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Supplementary Tables 
 
 

 
Supplementary Table 1. CO2 emissions (direct + indirect) from the global light-duty vehicle fleet in the counterfactual 
‘No AFV Action (+ 0 US$/tCO2)’ scenario, across six integrated assessment models. Emissions are cumulative (2010-
50) and in units of Gigatonnes. For calculating the upstream (indirect) component of emissions, average fuel-specific 
carbon intensities are in most cases assumed exogenously1-5. In the central case values shown here, these are the 
following:  +20 gCO2/MJ for gasoline/diesel, +15 gCO2/MJ for biofuels, +20 gCO2/MJ for natural gas, +100 
gCO2/MJ for hydrogen, and +50 gCO2/MJ for fossil synfuels. Only for electricity were model-specific carbon intensities 
estimated and applied. Comprehensive lifecycle assessments based on model results were not conducted for the other 
fuels, due to insufficient information; hence the exogenous assumptions. 

 
  

Units: GtCO 2 Global OECD DevASIA
GEM-E3 202 111 34
IMACLIM 358 160 77
IMAGE 176 68 59
MESSAGE 114 57 20
TIAM-UCL 223 103 48
WITCH 167 87 32
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Supplementary Figures 
 
 

 
Supplementary Figure 1. Shares of electric-drive vehicles (EDVs = PHEVs, BEVs, and FCVs) in 2050, assuming 
strong behavior-influencing measures (‘AFV Push’; green curve with triangles) or no such measures (‘No AFV Action’; 
brown curve with circles), across six global integrated assessment models. Global economy-wide carbon pricing starts 
immediately after 2020 and is then held constant to 2050 (at a level of 30, 50, or 100 US$/tCO2). Global results shown 
here. 
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Supplementary Figure 2. Shares of electric-drive vehicles (EDVs = PHEVs, BEVs, and FCVs) in 2050, assuming 
strong behavior-influencing measures (‘AFV Push’; green curve with triangles) or no such measures (‘No AFV Action’; 
brown curve with circles), across six global integrated assessment models. Global economy-wide carbon pricing starts 
immediately after 2020 and is then held constant to 2050 (at a level of 30, 50, or 100 US$/tCO2). OECD results shown 
here. 
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Supplementary Figure 3. Shares of electric-drive vehicles (EDVs = PHEVs, BEVs, and FCVs) in 2050, assuming 
strong behavior-influencing measures (‘AFV Push’; green curve with triangles) or no such measures (‘No AFV Action’; 
brown curve with circles), across six global integrated assessment models. Global economy-wide carbon pricing starts 
immediately after 2020 and is then held constant to 2050 (at a level of 30, 50, or 100 US$/tCO2). DevASIA results 
shown here. 
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Supplementary Figure 4. Shares of electric-drive vehicles (EDVs = PHEVs, BEVs, and FCVs) in 2050, assuming 
strong behavior-influencing measures (‘AFV Push’; green curve with triangles) or no such measures (‘No AFV Action’; 
brown curve with circles), across nine different consumer group aggregations for the IMAGE model in the year 2050. 
Global economy-wide carbon pricing starts immediately after 2020 and is then held constant to 2050 (at a level of 30, 50, 
or 100 US$/tCO2). Global results shown here. Consumer group naming convention: ‘EA’ = early adopter, ‘EM’ = early 
majority, ‘LM’ = late majority, ‘M’ = modest driving intensity, ‘A’ = average driving intensity, ‘F’ = frequent driving 
intensity. 
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Supplementary Figure 5. Marginal abatement cost (MAC) curves for CO2 emissions reductions from the Global light-
duty vehicle fleet, assuming strong behavior-influencing measures (‘AFV Push’; green curve with triangles) or no such 
measures (‘No AFV Action’; brown curve with circles), across six integrated assessment models. MAC curves from main 
text shown here, along with additional curves (sensitivity analyses) run with alternative assumptions for fuel carbon 
intensities. Emissions reductions are cumulative (2010-50) and relative to the counterfactual ‘No AFV Action (+ 0 
US$/tCO2)’ scenario. Global economy-wide carbon pricing starts immediately after 2020 and is then held constant to 
2050. For calculating the upstream (indirect) component of emissions, average fuel-specific carbon intensities are in 
most cases assumed exogenously1-5. In the central case (solid lines), these are the following:  +20 gCO2/MJ for 
gasoline/diesel, +15 gCO2/MJ for biofuels, +20 gCO2/MJ for natural gas, +100 gCO2/MJ for hydrogen, and +50 
gCO2/MJ for fossil synfuels. In the optimistic case (dashed lines), these are:  +10 gCO2/MJ for gasoline/diesel, +0 
gCO2/MJ for biofuels, +10 gCO2/MJ for natural gas, +25 gCO2/MJ for hydrogen, and +15 gCO2/MJ for fossil 
synfuels. In the pessimistic case (dotted lines), these are:  +30 gCO2/MJ for gasoline/diesel, +50 gCO2/MJ for biofuels, 
+30 gCO2/MJ for natural gas, +200 gCO2/MJ for hydrogen, and +100 gCO2/MJ for fossil synfuels. Only for electricity 
were model-specific carbon intensities estimated and applied. Comprehensive lifecycle assessments based on model 
results were not conducted for the other fuels, due to insufficient information; hence the exogenous assumptions. 
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Supplementary Figure 6. Marginal abatement cost (MAC) curves for CO2 emissions reductions from the OECD light-
duty vehicle fleet, assuming strong behavior-influencing measures (‘AFV Push’; green curve with triangles) or no such 
measures (‘No AFV Action’; brown curve with circles), across six integrated assessment models. MAC curves from main 
text shown here, along with additional curves (sensitivity analyses) run with alternative assumptions for fuel carbon 
intensities. Emissions reductions are cumulative (2010-50) and relative to the counterfactual ‘No AFV Action (+ 0 
US$/tCO2)’ scenario. Global economy-wide carbon pricing starts immediately after 2020 and is then held constant to 
2050. For calculating the upstream (indirect) component of emissions, average fuel-specific carbon intensities are in 
most cases assumed exogenously1-5. In the central case (solid lines), these are the following:  +20 gCO2/MJ for 
gasoline/diesel, +15 gCO2/MJ for biofuels, +20 gCO2/MJ for natural gas, +100 gCO2/MJ for hydrogen, and +50 
gCO2/MJ for fossil synfuels. In the optimistic case (dashed lines), these are:  +10 gCO2/MJ for gasoline/diesel, +0 
gCO2/MJ for biofuels, +10 gCO2/MJ for natural gas, +25 gCO2/MJ for hydrogen, and +15 gCO2/MJ for fossil 
synfuels. In the pessimistic case (dotted lines), these are:  +30 gCO2/MJ for gasoline/diesel, +50 gCO2/MJ for biofuels, 
+30 gCO2/MJ for natural gas, +200 gCO2/MJ for hydrogen, and +100 gCO2/MJ for fossil synfuels. Only for electricity 
were model-specific carbon intensities estimated and applied. Comprehensive lifecycle assessments based on model 
results were not conducted for the other fuels, due to insufficient information; hence the exogenous assumptions. 
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Supplementary Figure 7. Marginal abatement cost (MAC) curves for CO2 emissions reductions from the DevASIA 
light-duty vehicle fleet, assuming strong behavior-influencing measures (‘AFV Push’; green curve with triangles) or no 
such measures (‘No AFV Action’; brown curve with circles), across six integrated assessment models. MAC curves from 
main text shown here, along with additional curves (sensitivity analyses) run with alternative assumptions for fuel carbon 
intensities. Emissions reductions are cumulative (2010-50) and relative to the counterfactual ‘No AFV Action (+ 0 
US$/tCO2)’ scenario. Global economy-wide carbon pricing starts immediately after 2020 and is then held constant to 
2050. For calculating the upstream (indirect) component of emissions, average fuel-specific carbon intensities are in 
most cases assumed exogenously1-5. In the central case (solid lines), these are the following:  +20 gCO2/MJ for 
gasoline/diesel, +15 gCO2/MJ for biofuels, +20 gCO2/MJ for natural gas, +100 gCO2/MJ for hydrogen, and +50 
gCO2/MJ for fossil synfuels. In the optimistic case (dashed lines), these are:  +10 gCO2/MJ for gasoline/diesel, +0 
gCO2/MJ for biofuels, +10 gCO2/MJ for natural gas, +25 gCO2/MJ for hydrogen, and +15 gCO2/MJ for fossil 
synfuels. In the pessimistic case (dotted lines), these are:  +30 gCO2/MJ for gasoline/diesel, +50 gCO2/MJ for biofuels, 
+30 gCO2/MJ for natural gas, +200 gCO2/MJ for hydrogen, and +100 gCO2/MJ for fossil synfuels. Only for electricity 
were model-specific carbon intensities estimated and applied. Comprehensive lifecycle assessments based on model 
results were not conducted for the other fuels, due to insufficient information; hence the exogenous assumptions. 
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Supplementary Discussion 
 
 
Supplementary Note 1 
 
Because global energy-economy and integrated assessment models (IAMs) have historically been 
limited in their treatment of the social aspects of human decision making, these and other energy 
systems modeling tools have faced a fair amount of criticism over the past several years. For 
instance, of the many critiques of IAMs put forward by ref. 6, one mentioned in passing is that 
“there are also many types of inherent and deep uncertainties deriving from our inability to predict 
human behavior” (p. 325). (See also the rejoinder to ref. 6 by ref. 7.) In a similar vein, ref. 8 contend 
that the bulk of systems models have “unrealistic reliance on the full-rationality of agents”, an 
“inability to properly account for agent heterogeneity”, and an “inability to account for mutual 
influences among agents” (p. 102). A recent editorial in Nature Climate Change advocates for an inter-
disciplinary “research agenda that integrates understanding of the social processes with technical 
analysis of climate and energy systems” (ref. 9, p. 539). In that same Collection on Energy, Climate 
and Society, joint with Nature Energy, ref. 10 call for policy analysis/modeling studies to move beyond 
stylized assumptions of human behavior, which implies “developing understanding of how risk, 
social networks and governance can influence the pace of transition to a low-carbon future” (ref. 9, 
p. 539); meanwhile, ref. 11 discuss the critical role of non-financial factors in household energy 
choices; and ref. 12 suggest that “integrated assessment model-based analysis should be 
complemented with insights from socio-technical transition analysis and practice-based action 
research” (p. 576). Though, as ref. 13 explain, such an interaction can be difficult in practice and 
often proves to be only partially successful. More frequent and purpose-driven dialogue between 
scientists from different fields is evidently key to addressing the human dimension in model-based 
analysis. And as ref. 14 note, when discussing the limited exchange of ideas between academic 
disciplines at present, “A real danger in silo model development is the lack of insights from outside a 
core modelling community.” (p. 1).  
 
