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Abstract

The ability to offer low latency communications is one of the critical design requirements

for the upcoming 5G era. The current practice for achieving low latency is to overprovision

network resources (e.g., bandwidth and computing resources). However, this approach is

not cost-efficient, and cannot be applied in large-scale. To solve this, more cost-efficient

resource management is required to dynamically and efficiently exploit network resources to

guarantee low latencies. The advent of network virtualization provides novel opportunities

in achieving cost-efficient low latency communications. It decouples network resources

from physical machines through virtualization, and groups resources in the form of virtual

machines (VMs). By doing so, network resources can be flexibly increased at any network

locations through VM auto-scaling to alleviate network delays due to lack of resources. At

the same time, the operational cost can be largely reduced by shutting down low-utilized

VMs (e.g., energy saving). Also, network virtualization enables the emerging concept of

mobile edge-computing, whereby VMs can be utilized to host low latency applications at

the network edge to shorten communication latency. Despite these advantages provided by

virtualization, a key challenge is the optimal resource management of different physical and

virtual resources for low latency communications.

This thesis addresses the challenge by deploying a novel cost-efficient resource man-

agement framework that aims to solve the cost-efficient design of 1) low latency communi-

cation infrastructures; 2) dynamic resource management for low latency applications; and

3) fault-tolerant resource management.

Compared to the current practices, the proposed framework achieves 80% of deploy-

ment cost reduction for the design of low latency communication infrastructures; contin-

uously saves up to 33% of operational cost through dynamic resource management while

always achieving low latencies; and succeeds in providing fault tolerance to low latency

communications with a guaranteed operational cost.
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Chapter 1

Introduction

1.1 Context and Motivation

With the advancement of communication and computing technologies, ultra-low la-

tency applications such as augmented reality (AR) [1], autonomous car control [2]

and remote surgery [3] are expected to take off in the upcoming 5G era [4]. These

applications require a low latency network to support fast interactive communica-

tions between users and servers. In this sense, designing novel communication

networks to support low latency applications in a cost-efficient way has become a

key research challenge.

Despite strong motivation in commercializing low latency applications, only

a limited number of low latency networks have been deployed due to long wide

area network (WAN) latencies. According to [5], the average WAN latencies range

from 50ms to 83ms (e.g., round-trip time), which makes Internet Service Providers

(ISPs) unable to provide low latency services (e.g., 10ms). The long WAN laten-

cies are intrinsically due to the current Internet communication paradigm, in which

a client sends a service request across the WAN to access services located at end

servers [6]. In such a scenario, a request needs to go through a number of network

equipment (e.g., servers, middleboxes [7], routers) along the communication path,

where different types of delay might be incurred. For instance, a request might

suffer from transmission delay due to low bandwidth resources on an intermediate

network link. Further, a request might experience long queueing delay at an inter-
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mediate middlebox (e.g., Firewall) [8] due to the large volume of inbound traffic and

lack of computing resources (e.g., CPU, memory). Similarly, long processing delay

might be encountered at end servers due to inefficient allocation and scheduling of

computing resources.

Existing low latency networks adopt overprovisioning to achieve ultra low la-

tency at the cost of significant capital expenditure (CAPEX) and operating expen-

diture (OPEX). For instance, dedicated networks for financial trading and military

communications adopt a full optical fiber deployment to achieve single-purpose low

latency communications [9]. However, such a solution cannot be applied to large-

scale commercial networks such as Internet of things (IoTs) [10] and 5G cellular

networks due to the large number of costly high-bandwidth network links. Sim-

ilarly, deploying more network equipment (e.g., servers) can increase the overall

computing resources [11], thereby enabling fast data processing. As such, laten-

cies can be guaranteed given that computational congestions (e.g., queueing delays

at network equipment such as servers) in the face of peak workloads are avoided.

However, the large number of deployed servers not only result in substantial deploy-

ment cost but also consume considerable energy during their operation. According

to [12], energy consumption represents a major part of ISPs’ operating expenses

(OPEX), and it is expected to further increase by 10-12% per year [13]. Therefore,

in order to make low latency applications accessible to the general public, low la-

tency communication networks need to be carefully designed so that both CAPEX

and OPEX can be minimized.

The advent of network function virtualization (NFV) [8] enables novel oppor-

tunities to achieve low latency, while largely improving the CAPEX and OPEX of

networks. The fundamental and original idea of NFV is to exploit high-volume

commodity servers at different network locations (e.g., base station, aggrega-

tion point, access router, core router, etc.) to provide virtualized resources (e.g.,

bandwidth resources and computing resources) in the form of virtual machines

(VMs) [7]. As such, network resources are decoupled from dedicated hardware,

and any commodity server can instantiate any network functions (i.e., middleboxes)
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from its VMs. NFV has been further extended to use its VMs to support more gen-

eral service processing such as video transcoding [14]. By doing so, all the network

equipment (e.g., middleboxes, routers, and servers) on the entire end-to-end com-

munication path can be now virtualized. One direct benefit is the long-term CAPEX

reduction. For instance, rather than purchasing new expensive dedicated hardware

for new network functions or services, new functions/services can be installed as

an instance of plain software into existing high-volume commodity servers. This

avoids purchasing new and expensive dedicated equipment, and simplifies the ser-

vice deployment process. In addition, resource usage efficiency and energy con-

sumption can be largely improved (i.e., OPEX reduction) [15] by NFV. This is

achieved by dynamically reallocating or migrating instantiated functions/services

(e.g., hosted in VMs) to fewer commodity servers (e.g., shutting down low-utilized

servers) during non-peak traffic time. At the same time, network functions and ser-

vices can be instantiated at network locations that best serve end users in terms of

access latency. For example, VM instances of end services can be brought from dat-

acenters (DCs) to access points (APs) to shorten communication latencies, if APs

are equipped with commodity servers.

Despite the abovementioned novel opportunities enabled by NFV, there are

still many engineering challenges raised by the design of resource management ap-

proaches for cost-efficient low latency communications. For instance, existing un-

derlying communication infrastructures often lack of high-bandwidth network links

(e.g., backhaul network [16], smart grid [17]), which is the major rationale behind

failing low latency. To this end, the cost-efficient (CAPEX) deployment/upgrade of

underlying communication infrastructures with costly high-bandwidth links (e.g.,

WiMAX [18], optical fiber) is required. Next, in order to continuously maintain

cost efficiency and low latency in a NFV-enabled network, virtualized resources on

end-to-end communication paths need to be dynamically optimized in the face of

varying network conditions (e.g., due to user mobility, varying workload), so that

the allocated resources are always being efficiently utilized. This involves dynam-

ically finding 1) the optimal placement of VM instances for intermediate network
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functions and end services, 2) the optimal VM capacity and 3) the optimal end-to-

end routing paths that go through the instantiated VMs. In particular, due to the

capacity limitations of commodity servers, the VM placement, capacity and routing

paths need to be jointly determined to optimally utilize different network resources

to achieve the required latency. On the other hand, the optimal resource allocation

approach needs to ensure that low latency services can be continuously delivered

even under extreme network conditions such as network failures. That is, when cer-

tain network equipment or VMs are unavailable due to faulty hardware or software,

the back-up resources need to be in place to guarantee low latency.

1.2 Problem Statement
Given the abovementioned design challenges in cost-efficient resource manage-

ment, the following questions will be addressed in this thesis.

1. How to plan network capacities (e.g., link capacities) for underlying commu-

nication infrastructures so that the deployment cost (CAPEX) can be mini-

mized and low latency can be achieved.

2. How to design online end-to-end resource management algorithms, so that

different end-to-end virtualized resources can be dynamically and jointly

managed in the face of varying network traffic, while always achieving low

latencies and maintaining low operational costs (OPEX).

3. How to further guarantee low latencies and low operational costs in face of

network failures (e.g., hardware failures from underlying communication in-

frastructure, software failures in VMs).

These open questions motivate the design of a resource management frame-

work that can effectively address the deployment costs (CAPEX) and operational

costs (OPEX) for low latency communications. Specifically, the framework design

questions will be answered through the analysis of realistic and specific low latency

applications.
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1.3 Contributions

Designing a resource management framework consists in devising optimization al-

gorithms that optimally derive the best trade-off between the amount of allocated

resource and the resulting end-to-end latencies. Specifically, algorithms that target

different resource management scenarios such as static network planning, online

resource allocation, and fault-tolerant resource allocation are studied. The details

of contributions are presented in the following.

Design of cost-efficient low latency communication infrastructures [19,

20]: Given the high deployment costs of high-bandwidth technologies (e.g., opti-

cal fiber), the deployment/upgrade of low latency communication infrastructures

needs to be optimized so that the required number of high-bandwidth network links

is minimized. To this end, three different static network planning algorithms for

cost-efficient low latency communication infrastructures were developed, aimed

at minimizing deployment costs at the network planning stage. These algorithms

determine the minimum amount of end-to-end network resources to achieve the

required low latency, and derive network locations and capacities to deploy high-

bandwidth communication links. Specifically, the proposed algorithms consider

the characteristics of low latency applications (e.g., datarate, packet size) together

with topological characteristics (e.g, path length and betweenness [21]) to iden-

tify network locations where network capacities are insufficient. In particular, one

algorithm based on network calculus [22] provides worst-case guarantees on end-

to-end latencies for deterministic workloads. Based on the proposed algorithms,

a realistic case of upgrading smart grid communication networks [17] to support

mission-critical applications is studied. The solution achieves 80% of deployment

cost reduction compared to conventional approaches for a large set of real power

grid topologies.

Dynamic cost-efficient resource management for low latency communica-

tions [23, 24]: The underlying communication infrastructures can be fully virtual-

ized with the latest network virtualization technology [7], whereby operational costs
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(OPEX) can be dynamically tuned by dynamic resource allocation (e.g., shutdown

VMs during low workloads). In order to fully make use of the virtualized infrastruc-

ture to minimize operational costs, VM placement (e.g., VMs locations hosting end

services), VM capacity and routing (e.g., network paths between users and services)

need to be dynamically determined in face of varying network traffic. Conventional

approaches [15, 25, 26] focus either on optimizing network link resources (e.g.,

bandwidth) or optimizing network node resources (e.g., CPU), and they assumed a

set of predefined network locations to host VMs. In contrast, the dynamic resource

management approach proposed in this thesis jointly optimizes different end-to-end

resources (e.g., bandwidth and computing resources) to further improve the cost ef-

ficiency. Specifically, the proposed approach first applies a fast heuristic-based in-

cremental allocation mechanism that dynamically increases the allocated resources

in the network area where user traffic is heavy. Later, a reoptimization algorithm pe-

riodically adjusts the allocated resources to maintain a near-optimal operational cost

over time. Mathematical analysis shows that the reoptimization algorithm provides

a worst-case operational cost guarantee in polynomial time. Further, experiments

under realistic network settings demonstrate that the dynamic resource management

succeeds in achieving cost-efficient low latency communications. In particular, the

dynamic approach continuously saves up to 33% cost efficiency compared to cur-

rent approaches, while guaranteeing the cost efficiency to be within 20% of the

lower bound of the optimal solution, regardless of network sizes, services’ latency

requirements and server capacities.

Fault-tolerant cost-efficient resource management [27]: The proposed de-

sign of underlying communication infrastructures and online resource management

algorithms achieve a near-optimal cost efficiency while satisfying low latency re-

quirements. However, both designs are vulnerable to hardware and software fail-

ures, which can lead to unavailable resources and application latency violations.

To enhance online resource management’s fault tolerance, a stateful fault-tolerant

resource management problem is considered, whereby user states associated with

VMs need to be transferred to the corresponding back-up VMs upon failures. In this
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problem, cost-efficient routing, VM placement, back-up VM placement and state

transfer paths need to be jointly optimized. To this end, an efficient heuristic algo-

rithm and a bicriteria approximation algorithm with performance (e.g, cost) guar-

antees are proposed. Specifically, the approximation algorithm adopts an auxiliary

graph approach [28] to jointly consider all the on-path resources in an end-to-end

manner. Simulations with large-scale networks show that the proposed algorithms

largely outperform the conventional approaches where resources of network nodes

and links are separately considered. Last, it must be stressed that the proposed so-

lution is a general approach which is also valid for stateless fault-tolerant resource

management.

1.4 Thesis Outline
The rest of this thesis is organized as follows. Chapter 2 provides the state-of-the-art

in the area of cost-efficient resource management and low latency communications.

Chapter 3 introduces the design of cost-efficient low latency communication infras-

tructures with a focus on reducing network deployment costs. Chapter 4 presents

a dynamic resource management framework for low latency applications, aimed at

achieving a trade-off between systems’ operational costs and low latencies. Chapter

5 focuses on the fault-tolerant aspects of dynamic cost-efficient resource manage-

ment. The proposed approach enhances networks’ fault tolerance by simultaneously

achieving cost efficiency and low latency.



Chapter 2

Related Work and Background

2.1 Introduction

Low latency communications have been extensively studied in dedicated single-

purpose networks during the last decade. Conventional approaches to resolve this

problem involve adopting high bandwidth technologies such as optical fibers to re-

duce latencies. However, these approaches raise concerns of cost efficiency and

are not applicable to large-scale commercial networks due to considerable deploy-

ment costs. Alternatively, effective routing, resource allocation and scheduling ap-

proaches can prioritize packets with low latency requirements, so that the overall

ratio of successful admitted packets that meet the latency requirements can be im-

proved. This chapter looks into existing approaches in supporting low latency com-

munications and cost-efficient resource management.

The remainder of this chapter is organized as follows. In Sec. 2.2, the back-

ground on low latency applications is presented. Specifically, different low latency

applications’ characteristics are investigated, followed by the introduction of end-

to-end delay decomposition. Also, the latest technology enablers for low latency ap-

plications are discussed. In Sec. 2.3, the classic resource management models and

optimization methods are presented. In Sec. 2.4, different types of network costs

and resources considered in this thesis are presented. Then, the correlation between

cost efficiency, low latency and resource allocation is discussed to further shed light

on the problem and design space of cost-efficient resource management. Further,
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the related work of cost-efficient resource management is broken down into differ-

ent subsections according to each subproblem, such as the design of cost-efficient

low latency communication infrastructures; the design of cost-efficient dynamic re-

source management; and the design of fault-tolerant resource management.

2.2 Background

2.2.1 Low Latency Applications

Low latency applications have received significant attention in the last decade. The

application scenario ranges from time-critical sensor-based monitoring applications

to the latest smartphone applications such as face recognition and AR. In the fol-

lowing, three applications (AR, on-demand gaming, and smart grid monitoring ap-

plications) are reviewed as the representative applications.

