
duration categories for both age and BM], such that respondents who slept >9
hours were on average, older than the rest of the sample and that those who slept
for <5 hours had on average, the highest BMIs. There were, however, no
significant differences in baseline waist circumference across the four sleep
duration categories. Pearson’s correlations between BMI and WC (at baseline) for

males and females were r=0.87 (p<o0.001) and r=0.86 (p<0.001), respectively.
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Chi-squared analyses showed that sex, smoking status, alcohol consumption,
limiting illness, wealth, depressive symptoms and physical activity levels, were all
significantly associated with sleep duration. Short sleepers (<5 hours) were
significantly more likely to be females, ex-smokers, less wealthy, consume less
alcohol, report a long-standing illness and engage in ‘moderate’ physical activity
(Table 3.1). There was no evidence of multicollinearity in any of our cross-
sectional or prospective regression models, as all VIF values were around 1 when

tested.

Mean BMI values were 28.20 kg/m?>and 28.17 kg/m?, at baseline and follow-up
respectively, whilst average duration of sleep was 6.86 hours at baseline and 6.87
hours at follow-up indicating no change over time for either BMI or sleep
duration, across the sample as a whole. Respondents who slept for five hours or
less had the highest mean BMI both at baseline (28.72 kg/m?) and follow-up
(28.71 kg/m?), whilst those who slept between eight and nine hours had the
lowest mean BMI at baseline (27.99 kg/m?), which remained identical at follow-
up (27.99 kg/m?). Overall, mean WC at baseline was 96.49 cm and 96.09 cm at

follow-up.

Figures 3.1 and 3.2 depict baseline and follow-up sleep duration by weight status.
In Figure 3.1 it can be seen that respondents in the normal weight group had the
longest mean sleep duration at baseline (6.93 hours), whilst at follow-up the
longest mean sleep duration was observed in the underweight group (7.14 hours).
The shortest duration of sleep at baseline was observed in the underweight group
(6.77 hours) and at follow-up, those with the shortest average sleep duration
were respondents in the obese category (6.76 hours). In Figure 3.2 it can be seen
that at baseline, those with the longest average sleep duration were respondents
in the not-at-risk group (6.95 hours), which was identical at follow-up. Similarly,
at both baseline and follow-up, respondents with the shortest mean sleep

durations were those at substantially increased risk (6.82 and 6.80 hours).
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Table 3.2 Sample characteristics at baseline by sleep duration category (N=5,015)

<5 hrs 6-7 hrs 8-9 hrs >9 hrs Total P

n=632 n=2,661 n=1,661 n=61 N=5,015
Age (years)** 65.25 (8.56) 64.29 (8.43) 65.15 (8.03) 68.51 (8.86) <0.001
Sex** <0.001
Male 219 (34.65) 1,243 (46.71) 755 (45.45) 21(35.43) 2,238 (44.63)
Female 413 (65.35) 1,418 (53.29) 906 (54.55) 40 (65.57) 2,777 (55:37)
Ethnicity >0.05
White 616 (97.47) 2,615 (98.27)  1,635(98.43) 60 (98.36) 4,926 (98.23)
Non-white 16 (2.53) 46 (1.73) 26 (1.57) 1(1.64) 89 (1.77)

BMI (kg/m?)*
28.75 (5.54) 28.10 (4.91) 27.99 (4.78) 28.09 (5.76) 5,015 <0.05
WC (cm)

Males 103.72 (12.91)  102.22 (11.28) 10136 (11.13) 102.55 (8.65)  102.08 (11.39) <0.05
Females 93.47 (13.31) 91.63 (12.69) 91.76 (12.72) 94.32 (16.29)  91.99 (12.86) <0.05
Smoking status*
Never smoked 244 (38.61) 1,160 (43.59) 739 (44.49) 26 (42.62) 2,169 (43.25)
Ex-smoker 290 (45.89) 1,198 (45.02) 751 (45.21) 23 (37.70) 2,262 (45.10) <0.05
Current smoker 98 (15.51) 303 (11.39) 171 (10.30) 12 (19.67) 584 (11.65)
Alcohol
consumption®
Less than daily 517 (81.80) 2,042 (76.74) 1,257 (75.68) 47 (77.05) 3,863 (77.03)
Daily (5-7 115 (18.20) 619 (23.26) 404 (24.32) 14 (22.95) 1,152 (22.97) <0.05
days/week)
Wealth
quintile**
Lowest 154 (24.37) 313 (11.76) 166 (9.99) 13 (21.31) 646 (12.88) <0.001
Others 478 (75.63) 2,348 (88.24) 1518 (90.01) 48 (78.69) 4,369 (87.12)
Long-standing
illness**
No 246 (38.92) 1,323 (49.72) 842 (50.69) 20 (32.79) 2,431 (48.47)
Yes 386 (61.08) 1,338 (50.28) 819 (49.31) 41 (67.21) 2,584 (51.53) <0.001
CES-D**
No 293 (46.36) 1,859 (69.86) 1,221 (73.51) 32 (52.46) 3,405 (67.90) <0.001
Yes (score >=3) 339 (53.64) 802 (30.14) 440 (26.49) 29 (47.54) 1,610 (32.10)
PA levels*
Sedentary 36 (5.70) 64 (2.41) 36 (2.17) 4 (6.56) 140 (2.79)
Low 185 (29.27) 497 (18.68) 285 (17.16) 22 (36.07) 989 (19.72) <0.05
Moderate 201 (46.04) 1,440 (54.11) 956 (57.56) 22 (36/07) 2,709 (54.02)
High 120 (18.99) 660 (24.80) 384 (23.12) 13 (21.31) 1,177 (23.47)

Note. BMI = Body Mass Index; WC= waist circumference, Means (SDs) or n (%),

PA = physical activity, CES-D = Centre for Epidemiologic Studies of Depression

Scale.

3.4.2 Cross-sectional associations: BMI and sleep duration at baseline

and WC and sleep duration at baseline

3.4.2.1 BMI and sleep duration at baseline

Model 1 (with adjustment for age, sex, wealth, ethnicity) revealed a small, inverse

linear relationship between BMI and sleep duration, which was attenuated and

no longer significant in Model 2 (Model 1 with additional adjustment for health

behaviours; Model 1 to Model 2 = 1% decrease in the coefficient), and further
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weakened in Model 3 (Model 1 with adjustment for health problems; Model 1 to
Model 3 = 34% decrease in the coefficient). In the final model adjusted for all
covariates this effect was again, attenuated (Model 1 to Model 4 = 36% decrease in
the coefficient) (Table 3.2). There was no interaction between sex (p=0.822) or
age (p=0.366) and BMI at baseline on sleep duration, in any of the four models.
Quadratic cross-sectional regression models were also performed to test for a U-

shaped relationship between BMI and sleep duration, but this was not significant

(p=0.987).

3.4.2.2 WC and sleep duration at baseline

The pattern of results for waist circumference and sleep duration was almost
identical to that of BMI and sleep duration (Table 3.2). In a model adjusted only
for demographics there was a significant, negative association between WC and
sleep duration (Model 1), which was attenuated with inclusion of health
behaviours in Model 2 (Model 1 to Model 2 = 22% decrease in the coefficient).
With adjustments for health problems, the coefficient was again, reduced (Model
1to Model 3 = 39% decrease in the coefficient) and a final model including all
covariates resulted in further attenuation (Model 1 to Model 4 = 44% decrease in
the coefficient). We observed no evidence of a U-shaped association between
baseline WC and sleep duration (p=0.103), nor did we find a significant
interaction of age (p=0.084), or sex (p=0.300) with baseline WC on sleep

duration.
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Table 3.3 Cross-sectional associations between adiposity and sleep duration at
Wave 4 of ELSA (N=5,015)

BMI (baseline)

Sleep duration (baseline) B (minutes) 95% CI P

Basic model (1) -0.44 -0.014 — -0.000 0.033
Adjusted for health behaviours (2) -0.39 -0.013 — -0.000 0.065
Adjusted for health problems (3) -0.29 -0.012 - -0.002 0.167
Fully-adjusted model (4) -0.28 -0.012 - 0.002 0.190

Waist circumference (baseline)

Sleep duration (baseline) B (minutes) 95% CI P

Basic model (1) -0.18 -0.006 - -0.000 0.034
Adjusted for health behaviours (2) -0.14 -0.005 — 0.000 0.087
Adjusted for health problems (3) -0.11 -0.005 - -0.000 0.198
Fully-adjusted model (4) -0.10 -0.004 — 0.001 0.270

Note. This table presents the cross-sectional association between baseline
BMI/WC as exposures and baseline sleep duration as the outcome, with different
levels of adjustment for covariates. (1) Adjusted for age, sex, wealth, ethnicity; (2)
Basic model + physical activity, smoking status, alcohol consumption; (3) Basic
model + long-standing illness, depressive symptoms; (4) Basic model + health
behaviours + health; B (Unstandardized coefficient) = difference in sleep duration
(minutes) per difference in WC (cm), 95% CI= 95% confidence interval, P=

regression p-value.

3.4.3 Prospective associations I: BMI and changes in sleep duration; WC

and changes in sleep duration

3.4.3.1 BMI and changes in sleep duration

The first set of prospective analyses performed had baseline BMI as the exposure
and follow-up sleep duration as the outcome, the results of which are shown in
Table 3.3. Model 1 revealed a negative association between baseline BMI and
follow-up sleep duration, such that a higher BMI was associated with increasingly
shorter sleep at wave 6. In Model 4, the longitudinal association between BMI
and sleep duration was only slightly attenuated (Model 1 to Model 4, 12.5% non-

significant decrease in the coefficient, p>0.05).
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3.4.3.2 WC and changes in sleep duration

On average, the change in sleep duration from baseline to follow-up was -0.42
minutes per unit increase in BMI. A very similar pattern of associations was
observed between WC and changes in sleep duration, such that for every
centimetre increase in WC at baseline, sleep duration at follow up decreased, on
average, by 0.18 minutes. Although very small, this effect remained significant
after adjustment for all covariates in Model 4 and the coefficient was identical
throughout the models (Table 3.3). The mean change in sleep duration from
baseline (6.867 hours) to follow-up (6.872 hours) was 0.005 hours (0.3 minutes),
standard deviation = 1.13 hours (67.5 minutes). This indicated that, on average,

durations of sleep did not change over the 4-year follow-up period.

There were no interactions of baseline age or sex with BMI and WC on follow-up
sleep duration in any of the 4 models (p>0.05). There was no evidence of a

quadratic association between baseline BMI or WC and follow-up sleep duration

(p>0.05).

3.4.4 Prospective associations Il: Sleep duration and changes in BMI;

sleep duration and WC

3.4.4.1 Sleep duration and changes in BMI

The longitudinal analyses presented in Table 3.4 revealed no significant
associations between sleep duration and future BMI. Across all 4 models, there
was no evidence of a linear association between sleep duration at baseline and
BMI at 4-year follow-up. Nor was a U-shaped association observed (p>0.05).
Although age at baseline was strongly associated with BMI at follow-up [B=-0.020
kg/m?, (95% Cl= -0.027; -0.013) P<o0.001] after adjustment for BMI at baseline and
all other covariates, there were no interactions between baseline age or sex with

sleep duration on BMI at follow-up in any of the 4 models (all p>0.05).

3.4.4.2 Sleep duration and changes in WC
Similarly, there was no significant association between sleep duration at baseline
and changes in waist circumference (Table 3.4) in any of the 4 regression models

(all p>0.05). There were also no significant interactions between age and baseline
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sleep duration, or sex and baseline sleep duration on follow-up WC, nor was
there evidence of a quadratic association (all p>0.05). Thus, results are presented
for males and females together, with the exception of WC in the sample
characteristics table (Table 3.1), which is presented separately for males and
females, across sleep duration categories.

Table 3.4 Prospective associations between adiposity at Wave 4 (baseline) and
change in sleep duration at Wave 6 (follow-up) of ELSA (N=5,015)

BMI (baseline)

Sleep duration (follow-up) B (minutes) 95% CI P
Basic model (1) -0.48 -0.014 - -0.003 0.004
Adjusted for health behaviours -0.48 -0.014 - -0.003 0.004
(2)

Adjusted for health problems (3) -0.48 -0.013 - -0.002 0.012
Fully-adjusted model (4) -0.42 -0.013 — -0.002 0.013

Waist circumference (baseline)

Sleep duration (follow-up) B (minutes) 95% CI P
Basic model (1) -0.18 -0.006 — -0.000 0.005
Adjusted for health behaviours -0.18 -0.006 - -0.000 0.007
(2)

Adjusted for health problems (3) -0.18 -0.005 — -0.000 0.015
Fully-adjusted model (4) -0.18 -0.005 - -0.000 0.016

Note. This table presents the prospective association between baseline BMI/WC
as exposures and follow-up sleep duration as the outcome, with different levels of
adjustment for covariates. (1) Adjusted for age, sex, wealth, ethnicity and baseline
sleep duration; (2) Basic model + physical activity, smoking status, alcohol
consumption, baseline sleep duration; (3) Basic model + long-standing illness,
depressive symptoms, baseline sleep duration; (4) Basic model + physical activity,
smoking status, alcohol consumption, long-standing illness, depressive
symptoms, baseline sleep duration; B (Unstandardized coefficient) = change in
sleep duration (minutes) per unit change in BMI (kg/m?) or WC (cm), 95% CI

=95% confidence interval, P= regression p-value.
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Table 3.5 Prospective associations between sleep duration at Wave 4 (baseline) and

change in adiposity at Wave 6 (follow-up) of ELSA (N=5,015)

Sleep duration (baseline)

BMI (follow-up) B (kg/m?) 95% CI P

Basic model (1) 0.005 -0.039 - 0.053 0.755

Adjusted for health behaviours  0.008 -0.038 -0 .054 0.725

(2)

Adjusted for health problems (3) 0.009 -0.044 — 0.055 0.712

Fully-adjusted model (4) 0.009 -0.037 — 0.055 0.696
Sleep duration (baseline)

Waist circumference (follow-up) B (cm) 95% CI P

Basic model (1) -0.06 -0.195 - 0.082 0.426

Adjusted for health behaviours  -0.05 -0.189 - 0.089 0.480

(2)

Adjusted for health problems (3) -0.06 -0.197 — 0.082 0.416

Fully-adjusted model (4) -0.05 -0.194 - 0.085 0.447

Note. This table presents the prospective association between baseline sleep

duration (exposure) and follow-up BMI/WC (outcome), with increasing levels of

adjustment for covariates. (1) Adjusted for age, sex, wealth and baseline BMI or

WC; (2) adjusted for age, sex, physical activity, smoking status, alcohol

consumption, baseline BMI or WC; (3) adjusted for age, sex, long-standing
illness, depressive symptoms, baseline BMI or WC; (4) adjusted for age, sex,

wealth, physical activity, smoking status, alcohol consumption, long-standing

illness, depressive symptoms, baseline BMI or WC; B (Unstandardized

coefficient) = change in BMI (kg/m2) or WC (cm) per change in sleep duration

(minutes), 95% Cl= 95% confidence interval, P= regression p-value.
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Figure 3.1 Baseline and follow-up sleep duration, by BMI category at baseline
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Figure 3.2 Baseline and follow-up sleep duration, by WC category at baseline
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3.5 DISCUSSION

3.5.1 Key findings

In this large, nationally representative study of older adults, findings suggest that
cross-sectionally, while both BMI and WC are inversely associated with sleep
duration, these relationships are largely accounted for by variations in health
status and health behaviours. Prospectively, greater BMI and WC at baseline
were associated with sleep duration over a 4-year period, independently of
adjustment for a variety of covariates. In contrast, sleep duration at baseline was
not associated with changes in BMI or WC over the follow-up period. The
richness of the available dataset enabled analyses that accounted for a number of
factors, including wealth, illness and depressive symptoms, and health

behaviours.

3.5.2 Cross-sectional findings

Cross-sectional results indicate that adiposity measures (BMI and WC) are not
associated with self-reported sleep duration, after adjustment for a wide range of
covariates. This finding is consistent with two earlier large-scale studies, which
did not find an association between adiposity and sleep duration7229, However,
this result does not accord with evidence in favour of this cross-sectional
relationship in older adults #°23°. One of these studies, which found a significant
association of BMI and WC with sleep duration in older adults made no
adjustment for physical long-standing illness or socioeconomic position in their
analysis®°, which could in part explain the discrepancy between the current
findings and theirs. The authors also used a measure of self-reported sleep
duration by which respondents were only asked to report how many hours they
had slept on the two nights prior to the interview?° rather than the more general
sleep duration question in ELSA which asked about the number of hours sleep on
an average weeknight. The other study, mentioned above®° also differed
regarding inclusion of covariates in comparison to the present findings.
Covariates that these authors adjusted for that were not included in the current
study were the following: coffee consumption, educational level, social network

(not online, but ascertained from data on social links), perceived health status,
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waking up during the night and whether participants were taking anxiolytic
medication. The authors observed that their cross-sectional relationship of sleep
duration and adiposity remained robust to this wide range of adjustments.
However, the present study included adjustment for physical activity, wealth and
ethnicity, which were not adjusted for in the study by Lopez-Garcia and
colleagues®°. A further disparity was the mean age, as well as age range in this
sample (72 years) as compared to the present study (65 years). Also, the current
study included respondents aged 50 or older, whereas Lopez-Garcia et al.’s study

included only those who were 60 or older.

Furthermore, as mentioned above, health behaviours also impacted the
association between BMI and sleep duration at baseline. Specifically, the cross-
sectional models that examined whether BMI/WC were associated with sleep
duration adjusting only for demographics (wealth, ethnicity, age and sex)
revealed a significant effect (Appendix 8.1, Table 8.1). However, subsequent
models that adjusted for health behaviours (PA, smoking and alcohol
consumption) in addition to demographics, showed a clear attenuation of the
association between sleep duration and adiposity such that it was no longer
significant (Appendix 8.1, Table 8.2). On closer inspection, it was apparent that
PA attenuated the relationship between adiposity (BMI and WC) and sleep
duration, as associations were observed between PA and sleep duration (p=0.005
for BMI and p=0.006 for WC), whilst this was not the case for alcohol
consumption or smoking status (Appendix 8.1, Table 8.2). It is possible that this
represents mediation by PA, such that respondents with higher BMIs, or shorter
sleep durations may engage in lower levels of PA, which could lead to shorter
sleep duration. Evidence suggests that in older adults, PA may protect against

developing insomnia, for example".

Associations in these data concur with several reports that associations exist
between disadvantaged socioeconomic position and sleep duration®4216-219
(Appendix 8.1, Table 8.1), and depression and sleep duration®>*° (Appendix 8.1,
Table 8.3). There is also previous evidence for an association between

socioeconomic position and obesity>*»?22) as well as BMI and depression2.
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When tested there was no statistically significant evidence of a cross-sectional U-
shaped relationship between BMI and sleep duration. However, the finding of
longest sleep duration in those with BMI between 18.5 and 24.9 kg/m? agrees with
previous research7-°61°712133 This may reflect reverse causation, as long-standing
illness is prevalent in older age groups and may lead to weight loss. These
findings support this notion because adjustment for health problems attenuated

observed associations.

Interactions between BMI/WC and sleep duration, and both age and sex were
tested, but were not significant. The rationale for investigating these potential
effect modifiers stemmed from some previous literature, which suggests that this
association changes with age and that there may be sex differences. A handful of
previous studies found that the relationship between BMI and sleep duration

diminishes with age"2"122,

An early study in this area showed that there was an interaction between age and
sleep duration, and their association with adiposity, such that after age 34 years
there was no association between sleep duration and adiposity'*. Gangwisch and
colleagues® also found that the ORs for obesity in short sleepers (<4 hours) in
comparison with those who slept seven hours substantially decreased with age:
the OR for ages 32-49 was 3.21, whilst at ages 68-86 it was 1.71. These findings
emerged from stratified regression analyses, after the authors found a significant
age-by-sleep duration interaction and its association with obesity. However, this
was not apparent in ELSA as no significant age-by-adiposity, or age-by-sleep
duration was found, thus suggesting that across all ages (range of 50 to 9o years

and over) the magnitude of association appeared to be the same.

In ELSA, there was also no evidence of an interaction between sex and adiposity
and the effect on sleep duration, nor was there an interaction between sex and
sleep duration and the effect on adiposity. A Japanese study suggested that at
one-year follow-up sleep duration was associated with increased weight and
increased risk of obesity in men, but not in women™4. Another study, by Mezick
et al."® found that sex moderated the effect of objectively measured sleep

duration on BMI, such that there was only an association in females. However,
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this was not the case for self-reported sleep duration, as there appeared to be no
effect modification by sex. Thus, the lack of any significant sex interactions in
ELSA is in agreement with this earlier study, as self-reported sleep duration was

also used.

3.5.3 Prospective findings I: BMI and WC, and changes in sleep duration
This study was the first to perform bidirectional analyses of adiposity and sleep
duration in a large sample of older adults. Longitudinal analyses of adiposity at
baseline with change in sleep duration between baseline and follow-up revealed a
negative association, such that higher BMI and WC were associated with
decreased length of sleep. However, it is important to note that these effect sizes
were very small and are unlikely to be clinically meaningful. Also, on average, no
change between baseline and follow-up sleep duration was observed, which

might explain why the magnitude of effect was small.

Finding that adiposity and sleep duration were associated in a prospective
analysis accords with previous research, which found evidence of an association
between average changes in weight gain and average change rates in sleep
duration*32. The present study found that both BMI and WC were associated
with future sleep duration in a sample whose average age was 65 years, but it is
important to note that this effect size was very small (0.42 minutes). This result is
in line with a study in younger adults, which suggests that the association
between adiposity and changes in sleep duration was stronger than the opposite

relationship, which examined sleep duration and changes in adiposity™..

In linear models, despite a small effect, both BMI and waist circumference
remained associated with change in sleep independently of a wide range of
covariates (measured at baseline), including health and health behaviours.
However, these effects were small and residual confounding cannot be
discounted, as it was not possible to examine all other factors that might explain

the observed association between adiposity and sleep duration.

For example, an important factor that the analyses were not able to account for

was napping. A recent study found that both longer sleep duration and prolonged
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midday napping of greater than or equal to ninety minutes, are potential risk
factors for incidence of metabolic syndrome?33, compared to their counterparts
who napped for less than, or equal to thirty minutes and reported night time
sleep durations of between 6 to 7 hours. A recent study in the UK Biobank found
that, interestingly, the relationship between a genetic risk score of BMI and BMI
and WC, is moderated by sleep duration and daytime napping 4. These effects
were observed independently of diet, socio-demographic factors and

comorbidities?34.

As some previous research has shown that the association between adiposity and
sleep duration may be U-shaped, prospective quadratic modelling was performed
for both BMI and WC in relation to sleep duration. Quadratic models showed
that there was no significant U-shaped association between adiposity and
changes in sleep duration in ELSA and therefore suggest that this relationship is

linear in nature.

3.5.4 Prospective associations Il: sleep duration and changes in BMI and
wC
In ELSA, there was no evidence of an association between sleep duration and
change in BMI from baseline to follow-up, nor between baseline sleep duration
and change in WC at follow-up. That sleep duration was not associated with
change in BMI or WC specifically in older adults, accords with some?3>23%, but not
all previous reports®°. One potential explanation for this may relate to the
stability of adiposity in this age group, as neither average BMI nor WC changed
greatly in 4 years. This was confirmed by a paired samples t-test, which showed
that there was no significant difference between BMI at baseline and follow-up in
the analytic sample (p=0.33). Thus, perhaps further follow-up of the participants
could reveal associations with BMI that were not yet apparent. WC showed
greater change over the follow-up period (baseline vs. follow-up, p<o0.001), such
that, on average, WC decreased from 96.49 cm (SD=13.21) at baseline to 96.09 cm
(SD=13.54) at follow-up, yet evidence suggests that the WCs of older adults tend

to increase, rather than decrease, over time?7. However, there was still no effect
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of sleep duration on WC and both adiposity measurements yielded consistent

findings.

Secondly, it is suggested that the magnitude of the association between sleep
duration and changes in adiposity measures declines with age?"'>2. This may
explain why the results presented here, where mean age is 65 years, and in other
studies such as the Whitehall II", are null. Thus, these data suggest that obesity
may be a target to ameliorate co-morbidities that occur due to poor sleep, but
that sleep duration is not a target to prevent obesity in older age groups. This
non-significant prospective association between sleep duration and two adiposity
measures is an important one, particularly as the majority of previous research in
this area has yielded positive findings. It is possible that differences in inclusion
of covariates may have contributed to this discrepancy in results, and/or that
these effects have disappeared by the time data are collected from individuals in
later life (for example, ELSA and WHII). In comparing the present results with
those of the WHII paper™ the authors also adjusted their analyses for a list of
covariates that are similar to those adjusted for in ELSA. There were small
differences in adjustments, for example in ELSA ethnicity and long-standing
illness were included, whilst in WHII adjustment was made for medications, such
as cardiovascular drugs and hypnotics. Also, notably, in ELSA and WHII the sleep
duration question asked is identical, whilst other studies included in the most
recent meta-analysis of prospective studies in adults® shows that in the other 10
studies sleep duration was asked slightly differently, which may affect the results.
For example, three of these studies?39-24' asked participants to report their average
daily sleep duration, two asked about both weekday and weekend sleep duration
and then took a weighted average3+24*, two studies asked for average sleep
duration in a 24 hour period'>4+243 and the remaining studies asked participants to
report average night time duration of sleep?44-245, Also, of these studies, only two
included ethnicity as a covariate?4324¢ and only two, besides the WHII paper,
included adjustments for medications4244. Notable is that the study which had

the fewest covariates (age, sex, baseline BMI, length of follow-up and SES) and
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the smallest sample size (n=151), had the largest effect size (OR=2.97) for sleep

duration and risk of obesity at follow-up3.

Also, a quadratic sleep duration term was included in separate models, adjusted
for covariates, the results of which were not significant. Thus, there was no U-

shaped relationship between sleep duration and changes in BMI or WC.

3.5.5 Potential unexplored mechanisms for the association between
adiposity and sleep duration in older adults

In this section, potential mechanisms that might underlie the relationship

between adiposity and sleep duration are explored. However, the magnitude of

effect between baseline BMI/WC and changes in sleep duration was miniscule,

which is important to note.

3.5.5.1 Sleep apnoea as a possible explanation

In Chapter 1, shared genetic aetiology was discussed as a potential explanation for
the association between BMI and sleep duration. Additionally, it is possible that
obstructive sleep apnoea (OSA) is another plausible explanation for the
prospective associations of adiposity measures and sleep duration in older adults
OSA is a condition that causes the airways to collapse or become blocked whilst
sleeping and is markedly prevalent in obese adults?47. Older people with higher
BMIs and/or WCs may have a higher percentage of visceral fat than their leaner
counterparts, which has been found to be a significant risk factor for OSA247243,
Therefore, they may develop OSA, which could subsequently affect their sleep

duration.

Evidence suggests that when objectively measuring sleep duration, very short
sleep (mean duration of 3 hours) is associated with greater OSA severity?49, which
could also be applicable to self-reported sleep duration. Another recent study
found self-reported short sleep duration and OSA to be independently associated
with visceral obesity, in adults aged between forty and sixty-nine years®°. Meta-
analytic evidence also finds that OSA is predictive of CVD and all-cause

mortality®'. However, in ELSA waves 4 (baseline) and 6 (follow-up) there are no
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questions asked about sleep apnoea, thus it was not possible to perform analyses

to investigate this further.

3.5.6 Study strengths

This study has several strengths. As both adiposity (BMI and WC) and sleep
duration data were collected at two time points in ELSA, it was possible to
investigate changes in both adiposity and sleep duration by incorporating these

baseline measures as covariates in all prospective, bidirectional modelling.

It was also important to analyse two measures of adiposity, particularly WC,
which is deemed better for measuring adiposity in older adults, as BMI can be
less accurate in this population, mainly due to sarcopenia®9. Thus, the fact that
WC and sleep duration were related in an identical way to BMI and sleep
duration also strengthens the study conclusions. However, no relationship was
observed between baseline sleep duration and changes in BMI or WC, thus this
association is likely to be weak in comparison in older adults. This is in line with
literature reviewed in Chapter 1, which suggests that the prospective relationship

between sleep duration and changes in adiposity in fact weakens with age.