 
Supplementary Note 2 
 
There are a number of known issues with (international) carbon pricing, whether applied to the 
transport sector or more generally15,16. These include, among others, (i) the lack of long-term policy 
credibility that arises from fluctuating carbon prices, (ii) the potential relinquishing of proprietary 
information among governments, and (iii) the need for institutional capacity to collect, aggregate and 
communicate information. Carbon pricing, as a sole policy instrument, is particularly ill-suited for 
incentivizing change in the transport sector. As noted by ref. 16, “the complexity of transition 
barriers and the inherent nonlinearity of transition costs make simple policy solutions, such as a 
carbon or petroleum tax, less efficient than comprehensive strategies targeted to specific barriers” 
(p. 11) (see also refs. 17,18). 
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Supplementary Note 3 
 
Sector-focused strategies and policies in transport seek to influence consumers’ financial and non-
financial preferences.  
Supplementary Table 2 maps the correspondence between these preferences and the main 
mechanisms currently being used to support AFV adoption throughout the world today. While not 
all of these measures are equally effective – some have even had perverse effects in certain contexts 
– the concept of sectoral actions has nevertheless gained considerable traction in transport policy 
circles in recent years. Certain types of financial incentives, for instance, have been shown to be 
important, namely those that reduce initial purchase prices through subsidies, grants, or tax credits19-

24. Vehicle-use incentives such as high-occupancy vehicle (HOV) lane access and parking privileges 
have also been found to be effective in certain contexts, while counter-effective in others; their 
success depends in large part on the location-specific severity of the problem they seek to alleviate 
(e.g., congestion, parking scarcity)16,21,25,26. Evidence on the effectiveness of infrastructure build-out is 
less clear. Hydrogen refueling stations appear to be essential for promoting hydrogen fuel cell 
vehicles, whereas the need for widely available rapid charging points for battery-electric and plug-in 
hybrid-electric vehicles depends, to some extent, on a vehicle owner’s ability to charge at home or 
work16,22,23,27-31. 
 
As  
Supplementary Table 2 suggests, different approaches influence different aspects of consumers’ 
vehicle preferences. This is consistent with the evidence that multi-pronged efforts to promote AFV 
adoption are more effective than a single sectoral or economy-wide policy16,32,33. After all, the 
jurisdictions worldwide that have employed a mix of measures and incentives have proven to be the 
most successful at promoting AFV deployment to date34-36. Whatever this mix, strong coordination 
across different levels of government (national, state/provincial, and local) appears to be necessary 
to guarantee AFV success37,38. 
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 Transport strategies and policies influencing consumer preferences (Part 1) 

Targets for 
cumulative 
vehicle sales, 
sales quotas, 
vehicle 
mandates 

Vehicle 
efficiency or 
emission 
standards 

Vehicle sales 
incentives 
(purchase 
subsidies, tax 
credits, fee-
bates, reduced 
registration 
fees) 

Vehicle 
manufacturer 
support 
(RD&D, 
production 
subsidies) 

High transport 
fuel taxes (also 
carbon taxes or 
pricing) 

Government 
and company 
vehicle 
procurement 
policies, other 
demonstration 
& test fleets 

Co
ns

um
er

 p
re

fe
re

nc
es

 

Fi
na

nc
ia

l Upfront 
capital 
cost 

+  ++ ++  + 

Fuel cost  +   ++  

No
n-

fin
an

ci
al

 

Risk 
aversion + + +   ++ 

Model 
variety ++   +  + 

Refueling 
availability +    + ++ 

Range 
anxiety    +  + 

Example countries 
where strategies 
and policies have 
been implemented 

Norway, 
Netherlands, 
UK, USA (10 
states with 
California 
mandates), 
China, France, 
Germany 

Norway, 
Netherlands, 
UK, USA, Japan, 
China, France, 
Germany 

Norway, 
Netherlands, 
UK, USA, Japan, 
China, France, 
Germany 

Norway, 
Netherlands, 
UK, USA, Japan, 
China, France, 
Germany 

Norway, 
Netherlands, 
UK, France, 
Germany 

UK, USA, Japan, 
China, France 
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 Transport strategies and policies influencing consumer preferences (Part 2) 

Pilot programs and 
trialing in car clubs 
or car-sharing 
networks 

Recharging and 
refueling public 
infrastructure 
investments 

Workplace or 
home charging 
incentives 

Preferential 
parking or 
roadway access; 
reduced 
congestion charges 
or tolls 

Promotions, social 
marketing, 
outreach, 
information 
campaigns 

Co
ns

um
er

 p
re

fe
re

nc
es

 

Fi
na

nc
ia

l Upfront 
capital 
cost 

     

Fuel cost  + +   

No
n-

fin
an

ci
al

 

Risk 
aversion ++   + ++ 

Model 
variety +    + 

Refueling 
availability ++ ++ ++  + 

Range 
anxiety + ++ ++  ++ 

Example countries 
where strategies 
and policies have 
been implemented 

France, Germany, 
Netherlands, USA 

Norway, 
Netherlands, UK, 
USA, Japan, China, 
France, Germany 

USA, France 

Norway, 
Netherlands, UK, 
USA, Japan, France, 
Germany 

Norway, 
Netherlands, UK, 
USA, Japan, China, 
France, Germany 

 
Supplementary Table 2. Examples of strategies and policies for encouraging the uptake of AFVs by targeting 
consumer preferences. Table is divided into two parts. Notes: ++ indicates a strong or direct influence on consumer 
preference while + indicates a weak or indirect influence on consumer preference; based on authors’ own assessment, 
drawing primarily from refs. 37,39-41. The selection of countries here represented >90% of global electric vehicle sales in 
both 2014 and 201539,42. Strategies and policies listed are derived primarily from refs. 37,39. 
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Supplementary Note 4 
 
The WITCH model shows almost no deployment of electric-drive vehicles in the DevASIA region 
in the ‘AFV Push (+ 100 US$/tCO2)’ scenario (Figure 1 of main text). Furthermore, in that same 
scenario we see that light-duty vehicle CO2 emissions reductions actually are reduced by an 
increasingly stringent carbon price above 50 US$/tCO2 (Supplementary Figure 7). The principal 
reason for this is a “retreat to oil products” in the light-duty vehicle sector when carbon prices reach 
higher levels. More specifically, in DevASIA, the combination of sectoral actions and economy-wide 
carbon pricing is insufficient to produce a transition towards electric-drive vehicles before 2050, 
because the cost of conventional internal combustion vehicles is so much lower than electric 
vehicles (i.e., a greater cost differential than in other WITCH regions). Decarbonization thus takes 
place only through (i) a substitution of conventional fossil internal combustion engine vehicles with 
hybrid-electric vehicles (the latter consuming less fossil fuel than the former), and (ii) a substitution 
of fossil fuels with biofuels (the latter emitting less CO2 than the former). Initially, the oil-biofuels 
substitution predictably grows with increasing taxes, but then the trend is reversed. This reversal is 
caused by stiff competition for biomass from other parts of the energy system (e.g., biomass 
demand for electricity production), which starts to become non-negligible above 50 US$/tCO2. 
From a system-wide perspective, the value of biomass is clearly greater in these other sectors, and as 
the prices of biofuels are driven upward across the energy-economy, the demand for 
biomass/biofuels from the light-duty vehicle sector is reduced. Incidentally, this dynamic is common 
to all world regions; however, electric-drive vehicles do begin to be deployed before 2050 almost 
everywhere else. This deployment is positively correlated with the carbon tax, and a 100 $/tCO2 
carbon price more than compensates the negative effect of the lower biofuel consumption. Hence, 
the MAC curves for CO2 reductions for the World and OECD shown in Supplementary Figure 5 
and Supplementary Figure 6 remain monotonic. 
 
For the IMAGE model, we see in Figure 1 of the main text that while electric-vehicle deployment in 
2050 is strong globally and in OECD countries in the ‘AFV Push (+ 100 US$/tCO2)’ scenario, 
deployment is quite weak in DevASIA. The cost differential between electric vehicles (battery-
electric and plug-in hybrid-electric) and internal combustion engine vehicles is only a couple 
thousand dollars depending on the country and time period. Yet, the model’s endogenously 
calculated prices for electricity in those countries (namely India and China) are much higher than for 
biofuels; this stands in contrast to the electricity prices in certain other countries/regions (e.g., USA 
and Europe), which see lower electricity prices. Because of the higher electricity prices in DevASIA, 
there is a disincentive to deploy electric-drive vehicles regardless of what sectoral actions are in place 
to help lower non-financial costs. In addition, we see that the the MAC curves for CO2 reductions 
shown for the IMAGE model in the main text and here in the Supplementary Figures section above 
often take on a different shape than for the other models. They are more ‘elastic’ to increasing 
carbon (i.e., fuel) prices in both the ‘No AFV Action’ and ‘AFV Push’ scenarios. Moreover, in the 
‘No AFV Action’ scenario, which sees a limited amount of electric and hydrogen vehicle 
deployment globally, we see that a significant amount of CO2 mitigation is found to still be possible. 
This is because a significant amount of light-duty vehicle emissions reductions can be achieved in 
IMAGE through the adoption of high-efficiency fossil fuel internal combustion engine vehicles and 
conventional (non-plug-in) hybrid-electric vehicles. Non-financial costs are essentially zero for these 
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conventional vehicles and therefore the lack of sectoral policies and strategies does not constrain 
their deployment. 
 
The IMACLIM and TIAM-UCL models tend to exhibit more muted electric-drive vehicle 
deployment relative to the other models in the ‘AFV Push (+ 100 US$/tCO2)’ scenario. A key factor 
influencing this result is the fact that electric vehicles (battery-electric and plug-in hybrid-electric) are 
significantly more expensive than internal combustion engine vehicles (by up to $20,000 per vehicle, 
depending on the country and time period). TIAM-UCL is actually unique in that it is the only 
model of the six not to witness deployment of battery-electric vehicles in ‘AFV Push (+ 100 
US$/tCO2)’; instead biofuel internal combustion engine vehicles and hybrid-electric vehicles as well 
as fossil fuel plug-in hybrid-electric vehicles are preferred. (The cost differential with internal 
combustion engine vehicles is smaller for PHEVs than for BEVs.) This outcome occurs despite 
TIAM-UCL calculating electricity prices that are roughly the same as, or even somewhat lower than, 
biofuels prices in the major countries of OECD and DevASIA. 
 