• Mobile augmented reality: exploits computer vision to display relevant in-

formation as an overlay above a live view captured by camera [1, 29] of smart-

phones. For instance, additional information such as street names, restau-

rant ratings and number of parking places in a building could be added onto

camera views to enhance user experience. However, such user experience

enhancement relies on instant responses either from smartphones or remote

clouds [30]. In the case of exploiting computing resources from remote

clouds, smartphones’ uploading flows consume significant bandwidth, which

may lead to potential network bottlenecks. Given that humans are sensitive

to delays and user enhancement is a real-time functionality, the response time

requirement for mobile AR is therefore strict, and is on the order of hundreds

of milliseconds [1, 29, 30].

• On-demand gaming: also known as cloud gaming [31], refers to online

video gaming where gamers do not execute games at user terminals, but

exploit computing resources at server/cloud side to perform computing ex-

pensive tasks (e.g., video transcoding). Specifically, rather than exploiting

computing resources from resource-constrained terminals, on-demand gam-

ing performs the intensive part of gaming computation (e.g., game graphics
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generation) remotely in clouds with the processed output streamed back to

end users. Such shift from conventional gaming terminals to clouds/servers

frees users from dedicated gaming hardware, but it requires the support of

interactive low latency communications between users and gaming instances

hosted in networks. Previous studies [31] showed that players begin to notice

a quality degradation when RRT is more than 80ms.

• Smart grid monitoring applications: are of great importance to the next

generation power grid [17]. In such networks, system dynamics such as volt-

age variation need to be monitored with high-frequency sampling rate [32].

By doing so, the real-time global network status is known to the power grid

controller, which can further perform prompt control actions to protect power

grids. However, these monitoring and control actions have to rely on low la-

tency communication networks. In particular, time-critical applications run-

ning on communication networks need to be delivered within very stringent

latency constraints as information exchanged between grid components is

useful/valid only within a predefined time window as small as 3ms. Any

failure of meeting such delay requirement could result in cascading failures

and large-scale blackout [33].

As can be observed from the abovementioned, each application has its own

characteristics that require a specific approach to reduce end-to-end delays. For

instance, for time-critical smart grid applications, network delays on network links

are the components that need to be reduced due to high bandwidth consumptions.

In contrast, for gaming and mobile AR, processing delays at end servers have to be

considered along with network delays due to the fact that these applications require

intensive CPU and GPU processing.

2.2.2 End-to-End Latency Decomposition

In order to shed light on potential methods to achieve low latency, we give the iden-

tification of the various components of end-to-end delay, denoted as Te2e. Further,

we illustrate how delay components are grouped together to form the end-to-end
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Figure 2.1: End-to-end communication example.

delay.

• Processing delay: denoted as tproc, the time used for operations such as

medium adaptation, (de)coding, switching, routing, message authentications

codes generation / verification.

• Propagation delay: denoted as tprop, depends on the transmission medium and

the distance traveled by the signal.

• Transmission delay: denoted as ttrans, the time required to transmit the data

and is subject to the bandwidth of the underlying transmission technology.

• Queuing delay: denoted as tqueue, the time spent by data waiting for transmis-

sion and processing at the transmitting devices. For instance, the computing

congestion at devices is due to the lack of computing resources, and it is a

consequence of queuing delay at devices.

To clarify how end-to-end delay is composed by delay components, a detailed

example is given in Fig. 2.1. We see that an end-to-end communication is com-

posed of per-hop communication at each of network node (e.g., hop1, hop2, etc),

which can be further decomposed into the abovementioned delay components. For

instance, an end-to-end communication path from the two communication terminals

is shown by a red bold line across routers. A packet in such example travels from
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the sender machine to the next intermediate router, experiencing processing, propa-

gation, transmission and queueing delays. Depending on the network protocols and

the specific functionality, processing delay varies at each hop (i.e., processing delay

in the terminals is higher than that of intermediate routers as application-level pro-

cessing is involved). Furthermore, queueing delay is not necessarily experienced

at each hop, and this depends on network conditions (e.g., network congestion), as

well as workloads at the processing device.

2.2.3 Enabling Technologies

Virtualization technology [34] plays a key role in enabling cost-efficient low la-

tency communications. By definition, virtualization refers to the act of creating a

virtual version of computing resources (e.g., CPU, RAM, storage, etc), operating

systems (OSs) and virtual networks. Such virtualization technology facilitates the

management of physical resources through resource abstraction and virtual resource

manager [7]. Also, the resulting monetary and operational costs can be dynamically

optimized through resizable and migratable VMs. In the following, the related vir-

tualization concept such as cloud computing, mobile edge computing, NFV and

software-defined networking (SDN) is presented together with their applicability to

cost-efficient low latency communications.

Cloud Computing: has become the predominant technology for hosting In-

ternet applications and services in the last decade, where virtualized resources are

grouped in the form of VMs and utilized to support computational tasks (e.g.,

transcoding) that used to run in physical machines. The major advantage of cloud

technology is its intrinsic benefits brought by DC consolidation [30, 35], whereby

the high resource utilization and concentration exploit economies of scale and lower

the marginal cost of system administration and operations. In addition to consoli-

dation, the other major advantage is the elastic control of virtual resources where

the allocated virtualized resources can be elastically adjusted in the face of dynamic

traffic. By doing so, cloud users can significantly reduce their CAPEX and OPEX

as resources are consumed and charged only based on the actual consumption (i.e.,

no resource wastage).
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Mobile Edge Computing [36]: Unlike cloud computing where virtualized

resources are located at remote DCs, mobile edge computing exploits mobile edge-

clouds (MECs) (e.g., micro-clouds) that are installed at network locations (e.g.,

APs, aggregation points) close to end users. As such, mobile users offload compu-

tationally expensive tasks to MECs’ VMs where task processing takes place. By

doing so, communication delays can be largely reduced compared to offloading

tasks to remote DCs. However, in order to achieve low latencies, edge comput-

ing requires the deployment of a large number of micro-clouds, which breaks the

DC consolidation and incurs significant operational costs [30]. To this end, cost-

efficient resource management approaches for edge resources are required.

Network Function Virtualization: on the other hand, provides virtualized

network functions (VNFs) that used to be embedded in dedicated network appli-

ances such as firewall, load balancer and deep packet inspection (also referred as

middleboxes) [8]. It aims to transform the way that network operators architect

their networks by evolving standard IT virtualization technology to consolidate

many network equipment types onto high volume commodity servers [8]. Such

transformation towards VNFs enables efficient network resource sharing, whereas

cloud computing and mobile edge computing enable computing resources sharing.

Therefore, the joint use of NFV and cloud-related technologies is the key enabler

for end-to-end cost-efficient resource management. In addition, when VNFs are in-

terconnected, a service function chaining (SFC) [37] can be built which provides

network processing as a chain of network functions. An important feature in SFC

is the ordering of different VNFs, that is, network flows need to follow a specific

order defined by ISPs or service providers (SPs) before they reach the end service.

Software-Defined Networking: was proposed to facilitate network configu-

rations by decoupling data plane and control plane [38]. In SDN, network states

such as network devices’ utilization are continuously monitored by software-based

controllers, which can further implement network intelligence for routing config-

uration decisions. Such configuration decisions are sent back via a programmable

open interface [39] to virtualized network devices (e.g., virtual switch [40]) to per-
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form optimized packet forwarding. In contrast, traditional network devices have a

combined data plane and control plane, which makes the implementation of new

network routing a difficult task. In the context of dynamic resource management,

the role of SDN is to enable dynamic network routing, so that network resources

connecting different virtual network components (e.g., clouds, MECs, virtual switch

and VNFs) can be efficiently managed.

The abovementioned virtualization technologies provide virtualization at dif-

ferent network locations to enable intelligent end-to-end resource management ap-

proaches. For instance, cloud computing and mobile edge computing provide end

service virtualization, whereas NFV provides virtualization for intermediate net-

work equipment. On the other hand, SDN provides the routing control between

each virtualized network entity.

Core Network

VNF1

MEC 1

AP2AP1

VNF2

VNF3

Cloud Services 
in DC

SFC 1

SFC 2

SDN Controller

Router

Virtual Switch

Control Plane

Figure 2.2: End-to-end routing and resource allocation.

Fig. 2.2 shows an example of end-to-end communications enabled by different

virtualization technologies. Two end-to-end communication paths are presented,

whereby Path 1 goes through SFC1 (e.g., composed of VNF1 and VNF2) to reach

MEC1, and Path2 goes through SFC2 (e.g., composed of VNF1, VNF2, and VNF3)

to reach the remote DC. In these examples, the computing resources and bandwidth
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resources can be managed (e.g., scale up or scale down) in an on-demand manner

following the variation of traffic.

2.3 Resource Management in Computer Networks
Given the underlying communication infrastructure and the upper layer virtualiza-

tion, different network resources can be managed in a dynamic manner. In par-

ticular, managing resources involves deriving the location and amount of network

resources to be allocated. In this section, we firstly introduce different types of net-

work resources and costs considered in this thesis. Then, the correlation between

latency, resource and cost is discussed to shed light on potential resource manage-

ment models and solutions.

2.3.1 Resource Types

• Computing resources refer to resources such as CPU, GPU and RAM. When

a service is executed in a computer system, a number of processes are initial-

ized, which occupy CPU cycles and RAM for computation. Furthermore,

the utilized CPU and RAM consume energy (e.g., operational cost), which is

highly correlated with resource utilization.

• Storage resources refer to resources such as disk space of computer systems,

which are used to store data generated during service operation. For instance,

certain services may record system logs and user-related data, which is stored

in systems’ disks.

• Bandwidth resources are allocated through network interface cards, which

determine the communication throughput.

2.3.2 Cost Definition

In the following, the definitions of costs considered in this thesis are presented.

• Deployment costs: referred to as CAPEX, represent costs related to the ex-

penses on equipment such as network cables, routers, APs, gateway, mid-

dleboxes and servers, as well as expenses incurred in equipment deploy-

ment [41]. Specifically, the overall deployment costs highly depend on the
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Figure 2.3: Trade-off between latency and cost. Allocate more resources reduces latency,
but results in high costs.

network scale, which can be interpreted as the number of aforementioned

network equipment. As such, the deployment plans (e.g., static network plan-

ning) highly affect the resulting deployment costs, and a careful design of

communication infrastructures that minimizes the number of network equip-

ment can effectively reduce deployment costs.

• Operational costs: refer to costs related to expenses incurred during net-

work operation, which include staffing costs, energy consumption at network

equipment (e.g., servers, APs, routers, etc) and network management costs.

For instance, according to [42], a DC consumes as much energy as 25,000

households, representing the most significant part of ISPs’ OPEX. On the

other hand, the impact of network management overheads (i.e., the number

of management messages, the time required to configure a network, band-

width consumption) also leads to operational costs. However, these costs

can only be implicitly interpreted as monetary impact to network operators’

revenues. For example, considerable management overheads could result in

network congestions, which in turn affect the network performance and op-

erators’ revenues. To solve the cost issues, dynamic approaches such as tem-

porarily shutting down low utilized physical machines or changing routing

paths could largely reduce operational costs.
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2.3.3 Correlation Between Latency, Resources, and Costs

Having specified different types of costs and delay components, the correlation be-

tween these two factors is introduced from a resource allocation’s perspective. First,

the correlation between costs and provisioned resources is straightforward, that is,

the more resources (both computing and bandwidth resources) are allocated to a ser-

vice, the more cost it incurs (see Fig. 2.3). For example, data-intensive low latency

applications need considerable computing resources to achieve low processing de-

lay, but considerable computing resources usually result in high operational costs

due to high energy consumption.

The correlation between provisioned resources and resulting latency is less ob-

vious, but it follows the same principle as the correlation between costs and resource

provisioning. Specifically, the more resources are provisioned, the less latency a

network packet experiences (see Fig. 2.3). For instance, processing any packet re-

quires computing resources, and the speed of processing a packet is proportional to

the allocated resources. In other words, the more CPUs are allocated, the faster a

task will be computed. Similarly, exploiting high capacity bandwidth technology

such as optical fiber, as opposed to low bandwidth technology, enables low trans-

mission delay and low propagation delay.

Given the aforementioned correlation between latency, provisioned resources,

and costs, it is now clear that provisioning more resources on the communication

path can improve the resulting end-to-end latency, but leads to concerns in terms

of costs. Given such trade-off, the problem of supporting cost-efficient low la-

tency communication can be transferred into a cost-efficient resource management

problem; that is, how to efficiently allocate network resources (e.g., computational

resources, network resources) in a cost-efficient manner to guarantee low latency

requirements.

2.3.4 Relevant Optimization Models

Optimization models provide the fundamental formulations for conventional re-

source management problems, based on which advanced resource management

problems (e.g., with more constraints) can be formulated. Originally, these mod-
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els are designed to solve operational research problems, whereby the locations and

capacities of warehouses need to be determined so that commodities of different

sizes can be transported to warehouses with minimum costs [43]. Later, optimiza-

tion models have been largely adopted in the design of telecommunication networks

and computer networks [44]. For instance, the locations of end servers and the se-

lection of routing paths can be represented by a set of integer decision variables.

The potential optimization algorithm determines a set of server locations and rout-

ing paths based on problem inputs and objective. A typical problem input can be

in the form of a set of user requests, which need to be routed and processed in

the considered network. A typical objective can be the minimization of maximum

bandwidth utilization, that is, minimizing the level of network congestion.

• Facility location: is one of the most common models in both static and dy-

namic network resource allocation [43]. It considers a set of potential loca-

tions for warehouses with fixed costs and capacities, and a set of customers

with demands for goods supplied from these warehouses. The transportation

cost per unit for goods supplied from warehouses to all customers is given.

The problem is to derive the locations of a subset of warehouses that min-

imize the total costs so that all customers can be satisfied without violating

the capacity constraints of warehouses. At the same time, the problem needs

to find the assignment of customers to facilities, which can be referred as

transportation problems [45]. In order to adapt the facility location model to

computer networks, a few changes need to be made. First, warehouses need

to be replaced by servers. Then, customers need to be replaced by users, and

transportation costs need to be represented by communication costs between

servers and users.

• Set covering location: is the extension of the well-know set covering

model [46]. In the set cover location, it finds the minimum number of facility

locations that cover all customers within a distance constraint. A variant of

the set covering problem, capacitated set covering problem (CSCP) [47], that

takes the set capacities into account, can be applied to many network planning
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scenarios. For instance, the minimum number of required servers to support

a certain number of users can be formulated with CSCP, whereby each server

has a capacity constraint, and each user has certain request demands that need

to be served within a latency constraint.