A further strength is that BMI and WC were measured by a nurse, rather than
self-reported, which reflects an improvement on some earlier studies in this
area’5*. Large-scale epidemiological studies suggest that BMI calculated from
self-reported height and weight may overestimate values at the lower end of the
scale (<22 kg/m?) and underestimate values at the upper end of the scale
(particularly for BMI values >28 kg/m?)>3. Adults over the age of 55 are also more

likely to underestimate their BMI, in comparison to those aged between 42 and

55253_

A further strength is that ELSA is broadly representative of the English
population aged 50 years and older®#, which is important, as it allows
generalisability of the findings. The richness of the available dataset enabled
analyses that accounted for a number of factors, including wealth, illness and

depressive symptoms, and health behaviours.
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3.5.7 Study limitations

Sleep duration was self-reported, which may be prone to error and bias®®. In
older adults, it may not be optimal to rely on self-reports of sleep duration, as
sleep disruptions due to OSA and insomnia are common and can lead to
erroneous estimates of time spent asleep’>+. For example, research within the
same ageing sample showed an association between objective sleep duration and
obesity, but no relationship was found when self-report measurements were
analysed in relation to obesity3°. It is important to note that for a within-person
analysis it may be less important that self-reported sleep duration may be error-
prone, as the associated measurement error terms remain consistent. However,
this does not rule out that for example, there could be a differential effect of

adiposity (BMI, WC) on how respondents report their sleep durations.

Data were only available from waves 4 and 6 of ELSA; hence there were only four
years between baseline and follow-up, which may have contributed to the trivial
change observed in sleep duration and adiposity. This could perhaps be related to
findings that usual sleep parameters do not significantly change in adults after
the age of sixty?ss. It was also not possible to examine all potential mediators of
the prospective association between adiposity measures and sleep duration. For
example, respondents might sleep poorly due to their own or partner’s snoring or
other symptoms of sleep apnoea, as mentioned above. Additionally, information
on daytime napping was not available, which is particularly pertinent in older
adults. Despite ELSA’s representativeness of the English ageing general
population, these findings may not be entirely applicable to non-white ethnic
groups and to adults below the age of 50. It is also possible that the restriction of
sleep duration to between 2 and 12 hours may have impacted the results,
although there were only 12 respondents whose durations of sleep were outside of

this range.

3.5.8 Future directions
The present study was the first to examine the association of adiposity and sleep
duration using bidirectional analyses. However, there are some important

directions to consider for future research.
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These findings should be replicated with objective sleep duration, perhaps by
means of actigraphy, as it is rapidly becoming less expensive. For example, since
this work was completed, the UKB have released wrist actigraphy data collected
from approximately 100,000 individuals, which will enable large-scale analyses of
objective sleep duration and BMI. This is important, as it has been reported that
the agreement between objective and subjective sleep duration is at best,

modest°.

Evidence suggests that length of average sleep is unlikely to change drastically in
healthy adults over the age of sixty. However, to confirm the results from this
study it may be important to carry out a similar study using a longer follow-up
time. This could potentially be done using the ELSA sample, as wave 8 data is
newly available and includes sleep duration, as well as crucial questions about
shift work and napping, for example. Thus, it would be possible to investigate
whether factors such as these do in fact, mediate the association between
adiposity and changes in sleep duration. However, as the amount of change in
both BMI and sleep duration over the 4-year follow-up period was very small, it
would have been difficult to use other methods to examine this bidirectional

relationship.

In relation to an earlier point, in future it would also be of interest to further
explore the interrelationship between BMI, socioeconomic position, depression

and sleep duration.

3.6 CHAPTER SUMMARY

¢ Analyses were performed to investigate the cross-sectional and
bidirectional prospective relationship of BMI and WC with self-reported
sleep duration in older adults.

e Using data from waves 4 and 6 of ELSA linear and non-linear regression
analyses were performed to establish the direction of this association.

e After adjustment for a wide range of covariates, there was no evidence of a
significant cross-sectional association between adiposity and sleep

duration.
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e Prospective models indicated that there was a significant relationship
between BMI at baseline and very small changes in sleep duration, but the
opposite relationship was not significant.

e Although some potential explanations for this association were proposed,
such as sleep apnoea and share genetic aetiology, it is unlikely that we
would need to target adiposity in order to promote longer sleep duration

in older adults, as these effects are very small.
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4 INVESTIGATING THE BIDIRECTIONAL
ASSOCIATION OF BMI AND SLEEP DURATION IN
EARLY LIFE

4.1 BRIEF INTRODUCTION AND OVERVIEW OF CHAPTER
CONTENTS

Chapter 1 introduced and provided a review of the literature to date, on the
relationship between adiposity (typically measured by BMI, waist circumference
or another inexpensive method of data collection) and sleep duration (usually
measured by means of self-report, with the exception of a small number of
studies which have used objective sleep duration). Whilst reviewing this
literature, several systematic reviews and meta-analyses of cross-sectional and
prospective studies predominantly suggest that shorter sleep is related to
changes in BMI and increased risk of obesity'°6107.13914015-153 However, all of these
studies examined whether sleep duration might predict changes in BMI or
increased risk of obesity, whilst there appear to have been only two studies

(described below), to date, to examine both processes in a single sample’3738,

Hiscock and colleagues’” were the first to investigate the bidirectional
association of BMI with sleep duration in children. They found that BMI did not
predict changes in sleep duration, nor did they observe that sleep duration was

associated with changes in BMI, in a large sample of Australian children.

More recently, another study provided support for Hiscock’s findings®3®. These
researchers found that BMI did not predict changes in sleep duration, nor did
sleep duration predict changes in BMI, in White children from the Born in
Bradford Study. However, they observed associations in both directions in South

Asian children.

It is important to investigate the direction of this association further, using a
distinct approach from previous studies. Both the Hiscock et al. and Collings et

al. studies analysed subjective measures of sleep duration and thus, no research



has yet investigated the bidirectional relationship of BMI with objective sleep
duration in a paediatric sample. The sample used in this chapter has prospective
data available in children, as well as carefully-measured actigraphically assessed
sleep duration and measures of height and weight. Thus, it provided a unique
opportunity to investigate the bidirectional, prospective association of BMI and
objective sleep duration at three time points. Establishing the direction of effect
between BMI and objective sleep duration in children is important, as this could
be different from the relationship between BMI and subjective duration of sleep

because objective sleep is likely to be measured with more precision.

As mentioned in Chapter 1, the remainder of this thesis focuses on understanding
the association between BMI and sleep duration in adults and therefore, this is
the only study in a paediatric sample. Funding was provided by the ESRC for an
Overseas Institutional Visit (OIV) and due to an existing collaboration with Dr
Clare Llewellyn, I visited the Department of Psychology at the Norwegian
University of Science and Technology (NTNU) for three months (March 2017 -
June 2017) to work with Dr Silje Steinsbekk and Prof. Lars Wichstrom. Data were
available from the comprehensively-phenotyped study that this research group
houses: the Trondheim Early Secure Study (TESS), and enabled the investigation
of the prospective relationship of BMI with objective sleep duration, for the first

time, in a paediatric sample.

4.2 AIMS OF THIS CHAPTER

The study presented in this chapter had three aims:

e Examine the cross-sectional associations between BMI and objectively
measured sleep duration at ages 6 and 8y.

e Examine the association between BMI at age 6y and changes in sleep
duration between 6 and 8y, as well as the association between BMI at age
8y with changes in sleep duration between 8 and 10y.

e Examine the association between sleep duration at age 6y with changes in
BMI between 6 and 8y, and the association between sleep duration at age

8y and changes in BMI between 8 and 10y.
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4.3 METHODS
For the work carried out in this chapter I designed the study, derived BMI-SDS

for the age 10 data and performed all statistical analyses.

4.3.1 Sample

The Trondheim Early Secure Study (TESS) comprises a community sample of
Norwegian children born in 2003 and 2004 (see Chapter 2 for more detailed
information about TESS). Data have been collected at ages 4, 6, 8 and 10 years, to
date. From these two birth cohorts, 1250 (97.2%) children were recruited into
TESS at wave 1 (age 4) by means of a letter of invitation, which included the
Strengths and Difficulties Questionnaire (SDQ), version 4-162°3. The SDQ is a
screening tool for behavioural and emotional problems, which was one of the
primary focuses of TESS. Therefore, due to the oversampling of children with
such problems, sample weights are needed in all analyses of the TESS data.
Ethical approval for TESS was granted by the Regional Committee for Medical
and Health Research Ethics, Mid-Norway and written informed consent was
obtained from parents. Here data were analysed from waves 2 (baseline), 3
(baseline + first follow-up) and 4 (follow-up) and there was a total of 794 children
included in the study. Thus, two separate cross-sectional and prospective studies
were carried out, as children develop and may change (in terms of weight and
sleep duration) between the ages of 6y and 10y. For this reason a 2-year follow-up

period was used, rather than a single, 4-year follow-up.
4.3.2 Measures

4.3.2.1 Body Mass Index (BMI)

Height (metres) and weight (kg) at ages 6y, 8y and 10y were collected by a health
nurse, using digital scales (Heightronic digital stadiometer: QuickMedical,
Model 235A and Tanita BC420MA). BMI was then calculated with the standard
formula: weight (kg) divided by height (m?). BMI standard deviation scores (SDS)
were derived in TESS using the British growth curve reference for children aged
from birth to twenty-three years®”. The British reference data were used because

they are deemed to be more reliable than the Norwegian reference data and are
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therefore used in TESS published studies (for example, Steinsbekk et al°.).
Further details on BMI, BMI-SDS and how weight status categories were derived

in TESS are provided in Chapter 2.

4.3.2.2 Sleep duration

Sleep duration was objectively measured using the ActiGraph™ GT3X
accelerometer (Manufacturing Technology Incorporated, Fort Walton Beach, FL,
USA). Participants wore the actigraphs on their hip for 7 consecutive days,
including whilst asleep, and were only required to remove them whilst showering

or bathing. More details on this measure are provided in Chapter 2.

4.3.2.3 Covariates

Covariates included in the analyses were demographics: age (continuous), sex
(o=male, 1=female), a measure of socioeconomic status (SES), ethnicity and
season. Parental occupation was used as a measure of SES, coded as o=skilled
professionals and leaders, 1=unskilled. This was recoded from the International
Classification of Occupations, which is measured on a 6-point scale (1=Manual
workers, 6=Leaders)?. If participants’ parents were living together the parent
with the highest occupation was selected. Ethnicity was originally coded from 1 to
12 (1=Norway, 2=Nordic countries, 3=Western Europe, USA, Canada, New
Zealand, Australia, Israel, 4=Eastern Europe, 5=Balkans (Former Yugoslavia,
Romania, Bulgaria), 6=Turkey, 7=North Africa, 8=South Africa [country], 9= Rest
of Africa, 10= Central and South America, 11=Asia/Rest of Oceania, 12= Sami
(indigenous Norwegian population). However, as there were only n=11 across all
categories that did not fall into either 1 or 2 the ethnicity variable was recoded as

1=Nordic and 2=Non-Nordic.

A season variable was created from the month when the sleep duration data were
collected at both waves 2 and 3 (ages 6y and 8y). The rationale for including
season as a potential covariate was that there is some evidence to suggest that
children’s sleep duration varies between seasons, particularly in Northern Europe

and Scandinavia. A recent study in 730 Danish children, aged 8-11y found that
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objective sleep duration was approximately 2% longer during winter, compared

to spring?®.

The variable was originally coded as a number between 1 and 12 to indicate the
month of assessment, which was subsequently recoded into an ordinal measure
with 4 categories, one per season. In creating these categories a similar approach
to that of Kolle and colleagues?® was used, who defined the Norwegian seasons
as: Autumn (September, October, November); Winter (December, January,
February); Spring (March to mid-June); and summer was not included, as they
did not collect data in July or August. However, in TESS data were collected
during July and August and were thus, also categorised as Summer. The season
variables for ages 6y and 8y were coded as: 1=spring, 2=summer, 3=autumn,
4=winter. Season was included as a covariate, as linear regressions showed that
there was a significant cross-sectional association between both season and sleep
duration at age 6y (B= 0.10, 95% CI= 0.011; 0.190, P=0.027), and season and sleep
duration at age 8y (B=0.21, 95% Cl=0.122; 0.292, P<0.001). Both of these regression

models were adjusted for age, sex, ethnicity and SES.
4.3.3 Statistical analyses

4.3.3.1 Power calculations

Using G*Power post-hoc power was calculated for cross-sectional and
bidirectional prospective analyses, by using the following parameters: effect size
F2, % error probability, total sample size, number of tested predictors and total
number of predictors. F> for the effect size was calculated as: R* / 1 - R?, by taking
the R?from an unadjusted (no covariates included) cross-sectional and
prospective models from the results of the ELSA study (Chapter 3). The alpha
level was set at 0.05, the total n was 794 and the number of tested predictors was
1 for cross-sectional and prospective analyses. Power calculations indicated that
there was limited power to observe similar effects to those in the ELSA study in
Chapter 3 (Table 4.1), which was unsurprising, given the very small effects found

in ELSA.
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Table 4.1 Power calculations for cross-sectional and bidirectional prospective
analyses in TESS

Model Effect % error N No. tested Power
size F>* probability predictors
Cross-sectional 0.0025 0.05 794 1 29%
Prospective 0.0046 0.05 794 1 48%
BMI on sleep
duration
Prospective Sleep 0.0046 0.05 794 1 48%

duration on BMI

Note. *For cross-sectional models this (F?) was calculated as: R*/ 1 - R?>= 0.0025 / 1
- 0.0025 = 0.0025; for prospective models of BMI on sleep duration this was
calculated as: R?/1- R*>=0.0046 / 1 - 0.0046 = 0.0046; for prospective models of
sleep duration on BMI this was calculated as: R?/ 1 - R*= 0.0021 /1 - 0.0021 =
0.0021 . All of these R* values were taken from results of the simple linear

regression (unadjusted) models in the ELSA study in Chapter 3.

4.3.3.2 Full Information Maximum Likelihood (FIML) estimation

Statistical analyses were all performed in STATA, version 14. Due to the limited
sample size for a complete case analysis (CCA) of n=452, analyses were performed
using full information maximum likelihood (FIML), yielding an analysis sample
of n=794. Maximum likelihood estimation is a powerful method for handling
missing data and is less biased than ad hoc techniques such as pairwise deletion,
mean imputation and list wise deletion?%°. FIML is sometimes also preferred over
multiple imputation (MI) for various reasons, one particularly important reason
being that MI produces different results for the same data every time because it
involves random draws?°, FIML does not suffer from this limitation.
Furthermore, analyses were all weighted using sample weighting in STATA to
ensure representativeness of the general population, due to the oversampling of
children with emotional and behavioural problems in TESS. Associations
between BMI and sleep duration were tested separately for cross-sectional
associations at both ages 6 years and 8 years and subsequently, separate models

were run to try to establish the direction of effect.
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4.3.3.3 Comparison of sample characteristics across sleep duration
categories

To compare baseline characteristics, the sample at age 6y was divided into two

categories of sleep duration. These sleep categories were defined in line with the

latest recommendations from the American Academy of Sleep Medicine, which

state that, for every 24 hours, sleep duration should be between g and 12 hours

for children aged 6 to 12 years 0ld>®'. Thus, <9 hours was defined as “short sleep”

and =9 hours as “typical sleep”.

One-way ANOVAs were then used to compare participants on age and BMI (and
BMI-SDS), whilst Chi-squared tests were used to compare sex, ethnicity, SES and

weight status across sleep duration categories (Table 4.2).

4.3.3.4 Change in BMI and sleep duration between ages 6 and 8, and 8
and 10
To examine whether BMI and sleep duration changed substantially between ages
6 and 8 years, and 8 and 10 years, Pearson’s correlations were calculated and
subsequently, paired samples t-tests were also performed. In STATA, first,
weighted means for both BMI and sleep duration were obtained using the sample
weight that is applied to all TESS analyses and then linear combinations of these
variables (for example, BMI at age 8 - BMI at age 6) were estimated to compute

the respective t-and p-values.

4.3.3.5 Linear models

Linear regression models were performed to examine the cross-sectional
relationship between BMI SDS with sleep duration, separately, at both ages 6 and
8 (waves 2 and 3, respectively). As mentioned above, these models were all

adjusted for age, sex, ethnicity, parental SES and season.

Then linear regressions were performed to examine the prospective bidirectional
associations between BMI and BMI SDS, and sleep duration. To investigate the
relationship between BMI and changes in sleep duration, first sleep duration was
regressed on BMI and BMI SDS using age 6y (wave 2) 6 as the baseline and age 8y

(wave 3) as follow-up, followed by age 10y (wave 4) sleep duration regressed on
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BMI and BMI SDS at age 8y (wave 3). These models were adjusted for age, sex,

SES, ethnicity, season and baseline sleep duration.

To examine the opposite relationship age 8y BMI and BMI SDS were regressed on
age 6y sleep duration, followed by age 10 BMI and BMI SDS regressed on age 8y
sleep duration. These regression models were adjusted for age, sex, SES,

ethnicity, season and baseline BMI or BMI SDS.

4.3.3.6 Non-linear models

A quadratic term was included for exposures in both cross-sectional and
bidirectional prospective analyses. Thus, in cross-sectional regressions a BMI-
squared (BMI2?) was included, as well as in prospective associations to examine
the change in sleep duration from baseline BMI. In prospective analyses to
examine changes in BMI from baseline sleep duration, a sleep duration-squared
(sleep duration?) term was included. Subsequently, one cross-sectional linear
regression model was performed, adjusted for age, sex and parental SES.
Additionally, the interactions between sex and baseline BMI and sleep duration
(ages 6y and 8y) were tested, as some previous research has found differences

between boys and girls.

4.4 RESULTS

4.4.1 Sample characteristics

Table 4.2 presents time-invariant characteristics in TESS. There were no
significant differences between these groups in terms of sex, SES, ethnicity (all
p>0.05). Tables 4.3, 4.4 and 4.5 present descriptive statistics for age, season, BMI,
BMI-SDS and weight status at ages 6, 8 and 10 years. At 6y there was a small but
significant difference in age between shorter and longer sleepers in TESS at age
6y, such that children who slept for longer were younger. However, there were no
differences between the two sleep duration groups across any other time-varying
characteristics at age 6y. At age 8y (Table 4.4) there was a nominally significant
difference in mean age between the two sleep categories. There was a significant

difference in the percentage of children who slept for <g hours vs. =9 hours
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across the four seasons (spring, summer, autumn, winter) at age 8y. There was no
difference in BMI, BMI-SDS or weight status categories between the two sleep
groups at age 8 (all p>0.05). At age 10y (Table 4.5) the two sleep duration groups
differed significantly in terms of BMI and BMI-SDS, such that those who slept <9
hours had a higher mean BMI/BMI-SDS than those who slept for =9 hours.
Similarly to age 8y, there was a significant difference in the number of children

who slept <g hours in comparison. =9 hours across the four seasons at age 10y.

Table 4.2 Sample characteristics in TESS by sleep duration category, at age 6y

<9 hours =9 hours Total (Max. P

(n=108) (n=686) N=794)
Sex - n (%)
Boys 62 (57.41) 329 (48.03) 391 (49.31) 0.070
Girls 46 (42.59) 356 (51.97) 402 (50.69)
SES - n (%)
Skilled 81 (77.14) 502 (74.93) 583 (75.23) 0.625
Unskilled 24 (22.86) 168 (25.07) 192 (24.77)
Ethnicity
White 104 (98.11) 637 (98.62) 741 (98.54) 0.695
Non-white 2 (1.89) 9 (1.39) 1 (1.46)
Mean age (SD) 6.05 (0.21) 6.01 (0.16) 752 0.044
Season - n (%)
Spring 31(32.39) 190 (31.61) 221 (31.71)
Summer 32 (33.33) 135 (22.46) 167 (23.96) 0.058
Autumn 18 (18.75) 124 (20.63) 142 (20.37)
Winter 15 (15.63) 152 (25.29) 167 (23.96)
BMI - mean (SD) 15.49 (1.55) 15.59 (1.47) 15.54 (1.51) 0.523
BMI-SDS - mean (SD) -0.30 (0.90) -0.11 (0.85) -0.14 (0.86) 0.506
Weight status - n (%)
Underweight 13 (16.05) 45 (9.34) 58 (10.30)
Normal weight 63 (77.78) 399 (82.78) 462 (82.06) 0473
Overweight/obese 5 (6.17) 38 (7.88) 43 (7.64)

Note. Overweight + obese weight status categories were collapsed as there were

only n=3 overweight and n=2 obese participants.
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Table 4.3 Descriptive statistics for exposure/outcome measures at ages 8y and 10y
in TESS

Sleep duration (age 8)

<9 hours =9 hours Total (Max. P
(n=205) (n=481) N=686)
BMI - mean (SD) 16.72 (1.99) 16.55 (1.96) 628 0.297
BMI-SDS - mean (SD) 0.15 (0.94) 0.07 (0.88) 509 0.298
Sleep duration (age 10)
BMI - mean (SD) 17.76 (2.59) 17.40 (2.36) 686 0.028
BMI-SDS - mean (SD) 0.22 (1.05) 0.06 (0.99) 686 0.038

4.4.2 Cross-sectional linear and non-linear associations of BMI and
sleep duration at ages 6 and 8

Cross-sectional linear regressions yielded no significant associations between

BMI and sleep duration, at either ages 6y and 8y (Table 4.4). These models were

adjusted for age, sex, SES ethnicity and season, and were performed for both BMI

and BMI SDS. There was no evidence of a U-shaped (quadratic) relationship

between BMI and sleep duration at either age (p>0.05).

Table 4.4 Cross-sectional associations of BMI and BMI SDS with sleep duration at
ages 6 and 8

Sleep duration B (minutes) 95% CI P
Age 6
Model 1 - BMI (age 6) 0.01 -0.067; 0.095 0.724
Model 2 - BMI-SDS 0.02 -0.067; 0.012 0.590
(age 6)
Age 8
Model 3 - BMI (age 8) -0.03 -0.124; 0.060 0.500
Model 4 - BMI-SDS 0.03 -0.070; 0.129 0.560
(age 8)

Note. Models 1 and 2= adjusted for age, sex, SES, ethnicity and season (age 6);
Models 3 and 4= adjusted for age, sex, SES, ethnicity and season (age 8); exposure
in Models 1 and 3 = BMI, exposure in Models 2 and 4= BMI SDS; B
(Unstandardized coefficient) = difference in sleep duration (minutes) per

difference in BMI, 95% CI =95% confidence interval, P = regression p-value.
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4.4.3 Bidirectional prospective linear and non-linear associations of BMI
and sleep duration
In prospective analyses using age 6 as a baseline and age 8 as follow-up, there was
no significant relationship between BMI (and BMI SDS) and changes in
actigraphic sleep duration, in unadjusted models that included only the exposure,
outcome and baseline outcome (p>0.05). In further models adjusted for age, sex,
SES, season, ethnicity and baseline sleep duration (Table 4.5). Furthermore, there
was no significant association between sleep duration assessed at age 6y and
changes in BMI, in a model adjusted for the same covariates as mentioned above,
but with baseline BMI rather than sleep duration. The pattern of results for BMI-
SDS in relation to sleep duration was identical to BMI and thus, there was no
association between BMI-SDS at age 6y and change in sleep duration at age 8,
nor was there any relationship between sleep duration at age 6y and change in

BMI-SDS at age 8y.

There was also no significant U-shaped association between BMI at age 6y and
sleep duration at age 8y, in either direction (p>0.05). Although Pearson’s
correlations showed that BMI was largely stable between the ages of 6y and 8y,
r=0.85, p<0.001, a paired samples t-test indicated that there was also change over
time, with a difference of 1.15 kg/m? (15.56 kg/m? at age 6y vs. 16.58 kg/m? at age

8y), which was, in fact, significant (p<o.001).

Duration of sleep was much less stable between these ages, r=0.27, p<0.001. Mean
sleep duration at age 6y was 9.62 hours, whilst at age 8y it decreased to 9.09 and
a paired samples t-test confirmed that this difference of approximately 28

minutes, was significant (p<o.001).

Results from linear regressions which used age 8y as a baseline and age 10y as
follow-up, were identical to the previous bidirectional analyses (age 6y to 8y).
Thus, BMI at age 8y did not predict changes in sleep duration at age 10y, nor did
sleep duration at age 8y predict changes in BMI at age 10y, irrespective of level of
adjustment for covariates (Table 4.6). Results also showed no significant

quadratic associations between BMI and sleep duration in either direction
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(p>0.05). Again, Pearson’s correlations indicated that participants’ BMIs were
fairly stable between ages 8y and 10y (r=0.86, p<o0.001), but a paired samples t-test
suggested that there was nevertheless change over time and the difference in
mean BMIs (16.60 kg/m? at age 8 vs. 17.49 kg/m? at age 10) was significant
(p<0.001). The correlation between age 8y and age 10y sleep duration was much
smaller, indicating less stability over this developmental period (r=0.32, p<0.001),
although a paired samples t-test revealed that this difference (average decrease of
3.56 minutes between age 8 and age 10 sleep duration) was not significant
(p=0.088).

Table 4.5 Bidirectional prospective models of BMI and sleep duration from age 6 to
8

BMI (age 6) - Sleep duration (age 8)

B (minutes) 95% CI P
Model 1 0.02 -0.07; 0.11 0.694
Model 2 0.03 -0.057; 0.129 0.451
BMI-SDS (age 6) > sleep duration (age 8)
Model 3 0.02 -0.08; 0.13 0.685
Model 4 0.02 -0.086; 0.121 0.737
Sleep duration (age 6) > BMI (age 8)
B (kg/m?) 95% CI P
Model 5 -0.02 -0.06; 0.03 0.467
Model 6 -0.01 -0.058; 0.030 0.527
Sleep duration (age 6) > BMI-SDS (age 8)
Model 7 -0.03 -0.08; 0.01 0.148
Model 8 -0.01 -0.092; 0.065 0.736

Note. Model 1= baseline sleep duration (age 6); Model 2= adjusted for age, sex,
SES, ethnicity, season and baseline sleep duration (age 6); Model 3= baseline
sleep duration (age 6); Model 4= adjusted for age, sex, SES, ethnicity, season and
baseline sleep duration (age 6); Model 5= adjusted for baseline BMI (age 6);
Model 6= adjusted for age, sex, SES, ethnicity, season and baseline BMI (age 6);
Model 7= adjusted for baseline BMI (age 6), Model 8= adjusted for age, sex, SES,
ethnicity, season and baseline BMI (age 6; B (unstandardised coefficient in
minutes) = change in sleep duration per unit change in BMI (Models 1 and 2),
outcome in Models 1 to 4= sleep duration at age 8y, outcome in Models 5and 6 =

BMI at age 8y, outcome in Models 7 and 8 = BMI-SDS at age 8y.
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Table 4.6 Bidirectional prospective models of BMI and sleep duration from age 8 to

10
BMI (age 8) - sleep duration (age 10)
B (minutes) 95% CI P
Model 1 -0.04 -0.12; 0.04 0.318
Model 2 -0.04 -0.120; 0.040 0.332
BMI-SDS (age 8) - sleep duration (age 10)
Model 3 -0.00 -0.09; 0.08 0.997
Model 4 0.07 -0.016; 0.160 0.107
Sleep duration (age 8 ) > BMI (age 10)
B (kg/m?) 95% CI P
Model 5 0.00 -0.07; 0.07 0.998
Model 6 0.00 -0.068; 0.074 0.934
Sleep duration (age 8) > BMI-SDS (age 10)
Model 7 0.02 -0.04; 0.09 0.449
Model 8 -0.03 -0.133; 0.071 0.547

Model 1= baseline sleep duration (age 8); Model 2= adjusted for age, sex, SES,
ethnicity, season and baseline sleep duration (age 8); Model 3= baseline sleep
duration (age 8); Model 4= adjusted for age, sex, SES, ethnicity, season and
baseline sleep duration (age 8); Model 5= adjusted for baseline BMI (age 8);
Model 6= adjusted for age, sex, SES, ethnicity, season and baseline BMI (age 8);
Model 7= adjusted for baseline BMI (age 8), Model 8= adjusted for age, sex, SES,
ethnicity, season and baseline BMI (age 8); B (unstandardised coefficient in
minutes) = change in sleep duration per unit change in BMI (Models 1 and 2),
outcome in Models 1 to 4= sleep duration at age 10y, outcome in Models 5and 6 =

BMI at age 10y, outcome in Models 7 and 8 = BMI-SDS at age 10y.