The GEM-E3 and MESSAGE models show the highest levels of electric-drive vehicle deployment 
globally in the ‘AFV Push (+ 100 US$/tCO2)’ scenario (see Figure 1 in main manuscript). This is 
spurred by the relatively low cost differentials between internal combustion engine vehicles and 
electric vehicles (battery-electric and plug-in hybrid-electric). A marked difference between the 
GEM-E3 and MESSAGE results has to do with the MAC curves for CO2 reduction that are 
calculated by each of the models. GEM-E3 exhibits a much more pronounced shift in the curve 
when sectoral actions are in place to promote electric vehicle adoption. Because the carbon intensity 
of electricity production is lower for GEM-E3 than for MESSAGE (as shown in Supplementary 
Figure 8), the emissions reduction impact of electric vehicle deployment is noticeably greater. In 
other words, because the electricity in GEM-E3 is more cleanly produced, the emissions benefit 
associated with the deployment of electric vehicles is greater. 
 
Moreover, we see from the MAC curves shown in Figure 2 of the main manuscript that some of the 
models (e.g., IMACLIM, MESSAGE and WITCH) exhibit a ‘tipping point’ in the range of 30–50 
US$/tCO2. The shift to vehicles powered by low-carbon biofuels and electricity evidently picks up 
speed when carbon prices reach this threshold. 
 
 
Supplementary Note 5 
 
For the most part, the models indicate greater electric and hydrogen vehicle potential in the OECD 
than in DevASIA. This is the result of two distinct forces at play, both of which are supported by 
the empirics and which highlight the value of bringing regionally-specific heterogeneity into the 
modeling. Firstly, social influence effects tend to be stronger in OECD countries (as a weighted 
average across those countries), meaning that existing perceptions of risk (among the majority of 
consumers) experience less inertia; consequently, concerns related to risk aversion can potentially 
dissipate more quickly, at least with regard to vehicle choice40,43. Secondly, annual average driving 
distances are in general greater in OECD countries44, which means (i) higher-efficiency electric and 
fuel cell vehicles are more attractive than in Asia from a purely financial perspective, and (ii) non-
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financial concerns related to lack of refueling station availability and range anxiety are in general 
more pronounced in the OECD. The latter is especially important, as it shows that overcoming 
infrastructure-related behavioral barriers can lead to bigger impacts in the OECD context. (For 
more information, see Supplementary Data 1 and 2 made available with the online version of the 
paper; these files contain model assumptions for (dis)utility costs, regional multipliers, annual driving 
distances, and consumer group splits, among other things.) We note that one model, MESSAGE-
Transport, shows a different trend here. This is primarily because electricity prices in this model are 
projected to be considerably cheaper in Asian countries over the next several decades, thereby 
increasing the attractiveness of electric vehicles from a financial perspective. 
 
 
Supplementary Note 6 
 
As discussed in the main text of the paper, carbon pricing (or some other form of climate policy 
adding an implicit price on carbon) is an important driver in the integrated assessment models for 
ensuring that the electricity used to power electric vehicles is derived from low-carbon sources. This 
is illustrated in the figure below, which compares the carbon intensities of electricity generation 
(global level) for two different variants of the ‘AFV Push’ scenario: one with a strong carbon price 
and another without a carbon price at all. The values shown are outputs of the models, which 
endogenously determine their electricity generation mixes based on a variety of factors, including 
carbon pricing. 
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Supplementary Figure 8. Carbon intensities of electricity generation at the Global level as calculated by the models in 
the ‘AFV Push (+ 0 US$/tCO2)’ scenario (dashed lines) and ‘AFV Push (+ 100 US$/tCO2)’ scenario (solid lines) 
vehicles. Values are normalized to the 2010 historical estimate, which was approximately 150 gCO2/MJ of electricity 
produced. 

 
 
Supplementary Note 7 
 
Introducing consumer heterogeneity and a detailed representation of non-financial behavioral 
preferences for different types of consumers is shown in the main manuscript and also here in the SI 
to impact the results obtained by the models. Notably, these model enhancements are also to the 
benefit of logit-based models (e.g., GEM-E3T-ICCS, IMACLIM-R, and IMAGE), which often 
capture heterogeneity through generically applied exponent terms in their logit formulations. In 
other words, in a typical logit-based, global energy-economy model, heterogeneity in vehicle 
adoption decisions is stylized, rather than coming about via more ‘natural’ forces (i.e., due to the 
individual decisions of different consumer types). In our study, our approach was to explore the 
latter methodology. Thus, it is important to ensure that the logit-based models utilized here avoid 
any ‘double-counting’ of heterogeneity and behavior. To achieve this, these modeling teams 
modified the default logit terms in their models (which were previously applied to the market as a 
whole and not to unique consumer types), specifically making these parameter settings more 
optimizing in nature. The outcome is that the market heterogeneity now comes about through an 
explicit representation of diverse consumer preferences, which are expressed by the (dis)utility costs 
that vary in magnitude for each consumer group individually. The combination of these two model 
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modifications ensures that heterogeneous behavioral features are ‘unpacked’ into individual 
components, thereby allowing modelers to represent these features in a more consumer-specific 
(less generic) way than more aggregated logit models are typically able to do.  
 
In the figure below, we demonstrate the value of adding diverse consumer groups and a 
heterogeneous representation of non-financial behavioral preferences to one of the logit-based 
models utilized in this study (IMAGE). The figure illustrates this value with some ‘before-and-after’ 
results. When running a stringent climate mitigation scenario similar to ‘No AFV Action (+ 100 
US$/tCO2)’ with the original logit formulation applied to a single consumer group (left panel), we 
see only modest deployment of plug-in hybrid-electric vehicles and essentially no battery-electric 
vehicles. Technological heterogeneity does come about, but for this single consumer the higher-cost 
BEV option is never attractive. In contrast, when consumers are represented in a more 
heterogeneous way (right panel), the vehicle market takes on a different character over time, as 
certain consumer groups (namely early adopters in urban areas) find BEVs to be attractive. The 
latter dynamic is not captured using stylized logit parameter settings, unless the logits were pushed to 
their limits so as to ensure market heterogeneity in all cases. This can be done, but there is of course 
great uncertainty in how to ‘tune’ these logits to represent the future. 
 

 
Supplementary Figure 9. Shares of light-duty vehicles over time (globally) in a stringent climate change mitigation 
scenario similar to ‘No AFV Action (+ 100 US$/tCO2)’ run by the IMAGE model. Left panel: original model 
formulation with a single consumer group and stylized representation of heterogeneity and behavior (default logit 
settings). Right panel: new model formulation with 27 consumer groups and an explicit, heterogeneous representation of 
non-financial behavioral preferences. 

 
 
Supplementary Note 8 
 
An additional scenario, ‘AFV Ambition’, was also run by the modeling teams for each of the four 
climate policy cases. The storyline is intentionally optimistic in the policy/strategy and behavioral 
senses. It assumes current (majority) risk aversion and concerns over limited model variety, lack of 
refueling station availability, and range anxiety are overcome immediately – they are non-issues for 
consumers from today onward. Hence, intangible costs are zero for all AFV types in all regions, 
meaning that all vehicle purchasing decisions are made based solely on pure financial considerations 
(capital, fuel, maintenance costs). The ‘AFV Ambition’ scenario, in other words, depicts an 
environmentally-driven global value shift, perhaps spurred on by climate change concerns and other 
anticipated co-benefits of AFVs. 
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As a point of reference, the electric-drive vehicle adoption shares exhibited in the ‘AFV Push’ 
scenario with the highest carbon pricing scheme (100 US$/tCO2 after 2020) are somewhat lower 
than those foreseen in the corresponding ‘AFV Ambition’ case. In the latter, EDV shares across the 
models average 31% globally by 2050 [range: 19-42%], compared to 24% [range: 15-34%] in ‘AFV 
Push’. One might expect the shares in ‘AFV Ambition’ to be greater, especially considering the high 
carbon tax in place; but this simply underscores the inherent challenge of overhauling the global 
vehicle fleet and its requisite fuel supply infrastructure, both of which have a considerable amount of 
inertia associated with them (long technology lifetimes, etc.). As the National Research Council 
concluded in a recent study of what it would take to transform the U.S. passenger vehicle fleet, 
“even an aggressive, well planned and supported transition would take well over 25 years to 
complete” (ref. 45, p. 13). 
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Supplementary Methods 
 
Brief description of the global integrated assessment modeling frameworks 
 
What follows are concise overviews of each of the energy-economy and integrated assessment 
models employed in this study: GEM-E3T-ICCS, IMACLIM-R, IMAGE, MESSAGE-Transport, 
TIAM-UCL, and WITCH. Much lengthier descriptions can be found at the following resource: 
 
The Common Integrated Assessment Model (CIAM) documentation website developed within the context of the 
ADVANCE project46 
http://themasites.pbl.nl/models/advance/index.php/ADVANCE_wiki  
 
 
GEM-E3T-ICCS  
The GEM-E3T-ICCS model is a global multi-sectoral, multi-regional, recursive-dynamic 
Computable General Equilibrium (CGE) framework. The model covers the back-and-forth 
interlinkages of all industries and calculates the vector of prices that clear all markets (commodity, 
capital and labor) simultaneously. Trade representation is based on the Armington hypothesis 
(domestic and imported commodities of the same industry are treated as imperfect substitutes). 
Demand for commodities, services and production factors derive from utility maximization of 
households and cost minimization of production firms. Households’ income sources are: labor, 
dividends and social transfers. The model represents involuntary unemployment through 
endogenous labor supply curves. Capital is fully mobile across sectors, hence a uniform rate of 
return by country is calculated.   
 