• Multi-commodity flow: considers a routing problem whereby a certain num-

ber of commodities need to be transported from a set of source nodes to

a set of destinations without violating all link capacities [48]. Specifically,

the routing decision variables can be either integer or linear variables, which

correspond to non-splittable routing or splittable routing in a network. The

multi-commodity flow model provides the basis for more advanced routing

models where additional constraints (e.g., latency constraint, single source)

can be expanded. For instance, [49] extended this model with an additional

condition, whereby flows need to be processed by intermediate nodes in the

network. As such, the placement and resource allocation of in-network pro-

cessing (e.g., middleboxes, SFC) can be taken into account.

2.3.5 Optimization Solutions

Once resource management problems are formulated, a decision space consisting

of a set of potential decisions will be created. For instance, an optimal routing

path might need to be derived between two nodes in a network in order to achieve

the lowest communication latency. To solve this, all possible paths between the

two nodes will be first found to create a solution space, from which the optimal

path will be searched. However, the optimization solution space in computer net-

work resource management problems could become extremely large given the large

problem input (e.g., a city can have millions of users, and a very complex computer

network topology). As such, exhaustive search (e.g., brute-force [50]) is not often

an effective and feasible solution to the formulated problems due to its complexity.

To this end, efficient optimization strategies such as relaxation, meta heuristic and

approximation can be applied to either reduce the problem complexity or accelerate

the optimization searching process. The major difference between each intelligent
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Figure 2.4: Illustration of upper and lower bounds for minimization problems.

approach lies in the achieved optimality and the optimization running time. That

is, how far the derived solution is from the optimum and how quick the solution

can be obtained. In the following, two important concepts, lower bound and upper

bound [50], are first introduced, which can be used to classify the abovementioned

optimization solutions (see Fig. 2.4).

• Lower bound: refers to the solution space that achieves a smaller overall

objective value (when the optimization problem is a minimization problem)

compared to the optimum (see Fig. 2.4). However, such solutions are de-

rived by omitting a certain constraint (e.g., relax integer constraints to linear

constraints). As a result, the obtained solutions are not feasible solutions to

the original problem. Typical approaches in constraint relaxation include lin-

ear programming (LP) relaxation and Lagrangian relaxation [51], which will

later be discussed in more details.

• Upper bound: refers to the solution space that achieves a higher overall

objective value (when the optimization problem is a minimization problem)

compared to the optimum (See Fig. 2.4). Unlike lower bound where the solu-

tions are not feasible, upper bound solutions are found by searching through

the feasible solution space that satisfies all constraints of the original problem.
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Fig. 2.4 provides an overview of the mapping between each optimization solution

and the achieved optimization performance. Clearly, most of the existing solutions

(e.g., heuristic, meta heuristic and approximation) look for a solution in the feasi-

ble solution space. In contrast, relaxation-related solutions achieve a better solution

than the optimum, but cannot justify the feasibility of the obtained solutions. In the

following, each optimization solution is discussed with its advantages and disad-

vantages.

• Relaxation: refers to methods that solve a simplified version of the original

problem (e.g., relax a certain constraints). By doing so, a complex combi-

natorial optimization problem can be quickly solved. However, this obtained

solution is not a feasible solution to the original problem. In order to ob-

tain feasible solutions, the relaxed solutions need to be adjusted (e.g., in the

case of integer linear programming (ILP) relaxation, the obtained linear so-

lutions need to be rounded up or down) [50]. In addition, the relaxation with

rounding techniques is widely used in deriving exact [52] and approximate

solutions [53].

• Exact solution: solves the formulated problem in an optimal way. It either

adopts an existing solver (e.g., CPLEX [54]) or approaches from brute-force

enumeration (e.g., branch-and-bound, branch-and-cut, branch-and-price) to

derive the set of optimal decisions [50]. However, exact solutions can be only

applied to small problem instances as most of network resource management

problems are ILP, and are therefore NP-hard [50].

• Meta heuristic: Given the problem input size and the resulting combinatorial

solution space, the searching space might be extremely large, which motivates

intelligent ways of searching optimal solutions in the problem space. In this

sense, Meta heuristic solutions are devised to find near-optimal solutions by

always keeping improving a candidate solution with regard to a given mea-

sure of quality (e.g., objective value). Existing meta heuristic includes simu-

lated annealing, genetic algorithms, ant colony optimization, tabu search and
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etc [55].

• Heuristic: is a technique to quickly solve a complex optimization problem.

The low execution time is achieved by sacrificing the optimality of solutions.

Heuristic is a common approach to solve in resource management problems

due to their complexity.

• Approximation algorithm: refers to algorithms that provide a performance

guarantee in polynomial time. Specifically, it provides a resulting perfor-

mance that is at most constant times of the optimum. However, it is challeng-

ing to prove that an approximation algorithm has a performance guarantee.

In this thesis, the exact solutions, heuristics and approximation algorithms are

thoroughly investigated for the design of resource allocation algorithms. In par-

ticular, we aim to provide performance guarantees for ISPs with approximation

algorithms, so that the worst-case network costs can be taken into account for ISPs’

networks.

2.4 Problem and Design Space
Having specified different optimization models and solutions, we now investigate

the design challenges of a cost-efficient resource management framework. Essen-

tially, this consists in finding the optimal allocation of different resources (e.g., com-

puting resources, storage resources, and bandwidth resources) to achieve a certain

required latency.

Fig. 2.5 shows an example of different subproblems considered in this the-

sis. For instance, the lower part of Fig. 2.5 illustrates the design problem of cost-

efficient underlying low latency networks, whereby the network capacities and the

locations to install/deploy different network equipment (e.g., server, MEC, DC, etc)

need to be optimally derived. Furthermore, the upper part of Fig. 2.5 provides an

intuitive example of the dynamic end-to-end resource management and the fault-

tolerant network resource management for low latency communications. For the

dynamic end-to-end resource management problem, network resources (bandwidth
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and computing resources) on two end-to-end communication paths need to to dy-

namically allocated (see Fig. 2.5 the red path to MEC and the blue path to DC).

Problems of this category not only consist in deriving the locations to instantiate

virtualized resources, but also in finding the amount of required resources to guar-

antee low latency requirements (e.g., the portion of shared computing/bandwidth

resources in Fig. 2.5). Moreover, the back-up resources need to be allocated to pre-

vent from failing low latencies during network failures (e.g., network links and node

in green, see Fig. 2.5). In particular, the resulting costs of back-up resources need

to be optimized.
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Figure 2.5: End-to-end resource management framework.

2.4.1 Static Network Planning

The first step towards a cost-efficient resource management framework is to provide

low latency communication infrastructures for ISPs. This consists of finding the

optimal placement of physical network equipment such as router, server, network

link and etc (see the lower part of Fig. 2.5). Conventional approaches to solveing

the low latency network planning problem (i.e., guarantee worst-case latency) adopt

overprovisioning [56], whereby the capacity of network equipment is provisioned

according to the predicted peak workload. However, ISPs’ networks are not fully
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utilized during off-peak times as the average level of workload is much smaller than

the peak workload [57]. Obviously, overprovisioning approaches result in resource

wastage, and are not cost-efficient. To solve this, a trade-off between cost efficiency

and low latency needs to be made in the design of the underlying communication

infrastructures.

To achieve the abovementioned trade-off, advanced techniques focused on op-

erational research [58] and graph theory [59], have been applied at different stages

of network planning. First, when networks need to be designed from scratch, fa-

cility location, set cover location and transportation models are largely adopted to

model the decision-making problem with respect to the locations of network links

and servers [44]. In addition, capacitated models such as capacitated facility loca-

tion [43] and capacitated set cover location [47] are adopted to formulate not only

the locations but also the capacities of network links and servers. Since network

planning takes place at the design stage, there is no actual requirement in terms of

optimization algorithms’ running time. That is, network planning optimization is

offline optimization, and can, therefore, afford long running time incurred by ex-

act solutions. Second, when existing networks need to increase their capacity to

accommodate higher traffic [60], decisions such as where to deploy additional net-

work links to increase bandwidth resources need to be made in an efficient way, such

that the network upgrade costs (e.g., required additional network equipment) can be

minimized. To solve the decision-making problem, a network performance analy-

sis with respect to network congestion locations is required to first understand the

demanded capacity of the considered network. Further, an analysis of the expected

network traffic after network upgrade needs to be performed in order to provide the

capacities.

An extensive amount of work has been carried out to solve network planning

problems (e.g., design from scratch) [61, 62, 63, 64]. They adopted exact solutions

(e.g., brute-force approach) with CPLEX optimizer to derive the locations and ca-

pacities of network equipment respectively in the context of smart grid, wireless

sensor network, DC network and mobile edge network. However, the exact so-
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lutions can only solve small-scale complex planning problems or simple network

planning problems in reality. As such, the large-scale complex network planning

problem (e.g., IoT) will lead to infinite optimization running time if exact solutions

are adopted. Compared to network planning problems from scratch, the network

upgrade problem has received little attention, and is considered to be more complex

due to the additional constraints imposed by existing network topologies. In this

sense, analysis with advanced graph theory and complex network theory [65] will

be required to first understand the problems faced by existing networks.

In Sec. 3, we proposed a novel network upgrade approach specifically targeting

cost-efficient upgrade problems for low latency communication networks.

2.4.2 Dynamic End-to-End Resource Management

Given the underlying communication infrastructures and the latest advancements

in virtualization, different network resources (e.g., bandwidth resources, comput-

ing resources and storage resources) on end-to-end paths (see the upper layer of

Fig. 2.5) can be jointly optimized to achieve cost-efficient low latency networks.

Specifically, such optimization process involves simultaneously determining re-

source allocation on end servers and routing paths between source network nodes

and destination network nodes. In the following, resource allocation problems are

classified based on locations where allocation takes place. First, resource allocation

at remote DC (e.g., cloud servers) is reviewed (see Fig. 2.5). Second, resource al-

location in the context of mobile edge computing will be reviewed whereby MECs

are located at network edges (see Fig. 2.5). Last, routing algorithms that derive the

paths between users and end services are reviewed (see Fig. 2.5).

Cost-efficient Resource Allocation in Cloud Computing: Cost efficiency

[15, 66, 67, 68, 69, 70, 71, 72, 73, 74] has been extensively studied in the context of

cloud computing over the last years. Most of the work [15, 69, 71, 72] in this domain

focused on achieving cloud consolidation by dynamically allocating/reallocating

VMs that host end services, thereby minimizing the number of active servers. The

other direction in improving cloud cost efficiency considers monetary costs for

cloud users [66, 68, 70, 73, 75]. In the first category, [15, 69, 71, 72, 74] studied the
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energy consumption minimization problem in a single DC. The objective of these

problems can be either the minimization of a number of active servers [69, 71, 74]

or the minimization of the resulting power consumption [15, 72]. Unfortunately,

work in DC consolidation focused on the reduction of energy consumption, and did

not consider computational tasks’ deadline (this will be discussed later), which is a

key requirements for low latency services.

In contrast to the abovementioned studies, work in deadline-constrained auto-

scaling and scheduling [56, 68, 73] focused on achieving latency requirements of

cloud services via elastic resource allocation and scheduling. This class of work

considered task completion deadlines. They aimed to derive the minimum allocated

computing resources and the optimal sequence of task processing (e.g., prioritize

packet processing for packets with lower latency) to efficiently meet task comple-

tion deadlines. However, since network delays dominate the entire end-to-end delay,

the achieved latency savings in DCs with scheduling techniques are limited com-

pared to latency savings achieved by MECs, which largely reduces network delays.

Resource Allocation in Edge/Fog Computing: Unlike providing services

from remote DCs, edge/fog computing aims to bring services closer to end users

by exploiting virtualized resources in micro-clouds located at network edges. By

doing so, the communication latency can be largely reduced, but it raises concerns

in cost efficiency due to the distributed nature of micro-clouds and the break of DC

consolidation. Limiting the number of distributed clouds can resolve the cost issue,

but would result in the violation of low latency requirements. In this sense, a trade-

off between the amount of allocated resources and delays needs to be addressed

(i.e., the more resources are allocated to a service, the faster the processing will be).

Most of the recent work in MEC resource allocation [25, 76, 20, 77, 78] con-

sidered that end services have already been placed/instantiated in VMs from MECs,

and the uploading of application logics is not required. As such, mobile users can

simply upload traffic to MECs to be processed. These studies investigated the ser-

vice placement, network planning, dynamic resource allocation and user admission

problems. Compared to similar problems in the context of DC-based cloud comput-



2.4. Problem and Design Space 40

ing, the two distinguishing features, resource limitation and strict latency constraint

of edge computing systems, need to be carefully considered. Existing work such as

[78] considered distributed service placement for multiple services in resource con-

strained MECs. The authors adopted a mixed integer programming to formulate the

problem, and aimed to find the service placement that minimizes admission failures.

Then, they solved it with heuristics inspired by caching content placement heuristics

[79]. [80] studied a MEC planning problem where they formulated a slightly differ-

ent facility location problem that has a predetermined K MECs to be placed. In this

problem, both locations of MEC and routing paths need to be determined such that

the average communication delay is minimized. [81] considered an admission con-

trol problem in computing resource-constrained MECs. In particular, they adopted

the distribution of arriving mobile users and the average MEC service rate to model

the gained utility of admitting a mobile user with a Semi-Markov decision process.

Next, they integrated the Markov decision model into a LP problem formulation,

and solved the problem with existing LP solver. [82] considered load balancing in

MEC whereby they devised two dynamic workload-to-MEC assignment algorithms

(heuristic and genetic algorithm) to minimize the maximum average response time

in all MECs.

Most of the existing work in edge computing focused on minimizing end-to-

end latencies with fixed-location micro-clouds. However, the trade-off between

achieved latency and the cost efficiency of edge cloud resources has not been stud-

ied. At the same time, the potentials of jointly exploiting dynamic routing and

dynamic resource allocation on end-to-end communication paths have not been re-

vealed. To this end, we review existing routing approaches in the following.

Dynamic Request Routing : Routing aims to find network paths between

two end pairs that minimize the accumulated metrics of traversed paths. Depend-

ing on the optimization objective, such metric can be defined in different forms

such as congestion-caused monetary loss, link latency or amount of available link

bandwidth. Conventional routing algorithms such as distance vector algorithms and

link-state algorithms adopt different searching methods to find shortest paths be-
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tween a set of paired locations [26]. However, in order to apply routing policies

at routers, network operators need to separately configure each on-path router with

low-level and often vendor-specific commands [7], which is difficult to achieve in

the current Internet paradigm (e.g., equipment from different vendors).