4.5 DISCUSSION

4.5.1 Summary of findings

In this study, analyses were performed to examine the cross-sectional, as well as
the bidirectional, prospective association between BMI and actigraphic sleep
duration in a Norwegian sample. The purpose of this study was to understand the
nature of the direction of this relationship in children, which has only been

investigated by two previous studies’37538, but never with objectively measured
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sleep duration. This study in TESS yielded no significant cross-sectional
associations between BMI and actigraphic sleep duration at ages 6y or 8y. There
was also no evidence of a prospective relationship in either direction between
BMI and actigraphic sleep duration, using age 6y as a baseline and age 8y as
follow-up, or using age 8y as a baseline and age 10y as follow-up. There was also
no evidence of U-shaped relationships between BMI and actigraphic sleep

duration in TESS.

Correlations between BMI at ages 6y and 8y, and ages 8y and 10y in TESS were
very strong, indicating that there was very little change in children’s BMIs over 4
years. This was not the observation for actigraphic sleep durations, which

changed to a greater extent, as expected, between ages 6y and 8y, and 8y and 10y.
4.5.2 Evaluation of findings in relation to previous research

4.5.2.1 Cross-sectional findings

As mentioned earlier, large-scale meta-analyses on BMI and sleep duration in
children have predominantly concluded that shorter sleep is associated with
higher BMI and increased risk of obesity'°6107135151153157 The findings in this study
accord with one study from another Scandinavian population, in which
Klingenberg et al.4® observed no cross-sectional association between parent-
reported sleep duration and BMI in 211 Danish children. One reason for this null
finding could be that the families recruited are mostly of high SES and live in the
capital city region, thus these children are less likely to become obese and have
poor sleeping habits. The TESS sample possesses important similarities to the
Danish sample used in the earlier study, as for example, 86.4% of the children
slept for =9 hours, which is in line with the recommendations for the amount of

261 There is some evidence to support this notion of social

sleep in this age group
differences in children’s sleep patterns. Findings from 11,500 ALSPAC children
showed that those who were more likely to go to bed later and wake up later
were those in low-income homes, yet there was little difference in total sleep

duration with children from higher income homes%2. However, it was also
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observed that children of older mothers (>35 years) had shorter sleep durations,

and that children in larger families were more likely to have later bedtimes?%>.

BMIs did not differ across the sleep duration categories in the TESS sample and
the prevalence of overweight/obesity was only 7.6% at age 6y and 6.77% at age
8y. It is therefore a possibility that no association was observed between BMI and
sleep duration in TESS, as participants are largely lean and also had healthy sleep
durations, on average, with approximately one in eight children slept for less
than g hours at age 6y. In order to observe an effect between BMI and sleep
duration it may be necessary to have greater variation in weight and sleep
duration. In particular, the proportion of overweight/obese children in TESS is
very different from that of the UK paediatric population. Statistics from the 2016-
17 National Child Measurement Programme show that at ages 4/5y one in three
children are overweight/obese and at ages 10/11y one in three are

overweight/obese?%3,

Thus, it is possible that the TESS sample is somewhat too homogenous and
healthy to have observed a cross-sectional association between BMI and sleep
duration. This work adds to a small body of null research on the cross-sectional

relationship between BMI and sleep duration in childhood.

4.5.2.2 Bidirectional prospective findings

This study is not the first to find a non-significant prospective association
between BMI and sleep duration in children. For example, the only two previous
studies to investigate the bidirectional relationship between BMI and sleep
duration in children yielded non-significant findings373%. Hiscock and
colleagues’7 observed that BMI did not predict changes in sleep duration, or vice
versa, in a large sample of Australian children. This was supported by a more
recent study on the bidirectional association of BMI and sleep duration, which
found no significant effects in either direction, in a sample of 562 White children,
who were followed up at ages 12, 18, 24 and 36 months'3®. Importantly, both of
these studies used parent-reported sleep duration, in the form of sleep duration

diaries. Thus, this is a fundamental difference between the analyses in TESS and
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earlier studies, yet similar findings were observed across studies. This is
important because if an association truly exists in either direction in childhood, it
would have likely emerged using objective measurement of sleep duration, due to

its improved precision over subjective measures (self or parent-reported).

Another study, which analysed both parent-reported, as well as accelerometer-
estimated sleep duration in 311 young Danish children, found that neither
measure of sleep was associated with BMI®, These authors found that parent-
reported sleep duration at 9 months of age was not related to BMI at 18 months
or 3 years of age, nor was accelerometer-measured sleep duration was associated
with BMI cross-sectionally, at age 3. A recent Chinese study also found no
significant relationship between risk of being overweight or obese and weekday
sleep duration’® in 3,086 children, which could be due to ubiquitous insufficient

weekday sleep amongst Chinese children.

Overall, given that the present findings alongside results from the two earlier
bidirectional studies, conducted in samples across three different countries (UK,
Australia and Norway) suggest a null association (in White children), irrespective
of sleep duration measurement (objective vs. subjective), it is possible that earlier

non-bidirectional studies have overestimated the size of this effect.

4.5.3 Could sleep dimensions, other than duration be more important in
relation to childhood obesity?
Jarrin and colleagues'®® found that other sleep dimensions, such as quality,
pattern and disturbances may in fact be more important in relation to obesity.
They reached this conclusion, as in their study the association between sleep
duration with BMI was attenuated following adjustments for covariates, whereas
this was not the case for the other sleep dimensions. Recently, researchers also
observed that, in a sample of 236 children aged between 6 to 10 years, it was
bedtime and sleep timing that were significantly associated with weight, rather
than sleep duration?%4. Specifically, children classed as ‘late sleepers’ were
significantly heavier than their ‘normal sleeper’ counterparts. In a Chinese sample

of more than 5,000 children aged between g to 12 years findings suggest that
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although sleep duration is related to BMI, later bedtime is also associated with a
higher BMI?%5, which provides some support for the previously described study by
Thivel and colleagues?®4. Furthermore, evidence from 11,945 children from the
Millenium Cohort Study (MCS) found that at age five, those who had irregular

bedtimes were also the most likely to be obese>%°.

The underlying mechanisms for how phenotypes such as bedtime and sleep
timing may impact BMI are not fully understood. However, evidence suggests
that children who have later bedtimes, compared to those with earlier bedtimes,
are more likely to have higher BMIs, be inactive and have longer screen times'.
Thus, it is possible that delaying sleep in children may mean that they spend
more time exposed to an obesogenic environment and may for example, not have

breakfast and be overall, more sedentary.

It is important, however, to acknowledge that studies have mainly focused on the
relationship between sleep duration and BMI and thus, little is known about the
association between other sleep parameters with BMI, which could also be
important. However, this could be partly due the fact that self-reported sleep
duration, in particular, is very easy to measure. The majority of large-scale studies
collect this type of measure, as it can usually be captured with a single question
asking how long participants usually sleep for, or by asking them the time they
usually go to sleep and wake up and then deriving a proxy for duration of sleep.
This was also the case in the TESS study, in which data on sleep quality, pattern,
timing, etc were not available at waves 2, 3 and 4. If these data are collected in
future waves it would be important to test the association between BMI and these
other sleep parameters, using a bidirectional approach, similarly to the present

analyses.

4.5.4 Study strengths

The study reported here has important strengths. It was the first to investigate
the bidirectional relationship between BMI and objectively measured sleep
duration in children, using actigraphic data; similar previous studies have only

employed subjective sleep duration3738, Actigraphic sleep duration can provide
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more accurate estimates of sleep duration in comparison to subjective
measures?’. Van den Berg and colleagues?’ examined the agreement between
actigraphic and self-reported sleep duration in adults from the Rotterdam Study.
They observed that in 34% of participants, actigraphic and subjective sleep
duration differed by more than an hour and thus recommended that multiple
indicators of sleep duration be used in research. However, this is not always
possible, mainly due to costs and time constraints when collecting data from

large samples.

As indicated by the power calculations in the Methods section, there was
sufficient power to detect associations between BMI and sleep duration of at least
the size observed in ELSA (Chapter 3). Further, as TESS participants have been
followed throughout childhood, it was possible to perform both cross-sectional
and longitudinal analyses, using a robust approach, FIML, which maximised all

data points available in the study.

4.5.5 Study limitations

The TESS sample is a particularly homogenous one, as indicated in the sample
characteristics of the Results section. The proportion of overweight/obese
children in TESS was only 7.6% at age 6 and 6.77% at age 8, with 92% of
participants in the normal weight category at age 6 and 93.23% at age 8. It is
likely that these low overweight/obesity prevalence estimates contributed to the
null finding of a relationship between BMI and objective sleep duration in this
study. Participants’ BMIs only changed by 1.15 kg/m?from ages 6y to 8y and 0.89
kg/m? from ages 8y to 10y, and t-tests showed that these differences were
significant. Mean durations of sleep did change, by approximately 28 minutes,
over the 2-year follow-up period between ages 6 and 8, which was shown with t-

test analyses.

Furthermore, there was no measure of parent-reported sleep duration available at
these ages in TESS, which would have enabled a direct comparison with the
actigraphic sleep duration measures. Also, there is some evidence to suggest that

waist actigraphy may overestimate sleep duration in children, compared with
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wrist actigraphy®”. The present findings may not be applicable to children of
non-Nordic backgrounds, which is supported by a previous study of the
bidirectional association of BMI and sleep duration in South Asian children, as
the authors found a prospective relationship in both directions. It is also
important to mention that power to detect similar effects to those observed in

ELSA (Chapter 3) was limited.

4.5.6 Future directions

There are some important considerations for future research in this area. In order
to confirm, or refute emerging evidence that other sleep parameters are related
to adiposity and an increased risk of obesity'¢2%4, future research could involve
similar bidirectional analyses to those performed here, but with a focus on other
such sleep measures, as well as longitudinal data, larger sample sizes and other

ethnic groups.

Further research could also be performed using the TESS cohort, as data
collection is on-going and the team plan to follow participants throughout
adolescence and early adulthood. It might be of interest to repeat these
bidirectional analyses at slightly older ages, as meta-analytic evidence also
suggests a link between sleep duration and BMI in adolescents¢7. This is
important, as sleep patterns, weight and body composition can change as
participants enter puberty and adolescence. As part of this, analyses could also be
performed to examine the relationship of other adiposity indicators, available in
TESS, in relation to sleep parameters. Also, given the potential discrepancies
between wrist and waist actigraphy in measuring sleep duration, future research

should use wrist actigraphy, where possible.

It is also important that future studies use a more efficient analytical approach
than the present study. For example, a parallel process latent growth curve model
may be more appropriate for studies in which repeated measurements are
available because it would allow the modelling of outcomes (in this case, BMI
and objective sleep duration), as a function of both time and

exposures/covariates. This kind of approach is also particularly effective to



investigate change and potential inter-individual variation in any observed

change.

4.6 CHAPTER SUMMARY

e In this chapter, data were analysed from a Norwegian paediatric cohort to
investigate the bidirectional relationship between BMI and actigraphic
sleep duration at ages 6, 8 and 10.

e Both linear and non-linear analyses and found that there was no cross-
sectional association between BMI and sleep duration at age 6 or 8.

e Prospective, bidirectional analyses also yielded non-significant results in
both directions, at ages 6 to 8, and 8 to 10.

e Future studies ought to investigate the bidirectional association of other
sleep dimensions (pattern, quality, bedtime, timing) with adiposity

measures in children.
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5 GENOME-WIDE ASSOCIATION STUDY (GWAS)
OF SELF-REPORTED SLEEP DURATION

Results from the GWAS analyses performed in ELSA and UKHLS contributed to
the following publication: Garfield, V., Fatemifar, G., Dale, C., Smart, M., Bao, Y.,
Llewellyn, C., Steptoe, A., Zabaneh, D. & Kumari, M. Assessing Potential Shared
Genetic Aetiology between Body Mass Index (BMI) and Sleep Duration in 142,209

individuals. Under review in Scientific Reports.

5.1 BRIEFINTRODUCTION AND DESCRIPTION OF CHAPTER
CONTENTS

As outlined in Chapter 1 (section 1.7: Genetic determinants of sleep duration)
there have only been a handful of GWAS of sleep duration, with only one
replicated SNP to date?. As mentioned in Chapter 1, undertaking a large GWAS
of self-reported sleep duration is important, given the current molecular genetic
literature on this phenotype. Also, to potentially investigate the causal
relationship between self-reported sleep duration and BMI, more robustly
associated SNPs (with sleep duration) are needed, as this is a core assumption
underlying Mendelian randomisation (more details in Chapter 6) - a genetic
epidemiological method, which enables the use of genetic variants as
instrumental variables (IVs) to examine causation between an exposure and
outcome of interest. This chapter presents findings of a meta-genome-wide
association (GWA) study, which was performed across three large-scale UK

studies, in collaboration with a researcher from the University of Bristol.

5.2 AIMS AND OBECTIVES

The main aim of this chapter was to perform a large-scale meta-GWAS of self-reported

sleep duration.

The specific objectives were fourfold:



e Identify novel common genetic variants (SNPs) associated with self-
reported sleep duration by performing a meta-analysis of three large-scale
population-based studies.

e Replicate previously reported loci associated with sleep duration.

e Investigate whether any genome-wide suggestive SNPs were significant
expression quantitative trait loci (eQTL). An eQTL is a genomic locus that
explains a portion of the variance of a gene expression phenotype.

e Estimate the SNP heritability of sleep duration.

5.3 METHODS

For the work carried out in this chapter, I performed all of the data cleaning and
analyses, with the exception of the GWAS in ALSPAC, which was performed by
Dr Gibran Hemani (University of Bristol). I did not, however, carry out the initial

genotype QC or the imputation for any of the studies included in this meta-

GWAS.

5.3.1 Samples

Across the ALSPAC, ELSA and UKHLS samples, inclusion of participants in the GWAS
analyses was dependent on them having genotypic data, as well as self-reported sleep
duration (phenotypic) and all covariate data. Within ALSPAC, only genotyped and
phenotyped mothers were included. See Table 5.1 in the Results section for sample

characteristics.

5.3.2 Phenotype

For detailed descriptions of the sleep duration phenotype QC and preparation,
see Chapter 2. Data from ALSPAC mothers were analysed for this GWAS, with an
analytical sample of n=4,914; an analytical sample of 6,028 was used in the ELSA

and data from n=8,608 individuals from UKHLS were analysed in the GWAS.

5.3.3 Covariates
Association tests and genome-wide complex trait analyses (GCTA) were adjusted

for age, sex and the first 10 principal components (PCs) in ELSA and UKHLS.
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Age and sex were included as covariates to ensure that associations between
SNPs and sleep duration would not be due to variance explained by age and sex.
These covariates were included because, although genotypes are unconfounded
by factors such as age and sex, they were included in the genetic association
analyses to account for any additional variance, which will in turn, ensure that

the GWAS signals are less confounded.

The first 10 PCs were used as covariates to adjust for any residual population
structure during the association tests between SNPs and sleep duration, by
minimising the chances of detecting spurious associations that might be due to
genetic ancestry?®®. Principal component analysis (PCA) is the most commonly
implemented approach for identifying related individuals in genetic association
studies®®. A multivariate statistical approach, PCA produces uncorrelated
variables (principal components) from a data matrix that contains observations
from several supposedly correlated variables. PCs are calculated so that PC1
explains as much as possible variance in the data in a single component, which is
followed by PC2, etc. In its application to the detection of genetic ancestry,
observations are individuals and genetic markers are the potentially correlated
variables*®. These PCs are usually created for each sample, using genome-wide
genetic data from common reference panels, such as the HapMap or 1000
Genomes genotype data, for which ancestry is already known. These common
panels enable the detection of continental-level ancestry, as it contains genotype
data from Europe, Asia and Africa. Due to the fact that these ancestral groups are
very divergent, the first two PCs will sufficiently cluster individuals in these
populations. This model can also be applied to individuals in GWAS to predict
their PC scores and therefore, enable them to be clustered ancestrally, alongside

samples from the reference panel, such as HapMap or 1000 Genomes.

5.3.4 Statistical Analysis

Across all three studies the minor allele frequency (MAF) filter was set at 1% and
a threshold of P <5x10"® was used to identify SNPs reaching genome-wide
significance. This MAF threshold is used in GWAS to identify common genetic

variants associated with a trait of interest and >1% is recommended, as GWAS has
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low power to detect rare variants®7°. The significance threshold of P<sx10® has
become the most widely used in GWAS and applies a Bonferroni correction that
accounts for multiple testing in GWAS, under the assumption that there are a
million independent SNPs in the human genome*®. However, SNPs that were
associated with sleep duration at P <sx10°as ‘suggestive’ of significance in this

study.

Genomic inflation factor (Lambda genomic control= Agc) and quantile-quantile
(Q-Q) plots were used to examine whether there is inflation due to population

stratification.

The Q-Q plot ranks p-values for each genetic variant from smallest to largest and
plots these against expected values from a chi-squared distribution. Agc was
obtained for each study separately (see Appendix 8.1 for individual study Q-Q
plots) and for the meta-analysis, using LD score regression (described in more
detail below in section 5.3.4.4), implemented in LD Hub. Also, within each study,
phenotypic variance (in sleep duration) explained by single top SNPs was

calculated using the following formula, as previously reported by>7:

B 2B*MAF (1 — MAF)
= 202MAF(1 — MAF) + (se(B))22NMAF (1 — MAF)

2

Whereby, R? for a given SNP based on the effect estimate for its association with
self-reported sleep duration (beta or ), respective standard error (se($)), minor

allele frequency (MAF), and sample size (N).

5.3.4.1 ALSPAC association analysis

The GWAS analysis in ALSPAC was performed by a collaborator, Dr Gibran Hemani
(University of Bristol). Linear association tests were performed using the frequentist
method in SNPTEST between genotyped and imputed SNPs, and untransformed sleep
duration. Dr Hemani then sent the ALSPAC summary estimates. A Manhattan plot of

ALSPAC results is presented in Appendix 8.1.

5.3.4.2 ELSA and UKHLS association analyses
The analytical approach adopted in ELSA and UKHLS was identical: linear regressions
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(as sleep duration was measured in hours, as a continuous trait), which assumed
additive effects between (genotyped and imputed) SNPs and untransformed sleep
duration were implemented in the snpStats R package®7>. An additive model was chose
for this GWAS study because it is powered to detect additive and dominant effects, but
might be underpowered for the detection of recessive effects®. Individual Manhattan

plots from ELSA and UKHLS GWASs are presented in Appendix 8.1.

5.3.4.3 Meta-analysis of ALSPAC, ELSA and UKHLS

An inverse-variance fixed effects meta-analytical approach?” was adopted using
METAL?74, as the phenotype was very similar across the three studies (N=19,550) and
individuals were all of European ancestry. Underlying this model is the assumption that
studies included in the meta-analysis have a common genetic effect, thus any
differences in study findings are due to sampling variation. When performing the
analysis, this approach weights the effect sizes according to the inverse of their standard

errors. In total, 9,498,728 SNPs were included in the meta-analysis.

5.3.4.4 Genome-wide Complex Trait Analysis (GCTA) and LD Score

(LDSC) regression
The Genome-wide Complex Trait Analysis (GCTA) package® was used to perform
restricted maximum likelihood (REML) analysis to estimate the amount of phenotypic
variance (SNP heritability) in sleep duration explained by all the genotyped SNPs in
each study separately. Prior to running the REML analyses it was necessary to estimate
the genetic relationship matrix (GRM) between pairs of individuals. Power was
calculated using the online GCTA GREML Power calculator®7s for different heritability

estimates (Table 5.1).

LDSC regression is an alternative method, which uses GWAS summary statistics to
estimate the SNP heritability of complex traits®®. This method involves regressing
summary statistics from GWAS (from millions of SNPs) and measures to what extent
each SNP is able to tag other variants locally (or, its ‘LD score’). The slope of the LDSC
regression model can then be rescaled to provide a heritability estimate of a trait,
accounted for by all SNPs used in the estimation of the LD scores 28. LD Hub is a web

interface, which allows the uploading of summary statistics from association analyses
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(from each study separately, as well as results from the meta-analysis) in order to
automate the LD score regression analytical process°. SNP heritability of sleep duration
was estimated using this method in addition to GCTA for two reasons: 1) to compare the
results and 2) to calculate the heritability of sleep duration across all three studies using
the meta-analysis results.

Table 5.1 Power calculations for different heritability estimates of self-reported
sleep duration using GCTA GREML

Study Sample size Heritability estimate (h?) Power
20% 87%
ALSPAC 4,914 15% 64%
10% 34%
7%* 19%
20% 97%
ELSA 6,028 15% 82%
10%* 48%
7% 27%
20% 99%
UKHLS 8,608 15% 98%
10% 78%
7%* 48%

Note. *indicates actual h2 obtained from GCTA GREML analyses.

5.4 RESULTS

5.4.1 Main results

5.4.1.1 Sample characteristics

As per Table 5.2 below, the mean sleep duration across the samples included in
the current meta-GWAS (ALSPAC, ELSA and UKHLS) were largely comparable to
those included in the earlier CHARGE meta-GWAS.

153



Table 5.2 Characteristics of current GWAS samples vs. samples included in the
CHARGE sleep duration GWAS

Study N Mean age (SD) Sex, %Female Mean sleep duration,
hours (SD)
ALSPAC 4,914 39.4 100% 7.61 (0.95)
ELSA 6,028 67.09 (9.90) 54.66% 6.61 (2.41)
UKHLS 8,608 53.67 (16.15) 56.42% 6.61 (1.30)
Samples in the CHARGE GWAS
ARIC 3578 62.6 (5.6) 53.20% 7.4 (1.1)
CHS 1515 77.9 (4.6) 62.10% 7.3 (1.3)
FHS 7531 51.3 (13.2) 54.10% 7.9 (1.3)
HABC 1661 73.8 (2.8) 47.00% 7.0 (1.2)
HBCS 1175 69.0 (2.7) 60.70% 8.2 (1.1)
HPFS 3542 56.0 (8.7) 0.00% 7.2 (0.9)
InCHIANTI 1205 68.3 (15.5) 55.40% 6.8 (1.5)
MrOS 2354 76.7 (5.7) 0.00% 7.0 (1.2)
NHS 6638 54.4 (6.7) 100.00% 7.0 (0.9)
QFS 865 411 (15.4) 56.30% 7.7 (1.1)
QIMR 2286 34.5 (14.3) 74.20% 7.7 (1.0)
RSI 2834 76.1 (6.3) 59.50% 6.8 (1.3)
RS I 1425 68.9 (7.6) 57.60% 6.9 (1.3)
SHIP 2859 49-4 (16.5) 57.90% 7.5 (1.3)
SOF 3303 77.0 (5.1) 100.00% 7.0 (1.2)
TwinsUK 1531 53.1 (12.6) 86.10% 6.8 (0.8)
WiSC 850 55.7 (7.5) 45.60% 7.1 (0.9)
YFS 2028 37.7 (5.0) 54.90% 7.4 (0.8)

Note. Sample characteristics were not available in the UKB GWAS paper? and are
therefore not presented.

5.4.1.2 Main results

In the analyses, there appeared to be little evidence of population stratification, as
shown in the Q-Q plot in Figure 5.1 and the calculated Lambdas: Acc ALSPAC= 1.00, Acc
ELSA= 1.00, AccUKHLS= 1.00, Acc Meta-analysis= 1.02. In the case of these studies, the
Q-Q plot showed that the majority of the variants are distributed along the null line,

with 15 SNPs towards the top end at p<i07.

No novel or previously reported genome-wide significant SNPs associated with self-
reported sleep duration emerged in the meta-analysis, thus associations are presented
where p<5*107%, resulting in 34 ‘suggestive’ SNPs in Table 5.3. Of these loci presented in

Table 5.3, 25 are located on chromosome 19, 4 on chromosome 14, 2 on chromosome 12,
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and one each on chromosomes 3 and 5, respectively, which can also be seen in the
Manhattan plot in Figure 5.2. Taken together, these variants explained a modest
proportion of the phenotypic variance in self-reported sleep duration: ALSPAC= 3%,
ELSA = 3%, UKHLS= 4%. Therefore, in ALSPAC and ELSA the percentage of variance
explained by these SNPs was less than half the size of the SNP h? estimate of 7%, whilst
in UKHLS the variance explained by these 34 SNPs was slightly larger (4%), which was

expected due to the larger sample size.

The top SNP as presented in Table 5.3 was rs72781084 on chromosome 5
(p=8.49*107), an intron within the Polymerase (RNA) III (DNA Directed)
Polypeptide G (POLR3G) gene, which was associated with a 4-minute decrease in
sleep duration. In these data, this variant had minor allele frequencies of between
0.23 in ALSPAC and ELSA, and 0.24 in UKHLS, and explained 0.12%, 0.19% and
0.09% of the phenotypic variation in sleep duration in each study, respectively.
No variants within this gene have previously been associated with any sleep

phenotypes in a GWAS.

Twenty-four of the SNPs on chromosome 19 are intronic variants whilst rs855632 is an
exonic synonymous variant, within the Signal-induced proliferation-associated 1 like 3
(SIPAi1L3) gene. All of these SNPs have MAFs of between 0.42 and 0.45 across the three
studies. Using the SNP Annotation and Proxy Search tool (SNAP:

http://www.broadinstitute.org/mpg/snap/ldsearchpw.php) and applying a threshold of

R2=0.8, pairwise LD was obtained for these SNPs, the results of which are in Appendix
8.1and show that 19 of these variants are in high LD (R?= 0.93 - 1.00). The effect allele for
each of the 25 SNPs on chromosome 19 was associated with a 3-minute increase (17
SNPs) or decrease (8 SNPs) in sleep duration, effect sizes which are comparable to SNPs
significantly associated with this phenotype in recently published in large-scale

studies7478,

rs118167883 and rs117831282 on chromosome 12 are both intergenic variants, which are
not in LD. The former is located between the PDZ Domain Containing Ring Finger 4

(PDZRN4) and the Glucoside Xylosyltransferase 1 (GXYLT1) genes, whilst the latter is

between the Ethanolamine Kinase 1 (ETNK1) and Sex Determining Region Y - Box 5

(SOXs) genes. In these data, rs18167883 was associated with a 20-minute increase in
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sleep duration, whilst rs117831282 was associated with a 14-minute decrease in sleep
duration; however, the MAFs of these variants are low at 0.01 and 0.02, respectively.
These small MAFs indicate that, whilst such variants are considered to be ‘common’ and
appropriate for inclusion in genome-wide analyses, rs118167883 was only present in 195
individuals and rs117831282 in 391 individuals in this study and thus, their effect sizes
should be interpreted with caution. The potential implication of this is that these
particular analyses may not have been the most suitable for SNPs with low MAFs and
perhaps a more appropriate test would be one for analysis of rare variants. These SNPs
explained 0.15% and 0.17% of the phenotypic variance in sleep duration within ALSPAC,
0.12% and 0.1% in ELSA, and both explained only 0.08% in UKHLS.

On chromosome 3, it appeared that rs116728846, an intergenic variant located
between the Vent Homeobox Pseudogene 7 (VENTXP7) and the SGOL1 Antisense
RNA 1 (SGOL1-AS1) was associated with a 15-minute increase in sleep duration.
Similarly to the variants on chromosome 12 the minor allele frequencies for this
SNP were low: 0.01 in ALSPAC and UKHLS, and 0.02 in ELSA, and it only
explained between 0.01% and 0.12% of the phenotypic variance in sleep duration
in these samples. Thus, this effect size of 15 minutes should be interpreted
cautiously, as this SNP was only present in ~281 individuals out of the 19,500 in
the meta-GWAS (49 individuals in ALSPAC, 60 individuals in ELSA and 172
individuals in UKHLS).

Of the four SNPs on chromosome 14, 15138098759, 152749493 and rs1958962 were
associated with a 6-minute decrease in sleep duration per allele, whilst rs1953188
was associated with a 6-minute increase in sleep duration. Only rs1958962 and
151953188 are in high LD, R*>=1.00. These SNPs all have MAFs of 0.08 in these
samples, indicating that they are present in 1,564 individuals from the overall
meta-analytic sample, and explained between 0.08% and 0.16% of the variation in
sleep duration. All of these SNPs are intergenic variants located between the F-

Box Protein 33 (FBX033) and the (uncharacterised) LOC644919 RNA gene.