GEM-E3T-ICCS is an enhancement of the standard GEM-E3-ICCS model47, but with more detail 
in the transport sector, as well as a representation of fleet choice and energy consumption. It 
provides results for water-, air- and land-based transport, including for passenger and freight 
transport modes, covering separately rail, road and a distinction between public and private 
transport. The model distinguishes technologies for transport means, and makes choice of 
technologies endogenous in the simulation of investment of sectors providing transport services and 
the purchasing of durable goods, such as cars, by households. Finally, the model relates the 
operation of the transport means to sectors producing the energy commodities, including alternative 
fuels, such as electricity and biofuels. All these extensions are formulated in a way that is consistent 
with the general equilibrium framework of the model. This extension allows for a link to a detailed 
transport sector with the rest of the economy, hence capturing feedback effects across sectors. 
GEM-E3T-ICCS represents explicitly the production of biofuels. Bio-gasoline and biodiesel 
production is made with feedstocks produced from the agriculture sectors. Biofuels are further 
disaggregated according to the feedstock and the associated conversion technologies. Transport 
sectors and households consume oil products, gas, biofuels and electricity for transport purposes. 
Manufacturing of vehicles was made explicit in GEM-E3T-ICCS by distinguishing sectors 
producing conventional vehicles and a sector producing electric vehicles. This was done with the 
aim to capture price differentials of car types and the impacts of global competition on car 
manufacturing. The sector producing electric vehicles has endogenous learning functions reflecting 

http://themasites.pbl.nl/models/advance/index.php/ADVANCE_wiki
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the possibility of cost reduction, mainly for batteries, as a function of production volume. The stock 
of vehicles by transport sector and the cars, represented as durable goods in the modelling of 
behavior of households, change over time as a result of mobility and scrappage. The choice of 
between vehicle technologies depends on relative costs, which include purchasing cost, running 
costs and cost factors reflecting uncertainty factors depending on technology maturity and the 
availability of recharging or refueling infrastructure. The cost of conventional technologies is 
penalized when they do not comply with CO2 standards. Taxes are explicitly represented, and the 
revenues are part of the public budget. Subsidies and expenditures for public infrastructure are also 
part of the public budget. Deficits or surpluses of the public budget influences the economy through 
changes in interest rates. In this way, the model aims at capturing the economy-wide effects of 
public money used in transport sectors and infrastructure, and the effects of fuel taxation or 
eventual subsidization of new car technologies. More details on transport modelling in GEM-E3T-
ICCS can be found in ref. 48. 
 
Of importance for this study, the default settings for the exponent terms in the model’s transport 
sector logit equations (which were previously applied to a single type of consumer in each region) 
were modified so as to make them more optimizing in nature. In other words, the logits no longer 
force heterogeneity in vehicle adoption patterns, but rather these patterns emerge naturally from the 
diverse representation of consumers and their unique behavioral features. 
 
 
IMACLIM-R  
IMACLIM-R is a multi-region and multi-sector model of the world economy that represents the 
intertwined evolution of technical systems, energy demand behavior and economic growth49. It 
combines a Computable General Equilibrium (CGE) framework with bottom-up sectoral modules 
in a hybrid and recursive-dynamic architecture (logit formulations used in the transport sector). 
Furthermore, it describes growth patterns in second-best worlds with market imperfections, partial 
uses of production factors and imperfect expectations. The model represents endogenous Gross 
Domestic Product (GDP) and structural change, energy markets and induced technical change. The 
scope of greenhouse gases represented is restricted to CO2 emissions from fossil fuel combustion. 
The main exogenous assumptions are demography and labor productivity growth, the maximum 
potentials of technologies (e.g., renewable, nuclear, carbon capture and storage, electric vehicles), the 
learning rates decreasing the cost of technologies, fossil fuel reserves, the parameters of the 
functions representing energy-efficiency in end-uses, and the parameters of the functions 
representing energy-demand behaviors and life-styles (e.g., motorization rate, residential space, 
evolutions in consumption preferences).   
 
Within the broader landscape of integrated assessment models, IMACLIM-R can be labeled as a 
recursive-dynamic General Equilibrium Model with a medium variety of low-carbon technologies. 
Diagnostics of its response to carbon pricing places it as a “low response” model, which means that 
a given carbon price leads to relatively low abatement and high cost per tonne of CO2 abated 
compared to other IAMs50. 
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Of importance for this study, the default settings for the exponent terms in the model’s transport 
sector logit equations (which were previously applied to a single type of consumer in each region) 
were modified so as to make them more optimizing in nature. In other words, the logits no longer 
force heterogeneity in vehicle adoption patterns, but rather these patterns emerge naturally from the 
diverse representation of consumers and their unique behavioral features. 
 
 
IMAGE  
The IMAGE transport model is described in detail by ref. 51.  The transport model is a state-of-the-
art IAM transport implementation, characterized by high detail, in terms of its technological, socio-
demographic, and regional resolution. Traveling costs form the basis of the modeling both in 
determining modal shares, as well as vehicle shares per mode, based on a multi-nominal logit (MNL) 
model. The model represents 7 passenger transport modes and 6 freight transport modes. Modal 
costs depend on real costs per passenger-km, non-monetary preferences, and a time weight that 
represents the importance of time compared to monetary costs. Non-monetary preferences are used 
to calibrate the model to historical observations and account for factors that go beyond cost (e.g. 
driving a car is more expensive than other modes, but a popular travel choice). Then, in future years, 
for the purposes of this study, these default non-monetary preference parameter settings were 
removed and instead the (dis)utility costs used by all other models were also applied in IMAGE. In 
addition, the default settings for the exponent terms in the model’s transport sector logit equations 
(which were previously applied to a single type of consumer in each region) were modified so as to 
make them more optimizing in nature. In other words, the logits no longer force heterogeneity in 
vehicle adoption patterns, but rather these patterns emerge naturally from the diverse representation 
of consumers and their unique behavioral features.  
 
The travel money budget (TMB) concept is used to relate travel demand to income. Increasing 
income leads to increasing travel demand per capita, which results in more time spent travelling. 
Through the concept of travel time budget (TTB), time gets more weight, and as a result faster 
modes are valued more. This dynamic relation results in the empirically observed shift to higher 
speed modes as income increases51. The model is calibrated to passenger-km and energy data from 
2005 based on refs. 52 and 53. 
 
The costs per vehicle type, which largely determines vehicle choice, depend on energy costs, 
technology costs, non-energy costs (related to maintenance and vehicle purchase), and the load 
factor, which is regionally dependent. Energy efficiency in the model is captured in three ways: (i) 
Price-induced efficiency improvement: in response to higher fuel prices, more efficient vehicles 
become cost-competitive, (ii) Autonomous efficiency improvement: technology costs of efficient 
technologies decline over time as a result of technological learning, (iii) Mode shift: increasing fuel 
prices can also result in a shift toward more efficient modes51,54.  Reduction of transport GHG 
emissions can be achieved through a carbon tax, resulting on the one the hand in reduced 
competitiveness of technologies and modes with high dependency on fossil fuels, and on the other 
hand through the concept of TMB, as the increased price of travelling leads to less travel demand 
overall. 
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MESSAGE-Transport  
The MESSAGE model (Model for Energy Supply Strategy Alternatives and their General 
Environmental Impact) is an energy-economic model based on a linear programming (LP) 
optimization approach which is used for medium- to long-term energy system planning and policy 
analysis46,55. The model minimizes total discounted energy system costs, and provides information on 
the utilization of domestic resources, energy imports and exports and trade-related monetary flows, 
investment requirements, the types of production or conversion technologies selected (technology 
substitution), pollutant emissions, and inter-fuel substitution processes, as well as temporal 
trajectories for primary, secondary, final, and useful energy. To estimate regionally-aggregated, 
sector-based air pollutant emissions and related pollution control costs, MESSAGE has been linked 
to the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model56. For the 
estimation of price-induced changes of energy demand, iterations between the MESSAGE model 
and the macro-economic model MACRO are relied upon ref. 57. In MACRO, capital stock, available 
labor, and energy inputs determine the total output of the economy according to a nested constant 
elasticity of substitution (CES) production function. Through the linkage to MESSAGE, internally 
consistent projections of GDP and energy demand are calculated in an iterative fashion that takes 
price-induced changes of demand and GDP into account. MESSAGE is used in conjunction with 
MAGICC (Model for Greenhouse gas Induced Climate Change), version 6.8, for calculating 
internally consistent scenarios for climatic indicators such as atmospheric concentrations, radiative 
forcing, annual-mean global surface air temperature and global-mean sea level implications58,59.  
 
The version of the model employed in this study is known as MESSAGE-Transport V.5a. This 
model version goes beyond previous ones in its detailed representation of the transport sector, 
meaning individual vehicle technologies are characterized across the various transport modes: light-
duty passenger vehicles, two-wheelers, heavy-duty freight trucks, busses, passenger aviation, 
international shipping, and passenger rail, as well as a residual category that includes freight aviation, 
domestic shipping, and freight rail43. In conjunction with this set-up, the MESSAGE-MACRO 
linkage is adjusted so that passenger mode choices are responsive to service prices and travel-money 
and travel-time constraints (via a soft-linked logit-based model). Energy service demands are 
provided exogenously to MESSAGE; they are then adjusted endogenously based on energy prices 
thanks to the linkage with MACRO. There are seven demands in the stylized end-use version of the 
model, one of which is transport. In the more detailed MESSAGE-Transport used in this study, this 
is adjusted to six non-transport demands (for the industrial and residential/commercial sectors) and 
seven transport demands (for LDVs; two-wheelers; freight trucks; passenger aviation; buses; 
passenger rail; and residual category covering freight aviation, freight rail and domestic shipping). 
Future demand for passenger travel in the various modes is projected on a passenger-kilometer 
(pkm) basis as a function of per-capita GDP, with gradual regional convergence, thereby deviating 
from the ‘scenario generator’ approach used in previous applications of MESSAGE (and still used in 
the non-transport sectors of MESSAGE-Transport). (See ref. 60 for more information about the 
MESSAGE scenario generator.) MESSAGE-Transport V.5a also contains a detailed representation 
of energy prices, taxes, and subsidies at both the primary and final energy levels (across all fuels, 
sectors, and regions). The detailed transport model version described in ref. 43 was combined with 
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the version developed for a separate study on oil price impacts61; the combination of these two 
model versions resulted in MESSAGE-Transport V.5a. 
 
 
TIAM-UCL  
TIAM-UCL62 is a variant of the original TIMES Integrated Assessment Model63,64, further developed 
at University College London (UCL). The model is a technology-rich, bottom-up, partial equilibrium 
energy systems model, formulated as a linear optimization problem and covering in detail the full 
energy system from resource extraction to final end use of energy. The world is aggregated into 
sixteen global regions in the model and the time frame of a model run extends to 2100. A simple 
climate module, calibrated to MAGICC, is also included in TIAM-UCL. The database of the model 
includes hundreds of technologies across the energy sector and also describes energy commodity 
trade between the various regions. Technology/sector-, time period- and region-specific hurdle rates 
are included for technologies. The 42 energy service demands projected for each region are 
calculated from a set of exogenously defined drivers (e.g. GDP, population, number of households); 
the demands respond to prices.  
 