SDN decouples the data plane from the control plane to facilitate the imple-

mentation of complex routing decisions. As such, SDN can more intelligently and

dynamically optimize the use of network resources compared to conventional ap-

proaches. Most of the work to this regard focused on optimal routing approaches

that optimize certain objective functions such as (e.g., minMax link utilization, max-

imum request admission rate, minMax server utilization). For instance, [83, 84]

considered a routing optimization problem in SDN, whereby they aimed to find

routing paths that maximize the admitted flows while conforming to SDN for-

warding table size. Specifically, the problem of Ternary Content Aware Memory

(TCAM) was taken into account, which is a limited and expensive resource. As a

result, the number of flows that can go through a TCAM-based router is constrained

by the forwarding table size. To solve the problem, [83] adopted a randomized

rounding approach that provides a performance guarantee on the overall admitted

flow. [84] adopted a graph theory approach to construct an auxiliary graph convert-

ing network node capacity constraints (e.g., forwarding table size constraint) to link

constraints (e.g., using the capacity of an added virtual link to represent the node

capacity).

Summary of dynamic end-to-end resource management : Clearly, resource

allocation in DCs does not entirely resolve latency issues for low latency applica-

tions (i.e., extreme low latency requirements cannot be met). In contrast, edge com-

puting addresses latency issues, but faces issues in cost efficiency. This requires a

joint optimization of dynamic routing and dynamic resource allocation at MECs.

Existing work in routing with TCAM constraints firstly introduced the concept of

jointly optimizing resources on network nodes and links. However, the joint opti-

mization of resources from end cloud servers and network links has not yet been

addressed. As such, it might occur that abundant amount of on-path network band-
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width is allocated to an end-to-end communication path, but an end cloud server

does not possess enough computing resources to process the routed traffic [85]. As

a result, the provisioned on-path resources are not efficiently utilized (i.e., resource

wastage) due to the bottleneck at the end server, which would lead to latency viola-

tions.

In Sec. 4, we solved the online cost-efficient resource management problem

for ISPs by adopting MECs. Specifically, we aim to dynamically minimize the

resulting operational cost of different network resources while always achieving the

required low latencies by optimally exploiting different resources.

2.4.3 Fault-Tolerant End-to-End Resource Management

The faulty hardware and software could severely affect communication latencies.

Therefore, we consider a specific scenario in cost-efficient end-to-end resource

management, which is the resource allocation in SFC. In this scenario, different

VNFs such as deep packet inspection, firewall, and load balancer are chained to-

gether to provide more complex network services. As such, for services that need

to go through SFCs, the end-to-end latency will highly depend on the placement of

VNFs, requests-to-VNFs assignment and the routing between VNFs.

[86] considered an ordered VNF placement and routing problem in a network

resource-constrained environment. In this problem, the authors considered three

objectives when optimizing the VNF placement, aimed at balancing the resulting

load on network links, minimizing the number of used network nodes for host-

ing VNF instances and minimizing end-to-end latencies of the created paths. [87]

considered an unordered VNF placement and routing problem for operational cost

minimization, whereby they adopted a facility location model and a general assign-

ment model to respectively formulate the VNF placement and VNF request assign-

ment. To solve it, they proposed an approximation-based algorithm that leveraged

linear programming relaxation and rounding techniques to find near-optimal solu-

tions. [88] aimed to find both the optimal VNF placement and the assignment of

requests to VNF chains. They first considered a maximum network link utilization

minimization problem, and then considered an energy minimization problem. A
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heuristic algorithm was proposed to address the formulated problem. Clearly, none

of the existing work jointly considered the correlation between the load on network

nodes (e.g., VNF utilization) and network links. Such joint consideration is essen-

tial in the upcoming 5G low latency end-to-end communications as any node or link

congestion could potentially affect the perceived user experience.

The abovementioned studies assumed that VNFs are stable, where both soft-

ware and hardware can operate without failures. However, in practice, VNF failures

might frequently occur, due to the variety of reasons, such as connectivity errors

(e.g., link flaps, device unreachability, port errors), hardware faults (memory errors,

defective chassis), misconfiguration (wrong rule insertion, configuration conflicts),

software faults (reboot, OS errors) or excessive resource utilization [89]. If such

failures are not handled seamlessly and correctly, they will introduce great degra-

dation of service performance and reliability. Most studies on providing fault tol-

erance support for NFV-enabled networks have been focusing on either designing

and implementing systems with fault tolerance support [90, 91, 92] or plan-stage

VNF placements based on statistical methods [93]. [93] investigated the problem of

NFV backup instances deployment problem, given failure probabilities of different

network functions. Most of these studies, however, are not clear how to jointly route

user requests and place active and stand-by instances of their service chains, such

that a specific network performance is optimized.

Unlike these studies, in Sec. 5, the joint routing and placement of their active

and stand-by instances is studied, such that end-to-end resources are optimized,

while the lowest operational costs are achieved and latency constraints are satisfied.



Chapter 3

Cost-efficient Network Planning for

Low Latency Applications

In this chapter, we first look at issues in designing cost-efficient low latency infras-

tructures, which consist of the offline networking planning/upgrade of communica-

tion links. We formulate this physical communication infrastructure design prob-

lem with ILP as a placement problem, and propose three graph theory based algo-

rithms aiming to achieve both the cost efficiency (e.g., deployment costs) and the

required low latency. In particular, this chapter investigates a case study in smart

grid communications, whereby delay-sensitive applications are vital to the reliabil-

ity of power grid systems. The main contributions consist of three network planning

algorithms that adopt topological characteristics to optimize network operators’ de-

ployment costs.

3.1 Introduction
The energy sector has been undergoing major transformative changes in recent years

in order to address pressing concerns in improving energy efficiency of the grid and

to reduce overall carbon emissions. The increasing penetration of distributed re-

newable energy sources (e.g., solar/wind farms), the rising deployment of electric

vehicles [94, 95] and active consumer participation into power grid operations (e.g.,

interactive consumer applications) are pushing today’s power grid infrastructure to

the limit. The progressive integration of these active components introduces signif-
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icantly higher system volatility, posing new challenges to system stability, with re-

spect to power quality, voltage regulation, protection [96] and fault location. In fact,

this constitutes a major shift from passive to active distribution networks (ADNs)1.

To cope with this increasing volatility, distribution network operators (DNOs)

aim at the design and development of enhanced cyber-physical systems enabling

both the fine-grained monitoring and control of their power grid infrastructure.

In the envisioned systems, a communication infrastructure supports the near-real

time observability of the power grid conditions, enabling in turn the control of the

power grid infrastructure in terms of the aforementioned control operations. In this

context, the deployment of high-precision Phasor Measurement Units (PMUs) [97]

gains a significant role for DNOs. By supporting high rate, synchronized monitor-

ing of key system parameters, PMUs enable the synchrophasor-based real-time state

estimation (RTSE) [98] of the grid, opening the way for fine-grained and timely con-

trol of the overall system [99]. For example, fault localization enables the instant

identification and the subsequent opening/closing of the appropriate breakers, iso-

lating the fault. It has become apparent that the close synergy of communications

and the power grid will enable its fine-grained management, supporting the timely

adaptation to increasingly dynamic operating conditions.

However, such applications come with stringent end-to-end communication

delay requirements, i.e., in the order of a few tens of milliseconds [18, 99, 100]. In

turn, the expected benefits from the envisioned cyber-physical system depend on the

ability of the communication infrastructure to actually support these requirements.

While high capacity optical fiber may be typically available on the transmission

level (i.e., high voltage (HV) domain), adopting a similar approach on the distri-

bution level (i.e., in the medium voltage (MV) domain) raises significant concerns

with respect to the associated costs. Our analysis of a large set of real topologies (cf.

Section 3.2.2) shows that the mostly urban environment of the distribution grid calls

for a dense deployment of high capacity communication links, as opposed to the HV

1ADNs are defined as distribution networks that have systems in place to control a combination
of distributed renewable energy resources like generators, loads and storage. Distribution network
operators have the possibility of managing electricity flows via a flexible network topology.
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domain [101]. As a result, the full-fledge fiber optic communication deployment in

urban environment for MV distribution grid is currently not practical and plagued

with various difficulties and prohibitive costs. Recent works have alternatively in-

vestigated the use of wireless technologies such as WiMAX and LTE [102], report-

ing however concerns about the impact of control plane and medium access control

(MAC) layer delays, which is directly affected by the number of devices accessing

the high capacity wireless channel(s) [18, 103, 104]. On the other hand, the readily

available power line communication (PLC) infrastructure has relatively low costs,

but the typically low PLC bandwidth appears as a bottleneck to the timely delivery

of delay sensitive monitoring traffic. Based on the above observations, we identify

the tradeoff between the performance gains from the deployment of high bandwidth

technologies and the deployment costs (and/or MAC/signalling delay penalties in

the case of wireless technologies) associated with wide scale PMU deployment in

the MV domain.We highlight that this is the first work in MV domain investigating

low latency communication infrastructure for PMU-based applications.

We address this tradeoff by considering the design of a hybrid communication

infrastructure, where the existing PLC infrastructure is utilized to reduce the number

of high capacity links required to satisfy the low latency requirements along with

the associated costs. Our problem resembles a facility location problem, where we

seek the minimum number and location of high-capacity links in the MV grid to

satisfy our application-level latency constraints. As the problem is known to be NP-

hard [105, 106], we turn our attention to heuristic-based solutions. To this end, and

in order to guide the design of our solution, we engage in an in-depth analysis of

the end-to-end delay (Te2e) components. Based on a large set of 14 real MV grid

topologies operated by a large DNO in the Netherlands, we perform an analysis of

important topological characteristics of the MV domain [107], while also paying

attention to PMU communication specificities such as the impact of precise PMU

data synchronization. Our analysis yields valuable and pragmatic insights for the

design of both low-cost and low-latency communication infrastructures for the MV

grid, which we embody in the design of three different heuristic-based optimization
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algorithms. An extensive set of detailed packet level simulations demonstrate the

effectiveness of our algorithms.

3.2 Background and Problem Statement
Designing a communication infrastructure for the support of a purpose specific

cyber-physical system, such as the smart power grid, necessitates a good under-

standing of the operational context, in our case of the MV power grid. Fig. 3.1

provides a high level illustration of a typical MV grid, i.e., the (power) distribution

network. A typical MV grid topology has a tree-like structure rooted at a primary-

substations (P-SS), which is responsible for stepping down the transmission voltage

from HV to MV. Each tree branch emanating from a P-SS corresponds to a distinct

feeder (cable) further distributing the MV power to the desired areas through a se-

ries of secondary-substations (S-SSes), responsible for further stepping down the

voltage. The power distribution network consists of multiple such trees rooted at

different P-SSes.

3.2.1 Delay-Sensitive Synchrophasor Monitoring Applications

Our work is motivated by the challenge to support 3-phase RTSE application. RTSE

is considered as an important tool for DNOs as it supports particularly important

energy management and protection operations, such as fault detection/localization,

post-fault management and voltage control [108, 109]. PMUs enable the support

of such applications by monitoring power system parameters (e.g., phase angle,

voltage, rate of change of frequency (ROCOF), etc.) at strategically selected S-SSes

in the MV grid2(see Fig 3.1). All PMUs are GPS-synchronized and stream their

measurements to phasor data concentrators (PDCs), which are typically located at

the P-SS. PDCs collect, time align and deliver synchrophasor data to applications

such as RTSE.

Although typical refresh rates of state estimation processes are of the order of a

few minutes, the high system dynamics of ADNs, due to renewable energy sources

2The selection of PMU locations constitutes a research area on its own (e.g., [110]). Without
loss of generality, we consider a scenario with a PMU deployed at approximately every two S-SSes
along a feeder (see Fig 3.1).
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Figure 3.1: Medium voltage power grid.

(DRERs) and electric vehicles (EVs), necessitate the fine-grained estimation of sys-

tem state within a few tens/hundreds of ms [98]. PMU reporting frequencies (F)

of 50 or 60 frames-per-second facilitate this detailed view of the power grid [32].

Based on PMU data semantics [111], a realistic PMU message payload size is 102

bytes3. Further considering UDP and IP headers, and a 32-byte SHA-256 message

authentication code, the overall data rate for each RTSE PMU flow delivered to the

link layer is 64.8Kbps, for F = 50Hz.

The timely delivery of these measurements is a challenge for the underlying

communication infrastructure. In this work, we account for RTSE applications a

maximum total latency of 100ms [18, 98, 100], including latencies for PMU signal

acquisition, PMU synchrophasor estimation and data encapsulation, communica-

tion network delay, PDC data frame time alignment, bad data detection and state

estimation [100]. The time budget left for telecommunication network delay (Te2e)

depends on these latency components and has typically a constraint (denoted as

Tmax) of 20ms [19], at a PMU reporting rate of 50Hz [18, 98]. It was recently shown

that the telecommunication network delay constraint could be further relaxed to 35-

55ms due to new advancements in state estimation algorithms [100]. Nevertheless,

in this work, we focus on Tmax = 20ms, as a more stringent requirement4. At this

3Considering PHNMR=6, ANNMR=6 and DGNMR=2, with 32-bit floating-point accuracy
[111].

4We note though that this is only an input parameter to the proposed algorithms (see Section 3.4),
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point, it is important to stress that at the application level, RTSE necessitates the

availability of all synchronized PMU measurements within the defined Tmax. Oth-

erwise, state estimation will suffer in terms of accuracy; hence, Tmax stands for the

worst case Te2e acceptable.

3.2.2 Deployment Cost Minimization Problem

The support of the identified latency requirements depends heavily on the underly-

ing communication infrastructure, which in turn is largely determined by the loca-

tions of the communicating entities and the selected transmission technology. We

first consider a baseline communication network model enabled by PLC technolo-

gies [112], which, by allowing DNOs to make use of their existing power-line cables

as the transmission medium, constitute the most straightforward and low-cost op-

tion for the support of communications in the power grid. In this baseline scenario,

the communication network topology coincides with the MV power grid topology.

We investigate the topological properties of the resulting communication network

model based on a set of 14 MV power grid topologies operated by a DNO in the

Netherlands. Table 3.1 summarizes the basic aggregated topological characteristics

of the considered MV grids. Furthermore, in Table 3.2, we present the topologi-

cal properties per area. Our dataset shows close agreement with literature (e.g., as

surveyed in [21]) and thus, representative to general MV grids.