The meta-analysis also found an intergenic variant on chromosome 16,
1855950229 to be associated with a 4-minute decrease in sleep duration. This

SNP’s minor allele frequency is 0.20 in ALSPAC and ELSA, and o0.21 in UKHLS;
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and it explained between 0.05% and 0.23% of the phenotypic variance in sleep
duration. rs55950229 lies between the MicroRNA 4719 (MIR4719) and MON1
Secretory Trafficking Family Member B (MON1B) genes.

The Co-expression database (COXPRESdb)>7° was used to examine which genes
are co-expressed with the SIPA1L3 and POLR3G genes, which are presented in
two network diagrams in Appendix 8.1. There is an enrichment of genes in

adhesion processes and RNA modification.
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Table 5.3 34 ‘top’ SNPs associated with sleep duration in meta-analysis of ALSPAC,
ELSA and UKHLS (N=19,550) at suggestive p-value threshold of <5x10°

Meta-analysis

SNP Functional class  Gene/locus Chr  Position Ar* A2 Effect SE P-value
rs18167883 intergenic PDZRN4,GXYLT1 12 42149726 0.329 0.070 2.78E-06
15117831282 intergenic ETNK1,SOX5 12 23497814 -0.233 0.051 4.47E-06
15116728846 intergenic SGOL1- 3 21051974 0.249 0.055 6.41E-06
AS1,VENTXP7
15138098759 intergenic FBX033,LOC6449 14 40171948 A G -0.104 0.023 4.87E-06
19
52749493 intergenic FBX033,LO0C6449 14 40176497 A G -0.103 0.023 4.23E-06
19
151953188 intergenic FBX033,LOC6449 14 40187953 A G 0.104 0.023 6.60E-06
19
151958962 intergenic FBX033,LOC6449 14 40179804 T C -0.104 0.023 3.94E-06
19
1555950229 intergenic MIR4719, MON1B 16 76930106 T C -0.072 0.015 3.51E-06
1572781084 Intronic POLR3G 5 89789454 A G -0.072 0.015 8.49E-07
rs8112798 Intronic SIPA1L3 19 38661228 A G -0.055 0.012 4.95E-06
158109799 Intronic SIPA1L3 19 38661480 A G -0.054 0.012 5.09E-06
159941474 Intronic SIPA1L3 19 38658607 A G -0.054 0.012 3.73E-06
15332849 Intronic SIPA1L3 19 38620126 T C -0.054 0.012 9.57E-06
156508765 Intronic SIPA1L3 19 38644528 T C -0.054 0.012 6.05E-06
15855632 exonic SIPA1L3 19 38652993 T C -0.054 0.012 3.97E-06
(synonymous)
15332850 Intronic SIPA1L3 19 38629630 A T -0.053 0.012 8.63E-06
15332848 Intronic SIPA1L3 19 38630160 A G -0.053 0.012 8.46E-06
158101826 intronic SIPA1L3 19 38631193 T C 0.053 0.012 4.56E-06
15332851 intronic SIPA1L3 19 38634474 T C 0.053 0.012 7.48E-06
1s8100144 intronic SIPA1L3 19 38645276 T C 0.054 0.012 6.87E-06
r$2099340 intronic SIPA1L3 19 38647545 A G 0.054 0.012 6.69E-06
152384778 intronic SIPA1L3 19 38637945 T C 0.054 0.012 6.93E-06
158109695 intronic SIPA1L3 19 38637746 A G 0.054 0.012 4.05E-06
152569412 intronic SIPA1L3 19 38639903 T C 0.054 0.012 7.66E-06
15332864 intronic SIPA1L3 19 38642874 T C 0.054 0.012 6.39E-06
15332855 intronic SIPA1L3 19 38638176 A T 0.054 0.012 7.62E-06
154802251 intronic SIPA1L3 19 38643951 A G 0.055 0.012 6.27E-06
15332856 intronic SIPA1L3 19 38639940 A C 0.055 0.012 6.69E-06
15332858 intronic SIPA1L3 19 38641264 T C 0.055 0.012 6.61E-06
I'$2005055 intronic SIPA1L3 19 38642044 T C 0.055 0.012 6.58E-06
510404957 intronic SIPA1L3 19 38634020 T C 0.055 0.012 3.87E-06
rs8111180 intronic SIPA1L3 19 38627138 A G 0.055 0.012 4.62E-06
15332843 intronic SIPA1L3 19 38603259 C G 0.056 0.012 8.26E-06
15332844 intronic SIPA1L3 19 38601728 A G 0.056 0.012 9.41E-06

Note. *A1= effect allele, A2= alternative allele, SE= standard error, p-value=

association p-value.



Figure 5.1 Q-Q plot of p-values for meta-analysis of ALSPAC, ELSA and UKHLS
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Note. Q-Q plot depicts the observed -log,, p-values on the Y-axis and the

expected -log,, p-values on the X-axis.

Figure 5.2 Manhattan plot for meta-analysis of sleep duration in ALSPAC, ELSA

and UKHLS
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Note. Manhattan plot depicts -log,, p-values on the Y-axis, with the blue line set
at p<sxioand along the X-axis are chromosomes (1-22).
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Figure 5.3 Locus zoom plot of GWAS results
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5.4.2 Previously associated loci in CHARGE and UK Biobank: how are

they associated with sleep duration in the present GWAS?
As mentioned in the Introduction of this chapter, the most recently published GWAS in
127,573 UK Biobank participants?® was the first to replicate a signal (rs62158211) for self-
reported sleep duration. rs62158211 is in high LD with rs1823125 (R?=0.95) and rs1807282
(R*=1.00), which were previously reported in the CHARGE consortium GWAS74. An
intron within the PAXS8 gene, rs62158211 was present in the ELSA and UKHLS samples
and in the present meta-analysis a similar effect size was observed, albeit with a very
large standard error (UKBiobank effect =-2.34 minutes, SE=0.30 minutes vs. present
meta-analysis effect = -1.80 minutes, SE=1.14). Proxies for rs62158211 (rs1823125 and

rs1807282) were identified but were not present in the ALSPAC dataset.

Further, the two novel loci reported by Jones and colleagues?, rs17190618 and rs1380703
are both introns in the Vaccinia Related Kinase 2 (VRK2) gene and were associated with
a 2-minute decrease and a 1.5-minute increase in self-reported sleep duration,

respectively. In the current meta-analysis these SNPs were associated with a 2-minute
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decrease and a 1.4-minute increase in sleep duration, but not significantly (p=0.061 and

p=0.087, respectively).

Previously, Gottlieb et al., 201474 performed a genome-wide association analyses in
~47,000 individuals in the CHARGE consortium and found seven novel loci associated
with self-reported sleep duration, four of which are on chromosome 2 and 3 on
chromosome 6. In CHARGE, the four SNPs on chromosome 2, rs1191685, rs1823125,
rs1807282 and rs1964463 were all associated with a 3-minute increase in self-reported
sleep duration. The present meta-analysis found that rs1191685 was associated with a 2-
minute increase in sleep duration, whilst rs1823125, rs1807282 and rs1964463 were
associated with increases in sleep duration of 1.44, 2 and 1 minutes, respectively.
However, these combined effects were only for ELSA and UKHLS, as none of these SNPs
or any proxies in LD of R*>0.80 were present in ALSPAC, with the exception of
151964463, for which no proxies were available. Minor allele frequencies (MAFs) for
these variants were comparable between CHARGE and the present samples. As the
effect alleles for these three variants in CHARGE were the opposite allele to those in
these data the signs of the coefficients were changed here for the purposes of reporting

and comparing the results.

In addition, the three loci of interest on chromosome 6 (rs4587207, 1s4248149,
152394403) were looked up in this study and they were not present. The Single

Nucleotide Polymorphisms Annotator (SNiPA: http://snipa.helmholtz-

muenchen.de/snipa/index.php) was used to search for proxies for these variants.

The best proxy (with the highest r>= 1), which was in high LD with all three of
these SNPs was rs147772769 (Appendix 8.1). This variant was present in ALSPAC
and ELSA, but not in UKHLS. However, the effect of rs147772769 in these two
studies was in the same direction as in Gottlieb’s74 study: in ALSPAC this effect

was -0.02, in ELSA it was -0.001 and in the previous GWAS it was -0.05.

5.4.3 Do the ‘top’ (suggestive) 34 SNPs from the present meta-analysis
replicate in the latest UKB GWAS?
The summary statistics from the latest UKB GWAS by Jones and colleagues?®

were freely available alongside the publication and were therefore downloaded to
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look up the suggestive loci from the current meta-GWAS. However, none of these
SNPs were significantly associated with self-reported sleep duration in UKB at
either genome-wide or suggestive significance. The lowest p-value was 0.042 for
rs72781084, which had a directionally consistent effect in UKB in comparison to

the present study, -0.004 vs. -0.072, respectively.

5.4.4 Expression quantitative trait loci (eQTLs) associated with ‘top’ SNPs

The Genotype-Tissue Expression portal (http://www.GTEXportal.org) was used to

search for significant expression quantitative trait loci (eQTLs) in tissue for each of the
top SNPs. rs72781084, on chromosome 5, which was the most strongly associated SNP
with sleep duration, was significantly associated with expression levels in the following

tissues: colon, thyroid and adrenal gland.

Fourteen of the SNPs on chromosome 19 were significantly associated with expression
levels in the pancreas, whilst 2 variants were associated with expression levels in the

tibia nerve. No significant eQTLs for any of the other top SNPs were found.

5.4.5 SNP heritability in ALSPAC, ELSA and UKHLS

Restricted maximum likelihood (REML) analyses in GCTA showed that the SNP
heritability of self-reported sleep duration in these samples was low and not statistically
significant. This was further confirmed by estimating SNP heritability using LD score
regression (see Table 5.4) in each sample. However, the heritability estimate from LD
score across all three samples albeit low at 7%, was significant. The recent UK Biobank
GWAS found the SNP heritability of sleep duration to be 7% in a sample that was
approximately 10 times greater than the GWAS reported here. This is therefore,

consistent with what was found in the present study.
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Table 5.4 Heritability of self-reported sleep duration in ALSPAC, ELSA and UKHLS
samples

Method ALSPAC ELSA UKHLS All 3 studies
h? SE P- h? SE P- h? SE P- h? SE P-
value value value value
GCTA* 0.07 0.0564 017 0103 0.067 0.058 0.075 0108 0.238 N/A N/A  N/A
LD score 0188 o0.07 0.57 0.055 0.076 0.080 0.041 0.055 0.064 0.074 0.021 0.0005

Note. There are no GCTA estimates for h? in all 3 studies combined, as it requires
IPD.

5.5 DISCUSSION

5.5.1 Summary of findings

In a genome-wide meta-analysis of 19,550 individuals of European ancestry, no
novel genetic variants associated with self-reported sleep duration were found,
nor were any SNPs published in recent large-scale GWA studies of sleep
duration?4 replicated at genome-wide level. These analyses were relevant at the
time they were performed, as the UKB sleep duration GWAS7® had not been
published (date of publication: August, 2016) and one of the main aims of this
project was to carry out bidirectional Mendelian randomisation analyses in

Chapter 6.

An intron (rs72781084) in the POLR3G gene was the most strongly associated
SNP with a 4-minute decrease in sleep duration (p=8.49x107). This variant was
also found to be significantly associated with expression quantitative trait loci
(eQTLs) in the colon, the thyroid and the adrenal gland. A further 33 SNPs were
suggestively (p<5x10°) associated with sleep duration, albeit not at the genome-
wide significance level (p<5x108). Of these variants, twenty-five are introns in the
SIPA1L3 gene on chromosome 19; four are on chromosome 14, two on
chromosome 12, and one each on chromsomes 3, 5 and 16. Aside from the introns
in the SIPAi1L3 and POLR3G genes, the other SNPs found are all

intergenic. Significant associations with expression quantitative trait loci (eQTLs)
in the pancreas were found for twenty-two of the introns in the SIPA1L3 gene.
Most of the variants on chromosome 19 are in high linkage disequilibrium and

the lead SNP was identified as rs332858. Of the additional one-hundred and
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twenty genetic variants that were suggestively associated with sleep duration

(P<5x10©), there were another four intronic SNPs in the SIPA1L3 gene.

As mentioned above, rs72781084 is an intronic variant which was suggestively
associated with a decrease in sleep duration in the present GWAS, yet it has not
previously been associated with sleep duration. The POLR3G gene has not
previously been linked to any sleep phenotypes. The SIPA1L3 gene has not been
related to any aspects of sleep in the GWAS literature. Located on chromosome
12, rs118167883 is an intergenic variant between the PDZRN4 and GXYLT1 genes,
whilst rs117831282 is found between the ETNK1 and SOX5 genes, yet neither of
these SNPs has been associated with any sleep phenotypes. rs55950229 lies
between the MIR4719 (a microRNA gene) and MONiB (protein coding) genes on
chromosome 16. To date, this variant has not been associated with any sleep

phenotypes in GWAS.

It is important to note that it can be problematic to interpret GWAS results that
are below the significance threshold of p<5x10®. This may mean that SNPs
detected to be associated with sleep duration at this less stringent threshold are
more likely to be spurious signals and these usually require further validation. In
the present meta-GWAS this is a plausible explanation for the loci that were
suggestively associated with sleep duration, as upon closer inspection of these
signals, it emerged that none of them had been related to any sleep mechanisms

or pathways in the literature.
5.5.2 Significant eQTLs in the SIPA1L3 and POLR3G genes

Several genetic variants in the SIPAiL3 were significant eQTLs in the pancreas.
Evidence from a recent review of over one-hundred thousand individuals, suggests
that duration and quality of sleep are both significant predictors of type 2
diabetes'®7, a condition in which individuals build up insulin resistance, causing

the pancreas to work harder to produce higher than normal levels of insulin.



5.5.3 Heritability of self-reported sleep duration

Across the samples included in this study, self-reported sleep duration was only 7-
10% heritable, but these were not significant when using GCTA, which is likely due
to the limited power. Using the LD Score method heritability across all three
studies was still low at 7%, but was significant. However, twin studies have
previously reported that genetic factors explain between thirty to fifty per cent of
the variance in sleep duration®-7. One reason for this could be the fact that the
CTM assumes a lack of, or minimal gene*environment interactions and that
therefore, all genetic risk is additive, which can in turn, produce inflated
heritability estimates7. It is also possible that the CTM estimates include rare, as

well as common variants.

In a sample of approximately 120,000 individuals from the UK Biobank7® SNP
heritability of self-reported sleep duration was 7%, which accords with what was
found in the present study. However, this estimate reached statistical significance
in the UK Biobank, which is not surprising as their study had a much larger sample

size and thus, more power.

There are some key points to be noted in relation to the heritability of self-reported
sleep duration. Firstly, the present estimates accord with the very limited number
of genome-wide significant loci that have been found to date in GWAS. If genetic
factors only explain a very small proportion of the variation in a phenotype then it
is plausible that we fail to detect a large number of common variants associated
with this phenotype. Secondly, it is likely that the genetic component of self-
reported sleep duration is highly complex with potentially many variants of very
small effect sizes (polygenic trait) and that they may still not have been discovered
using GWAS. Thirdly, it is also possible that rare genetic variants account for a
proportion of the heritability of self-reported sleep duration and/or that there may
be epigenetic factors that play a role in sleep duration, but they have not yet been
described. Therefore, even though the present GWAS did not have substantial
power to detect SNP heritability using GCTA, the results of GCTA REML analyses

appear to suggest that the genetic component of this phenotype might not be
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accounted for by common variants of small effect size. Fourthly, finding that self-
reported sleep duration is not highly heritable does not rule out the fact that
objectively measured sleep duration, using methods such as actigraphy or
polysomnography, might yield higher estimates of SNP heritability, in comparison
to self-reported sleep duration. To date, research into the molecular genetics of
objective sleep measures remains limited. However, a candidate polymorphism
study found a significant association between a specific polymorphism (rs324981)
and objective sleep duration, as measured by actigraphy, in a sample of four-
hundred and thirty-six individuals over the age of sixty??8. In the present meta-
analysis this variant was associated with a -o.5-minute decrease in sleep duration,
although not at the GWAS significance level. Fifthly, the study reported here,
alongside other large-scale GWA studies of self-reported sleep duration to date,
have focused on examining heritability in individuals of Northern European
ancestry. Therefore, it cannot be assumed that in populations of different ancestry
heritability estimates of sleep measures are equal. For example, Americans of
African descent reportedly have shorter sleep durations compared to European
Americans®?9, and a recent review suggests that being of African American, or sub-

Saharan African descent may predispose to shorter sleep duration®°.
5.5.4 Issues with self-reported sleep duration as a phenotype

Self-reported sleep measures are widely used in observational and genetic
epidemiological research as they are inexpensive and easy to administer. Within
the context of GWAS, obtaining both objective sleep duration as well as genotype
data from large samples of participants remains on the whole, financially
unfeasible, and only one, small-scale GWAS of objective sleep measures has been
published, to date. Across the majority of studies, sleep duration is assessed by
asking respondents how many hours and/or minutes they sleep on an average
night, or they are asked to report the times that they go to bed and wake up, from
which sleep duration is estimated. The only GWAS of actigraphic sleep duration
to date found one novel SNP in the Zinc Finger MYM-Type Containing 4
(ZMYM4) gene*®. However, this study’s sample size was only 956 individuals,
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aged between 4o to 79 years and thus, requires stringent replication in future

studies.

5.5.5 Study strengths

This study possesses important strengths. The sleep duration phenotype definition
was almost identical across the three samples included in this meta-GWAS, whilst
for example, Gottlieb et al., 2014 28> meta-analysed data from eighteen studies that
did not ask about sleep duration in the same manner. The fact that it was possible
to meta-analyse data from three studies is also a strength; each study on its own
had extremely limited power, as single GWA studies only have the ability to detect
large effects 283. Also, genotypes were imputed to the same reference panel (1000

Genomes), and all of the same covariates were available across all three studies.

5.5.6 Study limitations

However, there are also methodological limitations concerning this GWAS. As
discussed earlier in more depth, the phenotype was self-reported across ALSPAC,
ELSA and UKHLS. Crucially, this study also had limited statistical power to both
detect novel, and replicate existing loci associated with self-reported sleep
duration, particularly as previous larger GWAS of 47,000*% and 127,573
individuals? have only detected a total of nine independent variants for sleep
duration. Thus, due to the lack of genome-wide significant hits further analyses
were limited, such as pathway analyses, gene enrichment analyses, genetic
correlations with other brain phenotypes of interest, amongst others.
Furthermore, given the markedly low and non-significant SNP heritability, a
polygenic risk score was not created, as this is commonly done when the variance
can be at least partially explained by genetic factors. Also, the only study in which
individuals were removed due to reporting the use of sleep medication was
ALSPAC, but exclusions based on taking sleep medication were not made in ELSA
or UKHLS. The ELSA participants also had a different age and sex distribution from
the other two studies, which makes the findings somewhat less representative of

the general population. Another limitation is the use of different cut-offs for sleep
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duration ALSPAC, as compared to ELSA and UKHLS, which introduced noise to
the phenotype.

5.5.7 Future directions

Future studies should aim to perform genome-wide analyses using objective sleep
duration in large samples. Furthermore, it is important to perform larger genetic
association studies to potentially identify common variants; novel and/or
previously-identified, associated with other self-reported sleep parameters. For
example, there have yet to emerge SNPs related to sleep quality, as measured by
validated self-report scales. This is particularly significant, as evidence suggests
that for example (and of interest to the wider research carried out in this thesis), it
is sleep quality, rather than sleep duration, that is linked to higher BMI and

increased risk of obesity'6%284,

Finally, a newer method for estimating SNP heritability has recently emerged?®s.
This technique is able to describe the variation of heritability, dependent on
genotype certainty, MAF and LD. The authors re-estimated the SNP heritability for
19 traits and observed that their method yielded estimates that were on average,
43% higher than GCTA. The application of this novel approach may be important
to confirm heritability estimates of self-reported sleep duration, as the present
study, as well as other published studies have shown that SNP heritability is

currently estimated to be approximately 7%.

5.6 CHAPTER SUMMARY

e A meta-GWAS of self-reported sleep duration was performed across three
population-based studies.

e No novel genome-wide significant loci associated with sleep duration
emerged.

e This GWAS did not replicate any previously reported sleep duration loci.

e SNP-based heritability of self-reported sleep duration was low in these

samples.
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Due to all of the above, the decision was made that it would not be
feasible to perform a Mendelian randomization study of sleep duration on
BMI, as one of the core assumptions was not met (lack of robustly
replicated SNPs associated with the exposure of interest, in this case

sleep).
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6 ISTHE ASSOCIATION BETWEEN BMI AND SELF-
REPORTED SLEEP DURATION CAUSAL? A
MENDELIAN RANDOMISATION STUDY

Results from analyses performed in this chapter contributed to the following
publication: Garfield, V., Fatemifar, G., Dale, C., Smart, M., Bao, Y., Llewellyn,
C., Steptoe, A., Zabaneh, D. & Kumari, M. Assessing Potential Shared Genetic
Aetiology between Body Mass Index (BMI) and Sleep Duration in 142,209

individuals. Resubmitted to Genetic Epidemiology.

6.1 BRIEFINTRODUCTION AND OVERVIEW OF CHAPTER
CONTENTS

In Chapter 3, observational regression analyses were performed to investigate the
nature of the direction of the relationship between BMI and self-reported sleep
duration in a community sample of older English adults. These findings
suggested that the direction was from BMI and WC to very small decreases in
sleep duration over a 4-year follow-up period: BMI [B = -0.42 minutes, (95% CI =
-0.013; -0.002), p = 0.013] and WC [B = -0.18 minutes, (95% CI = -0.005; -0.000), p
= 0.016], independently of several demographic, health behaviour and
problematic health covariates. Though, one crucial limitation of these analyses,
even when they are performed using prospective data, is their limited ability to
allow the inference of causation, due to confounding and possible reverse
causation (discussed in more detail in Chapter 1 and below). Also, despite the fact
that the effects observed between adiposity and changes in sleep duration in
ELSA (Chapter 3) were small, these analyses were performed only in an ageing
sample and thus, it is important to investigate causality using data from a sample

of a wider age range.

Mendelian Randomisation has been proposed as a method to address causality
using genetic markers as instruments. When these analyses were planned, there

had been no previous attempt to investigate the causal relationship between BMI
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and sleep duration. Then, the first MR of BMI and self-reported sleep duration
was published?, but the analyses presented in this chapter differ somewhat from

the previous study.

Briefly, in this chapter the causal relationship between BMI and self-reported
sleep duration was investigated, using genetic data. This chapter begins by asking
why we would want to use genetics to investigate causation, followed by an
overview of Mendelian randomisation and polygenic risk scoring (PRS) and the
aims of this chapter. Then, there is a detailed account of the methodologies and
statistical analyses used, followed by results, which are divided into observational
and genetic. Subsequently the main findings are discussed, in light of previous
evidence and cover relevant strengths and limitations. The chapter ends with a

summary of what has been presented.

6.2 MENDELIAN RANDOMISATION: A GENETIC TOOL FOR
ASSESSING CAUSALITY

Mendelian randomisation (MR) was proposed to investigate causation between
two traits, which have been consistently associated in the observational
epidemiological literature*8®. This method has been increasingly used in the last
decade with 1,060 publications indexed under ‘Mendelian randomization’ and 151
under ‘Mendelian randomisation’ in PubMed Central (as of October 2017). MR
has been called ‘nature’s randomised trial’®7, as it provides an alternative to the
RCT and enables researchers to exploit large-scale studies in which participants

have undergone detailed genotyping.

6.2.1 A brief overview of Mendelian randomisation (MR)

MR - the random assortment of genes, passed on from parents to offspring
during conception and gamete formation8® - exploits the unique properties of
genetic variants. What makes genetic variants unique is that they are unlikely to
be associated with common confounders and we have them from birth
throughout the life course®¢. Due to these properties, MR uses common genetic
variants (SNPs) from published GWAS as proxies for an exposure, to investigate

cause and effect between said exposure and an outcome of interest>%8. Through
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Mendel’s second law - the law of independent assortment - genotypes
transferred from parent to child are independent of one another, making MR
analogous to the randomized controlled trial (RCT), as one allele (out of a
possible two) is randomly allocated during meiosis and passed on during gamete
formation®8, This has been called ‘nature’s randomised trial’?7, as genotypes are
unlikely to be confounded in the same way that phenotypes are. For example,
BMI and sleep duration may be associated because they are both associated with
physical activity (PA). Therefore, it is possible to use genetic variants associated
with BMI, rather than BMI itself, to examine its association with sleep duration,
whilst removing PA (the confounder) from the equation. With the aid of MR in
the last decade, genetic epidemiology has contributed to furthering our
understanding of modifiable risk factors of disease, as evidenced by >1000
published MR studies, and can be seen in the directed acyclic graph (DAG) in
Figure 6.1.

Figure 6.1 Directed acyclic graph (DAG) of MR with BMI and sleep duration,

showing how all parts of the model are interlinked

U (unobserved confounders)

O 20 20
Z (BMI genetic instruments) X (BMID) ¥ (sleep duration)
Figure 6.1 illustrates how Mendelian randomisation enables analyses to
investigate causal association between BMI and sleep. In both cases, the genetic
instruments - SNPs - (Z) are specific to the exposure (X) and not associated with
confounders (U). This implies that any association observed between the genetic

score (Z) and the outcome (Y) is due to the exposure (X).

6.2.1.1 Principles of MR

Two core underlying principles are fundamental to the MR technique:
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I. Eliminating reverse causation and II. randomisation®%%289, These two principles
enable genetic epidemiology to go a step further than traditional observational

epidemiology.

[. Eliminating reverse causation

Longitudinal studies provide only a partial solution to the problem of reverse
causation - which implies that observational studies cannot confirm that the
outcome in fact precedes the exposure, rather than the other way around and
thus, the direction of association is unclear?9°29', However Mendelian
randomisation is able to overcome this hurdle by using genes as instrumental
variables. The observed association between a genetic variant and a phenotype is
a result of the specific effect of the said genetic variant. In line with the ‘Central
Dogma’ of molecular biology?9> - genomic DNA is transcribed to messenger
ribonucleic acid (mRNA) and then translated to a protein - the reverse

association (phenotype causes the genotype) is not possible.

II. Randomisation

A confounder is a third factor that is associated with both the exposure and
outcome of interest. Therefore the confounder (for example, depression may
confound the BMI-sleep duration relationship) exerts the actual effect on the
outcome, rather than the measured exposure*'. Through Mendel’s second law
(see above) it is possible to exploit the random assignment of genes in a bid to
reduce and potentially eliminate confounding. In this context, randomisation
serves to overcome the problem of confounding, in a similar way to the
randomised control trial (RCT) design, as genotypes are randomly distributed in
the population and theoretically, should only be associated with a specific trait
(although, in practice, the majority of complex traits in fact, follow a model of
polygenic inheritance). In practice, when examining genetic markers, association

analyses are performed to confirm that they are not associated with confounders.

6.2.1.2 Assumptions of MR
Three core assumptions underlie the Mendelian randomisation approach to

ensure a reliable causal association. First, there should be a sufficiently robust
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association between the specific genetic variant and the exposure of interest. To
investigate causality between BMI and sleep duration there should be robustly-
associated SNPs with BMI, which come from the most recent meta-GWAS of
BM1I293, Second, the chosen genetic variant should be unrelated to typical
confounding factors. Thus, in the case of BMI and sleep duration, this
assumption implies that the BMI SNPs are not associated with common
confounders of this association, such as PA. Third, there must be independence
between the genetic variant and the outcome, i.e. there must be no horizontal
pleiotropy®®. This means that the BMI genetic variants should not be directly

associated with sleep duration, but only indirectly (through the exposure: BMI).

Assumption I implies that the relationship between the genetic variant and the
exposure is reliable and can be quantified, but SNPs identified using GWAS
usually only explain a small proportion of the variance. This is evidenced by the
most recently published BMI meta-GWAS, in which 97 SNPs explain 2.7% of the
variance in BMI?93. However, published GWAS provide a basis for the selection of
genetic variants. This assumption is tested by ensuring that the SNPs for the
exposure of interest (in this case, BMI) are associated with the BMI phenotype in
the data under study. As described further down (Methods section) in the
present study a 2-sample summary-level MR was performed and thus, the effects
of the BMI SNPs on BMI were taken from the latest published GWAS’293 summary
statistics. As described below (6.2.1.3, under ‘Winners’ curse’), this was to ensure

that a true 2-sample approach was used.