Thirteen of the above mentioned energy demands are for the transport sector, for international and 
domestic navigation and aviation, for a range of road transport modes (light-duty cars and trucks, 
two-wheelers, three-wheelers, buses, commercial/medium/heavy-trucks) as well as for rail 
(passenger and freight). Each of these service demands can be fulfilled with a range of different 
technologies and all the demands are own-price elastic. The drivers behind the demands differ, but 
are generally either GDP, population or both and the decoupling factor that governs the relationship 
between the driver, and the energy service demand is region- and time period-specific. GDP per 
capita is the main driver for light-duty cars and trucks demand, then further scaled with the size of 
the population. Mode shifting or cross-price elasticities are not included in the model formulation. 
For the purposes of this study, which utilizes (dis)utility costs to represent consumers’ non-financial 
preferences for vehicle purchase decisions, the hurdle rates used in the standard TIAM-UCL variant 
are excluded from the transport sector. 
 
 
WITCH  
WITCH (World Induced Technical Change Hybrid) is an Integrated Assessment Model aiming at 
studying the environmental, economic, and energy dimensions of climate change over the 21st 
century, and their interactions. It is defined as hybrid because it is an aggregated macro-economic 
inter-temporal optimization model with perfect foresight combined with a detailed description of 
the energy sector. World countries are grouped into thirteen regions, which behave independently 
optimizing their own decision variables and whose strategic interactions are modeled through a 
Nash-type dynamic game. One distinguishing feature is the endogenous modeling of technical 
change, which covers the broad energy efficiency sector as well as specific clean technologies. 
 
The model is structured according to a non-linear Constant Elasticity of Substitution (CES) 
framework, where the aggregated capital and labor nodes are combined with the energy service node 
to provide the final output. The energy service node is divided into the capital of energy R&D and 
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the actual energy generation. The former models energy efficiency, since a high R&D stock allows 
for the provision of the same energy service with lower actual energy supply. The energy node is 
firstly divided into the electric and the aggregated non-electric sectors, and then further 
disaggregated down to the single technologies. The electric part is characterized by a rich technology 
representation, while the non-electric sector nodes are aggregated per type of fuel. Ref. 65 provides 
further information on the model in general. 
 
Within the transport sector, road passenger (light-duty vehicles only) and road freight are explicitly 
modeled, while the rest of the sector is indirectly modeled in the non-electric sub-tree described 
above. The two road transport modules do not explicitly appear in the CES structure, but are linked 
to the rest of the model through two links. On the one hand, investments and supplementary costs 
in the transport sector decrease the aggregated consumption, which leads to the need for the cost 
optimization of the vehicle fleet; on the other hand, transport technologies compete with the other 
energy technologies for the energy resources. Transport demand is explicitly calculated based on 
GDP and population projections and it is met with four types of vehicles (traditional, hybrid, plug-in 
hybrid, battery-electric vehicles) and three types of fuels (oil, biofuel, and electricity). Technical 
change is accounted for as well, with an exogenous increase of the vehicles’ efficiencies and an 
endogenous decrease of battery costs as a consequence of dedicated R&D investments (learning-by-
researching). More details on the transport modeling in WITCH can be found in refs. 66-68. 
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Approach to modeling heterogeneous behavioral features in the global models 
 
Representing behavioral features of vehicle choice in a global energy-economy model requires the 
mean representative decision-agent to be divided into distinct consumer segments characterized by 
different preferences and vehicle use characteristics. This implies a two-step methodology, as first 
illustrated in a test case by ref. 69 using the TIMES bottom-up modeling framework and then later in 
a proof-of-concept study by ref. 43 using the MESSAGE-Transport global integrated assessment 
model framework. The first step is to disaggregate the single, homogenous light-duty vehicle mode 
(both technologies and demands) along several different dimensions. The second step is to add extra 
cost terms (so-called “(dis)utility costs”, “intangible costs”, or “non-financial costs”) on top of the 
vehicle capital costs already assumed in the model. These (dis)utility costs link to the non-financial 
preferences found to be influential in empirical studies (e.g., range anxiety, lack of refueling station 
availability, risk aversion; see ref. 43, Table 2), and are specific to particular consumer groups and 
technologies. They also vary by region and can decline over time, depending on the scenario 
storyline. Further details about this methodology, as we have applied it in the various global 
modeling frameworks of this study, are given below and in refs. 43,69. For an extended discussion of 
the theoretical underpinnings of this integrated approach, see ref. 70. 
 
Note that as part of the Supplementary Information made available with this paper, we include 
spreadsheets with calculations for the consumer group splits, the (dis)utility costs, and the regional 
multipliers. This information will be useful for other modelers who would like to build upon our 
approach within other energy-economy and integrated assessment model frameworks. 
 
 
Step 1: introduce heterogeneity 
In the most detailed formulation, consumers (potential vehicle buyers) within one of the respective 
model’s native model regions are divided along three separate dimensions. These dimensions are 
chosen because the empirical evidence base suggests they (or their derivatives) are important 
behavioral features of vehicle choice (see ref. 43, Table 2).  

1. Settlement pattern:  Urban – Suburban – Rural 
2. Attitude toward technology adoption:  Early Adopter – Early Majority – Late Majority 
3. Vehicle usage intensity:  Modest Driver – Average Driver – Frequent Driver 

 
The combinations possible in this 3x3x3 arrangement led to 27 unique consumer groups 
(Supplementary Figure 10). All members of the entire driving population (within a particular model 
region) fall into one of these 27 groups. Division into groups is done with respect to service 
demands, i.e., passenger-kilometers. Note that two of the models, IMACLIM-R and WITCH, 
implemented a 9-group disaggregation, collapsing the settlement pattern dimension and thus 
distinguishing consumers by technology attitude and vehicle usage intensity. (A sensitivity analysis 
with the (dis)utility cost data indicated that such a simplification could be made without losing much 
in the way of model insights, while the choice of 9 consumer groups allowed for a less 
computationally-intensive modeling framework.) Apportionment of current and future vehicle 
demands by consumer group is determined using base-year transport statistics (for vehicle usage 
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intensity), population projections (for settlement pattern), and diffusion theory (for technology 
adoption propensity). For making such calculations, we relied on, for example, US National 
Household Travel Survey (NHTS) data compiled and programmed into the MA3T model71 (see 
below for further details), Rogers’s classification of technology adopter types72, and the urban-rural 
population projections developed in the Shared Socio-economic Pathways exercise (namely the 
median-level SSP2 scenario73-76).  
 
Introducing heterogeneity into the LDV sub-sector of each model requires that the relative shares 
among the 27 (or 9) consumer groups are projected over time and by native model region. We then 
multiplied the time-varying %-share estimates for each consumer group within each region by the 
previously existing single LDV passenger-km demand trajectories in order to generate a 
heterogeneous set of service demand projections. In other words, the LDV sub-sector becomes 
characterized by 27 (or 9) separate demands, each being serviced by the same suite of vehicle 
technologies as before (e.g., gasoline/diesel/biofuel ICEs and HEVs, H2 FCVs, BEVs, PHEVs). At 
this point, one could choose to clone these technologies across the 27 (or 9) consumer groups (i.e., 
making exactly the same assumptions for capital and O&M costs, fuel economies, vehicle lifetimes, 
occupancy rates, etc.), or the group-specific technologies could be differentiated slightly. Decisions 
on how to do this were left to each of the teams. In MESSAGE-Transport and WITCH, for 
instance, the modelers opted to keep all the cost and efficiency assumptions the same but varied the 
vehicle-specific capacity factors (km/yr) and vehicle lifetimes depending on the (regionally-specific) 
driving intensities of the different consumer groups (Modest/Average/Frequent).  
 
We have estimated the consumer group shares as best as possible for each region. They are 
calculated as multiplicative combinations of the share splits for settlement pattern, attitude toward 
technology adoption, and vehicle usage intensity (see Supplementary Data 1 made available with the 
online version of the paper). For settlement pattern, urban-rural population projections from the 
Shared Socio-economics Pathways (SSP) exercise are used. Suburban share splits are then carved out 
of the urban portion based on modeler judgement; these splits are uncertain since the distinction 
between urban and suburban is not always clear-cut in many parts of the world. For technology 
attitude, we hold all shares the same over time and do not differentiate by region. For vehicle usage 
intensity, share splits for certain US sub-regions (i.e., the 9 Census regions) are pulled directly from 
MA3T and then used as proxies for other countries/regions. (One method for guiding the choice of 
proxies has been, for example, to identify similarities in population density between US sub-regions 
and other countries/regions.) These uncertainties and simplifications should be recognized at the 
outset, though they are not thought to be any larger than those surrounding the (dis)utility cost 
estimates themselves. 
 



ACCEPTED DRAFT – DO NOT DISTRIBUTE – Manuscript under embargo at Nature Energy until mid-2018 

29 
 

 
Supplementary Figure 10. Schematic illustration of heterogeneous consumer groups within the light-duty vehicle 
sector. 
 
 
Step 2: add intangible costs 
Once a disaggregated set of heterogeneous agents has been programmed into the model, the second 
important step is to assign intangible, or (dis)utility, costs to each of the vehicle technologies that can 
potentially be purchased by a consumer within a given group. These (dis)utility costs are added as 
extra cost terms to the vehicle capital costs already assumed, and they vary by technology, by 
consumer group, by country/region, and over time. (For more information, see Supplementary Data 
2 made available with the online version of the paper; this file contains all parameter assumptions 
and underlying equations for calculating the (dis)utility costs on a technology-, region-, and 
consumer group-basis.) 
 
The costs have been calculated using a specialized version of the MA3T vehicle choice model 
(Market Acceptance of Advanced Automotive Technologies) (see http://teem.ornl.gov/ma3t.shtml 
or refs. 71, 77, 78, 79, 80, 81, 82, and 83 for details), which was made available, upon special request, by the 
original model developers. MA3T, which utilizes a Nested Multi-Nomial Logit (NMNL) discrete 
choice approach, has since 2009 been developed by researchers at Oak Ridge National Laboratory, 
in order to study vehicle transitions in the US light-duty vehicle sub-sector out to 2050. Under 
standard operation, MA3T estimates choice probabilities for a suite of vehicle technologies within 
each consumer group (hundreds of groups). In carrying out this calculation, the model calculates a 
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“generalized cost” for each technology within a given group; this cost aggregates both real costs 
(e.g., capital, fuel and O&M costs) and perceived costs (e.g., range anxiety, technology risk, etc.). By 
strategically breaking the MA3T simulation at the point where these generalized costs are tallied, we 
are able to report the intangible perceived costs (i.e., (dis)utility costs) from the model.  
 