We represent the distribution grid, and the corresponding baseline communica-

tion network model, as a set of tree graphs, G(V,E), with v∈V as substations where

node v0 represents the root (i.e., the P-SS) 5. The edges, e ∈ E, represent physical

cables connecting different SSes. Then, we denote the distance in hop count be-

tween vi and vi′ as d(vi,vi′) with i 6= i′. Further, let U be the set of nodes (S-SSes)

equipped with PMUs, comprising PMU-enabled nodes v j
i , where j ∈ [0..|U |−1] is

the PMU index and i ∈ [0..|V |−1] is the node index. We define P(v j
i ) as the short-

est path comprising the consecutive edges connecting PMU-enabled node, v j
i , to v0

not affecting their general applicability.
5On the communication level, v represent routing/switching devices located at the corresponding

S-SSes, forwarding data packets.
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Table 3.1: Summary of real MV grid topological properties of a large European DNO.

Primary Substations (P-SS) 14
Secondary Substations (S-SS) 1323
Number of edges (cables) 1426
Average cable length 498m
Average node degree 2.02

Table 3.2: Real MV grid topological properties per area.

Grid Number Number Mean Link7 Mean8 Mean9

of of node density path betweenness
nodes edges degree length

Area 1 187 223 2.0744 0.0128 7.3105 6.2774
Area 2 112 134 2.7077 0.0216 7.745 6.6869
Area 3 36 43 1.9545 0.0683 6.2778 5.1351
Area 4 155 177 2.1718 0.0148 7.1290 6.0897
Area 5 89 102 2.125 0.02604 7.1290 6.2247
Area 6 82 82 1.9759 0.02469 3.7195 2.6867
Area 7 22 22 1.9130 0.0952 3.4545 2.3478
Area 8 177 177 1.9887 0.01136 5.3728 4.3483
Area 9 28 28 1.9887 0.07407 5.7857 4.6207
Area 10 50 51 2 0.04163 4.5 3.4313
Area 11 101 101 1.9803 0.02 5.5049 4.4608
Area 12 98 98 1.9798 0.02061 4.55102 3.5152
Area 13 41 41 1.9524 0.05 2.5854 1.5476
Area 14 145 147 2.0119 0.0141 5.2897 4.2603

(see dashed lines in Fig. 3.1). The length of P(v j
i ) is |P(v j

i )|= d(v j
i ,v0) = d(vi,v0)

6.

In the PLC-enabled baseline model, PMU flows (dashed arrows in Fig. 3.1)

reach the PDC by traversing their uphill PLC links towards the root of the tree

topology. Following the PMU deployment scheme described in Section 3.2.1, for

the available MV grid topologies, we simulate the operation of 795 PMUs in a

detailed packet-level simulation environment (see Section 3.5). Fig. 3.2 shows the

cumulative fraction of the Te2e observed at the PDC for a duration of 10 minutes with

PLC bandwidth values: 100Kbps and 500Kbps [112]10. The vast majority of PMU

6For clarity, for the rest of the paper, we simply refer P(v j
i ) as Pj since there is only one unique

path from a PMU to the PDC.
7Path length represents the number of hops from a S-SS to the P-SS.
8Link density= |E|

(|V |−1)∗|V |/2 .
9Betweenness represents the number of shortest paths between a S-SS and the P-SS that involve

the measured node.
10PLC encompasses a diverse set of technical realizations with different bandwidth values, broad-
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Figure 3.2: (CDF) Te2e of PMU flows with PLC and optical fiber

messages delivered exceeds Tmax. Clearly, the considered set of applications cannot

be supported by PLC technology alone. However, we will show in Section 3.3 that

limited bandwidth is not the only key delay factor.

We further consider and simulate an optical-fiber based communication net-

work model, following the current practice in HV deployments [101]. In particular,

we consider 10Gbps optical fiber links directly connecting PMU-enabled S-SSes

to the PDC at P-SS. As shown in Fig. 3.2, this communication infrastructure fully

conforms to the Tmax constraint. However, it necessitates the deployment of 795

optical fiber links in total, representing a significant CAPEX.

Recent studies have also shown that the adoption of wireless technologies may

lead to an increase of medium access delays due to the contention for access to

the shared wireless medium, even in cases where no other background traffic is

served [18, 103, 104]. This contention and the corresponding delays increase with

the number of wireless transmitting devices, i.e., subject to the selected wireless

technology, an increased volume of attempts to transmit increases the collision

probability, leading to back-off/scheduling delays. Given that existing wireless

networks (e.g., cellular (A-)LTE, WiMAX) have been dimensioned for a particu-

lar access load, the introduction of additional devices (i.e., PMUs) raises concerns

about the aforementioned performance penalties. Of course, increasing frequency

reuse with the deployment of smaller cells would reduce contention, for a certain

access demand. However, this would obviously come at a significant deployment

band 500Kbps being one of them. Our methodology can be applied for different bandwidth values.
For extremely low values, lower datarate PMU configurations should obviously be considered.
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cost for communication network operators11. The synchronization of PMUs only

further exacerbates the contention issue, since it increases collision probabilities

and/or limits scheduling flexibility. For all these reasons, it follows that the number

of wireless transmitting devices should also be kept to a minimum.

In short, PLC, though readily available, appears unable to support the consid-

ered low latency applications, urging for alternative solutions such as the use of

modern wireless or high-speed wired technologies. However, the deployment of

such technologies incurs a non-negligible capital expenditure and/or performance

penalties. In this respect, it becomes apparent that the scale of deployment of high

capacity links needs to be carefully considered. Considering this tradeoff between

deployment costs and performance, we propose the design of hybrid communica-

tion infrastructures that exploit the existing low cost PLC capabilities, while also

employing higher bandwidth technologies. The rationale is to take advantage of

the availability of PLC to partially accomplish the task of delivering the PMU data

flows to the PDC, thus reducing the number of high capacity links in the overall

network. Starting from our baseline network model, the objective then becomes to

select the minimum sub-set of S-SSes to be equipped with high capacity direct links

to the P-SS/PDC (e.g., optical fiber) and act as sink nodes, i.e., aggregating PMU

traffic through PLC links. The envisioned scenario is illustrated in Fig. 3.3.

Let Xi with i ∈ [0..|V | − 1] be a binary decision variable, set to 1 if node vi

is equipped with a high capacity communication link; we denote such a node with

vk
i with k ∈ [0..|S| − 1], where S be the set of sink nodes. Let also Yjk with j ∈

[0..|U | − 1] and k ∈ [0..|S| − 1] be a binary variable set to 1 if a PMU flow from

v j
i is delivered to a sink node vk

i′
12. Then, denoting the end-to-end delay of each

PMU flow over path Pj (with j ∈ [0..|U |−1]), as T j
e2e, our objective can be loosely

expressed as follows:

11Dedicated, private wireless networks constitute another option for DNOs. However, they are
associated with other types of deployment costs, e.g., spectrum licence costs. We consider this
particular aspect out of the scope of this paper.

12Note that i = i′ is allowed i.e., a S-SS can be equipped with both a PMU and a high capacity
link.
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Figure 3.3: Hybrid communication infrastructure.

minimize ∑
i

Xi, (3.1)

subject to T Pj
e2e ≤ Tmax, ∀ j ∈ [0..|U |−1] (3.2)

∑
k

Yjk = 1, ∀ j ∈ [0..|U |−1], (3.3)

k ∈ [0..|S|−1]

Xi ∈ {0,1}, ∀i ∈ [0..|V |−1] (3.4)

Yjk ∈ {0,1}, ∀ j,k (3.5)

The exact nature of the problem and the corresponding solution obviously de-

pend on the first constraint which only roughly expresses the low latency require-

ment. The second constraint ensures that each PMU-enabled node sends its flow to

a single sink node. To assess the hardness of our problem, we can merely express

the first constraint by setting an upper limit (i.e., dmax) for the distance between

a PMU-enabled node v j
i and the corresponding sink location vk

i′ . This results in

constraint (1) to be re-written as follows (see also Section 3.3.2.1):

d(v j
i ,v

k
i′)≤ dmax
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Even in this simple case, the resulting problem is a typical NP-hard facility lo-

cation optimization problem [105, 106] thus turning our attention to heuristic-based

solutions. To further explore the problem space and guide the design of our heuris-

tics, we first decompose Te2e into its constituents and investigate the most important

factors impacting them (Section 3.3). In this effort, we get valuable input from

the detailed investigation of our large set of MV topologies. Our analysis yields

important insights for the subsequent design of the proposed heuristic algorithms

(Section 3.4).

3.3 Analysis of End-to-End Delay Impact Factors
Our analysis of the various latency impact factors is enabled by the identification of

the various components of Te2e, i.e.,

• Processing delay (proc): the time used for operations such as medium adap-

tation, (de)coding, switching, routing, message authentications codes genera-

tion / verification.

• Propagation delay (prop): depends on the transmission medium and the dis-

tance travelled by the signal. For copper cable, this is typically 5ns per meter.

• Transmission delay (trans): the time required to transmit the data and is sub-

ject to the bandwidth of the underlying transmission technology.

• Queuing delay (queue): the time spent by data waiting for transmission at the

transmitting devices.

We consider for this analysis a discrete time domain divided into slots with

each slot capable of containing exactly one PMU packet. For each delay compo-

nent x ∈ {proc, prop, trans,queue}, we consider the corresponding per hop delay

tx. Additionally, we define the aggregate Tx of each delay component x over a path

Pj as Tx =
|Pj|
∑ tx.

In the following subsections we investigate the impact of the key factors af-

fecting the aforementioned delay components in order to get insights on where to
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place high capacity links to achieve the low latency requirement in a cost-efficient

manner.

3.3.1 Bandwidth

Bandwidth availability impacts both ttrans/Ttrans and tqueue/Tqueue. Obviously,

ttrans/Ttrans increase with lower bandwidth values. Moreover, queuing delays per-

ceived at a node increase when the available output bandwidth is lower than the

incoming data rate at the node 13. Fig. 3.4(a) shows the cumulative fraction of

the Ttrans across all PMU-to-PDC paths, for the cases of PLC and optical fiber

based communication infrastructures. For the PLC-based case, Ttrans exceeds Tmax

for 92.91% and 26.59% of the transmitted packets for the cases of 100Kbps and

500Kbps respectively. In the case of optical fiber, we see a considerable reduction

of accumulated Ttrans compared to the PLC case, leaving abundant delay budgets for

other delay components. This is a direct consequence of the reduction of ttrans val-

ues from 13.52ms or 2.70ms for 100Kbps and 500Kbps PLC datarates, respectively,

to only ttrans = 13.52µs for the case of optical fiber (for the considered payload size

and header overheads; see Section 3.2.1).

Our simulations for the baseline PLC scenario (Section 4.2.2) also indicate

that on average, Tqueue accounts for 96.88% of Te2e, with Ttrans and Tproc account-

ing only for 2.18% and 0.94% respectively14. This domination of Tqueue on Te2e

implies the lack of sufficient bandwidth to support the PMU traffic. Although the

perceived Tqueue and Ttrans evidently demonstrate the role of the adopted technol-

ogy’s bandwidth, they are still dependent on a series of other factors including the

communication network topology and the tight synchronization of PMUs. We fur-

ther investigate these aspects next.

13As queuing delays are also related to both topological aspects of the communication network
and the synchronization of PMUs, we discuss them in detail in Section 3.3.2

14Due to the short distances between S-SSes (see Table 3.1), we omit tprop/Tprop in the following
as it is only in the order of microseconds.
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Figure 3.4: Impact of topology on PMU application performance

3.3.2 Topology

3.3.2.1 Path length

The path length, |Pj|, has an important impact on perceived aggregate Tx latencies,

since lengthy paths accumulate delays on multiple hops. We further use our set of

MV topologies to realistically quantify this impact. Fig. 3.4(b) shows the cumula-

tive fraction of the processing delays accumulated by data packets across all PMU-

to-PDC PLC paths (i.e., Pj : ∀ j ∈ [0, . . . , |U |−1]), for a range of per node process-

ing delay values, tproc. These values depend on the computational resources of the
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forwarding devices and can vary significantly, ranging from a few micro-seconds

to even milliseconds per packet [113]. If we consider recent overlay approaches

[33, 100], these delays may further increase due to the transition of packets from

the kernel to the user space. We notice that, subject to tproc, the overall delay penalty

Tproc may get close or even exceed Tmax, even though Tproc constitutes only 0.94%

of Te2e (for tproc = 1ms). Similarly, as previously discussed, Fig. 3.4(a) shows Ttrans

values close to Tmax, though Ttrans constitutes only 2.18% of Te2e. This is a direct

effect of path lengths, which in our topologies have an average and maximum value

of 5.84 and 20 hops respectively.

In essence, these measurements yield an important guideline for the design of

low latency communication networks: in the presence of high tproc values (i.e., in

the order of 1ms), bandwidth availability alone may not suffice in keeping Te2e val-

ues low, when paths are considerably long e.g., interconnecting P/S-SS with optical

fiber, following the power grid topology. Moreover, the provisioning of computa-

tional resources at each forwarding node should be carefully considered.

Building on these observations, we re-formulate the first constraint of our op-

timization problem (Eq. 3.1). Namely, to limit the effect of path lengths on Te2e,

we constrain the maximum number of PLC hops by limiting the distance between a

PMU and its sink node (dmax)15:

d(v j
i ,v

k
i′)≤ dmax =

⌊
Tmax− tproc

ttrans + tproc

⌋
, (3.6)

∀i ∈ [0..|V |−1],∀ j ∈ [0..|U |−1],∀k ∈ [0..|S|−1]

For the cases of 100Kbps and 500Kbps PLC, we get dmax = 1 and 5 hops

respectively, as dmax’s limit values.

15tprop (average ≤ 3µs in the considered topologies) and ttrans on the sink-to-PDC link (≤ 2µs
for a 10Gbps optical fiber link) are considered negligible. However, we account the tproc for the
sink-to-PDC hop.
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3.3.2.2 Application-level betweenness

As previously mentioned, Tqueue constitutes 96.88% of Te2e. This delay component

depends on the relation between the available and the required bandwidth at each

forwarding device. While the former depends on the selected transmission technol-

ogy, the latter depends on topological aspects of the communication network. Fig.

3.4(c) shows the cumulative fraction of the total PMU traffic volume aggregated at

each PLC link towards the PDC in our MV topologies. Again, we see that a PLC-

based infrastructure fails to accommodate the resource requirements as for more

than half of the communication nodes, the bandwidth requirements exceed a typical

bandwidth value of 100Kbps (≈ 10% for 500Kbps links).