For assumption II to be met there should be evidence, which suggests that the
genetic variant is not affected by the usual confounders that are known to
influence the exposure-disease association. This is tested by selecting common
confounders of the relationship under study (for example, in the case of BMI -
sleep duration it may be that physical activity is a confounder) and examining
whether the SNPs for the exposure (BMI) are associated with such confounders.
If they are then this constitutes a violation of this assumption. Importantly,

though, in the present study it was not possible to test this assumption, due to
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the use of summary-level data, which were used to ensure that the sample size

was large enough.

Assumption III is met if the genotype does not directly affect the outcome
(disease) of interest, nor should there be any mediating effect other than via the
exposure. This assumption refers to what is known as ‘horizontal pleiotropy’ and
can be tested and corrected for using different MR approaches, which are

discussed below in section 6.2.1.3 and then in more detail in the Methods section.

Related to the first assumption is an issue central to this doctoral research: a lack
of published GWAS studies that have identified and replicated genetic variants
associated with sleep duration. As mentioned above, investigation of the reverse
relationship (from BMI to sleep duration) is possible, as published GWAS have
now replicated and identified SNPs robustly associated with BMI®. However, the
sleep duration GWAS literature is limited, making it difficult to perform a
Mendelian randomisation to examine the causal association between sleep
duration/disturbance and BMI. This was the rationale for the meta-GWAS
performed in Chapter 5, but no previously-associated loci for self-reported sleep
duration were replicated, nor did any novel associations emerge. Thus, genetic
variants robustly associated with sleep duration have not been discovered, to
date, and therefore, the decision was made not to perform MR analyses to

investigate potential causality in the direction of sleep duration to BMI.
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Figure 6.2 Diagram illustrating violations of the assumptions described above

Physical activity

b@
D .
Z_(BMI_genetic_instruments) X (BMI) ¥ (sleep duration)

)

Figure 6.2 illustrates a violation of the core assumptions of MR. Firstly, the x
between the BMI SNPs and X (BMI) indicates that these SNPs are not in fact
associated with BMI (the exposure) and thus, a violation of this assumption.
Secondly, the arrow from the BMI SNPs to sleep duration (the outcome) and
thus, indicates that these variants are directly associated with sleep duration,
rather than via BMI. Thirdly, the arrow between the BMI genetic instruments and
physical activity depict another assumption violation, as these SNPs should not
be related to confounders of the BMI-sleep duration association. The arrow from
BMI to sleep duration is green because it indicates that it is the causal pathway

that is under study.

6.2.1.3 Potential problems when performing MR analyses

i. Pleiotropy - is when a single gene influences more than one trait, thus if a
genetic variant has a direct effect on the outcome it can invalidate the MR, as a
core assumption is violated. A valid instrumental variable (IV) is one that meets
the core MR assumptions: it is not associated with confounders of the exposure-
outcome association; it is associated with the exposure of interest; it is
independent of the outcome under study, conditional on the exposure and

unobserved confounders294.
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MR Egger94 - is a modification of Mendelian randomisation and was adapted
from meta-analysis. Its main aim is to detect horizontal pleiotropy between the
genetic instruments and the outcome, whilst retaining its ability to provide an
estimate of the underlying causal effect. Part of MR-Egger’s flexibility relates to
the fact that it is able to estimate the causal relationship between two traits of
interest, even in a scenario whereby 100% of the IVs under study are invalid (do
not meet all three of the required MR assumptions). MR-Egger can also provide
informative pleiotropy statistics, in the form of Cochran’s Q and Higgins’ I>. If the
value of I?is >75(%) then this indicates a cause for concern, as it implies that
there is a high level of heterogeneity in a study (pleiotropy, in this case).
Similarly, if the Cochran’s Q p-value is significant then this is also problematic

and provides confirmation of heterogeneity.

Weighted median9 - this is a further methodological development that can help
with the issue of with pleiotropy in MR studies. Bowden and colleagues>95
proposed that researchers now apply this as an additional MR sensitivity analysis,
alongside MR-Egger. This technique is as efficient as the inverse variance
weighted (IVW) method, yet it is flexible enough to allow the inclusion of up to
50% of IVs with invalid weights and provide a causal estimate in the presence of
balanced pleiotropy. IVW meta-analysis is used in MR to obtain an overall
estimate of the causal estimates (SNP-outcome / SNP-exposure) from each
individual SNP and is also known as ‘conventional MR’29¢. However, the
Weighted median approach is different from MR-Egger, as the former allows only
up to 50% IVs with invalid weights, whilst the latter allows all of the IVs
themselves to be invalid and can still estimate the causal effect of X on Y. More
details, including the mathematics behind the different methods (IVW, MR-

Egger and Weighted median) are explained below in the Methods section.

ii. Linkage disequilibrium (LD) - defined as the non-random association between
alleles at distinct loci across the population®9”. If the genetic variant is in LD with
another variant associated with the outcome of interest the IV regression may
produce a confounded estimate of the causal relationship between the exposure

and outcome. This is because, for example, if a chosen genetic variant (SNP,) is in
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LD with another genetic variant (SNP,) then it is possible that SNP, has a direct
or indirect effect on the outcome98. Another possibility is that SNP, exerts an

influence on a confounder of the exposure-outcome association98,

iii. Population stratification - within a given population individuals’ ancestry is
usually genetically heterogenous99. The relevance to MR is that population
stratification might lead to confounded results, which is especially possible in a
case where the genetic variant (IV)-modifiable risk factor association was
collected in a sample population that is different from the genetic variant-
outcome association3°°. This is because population subgroups might have
different rates of disease and different allele frequencies and thus this can
produce spurious (confounded) associations between a genotype and

disease/trait in the entire population3°°.

iv. Winner’s curse - this refers to a situation whereby several of the genetic
variants’ true effect sizes (for the exposure) are similar, the one with the strongest
association in the dataset under analysis may be overestimated3°.. This is likely to
occur if the SNPs for the exposure were discovered in the data under study3°.
Two-sample MR is an approach in which the associations between genetic
variants (IVs) and the exposure and outcome of interest come from two separate
non-overlapping data sources. As such, two-sample MR reduces potential
‘winner’s curse’ that can underestimate a true causal effect in one-sample MR and
it also diminishes weak instrument bias3°2. This method is described in more

detail below in the Methods section.

v. Dynastic effects — where the offspring’s outcome phenotype is also influenced
by the parental exposure caused by the parent’s genotype and may thus, affect
the magnitude of the causal estimate3°. The effect may be inflated, as the child
might have greater exposure, or it may be smaller if the parental genotype creates
a hostile environment in utero, from which the foetus then develops to protect

against3.

vi. Canalisation - a compensatory mechanism for disruptive environmental or

genetic factors3°4. This may occur for certain risk factors, whereby an individual
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develops such compensatory mechanisms as a response to higher or lower levels

of a specific risk factor3°# (for example, increased or reduced BMI).

6.2.2 The Polygenic Risk Score (PRS)

The use of polygenic risk scores (PRS) is now a widely-used approach to
aggregate data from GWAS, as a lot of complex traits appear to be polygenic.
They are used to predict an individual’s genetic predisposition to a particular
trait, as well as to uncover potential genetic overlap between two traits3°s. PRS
analyses can now be performed using either individual-participant data (IPD) or

summary-level data, due to recent advances in bioinformatics techniques.

Until recent years, a PRS tended to include only SNPs that had been identified as
GWAS significant (P<5x10®) in a large-scale study and would then use their effect
sizes as external weights when creating a PRS. However, effects have been
observed between a PRS with an inclusion threshold as high as P<o.5 and thus
this approach is now also widely used3°¢. In PRS analyses, the aim is to examine
whether two traits of interest possess underlying shared genetic factors. It differs
from a genetic correlation (rg) analysis, as this includes all genotyped SNPs on a
particular genotyping array or all SNPs from GWAS results. A PRS analysis,
however, aims to investigate whether traits X and Y share underlying common

genetic variants, using a high-resolution best-fit approach3°’.

6.3 AIMS OF THIS CHAPTER

The aims of the research carried out in this chapter were fourfold:

e Perform cross-sectional, observational analyses to examine the association
between BMI and self-reported sleep duration in two UK population
studies.

e Perform 2-sample Mendelian randomisation analyses in a large sample of
UK adults, exploiting both individual participant data (IPD) and
summary-level data from published GWAS.
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e Examine potential horizontal pleiotropy between BMI and sleep duration,
using multiple methods, such as MR-Egger regression and a weighted
median.

e If substantial horizontal pleiotropy is detected using the methods
mentioned in iii) then perform additional analyses to investigate this

relationship, by means of polygenic risk scoring.

6.4 METHODS

For the work carried out in this chapter, I designed the study, performed all of
the phenotypic data cleaning and all observational and genetic analyses in ELSA
and UKHLS. However, as the UKB data used were only summary-level data, I was
not involved in any phenotype or genotype cleaning or any other individual-level

data handling of this sample.

6.4.1 Samples

This study included summary-level data from 127,573 UK Biobank participants, as
well as IPD from 2 population studies. For observational purposes, data were
analysed from 5,296 individuals from the English Longitudinal Study of Ageing
(ELSA) and 6,811 participants from the UK Household Longitudinal Study
(UKHLS) (see Table 6.1). For genetic analyses, data were used from individuals
included in the ELSA and UKHLS sleep duration GWAS analyses from Chapter 5,
which were 6,028 and 8,608, respectively. The reason for this was that for
observational analyses the sample sizes were slightly reduced, data were required
from participants who had data on BMI, sleep duration, covariates and genotype
data (see Table 6.1). These inclusion criteria were so that in ELSA and UKHLS, both

observational and genetic analyses were performed on the same individuals.
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Table 6.1 Details of samples included in this study, with respective n for different

analyses
Study Type of data GWAS N* Observational analysis
n**
ELSA IPD 6,028 5,296
UKHLS IPD 8,608 6,811
UKB Summary*** 127,573 N/A

Note. *Individuals GWAS of sleep duration, due to available genotype, sleep

duration phenotype and covariate data; **summary statistics from sleep duration

GWAS by Jones et al”® downloaded from: http://www.t2diabetesgenes.org/data/;
***individuals included in the observational analysis of BMI and sleep duration,
due to availability of BMI and sleep duration phenotypic data, as well as genetic

data.

6.4.2 Exposure and outcome

The main exposure was researcher-measured BMI (kg/m?) (in ELSA, UKHLS and
UKB) and the single outcome was self-reported sleep duration. ELSA respondents
were asked: ‘How many hours of sleep do you have on an average week night?’.
UKHLS participants were asked: ‘How many hours of actual sleep did you usually
get at night during the last month? This may be different than the actual number
of hours you spent in bed.” More details on the sleep duration measures are in
Chapter 2. Briefly, in for the UKB sleep duration (from which GWAS summary
statistics were used here) was ascertained by asking participants for the average
number of hours that they slept in a 24-hour period. More details of the

phenotype derivation for Jones et al.’s sleep duration GWAS are in Chapter 2.

6.4.3 Genotyping
Full genotyping details for ELSA and UKHLS are in Chapter 2. Studies were

genotyped using a genome-wide, Metabochip or Exome array (see Chapter 2).

6.4.4 Statistical analyses
Analyses were performed using a combination of R, version 3.3.2, PRSice, version

1.253°7 and PLINK, version 1.9 (www.cog-genomics.org/plink/1.9)3°8.
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6.4.4.1 Observational analyses

Firstly, in studies for which IPD (ELSA and UKHLS) were available, observational
analyses were performed using linear regressions, with adjustments for age and
sex. This was because the inclusion of multiple covariates can prove difficult in
this type of observational analysis, as studies often measure demographic and
lifestyle factors in different ways, and in an MR study it is more important to
combine datasets to increase power. These results were subsequently combined
in a fixed-effects meta-analysis to obtain an overall observational estimate across
studies. Heterogeneity between studies was assessed by means of Cochran’s Q

and I2.

6.4.4.2 Genetic analyses

Selection of BMI SNPs and genetic instrument creation: g7 SNPs were selected
from the published GIANT consortium GWAS (Appendix 8.3) which included up
to 339,224 participants from 125 independent studies®. Where the target SNP was
not available in IPD data, proxy SNPs in linkage disequilibrium (LD) with the
target SNP were analysed, using a threshold of R*>0.8 (Appendix 8.3).

Proxies were found using two online tools: SNP Annotation and Proxy Search
(SNAP)3°9, and Single Nucleotide Polymorphisms Annotator (SNiPA)3°. SNPs
that did not contribute to the genetic instrument are in Table 6.2 below, along

with the reason why.

Table 6.2 BMI SNPs not included in MR study

SNP Reason not included

IS11057405 No proxy available in UKHLS

510733682 UKHLS does not have this SNP or a proxy for it
rs11727676 ELSA does not have this SNP or a proxy for it
1512016871 UKHLS does not have this SNP or a proxy for it
rS13107325 ELSA does not have this SNP or a proxy for it
1s13191362 UKHLS does not have this SNP or a proxy for it
1517001654 UK-Biobank does not have this SNP or a proxy for it
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152075650 UK-Biobank does not have this SNP or a proxy for it

rs2080454 UKHLS does not have this SNP or a proxy for it

6.4.4.2.1 2-Sample MR analyses

6.4.4.2.1.1Associations between BMI SNPs and BMI (SNP-exposure
association)
Results were extracted for the association between g7 BMI SNPs and BMI (for
both men and women) from the GIANT GWAS paper°. Linear regressions were
also performed between each BMI SNP and BMI in the whole sample (n=142,209)
and subsequently combined in a fixed-effects meta-analysis to obtain one
estimate, the results of which are in Appendix 8.3. The percentage of variance
explained in BMI by the BMI genetic instruments was obtained by performing a
multivariable linear regression between the BMI SNPs and BMI and taking the R>
value. I>and a p-value for Cochran’s Q test were obtained to quantify the amount

of heterogeneity of these associations between the studies (Appendix 8.3).

6.4.4.2.1.2 Associations between BMI SNPs and sleep duration (SNP -
outcome association)

Using an additive model, linear regressions were performed between each

individual SNP, and sleep duration in ELSA and UKHLS. To examine this

association in UK Biobank summary statistics were downloaded from the latest

sleep duration GWAS? and the results extracted for up to 97 BMI SNPs.

Subsequently, the results from the 3 studies were combined in a fixed-effects
meta-analysis to obtain one estimate for each of the SNPs, for which I? and
Cochran’s Q were also obtained to quantify heterogeneity between studies
(Appendix 8.3). In IPD the proportion of variance in sleep duration explained by
the BMI genetic instruments was obtained by entering all of the SNPs into a
multivariable linear regression with sleep duration as the outcome and

multiplying the R by 100.
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6.4.4.2.1.3 Instrumental variable (IV) analyses

Three types of analysis were implemented to estimate the potential causal
association of BMI on sleep duration in this study: Inverse-variance weighted
(IVW) method, MR-Egger method and the weighted median, as detailed below.
These analyses were performed in STATA version 14 using the mrrobust package

(https://github.com/remlapmot/mrrobust). The final genetic instrument

comprised 88 BMI SNPs, thus g variants were excluded for various reasons, which

are detailed in Table 6.2 above.

[. Inverse-variance weighted (IVW) analysis
IVW is analogous to 2-stage least squares (2SLS). MR using IPD data, which
was until recently, the most commonly employed MR. 2SLS estimates the
causal effect (f;) of the exposure on the outcome with the following

equation:
Y=a+ X+ ¢

where a intercept term and ¢ the associated error term from the second
stage regression. X represents the predicted value of the exposure (BMI)

calculated in the first stage, as a result of X on a weighted gene score Z3".

However, the IVW method was used here to calculate a combined estimate
of the causal relationship between BMI and sleep duration for each variant:
SNP - sleep duration / SNP - BMI. IVW performs a weighted linear
regression of the genetic associations with the outcome (BMI SNPs - sleep
duration) on the associations between the genetic variants and the exposure

(BMI SNPs = BMI) [a;jz], under a fixed-effects meta-analysis. The intercept

is constrained to equal zero in this model and it is assumed that all genetic
variants are valid IVs and that they are not in LD (uncorrelated). Therefore,

the causal estimate under an IVW model is calculated as:

A Z} ﬁY] ﬁXjZO-}rjz

wvw = P _
2] ﬁXjZ O-sz
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where ,@xj is the coefficient from the regression of the exposure (BMI) on
genetic variant j, ,[?yj represents the coefficient from the regression of the

outcome (sleep duration) on genetic variant 32, alongside the respective

standard error term, Oy;-

II. MR-Egger analysis
MR-Egger was performed as a sensitivity analysis to account for potential
horizontal pleiotropy, as it is still able to provide a valid causal estimate®. As
per Burgess & Bowden3", the IVW causal estimate described above, can also

be calculated using an identical weighted linear regression ([?yj on BX]-)’ but
without an intercept term and instead uses the ay_jz term as weights. In this

scenario, in which the intercept is not forced to be zero, an MR-Egger
regression is performed, in which a causal estimate () is obtained using

the following equation:
ﬁyj = @ + fp BX]-
where, as per the IVW equation described above, ,@yj represents the

coefficient from the regression of sleep duration on variant j and ,[;’Xj is the

coefficient from regressing BMI on variant j, with a respective standard error

term oy ;. However, the new terms introduced in the MR-Egger equation are

interpreted as: @y, is the intercept term, which denotes average horizontal
pleiotropy across all SNPs and its respective P-value indicates whether this
form of pleiotropy exists in the causal relationship of exposure (BMI) and
outcome (sleep duration). Under the null hypothesis &z = 0, but if this is
not the case then it means that there is some degree of horizontal
pleiotropy. If the accompanying P-value for the MR-Egger intercept is small
(<0.05) the implication is that horizontal pleiotropy is present, and that
caution should be taken when drawing causal conclusions of the association
under study. MR-Egger also makes an additional assumption, which is that
associations between SNPs and the exposure (BMI SNPs - BMI), indicative

of the strength of the instruments (BMI SNPs) are independent of the direct
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associations between the SNPs and the outcome (BMI SNPs = sleep
duration). This is referred to as the Instrument Strength Independent of
Direct Effect (InSIDE) assumption95, under which it is assumed that
stronger SNPs have more reliable estimates of the causal relationship,
compared to weaker SNPs. As mentioned above, the average pleiotropic
effect of SNPs is then accounted for via the Egger intercept term and any
dose-response relationship in the SNP associations is evidential of a causal

effect.

III. Weighted median analysis
The Weighted median estimator was also implemented in this study. The
weighted median approach first estimates the causal effect § of each SNP j via

the ratio method (8; = fy,/Bx,). Weights are obtained by using the inverse
variance of these ratio estimates, w; = [?Xja;jz, where then s; = Z£—1 Wy
represents the sum s; (= 1) of the standardised weights w; up to and
including the weight of the jth ordered ratio estimate. If k represents the
largest integer, whereby s; up to and including the kth (s, = X< w;)
estimate is <0.5, a causal effect f,), of the association between BMI and
sleep duration will be interpolated between the kth and (k + 1) ratio
estimates, as per the following equation:

~ A A ~ 0.5 — Sk
Bwm = B + (Beer — Bi) x P

k+1 = Sk
The main strength of the Weighted median is the ability to provide a valid
causal estimate when up to 50% of the SNP weights under analysis are
invalid®® and it is more robust than MR-Egger2%. This is because MR-Egger
has been shown to produce considerably less precise estimates (with very

large standard errors) and has substantially reduced power to detect a

causal effect?95.

Importantly, the mrrobust package also outputs pleiotropy statistics for
each method (IVW, MR-Egger and Weighted median), which are

interpreted alongside the main results from each approach. These statistics
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include an I?and a Cochran’s Q test p-value for heterogeneity. The higher
the 12, the greater the degree of heterogeneity, whilst the Cochran’s Q test p-

value should be not significant (>0.05) if there is no heterogeneity.

6.4.4.2.2 Further follow-up genetic analyses: polygenic risk scoring and

genetic correlation

Genetic correlation (rg) of BMI and sleep duration

To estimate the rg between BMI and sleep duration LD Score regression® was
used, implemented in LD Hub?°, using summary statistics from GWA analyses of
sleep duration in ELSA, UKHLS and UKB, to examine the underlying genetic
correlation (rg) of BMI with sleep duration in the whole sample. A genetic
correlation (rg) is the extent to which SNPs that contribute to variation in one
trait (in this case, BMI) also contribute to variation in a second trait (here, self-
reported sleep duration). An rgis interpreted similarly to a Pearson’s correlation,
as it ranges from 1 to -1, with values that are closer to 1 indicating that there is
potentially a high proportion of overlap between two traits, whilst values closer
to zero mean that the traits are unlikely to have a large amount of shared genetic

aetiology.

Briefly, LDSC regression involves regressing summary statistics from GWAS
(from millions of SNPs) and measures to what extent each SNP is able to tag
other variants locally (or, its ‘LD score’). The slope of the LDSC regression model
can then be rescaled to provide a heritability estimate of a trait, accounted for by
all SNPs used in the estimation of the LD scores?®. LD Hub is a web tool where
researchers can upload their GWAS summary statistics and obtain LDSC
heritability estimates, as well genetic correlations between their trait and dozens

of other traits of interest.

Polygenic risk scores (PRSs) of BMI and associations with sleep duration
A PRS can be used to infer whether two traits possess shared underlying genetic
factors and therefore, in the present study, whether the same genetic variants
might influence BMI and self-reported sleep duration. To ensure that the most

high-resolution PRS is produced, it is important to use a range of different p-
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value cut-offs, rather than merely GWAS significance (p<5x10%). The aim of these
PRS analyses was to find the best-fit model, or the highest possible proportion of
variance in sleep duration, explained by BMI SNPs. This was achieved by not only
selecting SNPs at the very stringent GWAS significance (p<5x10®), but by using a
range of p-value thresholds (Table 6.4).

Sleep duration GWA analyses in ELSA and UKHLS were adjusted for the first 10
principal components to account for population stratification, as well as age and
sex (Chapter 5). The UKB sleep duration GWAS was adjusted for age, sex and
study centre and these authors used linear mixed modelling in BOLT-LMM?,
which is able to take into account potential relatedness between individuals, as
part of the analysis. Then summary statistics were downloaded from the most
recent large-scale consortium meta-GWAS of BMI'S from up to 339,224

individuals and the B coefficients were used as external weights in the PRSs.

PRSice3°7 software is implemented in R and also exploits specific PLINK (version
1.9) functions, as well as the summary-statistic function from the Genetics
ToolboX33 (gtx) R package. A total of 9 PRSs were created at p-value thresholds
of 1.0, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01 and 0.001 (Table 6.2). At each threshold SNPs
were clumped by LD using a cut-off of r*=0.1 and a window of 250kb, to ensure
that only independent SNPs were included, as recommended by the creators of

PRSice3°7,

6.4.4.3 Power calculation
Using the online MR power calculation tool:

http://cnsgenomics.com/shiny/mRnd/3' power to detect causal estimates was

calculated, given a sample size of 142,209, the proportion of variance in the
exposure (BMI) explained by the genetic instruments (R), Byx for the true
underlying causal association (unstandardised coefficient (B) =0.84, taken from
Jones et al.’s?”® IVW causal estimate of BMI on sleep duration and multiplied by
60 to convert it to minutes), Bors for the observational association of BMI and
sleep duration, variance of the exposure (BMI SD? = 25.81) and variance of the

outcome (sleep duration SD= 1.64). The estimates for the observational
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relationship, as well as SDs to calculate variance of the exposure and outcome,
were taken from pooled ELSA and UKHLS results (Table 6.1). The power
calculation indicated that with a sample size of 142,209 yielded 100% power to
detect a potential causal association of p=0.847%, between BMI and sleep duration,

assuming a type-1 error rate of 0.05.

6.5 RESULTS

6.5.1 Sample characteristics
Table 6.3 shows sample characteristics for individuals from ELSA and UKHLS
included in the observational analyses. Mean sleep duration and BMI was similar

across both studies, with the highest mean BMI observed in ELSA.

Table 6.3 Participant characteristics for IPD studies (N=12,107)

Study Mean sleep duration* (SD) Mean BMI** (SD) Mean age (SD)

ELSA 6.86 (1.27) 28.14 (5.11) 66.7 (9.16)
UKHLS 6.63 (1.29) 28.01 (5.05) 52.76 (15.98)
Both studies 6.74 (1.28) 28.07 (5.08) 59.73 (12.57)

Note. *Hours, **kg/m?

6.5.2 Cross-sectional, observational results

The observational estimates presented in Figure 6.3 are adjusted for age and sex
and depict a negative, cross-sectional association between BMI and self-reported
sleep duration, such that for every SD increase in BMI (kg/m?) there is a mean
sleep duration difference of 5 and 6 minutes in ELSA and UKHLS, respectively.
The overall estimate showed that for every SD increase in BMI (5.08 kg/m?) there
was a mean difference in sleep duration of 5.86 minutes. Cochran’s Q and

I2 revealed that there were no issues with heterogeneity between the 2 studies
(Cochrans’s Q p-value=0.70, I>=0). At first glance the ELSA cross-sectional
finding appears to be completely inconsistent with the cross-sectional BMI-sleep
duration result found in Chapter 3. However, the observational cross-sectional
model tested here (Chapter 6) differed from that of the minimally-adjusted

model in Chapter 3 and importantly, although the sample sizes were similar, this
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was not a 100% overlapping sample. In a sensitivity analysis, an identical
regression model to the present one (with standardised BMI as the exposure and
sleep duration as the outcome and adjusted for age and sex only) was performed
in the ELSA sample from Chapter 3 (n=5,015). The results of this model were B= -
3.72 minutes, 95%CI= -0.10; 0.03, p=0.001, an inconsistency (of approximately 1
minute difference in effect sizes) which seemed plausible, given that the samples
did not consist of exactly the same individuals.

Figure 6.3 Observational association between (standardised) BMI and sleep
duration in IPD studies (N=12,107)

Study Beta [95% CI]
ELSA «— 537 [.7.45, -3.29]
UKHLS ] £.24[-8.08, -4.40]
FE Model e 586 [-7.24, -4.48]
[ I |
7 0 7

Sleep Duration (mins)

6.5.3 Genetic results

6.5.3.1 Results of 2-sample MR

The percentage of variance in BMI explained by the BMI SNPs was 1.15% (93 SNPs
out of 97) in ELSA and 1.8% (86 SNPs out of 97) in UKHLS. Figure 6.4 presents
the causal association between BMI (kg/m?) and sleep duration (minutes), as a

result of VW, MR-Egger and weighted median analyses.

6.5.3.1.1 MR assumptions
Assumption I - BMI SNPs should be robustly associated with BM1
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It was ensured that this assumption was met by using summary statistics from
the latest GIANT BMI GWAS to extract associations between the genome-wide
BMI SNPs and BMI. This approach was taken because a 2-sample MR was

implemented in this study.

Assumption II - BMI SNPs should not be associated with common confounders of
the BMI 2 sleep duration relationship

As mentioned earlier in this chapter, it was not possible to test this assumption
here, as this was a 2-sample summary-level MR study. This was because the
majority of the data were contributed by summary statistics from the latest UKB

sleep duration GWAS.

Assumption III - BMI SNPs should not be directly associated with sleep duration,
but should only be associated with sleep duration via BMI

This assumption was tested by implementing three MR methods in total, namely
IVW, MR-Egger and a weighted median. The IVW is the most ‘conventional MR’
approach, whilst MR-Egger and the weighted median are commonly-used
sensitivity analyses that are able to (in different ways) correct for horizontal

pleiotropy. This is described in more detail below.