As described more fully below, the (dis)utility cost estimates that we take from MA3T are comprised 
of five distinct sub-components, and they come in the form of equations and assumptions that 
either (i) have been pulled directly from the model (for the risk premium, model variety/availability, 
and EV charger installation sub-components), or (ii) were estimated based on running an ensemble 
of scenarios using it (for the range anxiety and refueling station availability sub-components). In the 
latter case, a structured sensitivity analysis was performed with MA3T wherein assumptions 
regarding refueling station and recharging infrastructure availability were varied from 0% to 100% of 
network coverage in the USA context (with finer gradation at the lower-end below 10% coverage). 
This allowed us to develop reduced-form relationships for these two (dis)utility cost sub-
components as a function of refueling/recharging coverage within a given region and for each of the 
27 consumer groups separately. The relationships have either power-law (refueling availability) or 
piece-wise linear (range anxiety) functional forms. In all cases (whether for electric charger coverage 
or availability of hydrogen or natural gas refueling), as infrastructure becomes more widespread, the 
associated (dis)utility costs for a given fuel-vehicle type come down.  
 
Supplementary Figure 11 gives examples – for one of the 27 consumer groups in the USA context – 
of how the range anxiety and refueling station availability (dis)utility cost components depend on the 
level of recharging/refueling infrastructure. Range anxiety applies to electric vehicles, while refueling 
station availability applies to hydrogen vehicles (and also natural gas vehicle, although not shown 
here.) In both cases, costs drop quickly as the coverage increases from 0% to 10%; and by 20-30% 
coverage, the costs have leveled off. This finding is consistent with previous studies, some of which 
used GIS-based spatial optimization and traffic flow models to calculate the average time drivers 
would need to reach refueling stations offering hydrogen as a function of the number of those 
stations84-88. Coverage of 10-20% was found to offer an acceptable level of convenience in such 
cases. 
 

 
Supplementary Figure 11.  Example of the relationship between recharging station availability, reflected in vehicle 
range anxiety (left panel; BEVs with a range of 100 miles) and refueling station availability (right panel; H2FCVs) 
(dis)utility cost components and the level of recharging or refueling infrastructure availability. USA estimates for a single 
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consumer group are shown (Urban – Early Majority – Average Driver). Cost values in US$2005. Functional forms 
derived from a sensitivity analysis using the MA3T model. 
 
 
Although the standard version of MA3T considers a number of non-financial vehicle purchase 
attributes, we focus on five of these for implementation in the models of this study (i.e., those 
comprising nearly the entirety of the total summed (dis)utility costs; see Supplementary Figure 13). 
These (dis)utility cost sub-components are listed below, with more detailed descriptions being given 
in Supplementary Table 3. Most of these attributes have been found in previous studies to be 
important determinants of AFV adoption (see ref. 43, Table 2). While there is inherent uncertainty in 
the magnitude of any single cost component, of the five used here, range anxiety, refueling station 
availability, and model variety/availability tend to dominate, depending on the particular vehicle 
technology, consumer group and region under consideration (see Supplementary Table 3). 
Supplementary Figure 12 provides an illustration of present-day (dis)utility costs of several 
technologies estimated for two different consumer groups in the USA (the underlying calculations 
assume extremely low AFV sales/stock and very limited refueling/recharging infrastructure 
availability). Particularly noteworthy for modeling is the fact that the sum of the five (dis)utility cost 
sub-components may be as little as ~15% or as much as ~165% of the actual vehicle investment 
cost (i.e., the retail price).  
 
We also note that risk premiums are estimated to be relatively small on their own, at least according 
to the framework employed here, which estimates risk premiums individually as part of a larger set 
of non-financial attributes. (If components like range anxiety, refuelling station availability and 
model variety/availability were not separated out on their own but were instead lumped into a more 
generic risk premium component, then the latter would be far larger in magnitude. In other words, 
this is a definitional issue.) However, according to our methodology a consumer’s attitude toward 
technology risk also affects her valuation of range anxiety as well, so there is an indirect effect. Ref. 
70 discusses each of these attributes in detail, including a step-by-step analysis of what happens when 
each is considered in succession. 

1. Range anxiety (limited electric vehicle driving range) 
2. Refueling station availability, or lack thereof (for non-electric vehicles) 
3. Risk premium (attitude toward new technologies) 
4. Model variety/availability (diversity of vehicles on offer) 
5. Electric vehicle charger installation (home/work/public) 

 
The version of MA3T that we employ also considers vehicle acceleration, cargo space, and towing 
capability as additional non-financial attributes that may affect consumers’ preferences when making 
vehicle purchase decisions. These three (dis)utility cost sub-components, however, are all estimated 
to be relatively small by MA3T (based on earlier empirical work); thus, we ignore them for the 
purposes of our model implementation. This is not to say they are not important though, especially 
for certain types of consumers. One could actually argue that at an aggregate, non-explicit level the 
negative (dis)utility costs in our implementation, which are associated with risk premium among 
early adopters, do actually capture the improved acceleration attribute for electric-drive vehicles, as 
well as considerations of status/symbolism within peer networks and the potential for quieter 
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driving during vehicle operation. In truth, though, when some of these vehicle platform- and brand-
dependent attributes would really become important is when different LDV size classes, makes, and 
models would be modeled individually (e.g., sports car, small/midsize/large car, small/large SUV, 
minivan, pickup truck), and at the moment we do not distinguish between separate vehicle types in 
the IAMs of this study. 
 
 
(Dis)utility cost 
sub-component 

Description of 
attribute Monetization approach Regionalization 

approach 
Range anxiety  This attribute 

monetizes the 
perceived anxiety felt 
by a consumer when 
depending on a limited-
range, all-electric 
vehicle for all of 
his/her daily driving 
needs, particularly 
longer-distance travel. 
Hence, this sub-
component is only 
relevant for all-electric 
vehicles. 

The cost is proxied based on the estimated amount a 
consumer would be willing to spend on rental cars over 
the course of a year in order to satisfy driving needs on 
those days when the vehicle’s all-electric range is 
insufficient. Costs depend on the charge-sustaining 
capacities of vehicles (i.e., driving ranges), vehicle 
efficiencies, daily driving distances, the availability of 
home/work/public recharging stations, and the attitudes 
of consumers toward technology risk. In USA, initial costs 
(@ 0% recharging availability) range from 0 to 40k 
$/vehicle for BEVs, depending on consumer group. 
 
In the original MA3T model, the assumption is that if a 
rental car would be provided for free to use on those days 
when the battery-electric vehicle (BEV) range is 
insufficient, then the consumer would feel indifferent 
between possessing an electric vehicle or a conventional 
internal combustion engine vehicle (for which range 
limitations are not an issue). The cost of rental cars is 
assumed to be $50 per day89. The number of range-
insufficient days is calculated based on the specified 
Gamma distribution of daily distance for each consumer 
group and is explained in detail in ref. 89. This Gamma 
distribution method was proposed and validated with real-
world driving data90,91. The driving range of a BEV is a 
function of not just the battery capacity but also the 
amount of electricity drawn from home, workplace, public 
and even on-road wireless charging systems, depending 
on the consumer group’s access to these systems and 
driving patterns. These are scenario assumptions in the 
model. For example, a consumer that is assumed to 
charge the BEV every night at home and has a short 
commute distance will only draw a small amount of 
electricity to recover the short commute distance, but not 
the amount calculated based on the charger power and 6-
8 hours of at-work vehicle parking. However, if home 
charging is not available and the BEV leaves home in the 
morning at a very low state-of-charge (SOC), the 
electricity drawn from workplace chargers will be 
significantly much more. The complicated relationships 
between range, SOC and different charging systems are 
carefully formulated in a coherent charging infrastructure 
model, reported in ref. 81. 

Regional multipliers 
(calculated based on 
differences in WTPs 
between countries from 
discrete choice studies 
focusing on range 
anxiety) are used to 
adjust costs between 
the USA and other 
countries/regions. 

Refueling station 
availability  

This attribute 
monetizes the 
perceived 

The cost is proxied based on the estimated amount of 
time a driver would need during each refueling event in 
order to reach a station supplying the fuel s/he needs. 

Regional multipliers 
(calculated based on 
differences in WTPs 
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inconvenience and 
hassle felt by a 
consumer when 
assessing his/her ease 
of access to refueling 
stations. Hence, this 
sub-component is only 
relevant for liquid fuel, 
natural gas, and 
hydrogen vehicles.  

Aggregating those time demands and converting them 
into a monetary values (also considering, according to 
other studies, that consumers put more value on the time 
associated with refueling) results in a (dis)utility cost. 
Costs depend on vehicle ranges and efficiencies, daily 
driving distances, and the availability of refueling stations 
within the transport network. In USA, initial costs (@ 0% 
refueling availability) range from 30k to 100k $/vehicle 
for H2FCVs and from 4k to 14k $/vehicle for NGVs, 
depending on consumer group. 
 
In the original MA3T model, the perceived annual cost 
due to limited refueling station availability is calculated as 
the refueling inconvenience cost (RIC) for each refueling 
trip multiplied by the number of refueling trips per year. 
Gamma distributions in MA3T depict daily driving 
requirements over the course of the year. RIC is 
calculated as the product of refueling travel time from a 
random origin in the network (weighted by traffic 
volume) to the nearest station, time value and hassle 
multiplier. Refueling travel time is a power function of 
fuel availability, i.e. the ratio of the number of stations 
offering the alternative fuel to a reference number of 
gasoline stations, similar to the function estimated by ref. 
92 for Southern California. MA3T allows users to specify 
the travel times for 100% and 10% fuel availability for 
different locations, so that the parameters of the power 
function can be specified for the given location. The time 
value is assumed to be $25/hour and the hassle multiplier 
is estimated to be 3.56, representing the fear of risk of 
running out of fuel during the search for and travel to 
stations. These two values are similar to the assumptions 
of $20/hour and 3.0 made in ref. 45, and they are 
consistent with stated preference analysis of consumers’ 
preferences for refueling availability93. 

between countries from 
discrete choice studies 
focusing on refueling 
infrastructure) are used 
to adjust costs between 
the USA and other 
countries/regions. 

Risk premium  This attribute 
monetizes the 
willingness of a 
consumer to adopt, or 
avoid, new 
technologies. It is a 
measure of perceived 
technology risk on the 
part of the consumer; 
hence, it relates to all 
alternative fuel vehicle 
technologies.  