To better understand this aspect, we introduce the concept of application-level

betweenness, b(vi), as the number of shortest paths Pj crossing node, vi. Note that

b(vi) is determined both by the topology structure and the placement of the PMUs.

In the considered set of MV grid topologies, we observe an average and maximum

b(vi) value of 3.24 and 32 respectively. Considering a 64.8Kbps data rate per PMU

flow, it is easy to understand the domination of Tqueue in Te2e.

Building on this observation, we formulate the next constraint for the design

of our hybrid communication network topologies, i.e., we impose an upper bound

on application-level betweenness (bmax) throughout the topology:

b(vi)≤ bmax =

⌊
BW
DR

⌋
,∀i ∈ [0..|V |−1] (3.7)

where BW is the available PLC bandwidth and data rate (DR), DR = 64.8Kbps. For

BW = 100Kbps and 500Kbps, this yields bmax = 1 and 7 respectively, significantly

lower than the observed b(vi) values in the baseline network model.

3.3.3 Flow Synchronization

Another factor with significant impact on the Te2e is the synchronized nature of

PMU flows16 whereby a PMU flow is defined as continuous traffic flow from PMU

16It is worth noting that the synchronization issue did not draw much attention in the HV domain
because of the low PMU deployment density and the high bandwidth of the adopted transmission
technologies [101].
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Figure 3.5: Example of path Pj′ (flow j′) joining path Pj (flow j) at node ui.

to PDC. As briefly mentioned in Section 4.2.2, such synchronization may signifi-

cantly impact the delays for access to the wireless medium. However, PMU syn-

chronization also has an important impact on the baseline PLC network model.

Packets originating at different PMUs reach the same forwarding device at (almost)

the same time. Consequently, packets wait in the transmission queue for a time lin-

ear to ttrans, i.e., waiting until all interfering packets from other PMU(s) get trans-

mitted. Our simulation results show that approximately 20% of PMU flows expe-

rience such synchronization problem across 12.45% of forwarding nodes, inflating

the overall observed Tqueue.

To assess the impact of synchronization, we follow the approach proposed in

[114]. Specifically, we focus on the worst-case scenario, i.e., a packet has to wait for

all other packets (almost) simultaneously arriving the same node, to get transmitted

first. We consider this worst-case scenario as our target is to limit the maximum

Te2e perceived.

We focus on a node of interest, v, with L inbound links el, l ∈ [0..|L|−1] and e f

outbound link. Further, a path, Pj′ , is said to join path Pj when they share the same

outgoing edge e f but not an incoming edge el at the node of interest (see Fig. 3.5).

Let RPj(e f ) be the number of paths, Pj′ , that join Pj : ∀ j′ 6= j; j′, j ∈ [0..|U | − 1],

at edge e f . Then, the Route Interference Number (RIN) of path Pj is defined as

follows:
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R(Pj) = ∑
e f∈Pj

RPj(e f ).

By counting the number of interfering paths at each forwarding node towards

the PDC, RIN allows us to derive the maximum number of times a PMU packet can

be delayed due to synchronization in the case where all PMUs send a single packet.

In this case, [114] showed that the overall end-to-end Tqueue of the packet sent on Pj

is bounded by R(Pj).

When the bmax constraint is met, the aforementioned single packet case can be

generalized into a multi-packet case where PMUs send one packet at each measure-

ment interval, 1/F . This generalization is possible because measurements taken at

one interval will only arrive after all measurement packets from preceding intervals

have been transmitted. Furthermore, when the number of flows of each link e f is

lower than the maximum b(vi) : ∀i ∈ [0..|V |−1], the worst-case queueing delay of

path Pj, T Pj
queue, is bounded by a tighter upper bound compared to RIN [115, 116]. To

state this delay bound, let β (e f ) denote the number of interfering packets at edge,

e f and Ql denote the number of paths from inbound edge el . Then we express β (e f )

and the corresponding worst-case queueing delay, T Pj
queue, as follows:

β (e f ) = ∑
l

Ql−max
l
{Ql} (3.8)

T Pj
queue = ∑

e f∈Pj

β (e f )ttrans (3.9)

where function max{Ql} selects at the outbound edge, e f , the maximum number of

Ql from all inbound, el .

We can then extend the notion of worst-case queueing delay bound to include

tproc and ttrans along the path to the PDC. Then, T Pj
e2e is calculated as follows:

T Pj
e2e = Σe f∈Pj

{
β (e f )ttrans + ttrans + tproc

}
(3.10)

Based on this formulation, we take into account synchronization when satisfy-

ing the constraint:
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T Pj
e2e < Tmax (3.11)

3.4 Design of Network Planning Algorithms
Building on the identified constraints, we next describe three heuristic-based algo-

rithms for the design of low latency and low cost hybrid communication infrastruc-

tures. Each algorithm is tailored for specific application environments.

• The path length constraint (PLeC) algorithm selects sink node locations by

constraining the length of data delivery paths (with dmax, Eq. 3.6), so that the

accumulated Tproc, Tprop and Ttrans are also capped (see Section 3.3). Since

it does not cater for bandwidth availability, this algorithm is most suitable for

low DR applications (e.g., low DR PMU reporting) and can be employed for

environments where multiple (low DR) applications share the same commu-

nication infrastructure.

• The application-level betweenness and path length constraint (AB-PLeC) al-

gorithm selects the sink locations by constraining both path lengths and the

number of PMU flows on each PLC link (with bmax, Eq. 3.7); therefore, ex-

plicitly targeting the reduction of Tqueue. By adjusting the bmax constraint

according to the residual bandwidth of each link, AB-PLeC can be easily

adapted to cater for background traffic, i.e., from applications expected to

share the same communication infrastructure (e.g., Intelligent Electronic De-

vice based monitoring).

• The flow interference and bandwidth constraint (FIB) algorithm selects the

sink locations by explicitly seeking the nodes at which a PMU packet exceeds

Tmax in the worst-case scenario (see Eq. 3.11), limiting both bmax and β (e f )

values. In contrast to the first two algorithms, FIB takes synchronization into

account; however it is tailored for cases of dedicated communication infras-

tructure, i.e., no background traffic.
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Algorithm 1 PLeC algorithm
Input: G,dmax
Output: S

1: S← /0
2: for all i do
3: ai← dmax
4: end for
5: while G 6= /0 do
6: vl ← G.getRandomLea f Node()
7: if vt 6= v0 then
8: vp← vl.getParentNode()
9: ap← min(ap,al−1)

10: G.removeNode(vl)
11: if ap = 0 then
12: ADDSINK(G,S,vp)
13: end if
14: else
15: ADDSINK(G,S,vl)
16: end if
17: end while
18: return S,M
19:
20: function ADDSINK(G,S,vs)
21: S← S∪ vs
22: R← /0
23: for all vi ∈ G do
24: if d(ui,us)≤ ai then
25: Ms←Ms∪ vi
26: R← R∪ vi
27: end if
28: end for
29: T ← G\R
30: end function

3.4.1 Algorithm Based on Path Length Constraint

For the PLeC algorithm, we follow the distance constraint formulation of the p-

center facility location problem [106]. We define S = s1, . . . ,sm as the set of sink

nodes, with 1 ≤ m ≤ |V |. Further, let D(S,vi) = min{d(s,vi) : s ∈ S}, the distance

between each node vi and its nearest sink node. Our objective is to find the minimum

set S such that for all D(S,vi)≤ dmax. We solve this problem via the sequential lo-

cation procedure proposed in [106]. Our algorithm (see Algorithm 1) takes as input

the tree topology, G and the distance constraint, dmax, and outputs the set of selected

sink nodes, S, along with set M (see next). For all nodes vi, we define a distance

value ai, i ∈ [0..|V |−1] and a set Mi, which contains the nodes that can use node vi

as their sink node, under the dmax constraint. We further set M =
⋃

i∈[0..|V |−1]Mi.

The algorithm starts by randomly selecting a leaf node, vl from G, along with
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its parent node vp. Traversing the tree hierarchy towards its root, the algorithm

updates the distance value ap of nodes vp as in line 9, until it reaches 0. Note that

the hierarchy is traversed by removing the visited leaf nodes from the topology.

When ap = 0, node vp is added to the sink node set (function ADDSINK(G,S,vm),

line 20). In this step, all nodes vi whose minimum hop distance to the new sink vm

is below their ai value are added to the Mm set. All nodes assigned to the new sink

are also removed from the tree17.

The outcome of the algorithm consists of the sets Mi for each selected sink node

vi. These sets may overlap with each other in cases where more than one sink nodes

reside within the dmax range of some node. At the same time, subject to the exact

topological characteristics of tree G, sets Mi may not all have the same size. This

means that a careless assignment of nodes to sinks may result in the overloading of

some sink nodes both with respect to their processing and bandwidth capabilities.

We address this through a simple node assignment procedure which balances the

load between sink nodes. Based on the available M sets, the procedure first produces

sets Li which hold the set of all sink nodes within dmax range of each node vi. The

members of each Li set are ordered in increasing hop distance to vi. The sink node

at the smallest distance is selected. When multiple sink nodes are located at the

same distance, the algorithm selects the preferred sink node vm with the minimum

Mm size so as to not overload other sinks which can possibly serve more nodes.

3.4.2 Algorithm Based on Application-Level Betweenness and

Path Length Constraint

The AB-PLeC algorithm finds the set of sink locations that constrains the num-

ber of PMU flows being forwarded by each PLC link while maintaining the dmax

constraint. It takes as input the tree graph topology G, dmax, bmax and the maximum

number of PMU flows that can be accommodated by a high bandwidth link connect-

ing a sink node to the PDC, b′max. b′max is set in a similar way to bmax, considering

the available high capacity link bandwidth value, and it is therefore normally ex-

17This process may result in a forest. Structure G is used for all trees, and
getRandomLeafNode() (line 6) returns a leaf node randomly selected from any of the trees.
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Algorithm 2 AB-PLeC algorithm

Input: G,dmax,bmax,b′max
Output: S

1: S← /0
2: for all i do
3: ai← dmax
4: bi← (vi.hasPMU())?1 : 0
5: end for
6: while G 6= /0 do
7: vl ← G.getRandomLea f Node()
8: vp← vl.getParentNode()
9: x← min(ap,al−1)

10: y← bp +bl
11: if vl.markedAsSink() then
12: S← S∪ vl
13: G.removeNode(vl)
14: else
15: if y > b′max and vp 6= v0 then
16: S← S∪ vp
17: G.removeNode(vp)
18: else
19: ap← x
20: bp← y
21: G.removeNode(vl)
22: if bp > bmax or ap ≤ 0 then
23: vl.markAsSink()
24: end if
25: end if
26: end if
27: end while
28: return S

pected to be considerably higher than bmax. In addition to ai, for each node vi, we

define bi as the current b(vi). All bi values are initialized to 0, unless a PMU is

attached to the corresponding node (line 4). The tree topology is traversed from

the leafs towards the root node, allowing the forwarding of PMU flows over PLC

links up to the point where the uplink capacity of a visited node is exceeded (line

22). This node is then selected to act as a sink location (line 23). PMU flows from

additional descendants in the tree may be added, subject to the b′max value (line 15).

Visited nodes and sinks are removed from G and the algorithm terminates when all

nodes have been removed. Then, each node in the tree can forward its traffic to its

closest ancestor sink node.
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Algorithm 3 FIB algorithm
Input: G,Ttreshold,bmax, ttrans, tproc
Output: S

1: S← /0
2: for all vi in G do
3: U ←∪(vi.hasPMU())?vi : 0
4: end for
5: while U 6= /0 do
6: Hotspot← /0
7: for all i ∈ [0..|V |−1] do
8: bi← calculateApplicationBetweenness()
9: end for

10: U.disableHotspotLabel()
11: for all v j

i in U do
12: Tj← 0
13: Pj← ui

j.getShortestPathToPDC()
14: for all vm in Pj do
15: Tj← Tj +WorstCaseDelayAt(vm)
16: if Tj ≥ Tmax or check(bmax) then
17: vm.markAsHotspo()
18: Hotspots← Hotspots∪ vm
19: Break
20: end if
21: if vm.isHotspot() then
22: Break
23: end if
24: end for
25: end for
26: lea f hotspot← Hotspots.getLea f Hotspot()
27: S← S∪ lea f hotspot
28: U.removeChildrenPMUs(lea f hotspot)
29: end while
30: return S

3.4.3 Algorithm Based on Flow Interference and Bandwidth

Constraint

Based on the delay bound formulation (Eq. 3.10), we propose a heuristic algorithm

that constrains bmax and the number of interfering packets of each flow (via Tmax),

precisely identifying the required sink locations.

The algorithm takes as input the tree topology G, bmax, Tmax, ttrans and tproc

and outputs the set S of sink node locations. The algorithm first creates a set U

of the nodes equipped with a PMU and computes bi for all i ∈ [0..|V | − 1] (line

8). In the second stage, for each PMU-enabled node v j
i , FIB parses G towards the

PDC accumulating the worst-case delay at each node (line 15). When either the

calculated delay at a node vm in Pj reaches Tmax or bmax is violated, the algorithm
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marks vm as a hotspot. After parsing all nodes in U , the FIB algorithm finds the

hotspot of each PMU flow. In the third stage, the algorithm selects a leaf hotspot

(i.e., a hotspot with no hotspot descendants) that is farthest to v0 and adds it into the

sink set, S. In the fourth stage, FIB removes the sub-tree rooted at the selected sink

location from G. The above four stages are repeated until all PMU-enabled nodes

have been removed from U .

3.5 Performance Evaluation

We apply the proposed algorithms on the available tree-like MV power grid topolo-

gies and derive a series of alternative communication network topologies under spe-

cific constraints. Based on the derived topologies, we perform an extensive set of

detailed packet level simulations. We focus on the case of 500Kbps but similar

conclusions apply for the case of 100Kbps. We consider each sink node to be con-

nected to the P-SS with a 10Gbps optical fiber link and set tproc = 1ms. Based

on the above, we then get dmax = 5, bmax = 7 and b′max = 147 as the topological

metrics that would conform to the desired Te2e requirement. Table 3.3 summarizes

the results for the various derived topologies. We denote the constraints considered

by each algorithm as PleC(dmax) and AB-PLeC(dmax,bmax). For each topology, we

show the percentage of packets measured to exceed Tmax, the maximum Te2e, the to-

tal number of sink node locations, i.e., the number of high capacity links required,

and the gain in terms of the reduction percentage of fiber links compared to the full

optical fiber scheme. Figures 3.6 and 3.7 further show the cumulative fraction of

Te2e of all packets, for the various topologies.