6.5.3.1.2 Main MR results

Inverse-variance weighted (IVW) approach

The IVW yielded a result that was consistent with a causal effect of BMI on sleep
duration, such that for every additional kg/m?sleep duration decreased by 3.23
minutes (Figure 6.4). However, the 1> heterogeneity statistic for the IVW =100%
and the Cochran’s Q test p-value was <0.001, which indicated the presence of

substantial balanced pleiotropy.
Weighted median approach

The weighted median estimate was smaller (by approximately 1 minute) than the

IVW, at a decrease in sleep duration of 2.03 minutes per additional kg/m?of BMI
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and was also consistent with a significant causal effect of BMI on sleep duration

(Figure 6.4).
MR-Egger approach

MR-Egger suggested there was substantial directional pleiotropy (I>>70% and
Cochran’s Q test p-values <o0.001), thus violating one of the core underlying
instrumental variable assumptions. The MR-Egger intercept p-value also
confirmed this (p=0.06, which is close to the threshold of 0.05) and the causal
estimate yielded by MR-Egger was positive, whereas the weighted median and
IVW estimates were negative, which is consistent with the observational results
(Figure 6.4).

Figure 6.4 Causal association between BMI and sleep duration using IVW, MR-
Egger and Weighted median analyses in IPD + summary-level data

Approach Beta [95% CI]
VW I—-—| -3.23[-5.90, -0.56]
MR-Egger I . | 227 [-4.06, 8.60]

Weighted_Median N 203[-2.28, -1.78]

| | | | |
9 45 0 45

Sleep Duration (mins)

o

Note. Datasets include ELSA (n=6,028), UKHLS (n=8,608) (IPD) and UKB
(summary-level data) (127,573).

Additional graphical sensitivity checks

To further examine the results of the three MR approaches, the plots below were
created. Figure 6.4 presents a scatter plot of the BMI instruments - exposure

(BMI) association and the BMI instruments - outcome (sleep duration)
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association. As such, the MR-Egger, IVW and weighted median slopes are
interpreted as the unit change in the outcome (hours of sleep duration) for every
unit increase in the exposure (BMI) due to the BMI genetic variants. In this plot
each BMI genetic variant is a data point and it shows that multiple variants
violate MR assumption III and are therefore, subject to horizontal pleiotropy,
which is also confirmed because the MR-Egger (solid line) intercept only just
passes through zero. Also, in line with the description of results earlier, the MR-

Egger slope is positive, whilst the [IVW and weighted median slopes are negative.

Figure 6.5 Associations between BMI SNPs and BMI (X) and sleep duration (Y)

Instrument-outcome associations

T T T T T T

0 .02 .04 .06 .08 A
Instrument-exposure associations

Note. The main line represents the MR-Egger result and the other lines are the

IVW (long dash) and the weighted median (short dash).

Figure 6.5 presents a funnel plot of the VW and MR-Egger causal estimates and
similarly to the scatter plot above, each data point is a BMI genetic variant. The
x-axis represents the estimate of the gene-outcome association divided by the
estimate of the gene-exposure association (Wald ratio). The funnel plot is
asymmetric, which is confirmatory of the fact that multiple BMI genetic variants
have remarkably strong effects on sleep duration given that their precision is low.
Also, as per the results description and the scatter plot above, the MR-Egger and
IVW estimates are on opposing sides of zero and are thus, inconsistent with one

another.
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Figure 6.6 Funnel plot of MR-Egger and IVW causal estimates against the precision

of each of these estimates
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Note. Line with longer dashes = MR-Egger, line with shorter dashes = [IVW.

6.5.3.2 Results of polygenic risk score (PRS) and genetic correlation (rG)

analyses

6.5.3.2.1 Genetic correlation (rG) of BMI and sleep duration

To estimate the rG between BMI and sleep duration LDSC'7 was used,
implemented in LD Hub??, by using summary statistics from GWA analyses of
sleep duration in ELSA, UKHLS and UKB. The rG between BMI and sleep

duration was was -0.067, p=0.09.

6.5.3.2.2 Polygenic risk scores (PRSs) of BMI and associations with sleep
duration

Of the 9 PRSs, a PRS of BMI at a p-value inclusion threshold of 0.01 explained the

highest proportion of the variance in sleep duration (0.02%). This PRS was

negatively associated with sleep duration (B=-1.75, p= 6.13x107) (Table 6.4).
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Table 6.4 PRS analyses of BMI & sleep duration in 142,209 individuals after

clumping SNPs by LD*
P-val. threshold No. SNPs in model Coeff. P-val. (Pseudo) R* N
(SE)
1.0 54,505 -0.62 0.0003 6.06x107 142,209
(0.18)
0.5 36,688 -0.64 0.0003  6.94x107 142,209
(0.18)
0.4 31,254 -0.59 0.0008  7.49x10° 142,209
(0.19)
0.3 25,196 -0.67 0.0003 8.16x107 142,209
(0.20)
0.2 18,195 -0.62 0.002 8.22x10° 142,209
(0.21)
0.1 10,477 -0.80 0.0005 8.44x107 142,209
(0.24)
0.05 6,006 -1.33 2.36x10°%  0.0001 142,209
(0.29)
0.01** 2,024 -1.75 6.13x107  0.0002 142,209
(0.67)
0.001 536 -2.07 0.004 4.83x107 142,209
(0.43)

Note. *Clumping parameters are r>=o.1 and 250kb, Coeff. = unstandardized

coefficient in minutes of sleep duration; **best threshold with 0.02% of the

variance in sleep duration explained by this PRS.

6.6 DISCUSSION

6.6.1 Summary of findings

A large-scale two-sample MR study was conducted to examine the potential
causal relationship between general adiposity (BMI) and self-reported sleep
duration. In doing so, three distinct MR methods were applied to obtain a
complete picture of this complex, potentially causal association. Observationally,
the cross-sectional pooled estimate of ELSA and UKHLS showed a mean
difference in sleep duration of 6 minutes for every standard deviation increase in

BMI (5.08 kg/m?).
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However, the MR findings suggest that there is still a degree of uncertainty
regarding the causal association between BMI and sleep duration and that future
research should perform even more in-depth analyses. The IVW approach
indicated that there was a large amount of heterogeneity. MR-Egger results
suggested no causal association between BMI and sleep duration and indicated
that there was likely to be a substantial proportion of directional pleiotropy. The
Weighted median results were consistent with a causal effect of BMI on sleep
duration and thus supported the [IVW result. Importantly, the sensitivity analyses
performed in the present study were able to test and correct for horizontal, but
not vertical pleiotropy. Unmeasured horizontal pleiotropy violates a core MR
assumption, in that the genetic variant(s) are associated with the outcome
through more than one independent causal pathway (in the present case, via a
pathway other than BMI). However, vertical pleiotropy would not confer a
violation of MR assumptions and is present when the genetic variant(s) affect the

outcome via a mediator (i.e. a factor that lies on the causal pathway).

Subsequently, follow-up genetic analyses were performed to investigate whether
BMI and sleep duration might have shared underlying genetic factors. The PRS
that fitted the data best was at a p-value threshold of 0.01, which was negatively
associated with sleep duration and explained only 0.02% of its variance. The
genetic correlation between BMI and sleep duration was -0.067 and not
significant (p=0.09), a result, which is in line with the small variance explained

(0.02%) in the PRS analyses.

6.6.2 Observational findings

Only the two studies which had IPD available were included in the observational
analysis. Cross-sectional analyses in ELSA and UKHLS showed that there was a
negative relationship between BMI and sleep duration, after adjusting for age and
sex. A subsequent fixed-effects pooled analysis yielded an overall negative cross-
sectional effect of BMI on sleep duration with a total sample size of 12,107
individuals. This finding is also consistent with large epidemiological meta-

analyses'©6'°7 of BMI and sleep duration.

196



6.6.3 MR findings

Although there appeared to be a causal association, as suggested by the [IVW and
MR-Egger results there was a large proportion of horizontal pleiotropy. This was
apparent from the heterogeneity statistics (I*> and Cochran’s Q test p-value)
outputted by the IVW and MR-Egger methods. This metric was adapted from the
meta-analysis literature3'> to assess pleiotropy in the context of MR. MR-Egger
requires that the effects of each instrument (SNP) on the exposure are
independent of supposed pleiotropic effects on the outcome, which is known as
the ‘InSIDE assumption’?%, as mentioned earlier. Although this assumption may
seem somewhat unintuitive, its plausibility has been supported by evidence from
a study in which associations of SNPs with different phenotypes were largely

uncorrelated3®.

Results from the IVW analysis showed that there was a significant negative causal
effect of BMI on sleep duration in this sample of 142,209 individuals. However,
the I produced alongside this result indicated that there was a high proportion of
pleiotropy. Fundamentally, the [IVW approach assumes that each SNP is a valid
IV. Thus, if the three main assumptions hold (mentioned earlier) then the IVW
can estimate the true causal effect of the exposure on the outcome. However, in
this study it was not possible to test whether the BMI SNPs were associated with
confounders, as these data were not available for the UKB study because
summary data were used to maximise statistical power. A related and important
point here is a potential violation of the InSIDE assumption (not possible to test
in a 2-sample MR), whereby the pleiotropic effects of the SNPs on the outcome
act via one particular confounder37 (for example, physical activity, in the case of
BMI and sleep duration). Therefore, if this was tested in future and the BMI SNPs
were associated with sleep duration, via physical activity this would mean that

the InSIDE assumption is violated.

To overcome some of the issues with IVW, both MR-Egger>94 and the Weighted
median®% were implemented as sensitivity analyses. If the VW causal estimate of
BMI on sleep duration is in fact true, results from the MR-Egger and Weighted

median approaches should be almost indistinguishable from it. MR-Egger

197



calculates the average pleiotropic effect across SNPs; a small p-value (near or
<0.05) as well as an intercept that is different from zero indicate the presence of
directional pleiotropy>%4. Results from MR-Egger analyses suggested no causal
association between BMI and sleep duration (p=0.481) and the coefficient was
positive, as opposed to the IVW and weighted median estimates, which were
negative. The MR-Egger also revealed that there was likely to be directional
pleiotropy underlying this relationship, as the intercept’s p-value was 0.06. It is
important to note, though, that the 95% CI around the Egger estimate was
particularly wide (-4.06; 8.60). This was not unexpected, as it is reliant on genetic
variants having different effect strengths on the exposure3”. Also, the MR-Egger
has reduced power, compared to the other approaches, is more susceptible to a
violation of assumption II (BMI SNPs should not be associated with common
confounders of the BMI = sleep duration relationship) and may be more of a
problem for weaker instrumental variables3'7. Therefore, it seems plausible that
the Egger estimate in the present study may be biased, as it is inconsistent with

the observational result, as well as the IVW and weighted median MR results.

A Weighted median estimator?95 was also used to ensure that the conclusions
drawn from the results were robust and to assess the presence of potential
balanced pleiotropy. The Weighted median is distinct from MR-Egger, as it is
able to provide reliable causal estimates when up to fifty per cent of the IV
weights are invalid. The Weighted median yielded a significant, negative causal
estimate of the relationship between BMI and sleep duration. However, taken
together, the three approaches showed that there is still uncertainty surrounding
the causal relationship between BMI and self-reported sleep duration. Therefore,
it may be unlikely that the BMI genetic variants exert their influence on self-
reported sleep duration via BMI. This was partially supported by an additional
analysis in which associations between the BMI SNPs and sleep duration were
tested in the IPD studies (ELSA and UKHLS, n=12,107), whilst adjusting for BMI
and then IVW, MR-Egger and Weighted median MR analyses were performed.
Results showed that none of the MR estimates were significant, which was not

surprising, as this analysis was likely to be underpowered with such a small
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sample size. Out of the 88 BMI SNPs, four were significantly associated with
sleep duration in a model adjusted for measured BMI (Appendix 8.3). It is also
important to note that findings from the only previous MR of BMI and self-
reported sleep duration differed from those of the present study. Specifically, the
earlier study found, using [IVW that there was no causal relationship between
BMI and sleep duration, whereas the present study found the opposite. However,
the MR-Egger analyses from both studies yielded an inverted effect in

comparison to the IVW estimate.

PRS and rG analyses were also performed to examine whether BMI and sleep
duration were likely to have a shared common genetic aetiology. After
considering a few of the most well characterised BMI genes, it appeared that
shared biological pathways could be a likely explanation for this relationship. For
example, the fat-mass and obesity associated (FTO) gene is of interest here, as it
is expressed in the hypothalamus?® and neurons in the ventrolateral preoptic
nucleus (VLPO) are instrumental in promoting sleep, by shutting off other
arousal centres in the brain3®. Specifically, rsi558902, an intron in the FTO gene
was included in our best-fit PRS and its association with sleep duration in the
meta-GWAS of all three studies was -0.68 minutes. Thus, although this effect was
not genome-wide significant it is consistent with the expected direction of effect,

such that higher genetic risk of obesity is associated with less sleep.

Results from PRS analyses showed that there was a negative association between
a BMI PRS comprised of ~2,000 SNPs, and sleep duration, but it accounted for
only 0.02% of its variance. LDSC findings were consistent with this, such that the
non-significant rG of BMI and sleep duration was -0.067, a result which was very
similar to the rG (-0.05) reported by Jones and colleagues. These findings
suggest that BMI and self-reported sleep duration might not possess shared
genetic aetiology, but perhaps these results should be interpreted with some
degree of caution. For example, although all three samples included in this study
asked participants a very similar question on sleep duration, the UKB phenotype

was derived distinctly from that of ELSA and UKHLS.
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As summary statistics were included from the UKB sleep duration GWAS it was
not possible to modify the phenotype for inclusion in the analyses. Briefly, Jones
and colleagues”™ excluded individuals who reported sleep durations greater than
18 hours; they then adjusted for age, sex and study centre, obtained the model
residuals and subsequently applied inverse-normalisation to ensure a normal
distribution. Although it could be argued that the 2 to 12-hour range allowed for
in ELSA and UKHLS is somewhat liberal, this was the result of restricting the
original sleep duration phenotype to +/- 4 SDs. Thus, one possible explanation
for the very small amount of variance explained in sleep duration could be that it
is indicative of large variation in this phenotype, between the IPD samples (ELSA
and UKHLS) and UK Biobank.

6.6.4 Study strengths

This study possesses important strengths. This was the largest Mendelian
randomisation study of BMI and sleep duration in adults, to date. A 2-sample
approach was employed, which decreases the chance of obtaining biased results.
This is because in a 2-sample MR setting, no data from individuals who
contributed to the latest BMI GWAS®® were analysed, none of these studies
(ELSA, UKB and UKHLS) were part of this meta-GWAS.

6.6.5 Study limitations

One of the limitations of this study was the considerable overlap between the
sample analysed and that of Jones and colleagues?®. However, the present study
also included data from two other general population samples and also
performed comprehensive PRS analyses to assess shared genetic aetiology
underlying BMI and sleep duration. Sleep duration was self-reported, which
might suffer from measurement error and bias and has been shown to correlate
only modestly with actigraphic sleep duration?’. These analyses were conducted
with data from White/European individuals and may therefore not be applicable
to other ethnic groups. Also, as it was not possible to access to the UKB IPD
observational analyses were not performed in this study. Jones et al did not

report findings from observational analyses of BMI and sleep duration, which
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meant it was not possible to make comparisons with the ELSA and UKHLS

results.
6.6.6 Future directions

In future, it would be important to perform similar analyses in children and
adolescents, as genetic effects can differ over the life course. Research suggests
that some complex traits — including BMI — may be more heritable in younger
people. For example, Evans and colleagues3" found that SNP heritability of BMI
was higher in ALSPAC children, compared to an adult sample. Although an
individual’s DNA remains unaltered throughout their life, differential levels of
gene expression are linked to several disease states and cellular responses3*° and

it would be of interest to investigate this more in future.

It is also important to investigate potential shared genetic aetiology between BMI
and objectively measured sleep duration, as evidence suggests that there is at
best, moderate agreement between subjective and objective measures9%'3°,
Objectively measuring sleep duration in large samples is now possible, unlike a
few years ago. For example, the UKB have recently released data on actigraphic

sleep duration collected in 100,000 individuals.

Shared genetic aetiology between BMI and other sleep phenotypes, such as
pattern, bedtime, timing, quality and disturbance should also be investigated.
Although it is likely that an individual’s sleep duration correlates with some, if
not all other sleep measures, research suggests that each of these phenotypes
should be treated independently®. There are some challenges to be considered
when measuring sleep dimensions other than duration, particularly when
combining multiple studies to increase statistical power. Studies are less likely to
have administered the same measure of sleep quality, for example, compared to

duration.

Future research may also benefit from the inclusion of samples which have
derived their sleep duration phenotype more similarly. As mentioned earlier, the

present study used data from three samples, one of which used particularly
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unconventional exclusion criteria for hours of sleep (>18 hours)7, even though
they subsequently applied inverse-normalisation to assure a normally distributed

measure.

Further MR studies that investigate the causal association between BMI and self-
reported sleep duration could also consider performing further sensitivity
analyses. For example, if substantial heterogeneity is identified amongst BMI
SNPs then it would be plausible to remove some of the more heterogeneous SNPs

(i.e. have an I value of >75%).

Finally, the UKB have recently released genetic data from 500,000 (the previous
release was n=150,000) individuals and thus, these analyses could be repeated in

this much larger sample in future.

6.7 CHAPTER SUMMARY

e Observational data in IPD revealed a negative relationship between BMI
and sleep duration in 12,107 individuals.

e A comprehensive set of 2-sample MR analyses in 142,209 individuals
suggests that there is still a degree of uncertainty in terms of the causal
association between BMI and self-reported sleep duration.

e MR findings showed substantial pleiotropy between BMI and sleep
duration.

e A polygenic risk score of BMI was significantly related to sleep duration,
but only explained a small proportion of its variance.

e Future research should investigate shared genetic aetiology between BMI
and other sleep phenotypes, use objective sleep duration and employ

samples in which sleep duration is derived uniformly.
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7 GENERAL DISCUSSION

7.1 SYNTHESIS OF EVIDENCE GENERATED

The obesity epidemic has coincided with a chronic reduction in sleep duration,

largely, but not exclusively, in Western societies>. The work undertaken in this

thesis used a combination of observational and genetic epidemiological methods,

in an attempt to better understand the complex relationship between BMI and

sleep duration. The majority of this work focused on adults, with one study that

analysed data from a paediatric sample. Below are the specific objectives that

were outlined in Chapter 1, followed by the key findings that addressed them:

L.

II.

II1.

Establish the direction of effect between BMI/WC and self-reported
sleep duration in older adults, by performing bidirectional,
epidemiological analyses, with adjustment for a wide range of
important covariates (Chapter 3). This research showed that in older
adults, higher BMI leads to small decreases (<o.5 minutes) in self-
reported sleep duration over time but sleep duration was not associated
with prospective changes in BMI.

Ascertain the direction of effect between BMI and objectively-
measured sleep duration in childhood, by analysing data from a
paediatric sample and using bidirectional modelling, with adjustment
for important covariates (Chapter 4). This work was the first to examine
the bidirectional association between BMI and objectively measured
sleep duration in childhood and found no effect in either direction, from
ages six to eight and eight to ten years.

Perform genome-wide analyses to find novel, as well as replicate
previous, common genetic variants associated with self-reported sleep
duration, with the aim of using them in bidirectional MR analyses
(Chapter 5). No novel genetic variants were identified in this meta-

GWAS, nor were previous sleep duration variants replicated. This was



likely due to limited statistical power, as the sample size was very
modest compared to other meta-GWAS of self-reported sleep duration.
IV.  Use Mendelian randomisation to investigate whether there is a causal
relationship between BMI and self-reported sleep duration in a large
sample of adults (Chapter 6). MR analyses suggested that the
association between BMI remains uncertain with respect to whether it is
causal or not. Also, these phenotypes likely possess only a small amount
of genetic overlap (genetic correlation was -0.067 and not significant and

the variance in sleep duration explained by BMI SNPs was 0.02%).

7.2 JUDGING THE EVIDENCE

To draw definitive conclusions about the work that was carried out in this thesis,
it is necessary to judge the findings in relation to the following limitations
pertaining to measurement, design and generalisability: measurement of sleep
duration; methods for assessing causality; confounding; and generalisability of
the findings. General limitations that arose around these themes will be
discussed; specific limitations pertaining to each study have been discussed in

each chapter.

7.2.1 Measurement of sleep duration

In Chapters 3, 5 and 6 sleep duration was measured using self-report. Taken
together, the analyses in this thesis that investigated the association between
BMI and self-reported sleep duration (or self-reported sleep duration and BMI),
whether observational or genetic, seemed to suggest that this association is likely

to be very small, or absent.

Importantly, in Chapters 3 and 6, observational cross-sectional models of BMI
and sleep duration that were adjusted only for age and sex showed revealed a
much larger effect size, as compared to models adjusted for other demographics,
as well as health behaviours and health problems. This finding confirmed that
the cross-sectional relationship between BMI and sleep duration became

attenuated following the inclusion of these important covariates in the model.
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The null (multiply-adjusted) cross-sectional findings are in support of at least
three epidemiological studies of BMI and self-reported sleep duration in adults,
which found no association between the two"6 8 However, several studies in
adults reveal a cross-sectional association between BMI and self-reported sleep
duration7+06107.1013-15235 e reason for this discrepancy in results across cross-
sectional studies in adults could be the age of participants. For example, in the
early meta-analysis of adults by Cappuccio and colleagues'®? the majority of the
studies included were conducted in younger or middle-aged adults. Later studies
were also largely carried out in younger adults, with mean ages of 37y7, 54y"°,
43y"4+"5 and 55y>35, whereas the mean age of the ELSA participants used in this
work was 65y. Prospectively, there have been no previous bidirectional studies of
BMI and self-reported sleep duration in adults and earlier research largely
focused on the prospective association between sleep duration and changes in
BMI. However, a systematic review'°®, a Canadian population-based study'*® and
the most recent large-scale meta-analysis'® showed an association between short
sleep and greater BMI/increased risk of obesity. Importantly, in the Canadian
study participants were on average 41y of age, in the meta-analysis most studies
were in younger or middle-aged adults and the studies in the review had samples
with mean ages of ~40y. However, at least two previous longitudinal studies in
adults found no relationship between sleep duration and BMI?353%, in line with
evidence from this thesis. One of these studies3* used a fixed effects model to
account for unobserved time-invariant covariates (for example, genetics) and it
was the results of this analysis that, contrary to their generalised estimating
equation analysis, completely attenuated the prospective association between
sleep duration and BM], even though the respondents were aged between 19y and
39y. The other study found that sleep duration did not predict changes in BMI,
which is important because at follow-up participants’s mean age was 56y at

baseline, whilst at follow-up they were in their early to mid-sixties.

The majority of paediatric cross-sectional studies also suggest an association
between BMI and self-reported sleep duration'©®107:135140,141,143,144,146,147

Nevertheless, three cross-sectional studies in children produced null findings'4&-
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15°, which are in agreement with the results in TESS. Three systematic reviews and
four meta-analyses in children suggest that subjective (usually parented-
reported) sleep duration does predict changes in BMI and an increased risk of
obesity' 0635151153157 byt the paediatric work in this thesis used objectively-
measured sleep duration and thus, there is more detailed discussion below about

the bidirectional findings in TESS and comparison to previous similar studies.

Another important reason for discrepancies in findings could be the differences
in adjustments for confounders across studies, which is discussed in more detail

below (section 7.2.3).

As mentioned earlier in this thesis, evidence suggests only modest agreement
between subjective and objective sleep duration, when assessed in the same
individuals96-98. Specifically, when asked, people are likely to overestimate their
hours of sleep per night, as compared to actigraphy9©-98. Despite these issues, as
mentioned in Chapter 1 of this thesis, there are several advantages of using self-
reported sleep measures. The main advantages of self-report sleep duration
measures are: they are inexpensive and easy to administer, particularly in large
studies, as one or two questions can usually be asked as part of a larger
questionnaire; they are simple to code and to analyse, as a typical question asks
about the number of hours an individual sleeps for, thus researchers can choose
to use this or convert to minutes if they prefer. There have also not been any
GWAS to date that have used large samples to find common genetic variants
associated with objective sleep duration, but it is likely that these will become
available in the near future (this is discussed in more detail in the section on
Future directions below). It is also important to note, however, that when
analysing within-person observational data, the poor agreement between
subjective and objective sleep measures are likely to be less of a problem. This is
because the error terms associated with the measurement remain consistent and

thus, do not invalidate the findings.

In Chapter 4, objective sleep duration was used to investigate the bidirectional
association with BMI in children. The current findings are in agreement with the

only two prior studies that examined the bidirectional relationship of BMI with
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(subjective) sleep duration and it therefore, appears that the association between
BMI and sleep duration, and vice versa, may have previously been overestimated.
The first of these by Hiscock and colleagues®” found no relationship in either
direction between BMI and sleep duration, in an Australian sample of
approximately 3,800 children. The second study showed no association in either
direction between BMI and sleep duration in 526 children from the ethnically

White component of the BiB study’®.

It was also not possible to check the correlation between parent-reported sleep
duration and actigraphic sleep duration, as the former was not collected; nor
were parents asked to log the children’s bedtimes and wake times, which may
have improved and aided the estimation of sleep duration. More generally,
actigraphy also has its own limitations when measuring sleep duration. For
example, Spruyt and colleagues3**> examined the concordance between wrist
actigraphy and polysomnography (PSG) in a sample of 149 healthy children, aged
between four years and nine years of age. Their findings suggested that the
actigraph significantly underestimated sleep duration by approximately 30
minutes, in comparison to PSG, further supported by only a modest correlation

of 0.47 between these two measures.

7.2.2 Approach taken to assess causality

The RCT is widely accepted as the gold standard for causality, whereby
participants in the treatment and control arms of the trial are not to differ on any
parameter, other than the fact that they have been randomly assigned to either
group. As detailed in the introduction in Chapter 6, MR can be thought of as
‘Nature’s randomised trial’?®7, as alleles are randomly allocated at conception.
Thus, this provides support for the application of MR in its ability to assess

causality.

The ELSA bidirectional study (Chapter 3), which found that BMI led to small
changes in self-reported sleep duration in older adults over four-year follow-up
formed the basis of the rationale for the MR study in Chapter 6. Findings from all

of the three MR approaches performed in 142,209 adults suggested that we are
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still uncertain about whether the relationship between BMI and self-reported
sleep duration is causal. This was judged to be the case, after taking into account
the whole picture from all of the MR methods (inverse-variance weighted, MR-
Egger and weighted median) that were implemented. MR results showed that
there was a high proportion of horizontal pleiotropy. Then, follow-up analyses
using genetic correlation and comprehensive polygenic risk scoring analyses
revealed that the BMI SNPs (with inclusion of only independent SNPs) explained

a very small amount of the variance in sleep duration.

Also, it must be noted that, as mentioned earlier (Chapter 6), a core assumption
of MR is that the genetic variants for the exposure (in this case, BMI) should not
be associated with confounders of the relationship under study. It was not
possible to test this in the MR analyses used in this thesis because a two-sample
MR design was implemented and the majority of the data came from summary
statistics from the UK Biobank GWAS study3. It was not possible to access the
UKB IPD for this study.

Triangulation of findings has been highlighted as crucial in aetiological
epidemiology3*4. Triangulation means that different methods are applied in order
to strengthen causal conclusions, particularly if various approaches point towards
the same conclusion. In attempting to triangulate findings, Lawlor and
colleagues3*4 suggest implementing some of the following methods to the same
research question: multivariable regression modelling, cross-cohort comparisons,
MR, instrumental variable (IV) analysis of intermediate (exposure) in an RCT,
negative control studies, RCTs and within-sibship comparisons. Of these
approaches, MR and multivariable regression modelling were used in this thesis,

yet there is scope to apply some of the other methods to BMI and sleep duration.

One suggestion could be performing a cross-cohort comparison. For example, the
ELSA bidirectional results from Chapter 3 with results of the same analyses from
another ageing cohort, but potentially from another ethnicity or culture. The
cross-cohort comparison could be performed in for example, the Irish
Longitudinal Study on Ageing (TILDA)3%5, as they have collected self-reported

sleep duration and weight/height in a similar way to ELSA and also collect data in
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Irish people who are over the age of 50. Specifically, TILDA administered a
question about sleep duration that is very similar to the one in ELSA, as it asks
about how many hours participants sleep on a weeknight. Participants in TILDA
also undergo measurements of their height and weight by a research nurse,

which is also how these measures are collected in ELSA.