Costs depend on the stock of a particular vehicle type 
within a given region, as this is used to describe “how 
many people have done it” and therefore affects a 
consumer’s perception of the technology’s novelty or 
unfamiliarity at any point in time. Initial costs (or 
‘willingness-to-pay’, WTP) start out at either -2.4k 
$/vehicle (early adopters), +0.7k $/vehicle (early 
majority), or +3.8$/vehicle (late majority) when the 
respective vehicle technology stock is new (see below); 
they then approach zero as the stock grows, following an 
exponential function, as in ref. 45. Initial costs are the 
same across all regions, but the rate of decline to zero 
differs. Early adopters, early majority and late majority 
consumers are assumed to be 8%, 38% and 54% of the 
market, respectively, based on standard innovation 
diffusion theory72. 
 
In the original MA3T model, technologies are considered 
new at around 10,000 units of cumulative stock. The 
WTPs are then assumed to decrease by half at 2 million 
units of stock. These two WTP points are subsequently 
used to estimate the two parameters of the exponential 
function. These estimates are based on the assumptions 

Regional multipliers 
(calculated based on 
differences in cultural 
values between 
countries using World 
Values Survey data) are 
used to adjust risk 
premia between the 
USA and other 
countries/regions; in 
particular, the 
multipliers are applied 
to the exponential 
parameters governing 
the rate of the 
(dis)utility sub-
component decline as 
the respective vehicle 
market share grows. 
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that 2% of consumers are willing to pay $100 per month 
for the sake of trying out a new technology and that all 
the consumers on average are risk-averse and need 
$50/month of subsidy to try the new technology. These 
assumptions are based on private conversations with 
vehicle manufacturers and are therefore arrived at via 
expert judgement. To calculate the present-value WTPs 
from the monthly WTPs, a hypothetical car loan scheme 
of 48 months at 5.7% interest rate is assumed. 

Model 
variety/availability 

This attribute 
monetizes the 
propensity of a 
consumer to avoid new 
technologies simply 
because their desired 
vehicle type may only 
be available in a limited 
number of makes and 
models (by different 
automakers, for 
different vehicle 
platforms).  

The costs, which relate to all alternative vehicle 
technologies, depend on the sales of a particular vehicle 
type within a given region at a given point in time, as this 
affects the diversity of vehicle models on offer. It is 
assumed that more sales lead to greater model variety and 
availability. Initial costs start out at +7.5k $/vehicle when 
sales of the respective vehicle type are new; they then 
approach zero as sales grow. Initial costs are the same 
across all consumer groups and regions, and the rate of 
decline to zero is the same in all cases. 
 
In the original MA3T model, model variety is measured by 
the log of the ratio of the actual number of product 
models of the technology (n) to the “full availability” 
number (N), which is represented by the 
number of product models of the conventional 
technology available in the base year. Thus, the 
relationship is ln(n/N) [for a derivation, see ref. 94]. N is 
assumed to be 60 as in the U.S. market. The utility 
coefficient of model variety is assumed to be 0.67, based 
on ref. 45. Combined with the price elasticity, this leads to 
an estimate of costs starting out at +7.5k $/vehicle when 
sales and model number of the respective vehicle type are 
one (i.e., when the first model of the technology is offered 
in the market). Costs decrease following a logarithmic 
function and quickly approach zero when the model 
number n reaches 60; they can even become a small 
negative value if n is allowed to exceed 60. The cost or 
value here is always relative to that of the current situation 
with gasoline vehicles. The model number n is assumed to 
be an exponential function of last-year annual sales (x) of 
the technology, which is calibrated to be n=80-79*exp(-
0.0000006*x) based on the historical sales and model 
numbers of hybrid-electric vehicles in the United States. 

[No differentiation by 
region] 

EV charger The unit cost of 
installing a charger for 
a single electric vehicle. 
Only relevant for all-
electric vehicles and 
plug-in hybrid-electric 
vehicles. 

Represents either the full cost of installing a dedicated 
Level-II charger at home or work or the partial cost of a 
shared Level-III public fast-charger within the transport 
network (where costs are divided up between the many 
vehicles that use them). Across all regions and over time, 
costs are 1k $/vehicle. 
 
In the original MA3T model, costs are calculated similarly 
except that MA3T only considers the installation cost for a 
home charger, not the costs borne by individual 
consumers for public chargers. 

[No differentiation by 
region] 

Supplementary Table 3. Sub-components of the (dis)utility costs deriving from the MA3T model. Cost ranges applying 
to the United States of America (USA) are shown for illustration; other regions would differ. Cost values in US$2005. 
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Supplementary Figure 12. (Dis)utility cost assumptions for the year 2020, by technology and for two different 
consumer groups. Estimates for the USA shown: US$2005/vehicle. The underlying calculations assume extremely low 
AFV sales/stock and very limited refueling/recharging infrastructure availability. 
 
 
The following illustrative figures presents a breakdown of the (dis)utility cost components for a 
typical driver in the Suburban – Late Majority – Frequent Driver consumer group in the year 2020. 
Three different vehicle types are highlighted. Because the attributes “Acceleration”, “Cargo”, and 
“Towing Capacity” are relatively small, we ignore them for the purposes of our model 
implementation. 

Suburban
Late Majority
Frequent Driver 

Urban
Early Adopter
Modest Driver 

$/vehicle =>

$/vehicle =>
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Supplementary Figure 13.  Breakdown of all (dis)utility cost sub-components considered in the original MA3T model. 
Three different vehicle types are highlighted. Consumer group: Suburban – Late Majority – Frequent Driver. Year: 2020. 
Estimates for the USA shown: US$2005/vehicle. In order to reduce model complexity, and also because they are small 
in size, we ignore the attributes “Acceleration”, “Cargo”, and “Towing Capacity” for the purposes of our global model 
implementation. 
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Calculation of regional multipliers for translating (dis)utility costs across regions 
 
While MA3T was originally developed with the USA light-duty vehicle market in mind, we have 
determined through our analysis that the (dis)utility costs generated by the model for the USA can 
be extended to other countries and regions by applying simple “regional multipliers.” These 
multipliers are based on relationships between the different (dis)utility costs and selected predictor 
variables that are globally available. Specifically, we found that: (i) cultural values predict differences 
in social influence effect sizes between countries and that these can be applied to risk premium 
decline rates, and (ii) average driving distances reasonably predict differences in willingness-to-pay 
estimates (WTPs) for increased vehicle range and refueling infrastructure availability. Once these 
country-level estimates have been made, multipliers can be calculated that are based on the ratio 
between each regionally aggregated value and the USA value. The regional multipliers are then 
applied to three of the five (dis)utility cost sub-components (risk premium, range anxiety, and 
refueling station availability) in different ways. For range anxiety and refueling station availability, the 
multipliers act on the sub-component cost terms themselves, whereas for risk premium they act on 
the exponential parameters governing the rate of the (dis)utility decline as the respective vehicle 
market share grows.  
 
Empirical data are commonly available in certain regions (e.g., North America) and very sparse in 
others (e.g., Africa). Empirical estimates of preferences for (or against) alternative fuel vehicles 
(AFVs) are concentrated in North America, Europe, and Southeast Asia. Certain characteristics of a 
region can predict how these preferences (or ‘intangible’ or ‘(dis)utility’ costs) vary between regions. 
These simple predictive relationships from regions with empirical data can be used to estimate 
(dis)utilities for regions without empirical data. In the context of the vehicle choice modeling work 
discussed in this study, for three of the five (dis)utility cost sub-components (related to range 
anxiety, refuelling station availability, and social influence effects), regional multipliers are estimated 
to adjust empirical data for a base region (typically North America) to other model regions. Regional 
multipliers have been calculated for all 26 regions of the IMAGE model95. The underlying empirical 
data are drawn from a large sample of discrete choice analyses and social influence studies, 
predominantly from North America and Europe. 
 
As an example, range anxieties for AFVs have been estimated in discrete choice studies from the 
US, Canada, Western Europe, Japan, and South Korea. These range anxieties vary across countries. 
Average driving distances also vary by country and can therefore be used as a simple predictor of 
how range anxiety (dis)utilities differ. As average driving distances are known for all model regions, 
this predictive relationship can be used to adjust or ‘rescale’ known range anxieties for model regions 
lacking in AFV discrete choice data. 
 
Risk premium  
The multipliers related to risk premium (dis)utility costs adjust for cultural variation in the strength 
of social influence effect across countries, in all cases relative to the USA. At the heart of these 
multipliers is an average social influence effect size calculated firstly for each country and then 
aggregated to regional level based on a weighting of country GDP per capita. Multipliers are based 
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on the ratio between each regionally aggregated social influence effect size and the USA effect size 
of 0.368. Social influence effects for each country are based primarily on a meta-analysis of 21 
empirical studies40 using data from 11 different countries and capturing three broad types of social 
influence (see Supplementary Table 4).  
 
Social Influence 
Type 

Description 

Interpersonal 
networks 

Information exchange and sharing between members of a social group (family, friends, co-workers).  

Neighbourhood 
effects 

Visual demonstration of new vehicle technology by neighbours living in close proximity.  

Social norms Increasing motivation to conform as others around have adopted. 
 Supplementary Table 4.  Types of social influence considered in the regional multiplier analysis. 
 
The meta-analysis returned a significant average effect size of beta = 0.241 (95% CI [0.157, 0.322], 
Z= 5.505, |p|< 0.000). This average effect size was based on all studies and countries. However, 
further testing found that the average effect size was moderated by a country’s cultural values, 
measured by a widely-used scale from ‘pragmatic’ to ‘normative’96. This scale quantifies differences 
between countries’ receptiveness to social influence, using data from the World Values Survey. 
Scores on this scale could therefore be used to predict social influence effect sizes for the 11 
countries sampled within the meta-analysis. Social influences are stronger for countries at the 
normative end of the scale (towards zero). In these countries dominant culture is concerned with 
reinforcing current ways of doing things, established traditions and routines. People prioritize 
learning from each other as opposed to changing in accordance with new social contexts. 
 
The linear association between country scores on the pragmatic versus normative scale and 
predicted social influence effects is shown in Supplementary Figure 14. The resultant approximation 
equation was then used to estimate country-level social influence effects for those countries not 
included in the meta-analysis, based on their score on the pragmatic versus normative scale (available 
for over 80 different countries within the 26 regions of the IMAGE model).  
 