We see that FIB, PleC(2) and AB-PLeC(3,7) fully satisfy the delay constraint

while requiring only 163, 309 and 256 sink nodes respectively. This constitutes a

reduction in the order of up to 80% compared to the case of ubiquitous optical fiber

deployment, requiring 795 such links. PLeC(2) achieves an overall better perfor-

mance with median and maximum delay values of 4.7ms and 14.8ms, against 7.4ms

and 20ms of AB-PLeC(3,7) respectively. AB-PLeC(4,7) and PLeC(3) closely fol-

low, only slightly exceeding Tmax for < 1% of the measured packets, i.e., by 2.9ms
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Table 3.3: Summary of resulting topologies.

Sink deployment % packets > Tmax max Te2e(ms) # sink nodes % gain
PleC(2) 0% 14.8 309 61.13%
PleC(3) 0.25% 22 236 70.31%
PleC(4) 2.16% 25.6 188 76.35%
PleC(5) 15.94% 290 160 79.87%

AB-PLeC(3,7) 0% 17.5 256 67.79%
AB-PLeC(4,7) 0.67% 22.9 194 75.59%
AB-PLeC(5,7) 20.51% 39.1 147 81.5%

FIB 0% 19.56 163 79.49%
Full optical fiber 0% 1.14 795 0%
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Figure 3.6: CDF of Te2e for 500Kbps PLC links: PLeC algorithm

and 2ms respectively. Also, we see that PLeC(4) and AB-PLeC(5,7) achieve a

maximum delay value of 25.6ms and 39.1ms. As discussed in Section 3.2.1, these

latencies could be acceptable in cases of improved delay budgets [100], lowering

the number of sink nodes to 194 and 236 respectively, i.e., an improvement in the

other delay components could reduce the high capacity links by approximately 24%

and 23% respectively.

PLeC(5), PLeC(4), AB-PLeC(4,7) and AB-PLeC(5,7) exceed Tmax, even

though we enforce the dmax and bmax constraint values derived from the considered

MV topologies. In the case of PLeC(5), Te2e reaches a maximum of 290ms. This is

because the PLeC algorithm does not take into account the bmax constraint. Indeed,

b(ui) values (for non-sink nodes) in PLeC(5) topologies reach a maximum value of

15, resulting in overloaded uplinks. However, this does not hold for AB-PLeC.

For AB-PLeC(4,7) and AB-PLeC(5,7) the non-conformance is attributed to
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Figure 3.7: CDF of Te2e for 500Kbps PLC links: AB-PLeC and FIB algorithm

PMU synchronization. Fig. 3.8 shows for each flow the relation between the length

of the corresponding path to the PDC and the number of times the flow may18 suffer

synchronization events, i.e., its packets arrive at a node (almost) at the same time

with packets of other flows19. Topology AB-PLeC(4,7) allows a maximum of 4

hops to a sink node for all PMU flows (hence 5 to the PDC), which leads to a

delay of 15.82ms including dmax(ttrans + tproc) from PMUs to sinks and a tproc +

ttrans10Gbps from sinks to the PDC. This leaves 4.184ms as the remaining budget

for Tmax. Given this time budget, the maximum number of ttrans a packet could

afford to wait in the queue due to synchronization in AB-PLeC(4,7) is therefore

1 (i.e., 2.704ms). However, we observe that for AB-PLeC(4,7), some flows may

experience synchronisation delays twice, thus exceeding Tmax.

In contrast, the FIB algorithm presents the advantage of explicitly and precisely

identifying the locations where Tmax is reached. Compared to AB-PLeC(4,7), we

see that FIB may yield even longer paths than AB-PLeC, however only for cases

of limited synchronization events. For instance, Fig. 3.8 shows a 6-hop path with

only one synchronization event. In essence, FIB postpones the selection of a sink

location as much as possible, leading to sink nodes closer to the PDC, i.e., utilizing

PLC as much as possible. In contrast, AB-PLeC(3,7) constrains the number of

hops to sinks to 3 (4 hops to PDC), forcing packets that could still use PLC, to use

18Our analysis in Section 3.3.3 focuses on the worst-case scenario, which is experienced by only
one of the flows.

19Obviously, multiple data points coincide in each case.
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Figure 3.8: Each point corresponds to one flow and denotes the length of the path traversed
towards the PDC and the number of times the flow may encounter synchroniza-
tion delays.

the high capacity links of sink nodes. As a result a higher number of sink nodes

must be unnecessarily deployed, i.e., a 56% increase of sink nodes against the FIB

algorithm.

3.6 Conclusion
This chapter investigates the network deployment cost minimization problem for

low latency applications. In particular, a case study in smart grid is carried out,

whereby low bandwidth communication infrastructures in power grid need to be

upgraded to a low latency smart grid. To this end, high bandwidth network links

such as optical fiber need to be deployed on top of existing communication infras-

tructures. Therefore, the deployment cost minimization problem is to determine the

minimum deployment cost for the added high bandwidth network links, so that the

upgraded infrastructures can achieve the required low latencies.

To solve this problem, we first derive a set of practical guidelines for the de-

sign of low latency communication infrastructures, through a detailed study of the

available topologies. Our investigation explicitly identifies, quantifies and addresses

the effect of flow synchronization, which could largely affect end-to-end latencies.

Building on our empirical observations, we propose and evaluate three heuristic al-

gorithms that identify the locations in a given grid that should be equipped with

high capacity links, striking a balance between low latencies and deployment costs.

Enforcing our algorithms on the available MV topologies and additionally engag-
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ing in extensive packet-level simulations, we show that the proposed algorithms can

indeed satisfy the targeted low latencies while reducing the extent of high capacity

link deployment by up to 80% in comparison to ubiquitous deployment of direct

interconnection between senders and receivers. We believe the proposed network

planning algorithms can help power grid operators to achieve cost-effective transi-

tion towards low latency smart grid infrastructures. At the same time, the proposed

algorithms can be easily applied to more general network upgrade cases, which will

help ISPs to reduce deployment cost while achieving the required low latencies in

the upcoming 5G era.



Chapter 4

Dynamic Resource Management for

Low Latency Applications

In order to reduce ISPs’ costs and provide flexibilities in new service deployment,

NFV [117] was proposed to enable fully virtualized networks for ISPs. However,

the question of how to dynamically manage different network resources in a cost-

efficient manner for low latency communications has not been addressed. This

problem involves dynamically finding the optimal routing paths between users and

end services, and deriving the optimal locations and amount of computing resources

for end services. In particular, we adopt an emerging concept, mobile edge comput-

ing, to reduce communication latencies by bringing end services to MECs located at

network edges. However, the achieved low latency is at the expense of considerable

operational cost from a large number of required MECs. To this end, optimal re-

source management approaches that can dynamically exploit the underlying infras-

tructures’ network resources are required. In the rest of this chapter, we investigate

the design of dynamic resource management for low latency applications.

4.1 Introduction
Over the last decade, advances in wireless access technologies (e.g., WiFi and LTE)

have enabled an explosion of resource-hungry mobile applications, challenging cur-

rent mobile devices’ processing ability. In particular, mobile multimedia services

with stringent latency requirements (in the order of hundreds of milliseconds [1]),
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such as AR, high-definition video streaming [118], gaming and face recognition,

are computationally expensive for today’s mobile devices; resulting in fast exhaus-

tion of battery life and long processing delays [119]. Conventional cloud solu-

tions [15], where users exploit preallocated service instances from data center-based

clouds to process computationally expensive tasks, address the issue of computa-

tional resources, but suffer from long network latencies [5]. On the other hand,

MEC (also known as cloudlet [5], fog computing [120], Telco cloud [121], follow-

me cloud [122]) mitigates the long network latency issue by deploying dedicated

micro-clouds along with service instances at network locations that are closer to

users, e.g., APs, routers, etc.

However, since the micro-clouds are deployed at fixed locations and have lim-

ited physical resources (especially compared to data center-based clouds), they

are deployed to large number of APs with MEC service instances in each micro-

cloud [123]. This achieves low latency at the expense of significant operational

costs due to break of DC consolidation [15, 119]. Limiting the number of micro-

clouds can save operational costs, but faces challenges in dynamically supporting

low latency services with limited resources at static network locations. For instance,

current resource allocation techniques to deal with workload elasticity, such as auto-

scaling [57, 124], could only scale up to the physical capacity limit of micro-clouds.

Subsequently, if there is no micro-cloud in the vicinity of the overloaded one that

can provide more computational resources for load balancing, users’ tasks would

accumulate, leading to the violation of the required service response time (e.g.,

time spent in network and edge clouds).

Recently, NFV was proposed to facilitate network function deployment for

ISPs [117]. It decouples network functions from the underlying hardware and

implements them as software in VMs hosted in commodity servers. The advent

of NFV promotes the emerging concept of NFV-enabled MEC (e.g., [14, 125])

whereby services can be hosted at any network location that has virtualized re-

sources, e.g., provided by commodity servers. Such NFV-enabled MEC model en-

ables real-time instantiation (e.g., VM instantiation time for Unikernel [126] and
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ClickOS [127] are in the order of tens of milliseconds) of MEC at new network

locations to host edge services, and also allows MEC to scale up/down computa-

tional resources to accommodate user demand variations. As a result, the MEC can

be dynamically instantiated at network locations that efficiently utilize ISPs’ virtual

network infrastructures and thereby maintaining low operational costs overtime.

However, such flexibility in resource allocation faces challenges in:

• Dynamically deriving the MEC service-hosting locations, amount of re-

sources and the corresponding network paths to mobile users such that the re-

sulting network access latencies are within the network latency requirements

and the ISPs’ virtualized network resources are optimally utilized.

• Determining the appropriate time instance to perform dynamic resource al-

location in order to avoid computation congestion at VMs due to peak load

[128].

• Performing resource allocation in a timely manner such that the time spent

in deriving a resource allocation decision does not affect low latency MEC

services.

Unlike Chapter 3 where the offline physical resource allocation (i.e., network

planning) was investigated for low latency networks, this chapter aims to achieve

low latencies in a cost-efficient way through dynamic resource management of vir-

tualized network resources. In particular, we take into account the flexibility af-

forded by NFV along with the abovementioned challenges, and study the problem

of dynamic resource allocation in MEC, aiming at minimizing operational costs

while satisfying users’ low latency service response time requirements.

For the above problem, we propose a novel dynamic resource allocation frame-

work for NFV-enabled MEC that consists of an online heuristic-based incremental

allocation mechanism and a global resource reoptimization algorithm to address

the trade-off between cost efficiency and low latency requirement. In particular, our

online heuristic-based incremental allocation mechanism aims to efficiently allocate

resources to tackle local MEC computation congestion due to (sudden) increase of
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workload in a timely manner. It consists of (1) an initial offline MEC resource

allocation based on expected workload that achieves the desired service response

time with the minimum required computational resources, (2) an auto-scaling and

load balancing (ALB) mechanism that accommodates workload variations, (3) a ca-

pacity violation detection (CVD) mechanism that derives the projected time when

ALB fails to cope with service elasticity and (4) a network latency constraint greedy

(NLCG) algorithm of polynomial complexity to derive a new NFV-enabled node as

MEC service-hosting node which supports the stringent latency requirement. Since

our online allocation mechanism computes local MEC resource allocation, we also

design a set cover partition approximation (SCPA) algorithm that operates in paral-

lel with NLCG to globally reoptimize the locations and allocated resources while

achieving a guaranteed operational cost. Given user demands, this cost is no more

than ln(N) times of optimal MEC operational cost, where N is the largest number of

APs that are served by a MEC service-hosting node among all instantiated MECs.

To demonstrate the effectiveness of our proposed framework, we carry out

an extensive simulations with realistic three-layer cellular network setup [64]. We

use real mobility traces from [129] to show the cost reduction brought by NFV-

enabled flexible MEC instantiation compared to fixed-location MEC. Further, we

conduct an in-depth cost efficiency impact factor analysis to give detailed insights

into the design of online MEC resource allocation framework under various network

topologies, latency requirements and server capacities.

The main contributions of this chapter are as follows.

1. We formulate and solve the dynamic MEC resource allocation problem as

an ILP problem taking into account the flexibility in the determination of

MEC locations enabled by NFV (see Section 4.2.2) and the trade-off between

service response time and operational costs. To the best of our knowledge,

this is the first study focusing on the dynamic MEC resource allocation taking

into account the possibility of NFV-enabled MEC service instantiations.

2. We design a dynamic resource allocation framework consisting of a fast

heuristic-based incremental allocation mechanism and a SCPA reoptimiza-
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Figure 4.1: Hierarchical MEC system model.

tion algorithm for low-cost MEC resource allocation framework (see Section

4.3). Both NLCG and SCPA algorithms are general in nature and applica-

ble to any online edge cloud systems (e.g., for different hosted services, edge

cloud capacities and VM technologies). In addition, we mathematically prove

that given user demands, our SCPA algorithm results in no more than ln(N)

times of optimal MEC operational cost in polynomial time.

3. We demonstrate the effectiveness of our framework (see Section 4.4) through

extensive simulations. We show that our framework achieves 33% cost re-

duction compared to fixed-location MEC overprovisioning solutions. Further,

our in-depth impact factor analysis shows that SCPA achieves cost efficiency

within 20% of the lower bound of the optimal solution, under different net-

work size, services’ latency requirements and MEC server capacities.

4.2 System Model and Problem Formulation

4.2.1 System Model

We consider a typical three-layer hierarchical wireless metropolitan area network

[64] that consists of APs, aggregation nodes and metropolitan level mobile core

network nodes (illustrated in Fig. 4.1). Each AP is connected to a single aggregation



4.2. System Model and Problem Formulation 76

node which is connected to one mobile core node. Furthermore, the connectivity

between mobile core nodes depends on the actual mobile core network’s topology.

For most of real-world topologies, a mobile core node has at least one network link

towards other mobile core nodes (e.g., a topology example is shown in Fig. 4.2).

We use G = (V,E) to denote this network, where V is the set of network nodes

and E is the set of links. Further, let B denote the set of APs, b ∈ B, which is a

subset of network nodes (B⊂V ). We consider that each network node is equipped

with a commodity server [117], which has limited computational resources, kv (e.g.,

CPU1) to host application service providers’ services as software via VMs. Such

support of MEC services with NFV-enabled nodes necessitates NFV commodity

servers to be active (e.g., active servers are shown in Fig. 4.1 as service-hosting

nodes) and hence, incurs operational costs (e.g., energy consumption) [15]. For the

rest of paper, we consider MEC nodes to be any NFV-enabled network nodes on

which MEC services can be hosted with allocated VMs.