Another relevant approach could be a within-sibship comparison to compare
outcome data (for example, sleep duration) from sibling pairs that are discordant
for the exposure (for example, BMI), whilst controlling for observed and
unobserved shared (familial) confounders. One such study in the Gi219
Longitudinal Twin Study cohort used a discordant twin design that investigated
the relationship between BMI and sleep quality3?°. This study found that siblings
who had a higher BMI reported poorer sleep quality, but the effect of sibling
difference in BMI on sleep quality was attenuated (not significant) when
adjusting for depression, anxiety and general health. Also, participants who had
more symptoms of any of these three conditions were more likely to report
poorer sleep quality. This study is an interesting example of how the discordant
twin design removes confounding by all factors that are completely shared by
twin pairs, yet it is unable to shed any light on causation if the data used are

cross-sectional.

7.2.3 Confounding

As mentioned in Chapter 1, confounding remains an issue central to
observational epidemiology. In Chapter 3, when investigating the bidirectional
relationship of BMI and sleep duration, models were adjusted for a wide range of
demographics, health problems and health behaviours, after which a small effect
of BMI on sleep duration (over 4-year follow-up) remained. As with the majority
of observational research, these analyses did not control for all possible
confounding and therefore, there may be other unobserved factors that might
affect the association between BMI and self-reported sleep duration in older
adults. However, the MR analyses performed in Chapter 6 do not suffer from the
same issues with confounding as observational methods, as MR uses genetic

variants as instrumental variables and these are unlikely to be associated with
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potential confounders of the relationship between BMI and sleep duration.
Therefore, perhaps greater weight should be given to the MR findings. However,
as mentioned above, it was not possible to examine associations between the BMI
SNPs and confounders, given that summary-data was used in combination with
IPD to maximise the sample size. This is because MR studies require large sample
sizes to ensure precision of estimates3?, as often genetic variants used in MR (as
[Vs for the exposure) do not have large effects, which results in a weak

instrument and the need for very large samples3?7.

Another important point is that in multiply adjusted models, no cross-sectional
relationship was observed between BMI and sleep duration in ELSA (Chapter 3),
which is in contrast to the large-scale systematic review'®, and meta-analysis'*?
published in 2008. One of the main reasons for this discrepancy in findings may
be related to confounding. For example, of the studies included in this review,
and meta-analysis, at least three made no adjustments for any covariates, but still
found a cross-sectional association between BMI and sleep duration in
adults®+328329 whilst some other studies included only sex as a
covariate"632833033 with two others that adjusted for age and sex®>332, and one
study adjusted for sex and sleep disorders®°. Few studies included a more
comprehensive list of covariates'718132333334 and in fact, these studies’ findings
were generally less straightforward than those with an inferior set of covariates.
Specifically, one of these studies found a relationship between BMI and sleep
duration in one sex, but not the other; another of them observed an association
between long sleep duration and BMI, as opposed to short sleep duration and
BMI. Notable is also that in their pooled analyses of cross-sectional studies in
adults, Cappuccio and colleagues®? included exclusively unadjusted estimates,
due to such inconsistencies in covariates across studies. It was the result of this
pooled analysis which led them to conclude that cross-sectional studies of BMI
and sleep duration in adults show a robust association between the two.
Therefore, it is possible that in several earlier published cross-sectional studies of
BMI and sleep duration this relationship is confounded by important factors that

have not been accounted for.
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7.2.4 Generalisability

It is important to consider the generalisability of the findings of this thesis,
particularly in terms of the samples used. It has been suggested that findings
from the ALSPAC mothers are generally applicable to the majority of UK women,
as well as women in other high-income countries. However, the majority of
families are White and there are slightly lower levels of deprivation as compared
to the general population'9. ELSA is broadly representative of the English
population, when comparing socio-demographic characteristics with national
census data**°. UKHLS is an annual survey, which is representative of the UK
population335. The UKB study comprises a very large sample of 500,000 UK
adults, but it is important to acknowledge the potential selection bias that it
suffers from. This is because, although the sample is large and was recruited both
fast and efficiently, the response rate was only 5.5%, which is particularly low33.
One of the main impacts that this has on health research is that due to selective
probabilities that operate in drawing particular individuals to participate in this

kind of study, diseases may appear to be associated when they are not33.

In summary, from judging the evidence presented here, it should be concluded
that the true relationship between BMI and sleep duration is small in magnitude
in both children and adults, irrespective of whether subjective or objective sleep
duration is used; it is unlikely to be causal in nature, and these phenotypes do not

possess much underlying common genetic aetiology.

7.3 RECOMMENDATIONS FOR POLICY AND PRACTICE

7.3.1 Recommendations for adults

This work found no association between sleep duration and changes in BMI in
adults over the age of 50. This finding is in line with at least two previous studies
in older adults that found no relationship between sleep duration and changes in
weight?3523% Thus, the suggestion that older people should sleep for longer to

prevent weight gain, needs revisiting.
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As results from this thesis suggest that the negative, prospective association
between BMI and self-reported sleep duration was very small in older adults, on
average, this age group may not benefit from interventions that target their
weight in order to improve sleep duration. Since one of the potential underlying
explanations for the association between BMI and sleep duration could be related
to obstructive sleep apnoea (OSA) (discussed in Chapter 3), it is possible that
individuals with OSA who are overweight/obese may benefit from interventions
that target their weight with the aim of also improving their sleep duration.
However, measures of OSA were not collected in waves 4 or 6 of ELSA and thus,

not included in these analyses.

7.3.2 Recommendations for children

Meta-analyses of prospective studies to date largely suggest that public health
strategies should recommend the following, for obesity prevention: sufficient
sleep'35'52157; regular's? or earlier bedtimes and later wake-up times®5; and/or
behavioural interventions aimed at increasing duration of sleep’'. Paediatric
findings from this thesis are in support of the only two previous bidirectional
studies of BMI and sleep duration in children7538 and suggest that designing
interventions to increase sleep duration to prevent obesity may be premature.
Therefore, it would perhaps be more practical for public health efforts to focus on
ensuring that health professionals are aware of up-to-date guidelines and
recommendations on children getting sufficient sleep, as this comes with many
other health benefits. It is important, however, to ensure that health
professionals do not simply recommend longer sleep duration, as sleeping for too
many hours has also been associated with poorer health outcomes in

adulthood® %263, Findings from this work do not suggest that weight loss
interventions would help prevent short sleep in children and as such, it is
important to inform these children’s parents/caregivers that improvements in

sleep are unlikely as a result of this kind of intervention.

212



7.4 FUTURE DIRECTIONS

7.4.1 Future directions for observational epidemiology

7.4.1.1 Further prospective analyses

Bidirectional analyses in both Chapters 3 and 4 exploited all of the prospective
data that were available for BMI and sleep duration in ELSA and TESS,
respectively. Despite the fact that the TESS analyses yielded null findings in both
directions, future research should also investigate this association with further
prospective data as it becomes available in TESS. This is important because
previous bidirectional studies have also failed to find these effects in children (of
White ethnicity)3738, Similarly, the analyses performed in Chapter 3 in ELSA,
could be repeated using data from wave 8, which is now available and would
provide an eight-year follow-up period from when sleep duration was first asked.
This may help shed more light on the relationship between BMI and sleep
duration in older age, as there was not a lot of change in either of these
phenotypes over four years of follow-up, it is possible that greater change might

be observed over a longer time period.

7.4.1.2 Replication of findings

In relation to the null findings in TESS (Chapter 4), these analyses should be
performed in an independent cohort, as the two previous studies to perform
bidirectional analyses of BMI and sleep duration used self-reported sleep
duration and are thus, might not be completely comparable with the TESS
findings, although the same conclusion was reached in all three studies. Also,
future work ought to investigate the bidirectional association of BMI and
objective sleep duration in children from other ethnic backgrounds, as well as in
a sample that is perhaps less lean and healthy and in which the socioeconomic
background of participants is more diverse (most participants were from affluent
families). As Norway is a social democracy and thus, provides a lot of support for
families in general, it may be that to observe an effect between BMI and sleep
duration, we need to examine this relationship in samples from countries with a

greater degree of inequity, such as the USA or the UK, for example.
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Although one of the two previous bidirectional studies on BMI and sleep
duration in children used data from a UK cohort including both Whites and
South Asians and found only an association in the latter participants®, the BiB
study is not representative of the entire UK population, as the city of Bradford
has particularly high levels of poverty33”. The other only paediatric bidirectional
study of BMI and sleep duration to date, had null findings in both directions and

analysed data from White Australian children®7.

The findings in ELSA (Chapter 4) should also be replicated, perhaps using data
from another ageing study, such as TILDA. These analyses should also be
performed using data in older adults from other ethnic groups, as 98% of ELSA
are White individuals. For example, similar bidirectional analyses could be
performed in for example, the Longitudinal Ageing Study in India33®, as this study
was designed to be comparable to HRS. Importantly, some evidence suggests that
there are ethnic differences in adult sleep duration, with non-White ethnic
groups at increased risk of being short/long sleepers, in comparison to White

individuals339.

7.4.1.3 The association of BMI with sleep parameters, other than sleep
duration
Future research should investigate other sleep parameters, such as quality,
chronotype, bedtime, disturbance and latency and their potential effects on BMI
and/or whether BMI might differentially affect any of these measures. For the
work undertaken in this thesis it would have proved difficult to perform genetic
analyses (Chapters 5 and 6) of other sleep measures apart from duration using
the datasets for which access was granted. This is because studies do not measure
these phenotypes uniformly, as there are at least a handful of validated
questionnaires for the assessment of distinct sleep parameters. Thus,
harmonisation of data across studies becomes difficult, which is necessary to
have adequate power to perform both observational and genetic epidemiological
analyses. However, studies such as the UKB provide a way to overcome some of
these issues, as both genetic and phenotypic data are available on 500,000

individuals from the general population. The UKB has also collected self-reported
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sleep measures of chronotype, daytime napping, narcolepsy (daytime dozing),

sleeplessness/insomnia, snoring and how difficult participants find it to get up in
the mornings. Thus, it would be possible to perform MR analyses of BMI on these
other sleep phenotypes, as to date, no papers have examined the potential causal

associations using the entire UKB sample of 500,000 individuals.

7.4.1.4 Self-reported vs. objective sleep duration

As mentioned earlier, the use of self-reported sleep duration may not be optimal
for several reasons. It is prone to measurement error, as individuals may not
provide accurate reports of their average sleep duration, and agreement with
objective measurements is only moderate®6-98, Although the gold-standard
method is PSG, this remains expensive and needs to be administered in a lab
setting, which means that it is still not an option for large-scale epidemiological
studies. Lab studies may also lack ecological validity34°. However, waist and wrist
actigraphy provide an alternative that is in between self-reported sleep duration
and PSG, as they are not as costly as PSG, but are an improvement on subjective
sleep reports. Some evidence suggest that actigraphy is in fact, more reliable than
PSG, as data are collected over a period of several days and not just one or two
nights in a laboratory’2. However, both methods still only involve the collection
of sleep data over limited periods of time, which might not be typical for that
individual, but this is why usually a questionnaire is administered alongside
actigraphy. Another idea is whether in the near future it might be possible to
gain access to objectively-measured habitual sleep patterns in the population,
using data from for example, wrist-worn devices like the Apple Watch, or similar.
This kind of device routinely measures people’s sleep patterns when worn during

the night and is able to record and track trends in sleep.

Thus, future work investigating BMI in relation to sleep duration should use
objective measurements, where possible. Studies such as the the UK Biobank are

beginning to collect actigraphic sleep duration from large numbers of individuals.
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7.4.1.5 The association between sleep duration and other measures of
adiposity
Future work in this area should also ascertain whether sleep duration is also
associated with other measures of adiposity. In Chapter 3, it was confirmed that
in ELSA there was a prospective relationship between BMI and WC with sleep
duration, which strengthened the findings, particularly as the magnitude of the
effect was consistent for BMI and WC. However, the TESS analyses (Chapter 4)
were performed using BMI only (TESS did not collect WC); thus, future work
could involve analysing other measures of adiposity in relation to sleep duration
in children, such as for example, body-fat percentage. This is important, as BMI is
unable to distinguish muscle mass from fat mass. In terms of the relationship
between BMI and sleep duration, one possibility is that there may be
confounding by specific body composition measures, but not due to fatness. For
example, having greater muscle mass increases BMI, but not because of fat.
Longitudinal evidence in 244 children from New Zealand showed that
objectively-measured sleep duration at ages 3y to 5y (an average of the two was
taken) was negatively associated with fat mass index at age 7 in multiply-adjusted
models (sex, maternal education, maternal BMI, income, ethnicity, birth weight,
smoking during pregnancy, physical activity, TV viewing, fruit-vegetable intake
and non-core foods intake)34. The authors also found a negative prospective
relationship between sleep duration and BMI, but their findings suggested that
these differences in body weight (between children with varying hours of sleep)

were accounted for by increased fat mass deposition.
7.4.2 Future directions for genetic epidemiology

7.4.2.1 Advances in Mendelian randomisation methodology

MR is constantly being developed by statisticians who have now been working
with it for a number of years. Although the causal analyses conducted in this
thesis employed three MR methods and findings are in line with those from the
largest previous study, which found no causal effect of BMI on self-reported sleep

duration, there is scope for future MR work.
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Importantly, there have been recent advances in MR methods, which could be
applied in the future. One recent area of development is a novel approach to
dealing with horiztontal pleiotropy in MR342. Van Kipperslius and Rietveld34* call
this method Pleiotropy robust Mendelian randomisation (PRMR), as it is able to
estimate the degree of pleiotropy and also correct for it, whilst producing
unbiased estimates of a causal effect between an exposure and outcome of
interest. Thus, in addition to IVW, MR-Egger and the weighted median methods,
future MR studies that estimate the causal effect of BMI on sleep parameters
could also use the PRMR approach, as an additional sensitivity analysis with the

aim of ensuring that all approaches lead to the same conclusion.

Furthermore, future MR studies in this area could take into account potential
mediators, which is another area of recent progress343344. Of particular
importance here is the distinction between the total effect and the direct effect,
as the latter suggests that the potential causal pathway between the exposure and
outcome may operate partly through a mediator (indirect effect)344. The validity
of this approach has recently been shown using the example of age at menarche
and risk of breast cancer, whereby BMI mediates this association, although a

direct effect was also observed, independently of BMI344.

This is potentially an important advance, as, of late, it has been suggested that
MR may not be a valid causal analysis tool when the exposure that is
instrumented is not closely related to a physiological phenotype345. This was
recently argued in response to a large-scale MR study which found a causal
relationship between educational attainment and CHD345. The argument put
forward was that there must be mediators on the causal pathway from
educational attainment causing CHD, thus the method discussed above provides
a way of testing this. Therefore, it is recommended that future studies that use
MR estimate the causal relationship between BMI and a sleep-related outcome
potentially investigate relevant mediators that may lie on the causal pathway. For
example, a recent study highlighted the importance of specific energy balance-
related behaviours in this context34°. Using data from 5,900 adults from five

European countries (including the UK), their findings showed that work-related
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sedentary behaviour significantly mediated the relationship between self-
reported sleep duration and BMI. Although they found that dietary habits and
physical activity were not significant mediators, an important limitation was that
the questions asked about dietary habits were relatively simple and did not
capture for example, caloric intake. Their data were also cross-sectional, which
precluded any conclusions about temporality and of course, causation. Therefore,
it would be of interest to test this using MR to examine whether BMI genetic
variants are causally associated with sleep duration, via their effect on work-
related sedentary behaviours. The main hypothesis would be that a higher BMI is
associated with increased work-related sedentary behaviour, which in turn leads

to shorter sleep duration.

In addition, future research in this area should consider a multivariable MR
approach to further investigate the causal relationship between adiposity and
sleep, and sleep and adiposity. This is important, due to the limitations of both
BMI and sleep duration as phenotypes (as discussed earlier). Multivariable MR
uses several genetic variants associated with multiple relevant risk factors of
interest to simultaneously estimate the causal relationship between each risk
factor and the outcome347. A future multivariable MR study in the context of this
thesis’ topic may include multiple measures of adiposity, such as waist
circumference, waist-hip-ratio and body fat percentage and simultaneously
estimate their individual causal effects on a sleep phenotype of interest (other
than duration). Similarly, a multivariable MR study in the other direction may
investigate the causal effect of for example, sleep quality, timing and bedtime on

a measure of adiposity.

7.4.2.2 New developments in molecular methods to estimate heritability
Recently, a new method for the estimation of SNP heritability was proposed.
Speed and colleagues®® analysed imputed genetic data for 19 physical,
neurological and psychiatric phenotypes. They derived a model that describes
with more certainty how heritability may vary depending on MAF, LD and
genotype uncertainty. Their model led to estimates of SNP heritability that were

on average, 43% greater than those produced by GCTA. In future, it is important
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that SNP heritability is estimated using this new method, as a standalone, or in

addition to GCTA and LDSC.

7.4.2.3 Using MR to investigate causality of BMI and sleep parameters
other than duration
Meta-analyses and systematic reviews that conclusively find a prospective
observational association between BMI and other sleep parameters (timing,
bedtime, disturbance, quality, latency) other than duration, and/or vice versa
(how sleep parameters might influence BMI) are still needed. This is important,
as MR studies are usually carried out once an observational relationship between
a modifiable exposure and an outcome of interest, has been established. An
interesting future direction could subsequently be to investigate whether there is
a causal relationship between BMI and such sleep parameters. MR analyses in the
opposite direction will prove difficult until replicated genetic variants for such

sleep parameters have been found.

7.4.2.4 Application of MR to investigate the causal effect of BMI on sleep
duration in younger populations
Although the findings from Chapter 4 suggested that BMI does not predict
changes in sleep duration in children, these findings, using objective sleep
measurements, should be replicated in a non-Norwegian paediatric sample, to
draw definitive conclusions. It is also important that the causal effect of BMI on
sleep duration is investigated in children, adolescents and young adults, as the
MR analyses in this thesis were only performed in middle-aged and older
individuals. An important rationale for this is that the effects of the BMI SNPs on
BMI are stronger in younger age groups348349, This would be possible, given that
there are now several paediatric cohorts with measures of sleep duration, BMI

and GWAS data.

7.5 OVERALL CONCLUSIONS

This thesis performed a comprehensive investigation of the relationship between
BMI and sleep duration. As the first study to investigate this bidirectional

relationship in adults, findings revealed no prospective association of sleep
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duration and BMI, in accordance with two earlier epidemiological studies?3523%,
yet BMI predicted very small changes in self-reported sleep duration over four
years. There is no prospective relationship between BMI and objective sleep
duration, in either direction, in middle childhood, in line with previous null
bidirectional paediatric findings3738. Common genetic variants implicated in
sleep duration are likely to have very small effects and thus, can prove difficult to
detect using GWAS. This work also suggested, via Mendelian randomisation
analyses, that there is still a degree of uncertainty regarding whether the
association between BMI and self-reported sleep duration is causal or not. Also,
analyse showed that these phenotypes possess only a small amount of shared
genetic aetiology. Overall, this thesis made novel contributions in dissecting this
complex relationship and investigated it from a previously-unexplored
perspective, by using observational epidemiology with complementary genetic
epidemiological methods. Taken together, the results of this thesis suggest that
the association of BMI with sleep duration is small in magnitude, if present at all.
Therefore, these, and other earlier findings strongly suggest that the public
health focus on improving sleep duration as an obesity prevention initiative

might need reviewing.
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8 APPENDICES

8.1 ADDITIONAL TABLES FOR CHAPTER 3

Tables 8.1 to 8.4 present the results of all cross-sectional associations between
body mass index (BMI), waist circumference (WC) and sleep duration in ELSA,
with varying levels of adjustment for covariates. As previously discussed in
Chapter 3 of this thesis, these results show that health behaviours and health
problems played a role in the attenuation of these associations between adiposity
and sleep duration in ELSA.

Table 8.1 Cross-sectional models of BMI/WC and sleep duration in ELSA, adjusted
for demographics

Sleep duration B (minutes) 95% CI P

BMI -0.44 -0.014 — -0.000 0.033
Age 0.23 -0.015 - -0.014 0.066
Sex -5.21 -9.314 - -1.108 0.013
Wealth 7.63 6.18 - 9.139 <0.001
Ethnicity -15.10 -30.535 - 0.336 0.055
Sleep duration B (minutes) 95% CI P

WC -0.18 -0.006 - -0.000 0.034
Age 0.24 -0.350 - -0.014 0.050
Sex -7.11 -11.567 - -2.659 0.002
Wealth 7.63 6.117 - 9.136 <0.001
Ethnicity -15.22 -30.660 - 0.211 0.053

Note. These models were adjusted for age, sex, wealth and ethnicity; B
(Unstandardized coefficient) = difference in sleep duration (minutes) per

difference in WC (cm), 95% Cl= 95% confidence interval, P= regression p-value.
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Table 8.2 Cross-sectional models of BMI/WC and sleep duration in ELSA, adjusted

for demographics and health behaviours

Sleep duration B (minutes) 95% CI P
BMI -0.39 -0.013 — -0.000 0.065
Age 0.28 -0.797 — 0.040 0.026
Sex -4.92 -9.098 - -0.743 0.021
Wealth 6.91 5.317 — 8.509 <0.0001
Ethnicity -15.29 -30.747 - 0.166 0.053
Physical activity 4.19 1.257 - 7.126 0.005
Alcohol consumption 0.41 -4.619 - 5.437 0.873
Smoking status -2.62 -5.760 - 0.518 0.102
Sleep duration B (minutes) 95% CI P
WC -0.14 -0.005 — 0.000 0.087
Age 0.30 0.047 - 0.547 0.020
Sex -6.45 -11.015 - -1.888 0.006
Wealth 6.94 5.344 - 8.531 <0.001
Ethnicity -15.36 -30.816 — 0.100 0.051
Physical activity 4.13 1.183 - 7.075 0.006
Alcohol consumption 0.53 -4.497 - 5.553 0.837
Smoking status -2.50 -5.631 - 0.633 0.18

Note. These models were adjusted for age, sex, wealth, ethnicity, physical activity,

alcohol consumption and smoking status; B (Unstandardized coefficient) =

difference in sleep duration (minutes) per difference in WC (cm), 95% Cl= 95%

confidence interval, P= regression p-value.
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Table 8.3 Cross-sectional models of BMI/WC and sleep duration in ELSA, adjusted
for demographics and health problems

Sleep duration B (minutes) 95% CI P
BMI -0.29 -0.012 - -0.002 0.167
Age 0.31 0.067 - 0.557 0.013
Sex -3.19 -7.291 - 0.904 0.127
Wealth 6.38 4.855 - 7.907 <0.001
Ethnicity -10.18 -25.535 - 5.178 0.194
Longstanding limiting -4.15 -8.337-0.036 0.052
illness

Depressive symptoms -19.37 -23.86 - -14.88 <0.001
Sleep duration B (minutes) 95% CI P
WC -0.11 -0.005 — -0.000 0.198
Age 0.32 0.077 - 0.567 0.010
Sex -4.35 -8.817 - 0.105 0.056
Wealth 6.39 4.870 - 7.919 <0.001
Ethnicity -10.26 -25.620 - 5.089 0.190
Longstanding limiting -4.09 -8.300 - 0 .106 0.056
illness

Depressive symptoms -19.35 -23.844 - -14.864 <0.001

Note. These models were adjusted for age, sex, wealth, ethnicity, longstanding

limiting illness and depressive symptoms; B (Unstandardized coefficient) =

difference in sleep duration (minutes) per difference in WC (cm), 95% Cl= 95%

confidence interval, P= regression p-value.
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Table 8.4 Cross-sectional models of BMI/WC and sleep duration in ELSA, fully
adjusted for demographics, health behaviours and health problems

Sleep duration B (minutes) 95% CI P
BMI -0.28 -0.012 — 0.002 0.190
Age 0.32 0.090 - 0.589 0.008
Sex -3.12 -7.294 - 1.048 0.142
Wealth 6.03 4.428 - 7.626 <0.001
Ethnicity -10.49 -25.88 - 4.893 0.181
Physical activity 2.45 -0.506 - 5.401 0.104
Alcohol consumption -0.04 -5.032 - 4.955 0.988
Smoking status -1.62 -4.749 - 1.506 0.310
Longstanding limiting -3.59 -7.814 - 0.634 0.096
illness

Depressive symptoms -18.84 -23.357 - -14.317 <0.001
Sleep duration B (minutes) 95% CI P
wcC -0.10 -0.004 — 0.001 0.270
Age 0.35 0.099 - 0.597 0.006
Sex -4.11 -8.672 - 0.454 0.078
Wealth 6.05 4-455 - 7.648 <0.001
Ethnicity -10.53 -25.921 - 4.856 0.180
Physical activity 2.42 -0.537 - 5.388 0.109
Alcohol consumption 0.05 -4.944 - 5.038 0.985
Smoking status -1.53 -4.651 - 1.588 0.336
Longstanding limiting -3.58 -7.813 - 0.657 0.098
illness

Depressive symptoms -18.84 -23.358 - -14.318 <0.001

Note. These models were adjusted for age, sex, wealth, ethnicity, physical activity,
alcohol consumption, smoking status, longstanding limiting illness and
depressive symptoms; B (Unstandardized coefficient) = difference in sleep
duration (minutes) per difference in WC (cm), 95% CI= 95% confidence interval,

P= regression p-value.
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8.2 ADDITIONAL FIGURES AND TABLES FOR CHAPTER 5

Figures 8.1, 8.3 and 8.5 present Manhattan plots of individual GWAS analyses in
the ALSPAC, ELSA and UKHLS studies. It can be seen that no genome-wide
significant SNPs were found to be associated with self-reported sleep duration in
any of the three studies. Figures 8.2, 8.4 and 8.6 depict Q-Q plots of GWAS p-
values in each study and in line with the Agc for each study (reported in Chapter
5) there appear to be no issues with underlying population stratification in any of
these studies. Figures 8.7 and 8.8 present network plots for genes that are co-
expressed with the SIPA1L3 and POLR3G genes, as the ‘top’ 34 SNPs that emerged
as suggestive in the meta-GWAS were either in or nearby one of these genes.
Table 8.5 presents proxy SNPs that are in high LD with the ‘top’ 34 SNPs in the

meta-GWAS, at an R? of 0.8 or above.
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Figure 8.1 Manhattan plot of sleep duration GWAS results in ALSPAC
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Figure 8.3 Manhattan plot of sleep duration GWAS results in ELSA
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Figure 8.4 Q-Q plot of GWAS p-values in ELSA
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Figure 8.5 Manhattan plot of sleep duration GWAS results in UKHLS
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Figure 8.6 Q-Q plot of GWAS p-values in UKHLS
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Figure 8.7 Network for genes co-expressed with SIPA1L3 gene
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Figure 8.8 Network for genes co-expressed with POLR3G
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Table 8.5 Pairwise LD for 'top' SNPs in meta-analysis of ALSPAC, ELSA and UKHLS

SNP Proxy Distance R-squared Chromosome
(base pairs)
rs8109799 15332849 4048 0.967 19
1s8109799 154802251 5429 0.967 19
rs8109799 rs8111180 9743 0.967 19
1s8109799 15332864 13090 0.901 19
1$9941474 rs8111180 1034 1 19
1$9941474 rs4802251 5348 1 19
59941474 15332849 14825 1 19
59941474 15332864 23867 0.934 19
15332849 154802251 9477 1 19
15332849 rs8u18o 13791 1 19
15332849 15332864 9042 0.934 19
156508765 154802251 3702 1 19
156508765 15332849 5775 1 19
156508765 rs8111180 8016 1 19
156508765 15332864 14817 0.934 19
1s855632 rs8111180 26901 0.935 19
1s855632 154802251 31215 0.935 19
1s855632 15332849 40692 0.935 19
1s855632 15332864 49734 0.87 19
15332848 15332849 1077 1 19
15332848 154802251 8400 1 19
15332848 rs8un8o 12714 1 19
15332848 15332864 10119 0.934 19
158101826 154802251 3471 1 19
158101826 15332849 6006 1 19
158101826 rs8un8o 7785 1 19
158101826 15332864 15048 0.934 19
158100144 154802251 454 0.934 19
rs8100144 rs8111180 3860 0.934 19
rs8100144 15332849 9931 0.934 19
18100144 15332864 18973 0.868 19
152099340 rs8111180 1033 0.967 19
152099340 154802251 3281 0.967 19
I$2099340 15332849 12758 0.967 19
1$2099340 15332864 21800 0.901 19
1s8109695 15332849 4011 0.935 19
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1s8109695 154802251 5466 0.935 19
1s8109695 rs8un8o 9780 0.935 19
1s8109695 15332864 13053 0.87 19
152569412 18332849 3594 0.967 19
152569412 15332864 5448 0.967 19
152569412 154802251 13071 0.967 19
152569412 rs8111180 17385 0.967 19
15332864 15332849 0042 0.934 19
15332864 154802251 18519 0.934 19
15332864 rs8un8o 22833 0.934 19
15332855 15332864 8487 0.967 19
15332855 15332849 17529 0.967 19
15332855 154802251 27006 0.967 19
15332855 rs8111180 31320 0.967 19
154802251 rs8111180 4314 1 19
154802251 15332849 9477 1 19
154802251 15332864 18519 0.934 19
15332856 15332864 8235 0.967 19
15332856 15332849 17277 0.967 19
15332856 154802251 26754 0.967 19
15332856 rs8111180 31068 0.967 19
15332858 15332864 5614 0.967 19
15332858 15332849 14656 0.967 19
15332858 154802251 24133 0.967 19
15332858 rs8u180 28447 0.967 19
rs8111180 154802251 4314 1 19
rs8111180 15332849 13791 1 19
rs8111180 15332864 22833 0.934 19
15332843 15332849 2687 1 19
15332843 154802251 6790 1 19
15332843 rs8111180 11104 1 19
15332843 15332864 11729 0.934 19
15332844 15332849 1907 1 19
15332844 154802251 7570 1 19
15332844 rs8111180 1884 1 19
15332844 15332864 10949 0.934 19
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8.3 ADDITIONAL FIGURES AND TABLES FOR CHAPTER 6