ACCEPTED DRAFT – DO NOT DISTRIBUTE – Manuscript under embargo at Nature Energy until mid-2018 

39 
 

 
Supplementary Figure 14.  Association between score on pragmatic versus normative scale and social influence effect 
size for countries sampled within the meta-analysis. 
 
Countries are then aggregated into model regions again by weighting the social influence effect size 
according to GDP. If scores on the pragmatic-normative scale are not available for certain countries, 
social influence effect sizes are calculated from the linear association between country GDP and 
social influence effect size, taking values from a minimum number of 10% of countries within a 
particular region (see Supplementary Table 5). 
 
Approach Countries affected 
(a) Included in meta-analysis based on empirical 
studies, hence directly estimated from score on 
pragmatic versus normative scale.  

Taiwan, China, Germany, Belgium, Sweden, UK, Greece, Malaysia, 
Finland, USA, Iran. 

(b) Scores available on pragmatic versus normative 
scale. Extrapolation from linear regression (from 
countries included in (a)):  
SocInf = -0.428.pn + 0.4497  
(where SocInf=social influence effect size and 
pn=score on pragmatic versus normative scale (R2= 
0.82)).  

Mexico, Dominican Republic, El Salvador, Trinidad and Tobago, 
Bolivia, Chile, Columbia, Peru, Uruguay, Venezuela, Libya, Morocco, 
Egypt, Cape Verde, Ghana, Nigeria, Austria, Denmark, France, Iceland, 
Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, 
Spain, Switzerland, Albania, Bulgaria, Croatia, Czech Republic, Estonia, 
Hungary, Latvia, Lithuania, Poland, Romania, Slovak Republic, Slovenia, 
Serbia and Montenegro, Russian Federation, Israel, Jordan, Lebanon, 
Saudi Arabia, Syrian Arab Rep, Hong Kong, Philippines, Singapore, 
Vietnam, Thailand, Indonesia, Australia, New Zealand, Bangladesh, Sri 
Lanka, Pakistan, Botswana, Mozambique, Namibia, Tanzania, Zambia.  

(c) Scores not available on pragmatic versus 
normative scale. Estimation from GDP using linear 
regression between social influence effect size and 
GDP (from countries included in (a) and (b)):  
SocInf = 0.000002.GDP + 0.3124  
(where SocInf=social influence effect size and 
GDP=country GDP per capita (US$ 2010) 

Ethiopia, Kenya, Madagascar, Mauritius, Rwanda, Sudan, Uganda, 
Belarus, Moldova, Ukraine, Kazakhstan, Tajikistan, Turkmenistan, 
Uzbekistan, Korea Rep. 

y = -0.428x + 0.4497
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(R2=0.1214)). 
Supplementary Table 5.  Calculation of social influence effect size for representative countries within regions. 
 
Range anxiety  
Multipliers are included for willingness to pay (WTP) for increased vehicle driving range (100 miles). 
These are taken directly from a meta-analysis of 33 studies, which yield over 100 WTP ratios97, 
providing robust estimates on five IMAGE regions (based on large sample sizes for USA (n=59), 
and Europe (n=45), smaller sample size for Australia (n=4), Canada (n=7) and China (n=3). These 
estimations are used to predict WTP values for other regions by fitting an exponential best-fit to 
known WTP data points as WTP = 493.914*e0.0001566aam (where aam=average annual mileage), i.e., 
annual average mileage is used as a simple predictor of WTP for range anxiety in countries with no 
data. For some IMAGE regions average annual driving distances are not available, and in this case 
estimates are based on analogous regions. Multipliers are then based on the ratio between each 
regionally aggregated WTP (100 miles increased driving range) and the USA estimate of US$2013ppp 

2,423.  
 
Refuelling station availability 
Multipliers for increased refuelling density (increase of station coverage of 10 %-points) are based on 
6 empirical studies providing WTP estimates for three regions: USA, Europe and Japan, again taken 
from earlier analysis41.  An exponential best-fit is estimated from these known WTP data points as 
WTP = 525.73*e0.00009aam (where aam=annual average mileage), i.e., annual average mileage is used as 
a simple predictor of WTP for refuelling density in countries with no data. Similar to the range 
anxiety calculations above, if average annual driving distances are not available for certain regions, 
then estimates are based on analogous regions. Multipliers are then based on the ratio between each 
regionally aggregated WTP and the USA estimate of US$2013ppp 2,792. 
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Further details on the original MA3T model 
 
As described briefly above, the Market Acceptance of Advanced Automotive Technologies (MA3T) 
model was developed by Oak Ridge National Laboratory for the U.S. Department of Energy’s 
Vehicle Technologies Office as a scenario analysis tool for estimating market shares, social benefits 
and costs of light-duty vehicle powertrain transitions resulting from changes in technology, 
infrastructure, behavior, and policies. The focus of the model is the U.S. The core of the model is a 
nested multinomial logit (NMNL) module that estimates choice probabilities for each vehicle type 
by consumer segment. The 40 vehicle powertrain choices included in original MA3T formulation 
cover gasoline ICE, diesel ICE, gasoline hybrid, diesel hybrid, natural gas, plug-in hybrid, battery 
electric, and fuel cell electric technologies. The original 1,458 consumer segments in MA3T cover the 
entire U.S. light-duty vehicle market; they are distinguished by census division, residential area type, 
risk attitude, driving type, home charging readiness and workplace charging availability. Note that in 
the joint MESSAGE-Transport + MA3T implementation, we only include a small subset of these 
consumer groups (i.e., the 1,458 groups are aggregated up to 27 or 9). 
 
In order to construct a base-year data set for the U.S., census data was used to estimate household 
shares by census division. This was then combined with the 2009 National Household Travel Survey 
(NHTS) data to estimate household shares in central cities, suburban areas and rural areas. The 
approach is based on the residential area type, the census division indicator and the population 
weights in NHTS. Another important use of NHTS is to estimate the shares of driver type. NHTS 
records odometer readings, respondent-reported annual distance and vehicle age. Oak Ridge 
National Laboratory subsequently developed a method to estimate the average annual driving 
distance for each sample vehicle (coded as ‘BESTMILE’ in the database). All sample drivers in each 
census division are separated into Frequent Driver (the top 1/3, based on BESTMILE), the Modest 
Driver (the bottom 1/3) and the Average Driver (the middle 1/3). 
 
Moreover, there is a need to account for the variation of daily driving distance due to the inclusion 
of plug-in electric vehicles. The random daily distance is assumed to follow Gamma distributions, as 
exhibited in Supplementary Figure 15 71,98,99 – an assumption that has been adopted in several other 
studies89,90,100,101 and recently validated by real-world multi-vehicle longitudinal data91. Two pieces of 
information are needed to estimate a Gamma distribution for each driver type. Fortunately, the 
typical commuting distance by the primary driver in each car is also reported in NHTS, which 
together with the annual distance BESTMILE allows estimation of the two Gamma distribution 
parameters (i.e., the mean and the mode). In MA3T, U.S. consumers are divided into Modest, 
Average, and Frequent drivers, as stated. The mix of these driver types varies across regions and 
residential areas. 
 
For more information about MA3T, see http://teem.ornl.gov/ma3t.shtml or refs. 80, 81 , 82, and 83.  
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Supplementary Figure 15.  Probability distribution of three driver types in MA3T, derived from the U.S. NHTS 
 
  



ACCEPTED DRAFT – DO NOT DISTRIBUTE – Manuscript under embargo at Nature Energy until mid-2018 

43 
 

 
Comparison of light-duty vehicle capital costs across the models 
 
The following figures show the assumed capital costs for light-duty vehicles over time in each of the 
models (values for the ‘AFV Push’ scenario with 100 $/tCO2 carbon pricing are shown; see 
Supplementary Data 3 for exact numbers). The comparison is done strictly for the USA. The models 
employed in this study generally do not distinguish between light-duty cars and trucks (SUVs, Pick-
up trucks, and Mini-vans).  These two classes of vehicles, while distinct in reality are generally 
aggregated in global energy-economy models.  Moreover, some of the models make exogenous 
assumptions about capital costs of vehicles, whereas others employ endogenous learning 
mechanisms, which ensure that costs are reduced with increased deployment levels (through 
technological progress and learning-by-doing). 
 

 
Supplementary Figure 16. Capital costs assumed in the models for battery-electric (BEV; solid lines) and internal 
combustion engine (ICE; dashed lines) vehicles.  
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Supplementary Figure 17. Capital costs assumed in the models for plug-in hybrid-electric (PHEV; solid lines) and 
internal combustion engine (ICE; dashed lines) vehicles. 
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Supplementary Figure 18. Capital costs assumed in the models for hydrogen fuel cell (FCV; solid lines) and internal 
combustion engine (ICE; dashed lines) vehicles. FCVs are not available as a technology option in all models. 
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Example numerical assumptions underlying scenario storylines 
 
 

AFV Push  
Illustration of the evolution of (dis)utility costs relative to upfront capital costs assumed in ‘AFV 
Push’ for a BEV-100 (battery-electric vehicle with a range of 100 miles) for one consumer type: 
early majority – urban – average driving frequency. All costs are for the USA region (in 
US$/vehicle) as assumed by the IMAGE model. (See Supplementary Data 2 and 3 for details.) 
 

 2020 2030 2040 2050 
Upfront capital cost 40,008 31,377 30,730 30,186 

(Dis)utility costs (additive terms capturing non-financial attributes) 
Risk aversion 803 507 8 0 
Model variety 3,420 0 0 0 
Range anxiety 3,081 53 53 53 

Upfront costs + (Dis)utility costs = Total (generalized) costs 
Total (generalized) cost 47,312 31,937 30,791 30,239 

 
 

No AFV Action  
Illustration of the evolution of (dis)utility costs relative to upfront capital costs assumed in ‘No 
AFV Action’ for a BEV-100 (battery-electric vehicle with a range of 100 miles) for one consumer 
type: early majority – urban – average driving frequency. All costs are for the USA region (in 
US$/vehicle) as assumed by the IMAGE model. (See Supplementary Data 2 and 3 for details.) 
 

 2020 2030 2040 2050 
Upfront capital cost 40,008 34,569 33,826 33,202 

(Dis)utility costs (additive terms capturing non-financial attributes) 
Risk aversion 803 803 803 803 
Model variety 8,315 8,315 8,315 8,315 
Range anxiety 3,081 3,081 3,081 3,081 

Upfront costs + (Dis)utility costs = Total (generalized) costs 
Total (generalized) cost 52,207 46,768 46,024 45,401 
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