Table 8.6 below lists all of the BMI SNPs used in the Mendelian randomisation
analyses in Chapter 6, with details of proxies used where the target SNP was not
available in ELSA, UKB or UKHLS. Proxies were selected at an R? threshold of at
least 0.8 to ensure that they were in high LD with the target SNP. Table 8.7
presents associations between BMI SNPs (from Locke et al. GWAS) and BMI in
GIANT and for comparison, Table 8.8 shows the associations between BMI SNPs
and BMI in ELSA and UKHLS (for which individual-level data were available),
Table 8.9 presents the pooled associations between these BMI SNPs and BMI in
the IPD samples used in the MR analyses (ELSA + UKHLS). UKB was not
included, as only summary data were used. Figure 8.9 depicts a bar chart that
shows the variance explained (R?) at different p-value thresholds between the

chosen limits of 0.5 and 0.001 in the polygenic risk score (PRS) analyses.
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Table 8.6 GWAS SNPS associated with BMI from Locke et al., 2015 and proxies used
in ELSA, UK Biobank and UKHLS Mendelian randomisation analyses

SNP ID Chromosome Position Gene Proxy (r>>0.8)
ELSA UKB UKHLS
15657452 1 49,362,434 AGBL4
1511583200 1 50,332,407 ELAVL4
152820292 1 200,050,910 NAV1
rs11126666 2 26,782,315 KCNK3
rs11688816 2 62,906,552 EHBP1 152539984
151528435 2 181,259,207 UBE2E3
IS7599312 2 213,121,476 ERBB4
1s6804842 3 25,081,441 RARB
152365389 3 61,211,502 FHIT
rs3849570 3 81,874,802 GBE1 157620240
1516851483 3 142,758,126 RASA2
rs17001654 4 77,348,592 SCARB2
s11727676 4 145,878,514 HHIP
Is2033529 6 40,456,631 TDRG1 s1579557
r'S9400239 6 109,084,356 FOXO3
rs13191362 6 162,953,340 PARK>2
rs1167827 7 75,001,105 HIP:
152245368 7 76,446,079 DTX2P1 157804663
rS2033732 8 85,242,264 RALYL
154740619 9 15,624,326 Coorfo3
156477694 9 110,972,163 EPB41L4B
151928295 9 119,418,304 TLR4
1510733682 9 128,500,735 LMX1B
157899106 10 87,400,884 GRID1
I'S17094222 10 102,385,430 HIF1IAN
rs11191560 10 104,859,028 NT5C2 I'S5011520
17903146 10 114,748,339 TCF7L2
152176598 1 43,820,854 HSD17Bi2
1512286929 1 114,527,614 CADM1
IS11057405 12 121,347,850 CLIP:
1510132280 14 24,998,019 STXBP6
1512885454 14 28,806,589 PRKD1
153736485 15 49,535,902 DMXL2
15758747 16 3,567,359 NLRC3
152650492 16 28,240,912 SBK1
159925964 16 31,037,396 KATS 152288004
I'S1000940 17 5,223,976 RABEP1
rs1808579 18 19,358,886 C18orf8
187243357 18 55,034,299 GRP

517724992 19 18,315,825 PGPEP1




15977747 1 47,457,264 TAL1
151460676 2 164,275,935 FIGN
1517203016 207,963,763 CREB:1
1513201877 6 137,717,234 IFNGR1
151441264 13 78,478,920 MIR548A2
rs7164727 15 70,881,044 LOC1002875

59
rs2080454 16 47,620,091 CBLN:1

159914578 17 1,951,886 SMG6
152836754 21 39,213,610 ETS>
15492400 2 219,057,996 USP37
rs16907751 8 81,538,012 ZBTBio
19374842 6 120,227,364 LOC285762
159641123 7 93,035,668 CALCR
159540493 13 65,103,705 MIR548X2
154787491 16 29,922,838 INOS8oE
rs6465468 7 95,007,450 ASB4
157239883 18 38,401,669 LOC284260

153101336 1 72,523,773 NEGR1
1512566985 1 74,774,781 FPGT
1512401738 1 78,219,349 FUBP1
1511165643 1 96,696,685 PTBP2
IS17024393 1 109,956,211 GNAT2

15543874 1 176,156,103 SEC16B 1s506589
rs13021737 2 622,348 TMEM18
1510182181 2 25,003,800 ADCY3

151016287 2 59,159,129 FLJ30838

rs2121279 2 142,759,755 LRPiB
rs13078960 3 85,890,280 CADM>2

rs1516725 3 187,306,698 ETVs5 1510513801
1510938397 4 44,877,284 GNPDA:2 1513130484
rs13107325 4 103,407,732 SLC39A8

IS2112347 5 75,050,998 POCs5

15205262 6 34,671,142 Cé6orfio6
r$2207139 6 50,953,449 TFAP2B
1517405819 8 76,969,139 HNF4G
1510968576 9 28,404,339 LINGO2
154256980 n 8,630,515 TRIM66
I'S11030104 u 27,641,093 BDNF
153817334 n 47,607,569 MTCH2
157138803 12 48,533,735 BCDIN3D
1512016871 13 26,915,782 MTIF3
512429545 13 53,000,207 OLFM4
rs11847697 14 29,584,863 PRKD1

I'S7141420 14 78,969,207 NRXN3
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rs16951275 15 65,864,222 MAP2K35
1512446632 16 19,842,890 GPRC5B
rs3888190 16 28,796,987 ATP2A1
151558902 16 52,361,075 FTO
1512940622 17 76,230,166 RPTOR
1s6567160 18 55,980,115 MC4R
1$29941 19 39,001,372 KCTD15
12075650 19 50,087,459 TOMM40
152287019 19 50,894,012 QPCTL
153810201 19 52,260,843 ZC3H4
157715256 5 153,518,086 GALNT10
rs2176040 2 226,801,046 LOC646736
rs6091540 20 50,521,269 ZFP64
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Table 8.7 Associations between BMI SNPs and BMI in GIANT

SNP A1 A2 AiFrequency N Beta SE L 95CI U_g5CI P-value
153101336 c T 0.65 316872 0.033 0.003  0.027 0.039 2.66E-26
157243357 T G 0.87 322107 0.022 0.004  0.014 0.030 3.86E-08
I'S11030104 A G 0.8 322103 0.041 0.004  0.033 0.049 5.56E-28
1512446632 G A 0.87 316758  0.04 0.005 0.030 0.050 1.48E-18
151516725 c T 0.91 320044 0.045 0.005 0.035 0.055 1.89E-22
1516951275 T C 0.78 322098 0.031 0.004 0.023 0.039 1.91E-17
1512885454 c A 0.63 320823 0.021 0.003 0.015 0.027 1.94E-10
Is13021737 G A 0.88 318287 0.06 0.004 0.052 0.068 <1.0E-40
1$9400239 c T 0.7 321988 0.019 0.003 0.013 0.025 1.61E-08
152287019 c T 0.85 300921 0.036 0.004 0.028 0.044 4.59E-18
1516907751 c T 0.96 307752 0.035 0.007  0.021 0.049 1.25E-07
152820292 c A 0.51 321707 0.02 0.003 0.014 0.026 1.83E-10
151928295 T C 0.58 321979 0.019 0.003  0.013 0.025 7.91E-10
1512940622 G A 0.54 322032 0.018 0.003  0.012 0.024 2.49E-09
IS17724992 A G 0.69 319588 0.019 0.004  0.011 0.027 3.41E-08
Is2033732 c T 0.76 321406 0.019 0.004  0.011 0.027 4.89E-08
159374842 T C 0.74 322008 0.019 0.004  0.011 0.027 9.67E-08
1517405819 T C 0.63 322085 0.022 0.003 0.016 0.028 2.07E-1
1516851483 T G 0.09 233929 0.048 0.008 0.032 0.064 3.55E-10
156804842 G A 0.58 321463 0.019 0.003  0.013 0.025 2.48E-09
152365389 c T 0.66 316768 0.02 0.003 0.014 0.026 1.63E-10
1510132280 c A 0.67 321797 0.023 0.003  0.017 0.029 1.14E-1
151808579 c T 0.53 322032 0.017 0.003  0.011 0.023 4.17E-08
IS7141420 T C 0.62 321970 0.024  0.003  0.018 0.030 1.23E-14
IS7599312 G A 0.71 322024 0.022 0.003  0.016 0.028 1.17E-10
IS2112347 T G 0.63 322019 0.026  0.003  0.020 0.032 6.19E-17
1s29941 G A 0.67 321970 0.018  0.003  0.012 0.024 2.41E-08
rs167827 G A 0.54 306238 0.02 0.003  0.014 0.026 6.33E-10
1s6091540 c T 0.73 321975 0.019 0.004  0.011 0.027 8.02E-08
IS12429545 A G 0.1 312034 0.033 0.005  0.023 0.043 1.09E-12
rs11688816 G A 0.46 322051 0.017 0.003 0.0l 0.023 1.89E-08
I$4740619 T C 0.53 321887 0.018 0.003 0.012 0.024 4.56E-09
157903146 c T 0.75 322130 0.023  0.003  0.017 0.029 1uE-n
157164727 T C 0.78 321312  0.018 0.003  0.012 0.024 6.83E-08
154787491 G A 0.61 267491 0.016 0.003  0.010 0.022 2.24E-06
159925964 A G 0.61 318385 0.019 0.003 0.013 0.025 8.1E-10
1513201877 G A 0.08 322095 0.023  0.005  0.013 0.033 2.35E-07
157239883 G A 0.32 321909 0.016  0.003  0.010 0.022 1.63E-07
156465468 T G 0.33 307937 0.017 0.004 0.009 0.025 2.30E-06
156477694 c T 0.36 322048 0.017 0.003 o.011 0.023 2.67E-08




153810291 A G 0.63 296261 0.028 0.004 0.020 0.036 4.81E-15
1s11126666 A G 0.31 321979 0.021 0.003  0.015 0.027 1.33E-09
1511165643 T C 0.58 320730 0.022 0.003  0.016 0.028 2.07E-12
154256980 G C 0.73 320028 0.021 0.003  0.015 0.027 2.90E-11
1$2033529 G A 0.26 321917 0.019 0.003  0.013 0.025 1.39E-08
151528435 T C 0.58 321924 0.018 0.003  0.012 0.024 1.20E-08
153849570 A C 0.37 284339 0.019 0.003  0.013 0.025 2.60E-08
1513078960 G T 018 322135 0.03 0.004 0.022 0.038 1.74E-14
15492400 c T 0.33 321090 0.016  0.003  0.010 0.022 4.17E-07
I'S1000940 G A 0.23 321836 0.019 0.003  0.013 0.025 1.28E-08
152836754 c T 0.65 320231 0.016 0.003  0.010 0.022 4.16E-07
1S977747 T G 0.47 322086 0.017 0.003 0.011 0.023 8.65E-08
S17024393 C T 0.04 297874 0.066 0.009 0.048 0.084 7.03E-14
151441264 A G 0.55 310286 0.018 0.003  0.012 0.024 6.04E-08
159914578 G C 0.17 321126 0.02  0.004  0.012 0.028 8.99E-08
I'S17094222 c T 0.21 321770 0.025 0.004  0.017 0.033 5.94E-11
152650492 A G 0.31 319464 0.021 0.004  0.013 0.029 1.91E-09
153736485 A G 0.43 321398 0.018 0.003 0.012 0.024 7.41E-09
1512401738 A G 0.43 322070 0.021 0.003  0.015 0.027 1.14E-10
1510968576 G A 0.29 322061 0.025 0.003  0.019 0.031 6.61E-14
1512286929 G A 0.43 321903 0.022 0.003  0.016 0.028 1.31E-12
157715256 G T 0.45 322084 0.016 0.003  0.010 0.022 1.70E-07
1517203016 G A 0.2 316466 0.021 0.004  0.013 0.029 8.14E-08
151016287 T C 0.33 321969 0.023 0.003  0.017 0.029 2.25E-11
1511583200 c T 0.38 322095 0.018 0.003  0.012 0.024 1.48E-08
152176040 A G 0.39 321972 0.014 0.003  0.008 0.020 6.06E-06
1511191560 c T 0.06 321893 0.031 0.005  0.021 0.041 8.45E-09
153817334 T C 0.45 321959 0.026  0.003  0.020 0.032 5.14E-17
15758747 T C 0.27 308688 0.023 0.004 0.015 0.031 7.47E-10
15657452 A G 0.42 313651 0.023  0.003  0.017 0.029 5.48E-13
1S9540493 A G 0.45 318961 0.017 0.003  o0.01 0.023 1.42E-07
151460676 c T 0.22 322089 0.02  0.004  0.012 0.028 8.98E-07
153888190 A C 0.36 321930 0.031 0.003  0.025 0.037 3.14E-23
157899106 G A 0.05 321770  0.04 0.007 0.026 0.054 2.96E-08
IS2121279 T C 0.12 322065 0.025 0.004  0.017 0.033 2.31E-08
15205262 G A 0.27 315542 0.022 0.004  0.014 0.030 1.75E-10
15543874 G A 0.27 322008 0.048 0.004 0.040 0.056 2.62E-35
156567160 c T 0.28 321958 0.056 0.004 0.048 0.064 <1.0E-40

1510182181 G A 0.5 321759 0.031 0.003  0.025 0.037 8.78E-24
1512566985 G A 0.43 319282 0.024 0.003 0.018 0.030 3.28E-15
157138803 A G 0.44 322092 0.032 0.003 0.026 0.038 8.15E-24
152207139 G A 0.1 322019 0.045 0.004  0.037 0.053 4.13E-29
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152176598 T C 0.2 316848 0.02 0.004  0.012 0.028 2.97E-08

1510938397 G A 0.43 320955 0.04 0.003 0.034 0.046 3.20E-38

151558902 A T 0.45 320073 0.082 0.003 0.076 0.088 <1.0E-40

Note. N= number of observations, Ai=effect allele, A2=other allele, SE=standard
error, L_g5CI= lower 95% confidence limit, U_g5_Cl=upper 95% confidence limit.
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Table 8.8 Associations between BMI SNPs and BMI in meta-analysis of ELSA &
UKHLS studies (n=12,107)

SNP Effect SE L_og5_CI U_g5_CI P-value
1s3101336 -0.315 0.063 -0.439 -0.191 <0.001
1S7243357 -0.288 0.082 -0.448 -0.128 <0.001
I'S11030104 -0.258 0.076 -0.407 -0.110 0.001
1512446632 -0.224 0.087 -0.395 -0.054 0.010
151516725 -0.221 0.114 -0.444 0.003 0.053
1516951275 -0.191 0.072 -0.333 -0.049 0.008
1512885454 -0.189 0.064 -0.315 -0.062 0.003
Is13021737 -0.188 0.082 -0.349 -0.027 0.022
1$9400239 -0.177 0.068 -0.309 -0.044 0.009
152287019 -0.175 0.079 -0.330 -0.019 0.027
1516907751 -0.156 0.105 -0.361 0.049 0.135
152820292 -0.155 0.062 -0.277 -0.033 0.013
151928295 -0.148 0.062 -0.269 -0.028 0.016
15129040622 -0.143 0.062 -0.264 -0.023 0.020
IS17724992 -0.141 0.070 -0.277 -0.004 0.044
ISs2033732 -0.139 0.070 -0.277 -0.002 0.047
159374842 -0.136 0.073 -0.280 0.007 0.062
1517405819 -0.135 0.067 -0.266 -0.003 0.045
1516851483 -0.134 0.107 -0.344 0.076 0.212
156804842 -0.121 0.062 -0.243 0.000 0.050
152365389 -0.121 0.062 -0.242 0.000 0.051
1510132280 -0.109 0.071 -0.247 0.029 0.123
151808579 -0.104 0.063 -0.228 0.019 0.097
I'S7141420 -0.103 0.061 -0.224 0.017 0.094
IS7599312 -0.090 0.069 -0.225 0.045 0.192
rS2112347 -0.089 0.063 -0.213 0.035 0.161
rs29941 -0.084 0.065 -0.212 0.044 0.198
rs1167827 -0.072 0.062 -0.193 0.049 0.244
1s6091540 -0.066 0.067 -0.198 0.066 0.329
IS12429545 -0.060 0.091 -0.238 0.18 0.507
1511688816 -0.052 0.062 -0.173 0.069 0.404
I$4740619 -0.046 0.061 -0.166 0.074 0.451
157903146 -0.046 0.068 -0.180 0.088 0.503
157164727 -0.046 0.066 -0.176 0.084 0.492
154787491 -0.041 0.062 -0.162 0.080 0.507
159925964 -0.038 0.064 -0.165 0.088 0.554
1513201877 -0.030 0.093 -0.212 0.153 0.748
157239883 -0.027 0.063 -0.151 0.098 0.675

156465468 -0.017 0.070 -0.155 0.121 0.809




156477694 -0.016 0.065 -0.143 0.110 0.800
153810291 -0.010 0.070 -0.148 0.128 0.886
1511126666 -0.009 0.070 -0.147 0.129 0.895
1511165643 -0.003 0.062 -0.125 0.119 0.964
154256980 -0.001 0.066 -0.130 0.128 0.987
S2033529 0.005 0.067 -0.127 0.137 0.938
151528435 0.013 0.063 -0.110 0.137 0.832
153849570 0.014 0.082 -0.146 0.175 0.860
1513078960 0.018 0.075 -0.130 0.166 0.811
15492400 0.025 0.062 -0.096 0.146 0.683
Is1000940 0.031 0.067 -0.101 0.163 0.646
152836754 0.031 0.065 -0.095 0.158 0.626
1SQ77747 0.032 0.062 -0.090 0.153 0.608
I'S17024393 0.035 0.193 -0.344 0.415 0.855
151441264 0.039 0.066 -0.092 0.169 0.560
1s9914578 0.039 0.076 -0.110 0.189 0.605
IS17094222 0.047 0.080 -0.110 0.203 0.560
152650492 0.048 0.071 -0.092 0.188 0.502
153736485 0.059 0.062 -0.063 0.180 0.346
1512401738 0.062 0.064 -0.063 0.187 0.333
1510968576 0.064 0.065 -0.064 0.192 0.328
1512286929 0.064 0.061 -0.056 0184 0.204
157715256 0.076 0.062 -0.047 0.198 0.226
Is17203016 0.076 0.076 -0.072 0.225 0.311
151016287 0.087 0.067 -0.044 0.218 0.194
1511583200 0.091 0.062 -0.031 0.214 0.142
152176040 0.094 0.064 -0.031 0.219 0.142
1s11191560 0.094 0.117 -0.135 0.323 0.420
153817334 0.096 0.063 -0.027 0.220 0.126
15758747 0.100 0.076 -0.050 0.249 0.192
15657452 0.102 0.062 -0.020 0.224 0.102
1S9540493 0.124 0.062 0.003 0.246 0.045
151460676 0.125 0.084 -0.039 0.290 0.136
153888190 0.132 0.069 -0.003 0.267 0.056
157899106 0.136 0.136 -0.131 0.403 0.318
I'S2121279 0.137 0.093 -0.046 0.319 0.142
15205262 0.155 0.072 0.015 0.295 0.030
15543874 0.164 0.077 0.014 0.314 0.033
156567160 0.170 0.072 0.029 0.31 0.018
1510182181 0.181 0.062 0.060 0.302 0.003
1512566985 0.184 0.062 0.063 0.306 0.003
157138803 0.194 0.064 0.070 0.319 0.002
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I$2207139 0.195 0.083 0.033 0.358 0.018

152176598 0.200 0.071 0.060 0.339 0.005

1510938397 0.256 0.078 0.103 0.409 0.001

151558902 0.325 0.062 0.203 0.447 <0.001




Table 8.9 Pooled associations (meta-analysis) between BMI SNPs (88) and sleep
duration in ELSA, UKB and UKHLS

SNP Effect SE L_og5_CI U_og5_CI I-sq. (P-het)
rS7243357 0.63 0.01 -0.46 -0.44 0% (0.375)
rs2365389 0.54 0.00 -0.16 -0.14 0% (0.383)
rs1016287 0.50 0.00 -0.28 -0.27 0% (0.389)
511847697 0.39 0.01 -0.16 -0.12 0% (0.396)
1510132280 0.37 0.00 0.02 0.04 0% (0.409)
1$2820292 0.37 0.00 -0.28 -0.26 0% (0.424)
rs1516725 0.36 0.01 -0.53 -0.51 0% (0.424)
152836754 0.36 0.00 0.53 0.55 0% (0.429)
rs11583200 0.33 0.00 -0.16 -0.14 0% (0.442)
1512566985 0.32 0.00 -0.25 -0.23 0% (0.453)
1517203016 0.31 0.00 0.21 0.23 0% (0.456)
rs2287019 0.31 0.01 -0.34 -0.32 0% (0.475)
IS7141420 0.29 0.00 -0.06 -0.05 0% (0.502)
15977747 0.26 0.00 0.00 0.02 0% (0.509)

1510968576 0.25 0.00 -1.01 -1 0% (0.528)
153736485 0.22 0.00 0.36 0.38 0% (0.541)
1512429545 0.19 0.01 0.02 0.04 0% (0.547)
15205262 0.18 0.00 0.35 0.37 0% (0.560)

151928295 0.14 0.00 -0.42 -0.4 0% (0.563)
1516951275 0.13 0.00 -0.2 -0.18 0% (0.574)
157715256 0.13 0.00 -0.43 -0.41 0% (0.596)

15758747 0.13 0.00 0.38 0.39 0% (0.603)

154256980 0.12 0.00 -0.42 -0.4 0% (0.605)
rS9540493 0.11 0.00 -0.32 -0.3 0% (0.614)
157138803 0.08 0.00 0.3 0.32 0% (0.619)

S17094222 0.04 0.00 -0.05 -0.03 0% (0.627)
IS11030104 0.03 0.01 -0.03 -0.01 0% (0.657)
r$2033732 0.03 0.00 0.35 0.37 0% (0.670)

152650492 0.02 0.00 0.1 0.13 0% (0.676)
156477694 0.01 0.00 -0.36 -0.34 0% (0.690)
r$2207139 -0.01 0.01 -0.98 -0.96 0% (0.697)

159914578 -0.02 0.00 -0.33 -0.31 0% (0.705)
1512940622 -0.03 0.00 -0.13 -0.11 0% (0.728)
1512286929 -0.04 0.00 0.13 0.14 0% (0.767)
156465468 -0.04 0.00 -0.05 -0.03 0% (0.782)
rs167827 -0.05 0.00 0.12 0.14 0% (0.783)

1517024393 -0.06 0.01 -0.21 -0.17 0% (0.785)
159374842 -0.06 0.00 -0.47 -0.45 0% (0.791)
1529941 -0.09 0.00 0.36 0.38 0% (0.797)
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1516851483 -0.10 0.01 -0.17 -0.14 0% (0.799)
152176598 -0.10 0.00 -0.33 -0.31 0% (0.809)
151441264 -0.11 0.00 0.32 0.33 0% (0.821)
r$9641123 -0.12 0.00 0.19 0.2 0% (0.827)
r$2033529 -0.12 0.00 -0.13 -0.11 0% (0.834)
rs3849570 -0.12 0.00 -0.26 -0.25 0% (0.886)
1517405819 -0.12 0.00 0.24 0.26 0% (0.894)
rs3888190 -0.14 0.00 -0.06 -0.05 0% (0.903)
rs1460676 -0.14 0.01 0.03 0.05 0% (0.905)
r$3101336 -0.15 0.00 -0.11 -0.1 0% (0.906)
1$6804842 -0.15 0.00 -0.21 -0.19 0% (0.911)
rs7239883 -0.16 0.00 -0.01 0 0% (0.914)
S2121279 -0.19 0.01 0.1 0.12 0% (0.916)
r$7903146 -0.19 0.00 -0.85 -0.84 0% (0.924)
152176040 -0.20 0.00 0.01 0.03 0% (0.933)
rs11191560 -0.20 0.01 -0.26 -0.23 0% (0.943)
51808579 -0.24 0.00 -0.15 -0.13 0% (0.944)
rs2112347 -0.25 0.00 -0.38 -0.37 0% (0.984)
1s13078960 -0.25 0.00 -0.21 -0.19 0% (0.994)
r$3810201 -0.26 0.00 0.12 0.14 0% (0.995)
113201877 -0.27 0.01 -0.06 -0.04 0% (0.998)
157164727 -0.28 0.00 -0.31 -0.29 14% (0.312)
1510938397 -0.28 0.00 -0.53 -0.51 16% (0.306)
151558902 -0.28 0.00 0.63 0.64 19% (0.290)
rs3817334 -0.30 0.00 -0.6 -0.59 19% (0.291)
rS13021737 -0.31 0.01 -0.13 -0.11 21% (0.283)
rS1000940 -0.32 0.00 -0.53 -0.51 25% (0.266)
15543874 -0.32 0.00 0.12 0.14 33% (0.226)
15657452 -0.33 0.00 -0.28 -0.27 36% (0.209)
1512885454 -0.35 0.00 0.07 0.09 39% (0.192)
1512401738 -0.35 0.00 -0.04 -0.02 39% (0.192)
rs10182181 -0.35 0.00 -0.36 -0.35 41% (0.182)
rs6091540 -0.36 0.00 0.32 0.33 43% (0.174)
154787491 -0.37 0.00 0.25 0.26 44% (0.168)
rs1126666 -0.41 0.00 -0.36 -0.34 44% (0.169)
157899106 -0.41 0.01 0.16 0.2 46% (0.157)
1$2245368 -0.42 0.01 -0.13 -0.11 46% (0.159)
1512446632 -0.45 0.01 -0.26 -0.24 47% (0.149)
1S9400239 -0.46 0.00 -0.09 -0.08 53% (0.118)
151528435 -0.50 0.00 -0.11 -0.09 57% (0.097)
1517724992 -0.51 0.00 -0.51 -0.49 67% (0.049)
1S492400 -0.52 0.00 -0.51 -0.5 67% (0.050)
154740619 -0.52 0.00 0.49 0.51 70% (0.342)
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19925964 -0.52 0.00 -0.29 -0.27 71% (0.031)

rs6567160 -0.59 0.00 0.3 0.32 73% (0.023)
57599312 -0.76 0.00 -0.12 -0.1 74% (0.022)
rs11165643 -0.84 0.00 -0.36 -0.35 76% (0.015)
rs11688816 -0.97 0.00 0.28 0.3 77% (0.014)
1516907751 -1.01 0.01 -0.78 -0.75 81% (0.006)

Note. SE=standard error, L_g5_Cl=lower 95% confidence limit, U_g5_CI=upper
95% confidence limit, I-sq=% of heterogeneity, as per the I*statistic, P-het= p-
value for heterogeneity.

Figure 8.9 Bar chart showing variance explained at different p-value thresholds
between o.5 and 0.001 (corresponding to Table 6.2 in Chapter 6)
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Figure 8.10 Forest plot for SNPs associated with sleep duration, after adjustment for
BMLI, in IPD (ELSA + UKHLS)
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