Given the NFV-enabled MEC, mobile users upload raw files at discrete time,

t ∈ T , through their associated APs to MEC nodes for processing rather than execut-

ing service instances locally in their mobile devices. The user requests from an AP

are served by VMs at a single MEC node through the same path, pbv ∈ Pbv, between

AP b and node v (v is the selected node to host the required service)2, where P is

the set of paths between pair of nodes in V and Pbv ⊆ P. We use At
b to denote the

total load incurred by mobile users at AP, b at time t, which results in bandwidth

consumption, wt
b, of flows departing from AP b. At the same time, user flows con-

sume computational resources from MEC nodes, which depend on the AP-to-MEC

assignment.

We consider stateless mobile services (e.g., AR, etc.) to be pre-installed as

software into NFV-enabled nodes [1, 29]. That is, user requests can be seamlessly

served by VMs at different MEC node without requiring service state migration

since the services are stateless. In addition, NFV-enabled nodes that are not serving

1We only consider CPU as computational resources in this chapter.
2Multiple network paths between b and v could exist due to connectivity between mobile core

nodes (see Fig. 4.2).
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Table 4.1: Notations for dynamic resource allocation problem

Symbol Notations
V,E,B Set of NFV-enabled nodes, edges and APs
P,Pbv Set of paths, set of paths between b and v

kv Resource capacity at node v
wb Bandwidth consumption at AP b

BWe Bandwidth capacity at network link e
t ∈ T Discrete time slots

At
b User computational resource demand

from AP b at time t
D Maximum network latency (hops) constraint

dbv Network hop distance between AP b and node v
Nb The set of v that are located less than D network hops to b

Nb = {v|dbv ≤ D}
A Pv The set of APs covered by network node v
A Pv′v The set of APs covered by network node v′ and v

Lv The excess workload from node v
Xpbv The path decision variable for pbv ∈ Pbv

Yv The MEC node decision variable for v

as MEC nodes can instantiate VMs to support stateless MEC services in a timely

manner. This is due to the latest advances in VM technology such as Unikernel

[126] and ClickOS [127], whereby the VM instantiation time could be reduced to

tens of milliseconds (e.g., 30ms 3). We summarize the notations used in this paper

in Table 4.1.

4.2.2 Operational Cost Minimization Problem

Given the abovementioned system model and the flexible instantiation of MEC

nodes, we consider the MEC operational cost minimization problem for stateless

low latency mobile services, whereby the network locations that host MEC services

and the corresponding network paths can be dynamically controlled to efficiently

utilize ISPs’ resources. To better illustrate this scenario, an example is given in

Fig. 4.2. We can see that two MEC nodes are instantiated among all NFV-enabled

nodes together with its selected network paths at t0. In contrast, only one MEC node

is instantiated for operational cost minimization at t1 in response to the decreased

3Unikernel, designed for edge computing environment, achieves 30ms by exploiting a shared
memory channel to optimize the VM instantiation time.
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Figure 4.2: Example of MEC operational cost minimization problem.

demands from APs. Meanwhile, the network paths are accordingly changed at t1.

In this chapter, we aim to concurrently answer four primary questions: given

a time varying workload, resource-constrained distributed NFV-enabled network

nodes and capacitated network links, (1) where and (2) when to allocate resources,

(3) how many resources to be allocated among NFV-enabled nodes and (4) which

network paths to use (e.g., between APs and MECs) such that the low latency re-

quirements of mobile services are always satisfied while incurring the least opera-

tional cost. Without loss of generality, we assume in this work that all NFV-enabled

commodity servers are identical (e.g., same specifications) and incur equal opera-

tional cost. Therefore, the operational cost minimization objective is equivalent to

the minimization of number of active commodity servers (MEC node) [15].

We use ILP to formulate the problem with two binary decision variables, Y t
v

and X t
pbv

, which represent respectively the location of MEC service (i.e., Y t
v = 1 if

at time t, v is chosen as the location of a MEC service and Y t
v = 0 otherwise) and

the path between b and v (i.e., X t
pbv

= 1 if pbv is chosen; X t
pbv

= 0 otherwise). The

objective function of the ILP is to minimize the number of selected MEC nodes,

that is, the sum of Yv,v ∈V at every discrete time instance4, t ∈ T .

4Note that by fixing T = {t0}, the problem is reduced to a static placement problem mentioned
in Section I.



4.2. System Model and Problem Formulation 79

To satisfy the service latency requirement, we first decompose the request re-

sponse time into the following:

1. Network access time – represents the time a MEC service request spent dur-

ing network transmissions, which highly depends on the selection of network

path, X t
pbv

, between an AP and the selected MEC node. To model such delay,

we assume that as long as the capacities of the constituent links in the se-

lected network path are not violated by MEC flows, we can represent access

delay as a function of network hops. Hence, in order to achieve a required

network access time, both link capacity and the number of network hops that

the request traverses need to be constrained.

2. Service processing time – refers to the time a VM uses to serve a request. We

assume that as long as there is an available resource unit, and the request rate

is lower than service rate, the processing delay is bounded and can be repre-

sented by a mean expected value that depends on the actual VM technology.

To satisfy the processing time, we constrain the aggregated resource demands

from APs that are served by MEC node at time t to be no more than its phys-

ical capacity limit. This ensures a fixed service time at all time by allocating

a dedicated resource unit for each request.

The ILP problem is formulated as below:
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min ∑
v∈V

Y t
v ,∀t ∈ T, (4.1)

Subject to

∑
b∈B

∑
v∈V

∑
pbv(e)∈Pbv(e)

wt
bX t

pbv(e)
≤ BWe,∀e ∈ E,∀t ∈ T, (4.2)

∑
pbv∈Pbv

∑
v∈Nb

X t
pbv

= 1,∀b ∈ B,∀t ∈ T, (4.3)

∑
pbv∈Pbv

∑
b∈B

At
bX t

pbv
− kvY t

v ≤ 0,∀v ∈V,∀t ∈ T, (4.4)

Y t
v ∈ {0,1},∀v ∈V,∀t ∈ T, (4.5)

X t
pbv
∈ {0,1},∀pbv ∈ Pbv,∀t ∈ T, (4.6)

Constraint (2) guarantees that for all edges, the aggregated bandwidth con-

sumption is less than the link capacity, BWe, at every time instance, where Pbv(e)

denotes all paths between b and v that traverse edge, e; Constraint (3) guarantees

that flows from the same b are assigned to the same MEC node v where v is selected

from the set of network locations Nb = {v|dbv ≤ D} that are within the network

latency constraint denoted as D; Constraint (4) guarantees that the aggregated de-

mands from APs at time t, ∑
pbv∈Pbv

∑
b∈B

At
bX t

pbv
, served by the selected MEC v is no

more than its physical capacity limit kv and Constraints (5)-(6) limit the decision

variables to be either 0 or 1.

Our problem stated above is NP-hard. A relaxed version of our problem (i.e.,

without the bandwidth capacity constraints (2)) can be obtained from the CSCP5.

Since CSCP problem has been shown to be NP-hard [47], our problem is NP-hard

too.

5In a capacitated set cover instance, we are given a universe X of n elements and a collection S
of m subsets of X with elements having demand d : X 7→ R+ and sets having supplies s : S 7→ R+,
each subset has an associated cost; the objective is to pick the collection of sets S ′ ∈ S of least
total cost, such that each element e ∈ X is contained in at least one set S ∈S ′ while the supply of
each set in S ′ is not violated [47].
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4.3 Cost-efficient Dynamic Resource Allocation Frame-

work

4.3.1 Overview

Our problem aims at deriving the optimal MEC locations, amount of resources and

network paths to MECs in face of dynamic workloads to satisfy services’ low la-

tency requirements while minimizing the overall operational costs incurred within

the time period, T . Offline solutions (e.g., overprovisioning) only solve the la-

tency aspect of the problem while ignoring the possible high costs incurred due to

inefficient resource utilization. Existing dynamic solutions are either based on lo-

cal search or global optimization. The former derives the resource allocation in a

timely manner by targeting specific network areas suffering from resource exhaus-

tion which however often results in sub-optimal allocations. On the other hand, the

latter takes demands across the whole network and is generally able to obtain better

results at the cost of running time due to the large scale input from the entire net-

work. Note that such long running time is not tolerable to online MEC as it would

affect the performance of low latency services. To overcome the abovementioned

issues suffered by most conventional approaches, we propose a novel dynamic op-

timization framework for NFV-enabled MEC that leverages both the local resource

allocation and global re-allocation of resources to achieve a balanced trade-off be-

tween resource allocation optimality and algorithm’s running time.

Fig. 4.3 presents the overview of our dynamic resource allocation framework.

1. Heuristic-based incremental allocation mechanism (see the right-side of Fig.

4.3) follows the local search principle and aims at deriving the minimum re-

quired resources for MEC in a timely manner in response to temporary work-

load increase. The idea is to first provision NFV-enabled MEC with the min-

imum (optimal) number of MECs to satisfy the average user demands. Then,

it exploits conventional techniques for coping with (minor) service elasticity

(i.e., ALB) to maintain the overall number of MECs at a relatively low level.

At the same time, we detect the time point when these mitigation tools will
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reach their limits (i.e., this implies that the existing MECs have been fully uti-

lized) and cause the MEC system to violate the service response time require-

ment of the considered service(s). In such event, the allocation of a new MEC

node (e.g., within the network latency constraints of APs that overloaded one

of the existing MECs) will be chosen from the neighbouring network nodes of

the overloaded MEC nodes (e.g., not searching the entire network), and acti-

vated in time before service quality degrades. By limiting the search scope to

within the overloaded network area for the new MEC node, we significantly

reduce the algorithm’s running time and avoid service response time viola-

tions due to computation congestion at MECs. However, the heuristic-based

incremental allocation solution has a major disadvantage due to the fact that

it only incrementally adds MEC nodes to the existing MEC nodes that are

previously allocated. As a result, the MEC resource allocation may gradually

deviate from the optimum over time due to its lack of consideration for global

workload variations.

2. SCPA global reoptimization (see the left-side of Fig. 4.3) aims to overcome

the disadvantages of heuristic-based incremental allocation by adjusting the

allocated resources at a coarse-grained time granularity to a near-optimal

state. SCPA is periodically performed in a less frequent manner. It takes the

resulting MEC nodes from the incremental solution and globally adjusts the

resource allocation to maintain low MEC operational costs6 within a bounded

resulting operational cost.

Next, we elaborate on how these two approaches jointly solve the MEC opera-

tional cost minimization problem while always conforming to the latency constraint.

Our framework follows the procedure below.

1. We derive the initial optimal static MEC placement (i.e., the number of MECs

is minimized) in an offline fashion by solving the static version of the prob-

lem7 at time t0 using CPLEX [54].
6We do not consider migration costs as applications are stateless.
7For large scale problem, we solve the relaxed version of our problem, and derive the lower
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Figure 4.3: Dynamic resource allocation framework overview.

2. We leverage conventional ALB mechanisms to cope with service elasticity

based on the initial or most current placement and allocation such that the ser-

vice processing time is guaranteed (i.e., no computation congestion at MECs)

and the overall MEC number (e.g., operational cost) is kept low.

3. When the workload approaches the cloud capacity threshold, the system trig-

gers the CVD mechanism based on the projected workload over a time win-

dow ∆t = t ′− t where t ′ is the prediction time slot. Note that ∆t will be

selected according to the size of MEC network and the hosted mobile appli-

cations in MECs.

bound of optimal solution.
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4. If it is detected that the ALB’s limit will be reached within the coming time

horizon, ∆t, our NLCG algorithm is invoked to derive the desired new MEC

node allocation based on the previous allocation solution. By appropriately

deriving the NLCG start time, we minimize the added MECs in face of dy-

namic workloads.

5. A global reoptimization algorithm is performed periodically to adjust the

MEC locations of the entire network, allocation of MEC nodes and the cor-

responding network paths such that given a certain user demands, the MEC

operational cost is bounded.

4.3.2 Heuristic-Based Incremental Allocation Mechanism

In the following, we detail every component of our heuristic-based incremental al-

location mechanism.

4.3.2.1 Static Offline Resource Allocation

We first derive the minimum required number of MEC nodes, its network locations,

amount of allocated resources and AP-to-MEC network paths with CPLEX to sup-

port the low latency requirement given the average / expected user demands. We

highlight that the offline resource allocation takes place at the network planning

stage which does not impose any optimization execution time constraints. How-

ever, when the input size to CPLEX is extremely large (e.g., more than 300 network

nodes), a relaxed version 8 of the MEC operational cost minimization problem is

solved to get a feasible solution within polynomial time.

4.3.2.2 Auto-Scaling and Load Balancing (ALB)

Auto-scaling and load balancing are two current existing cloud computing elas-

tic techniques to accommodate dynamic workload variations. We adopt a reactive

auto-scaling solution that is triggered once a specific capacity threshold is reached.

However, auto-scaling incurs additional VM reconfiguration delays which could

affect service response time. This effect can be mitigated by setting a smaller auto-

8We relax the routing decision variable (i.e., from integer to linear programming).
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Algorithm 4 Capacity Violation Detection (CVD)

Input: G(V,E),B, predicted workload At ′,v′,kv′

Output: Future time t ′ and extra load Lv′ or no NLCG
1: if current MEC nodes cannot accommodate At ′ then
2: Derive new AP-to-MEC assignments and resource

allocation with VALB
3: if VALB cannot handle At ′ then
4: Derive Lv′ by At ′ , the new assignments and
5: capacities of MEC nodes
6: Trigger NLCG algorithm return t ′,Lv′
7: else
8: Perform ALB
9: end if

10: end if

scaling threshold to invoke the auto-scaling mechanism in advance. Alternatively,

proactive auto-scaling [73] can be applied to mitigate such auto-scaling overheads.

For load balancing, we adopt a proximity-aware solution [124] that considers

both the residual capacity in MEC nodes and the topological proximity between

MEC nodes and APs. Specifically, a flow from an AP to the overloaded MEC

node will only be redirected when the newly chosen MEC node, v, is within the

network latency cover, Nb, and the residual capacity is sufficient to accommodate

the redirected load. By doing so, the network latency and MEC processing time are

always bounded after load balancing.

4.3.2.3 Capacity Violation Detection (CVD) Mechanism

ALB have their limits, after which further increase in the request rate will incur

increasing queuing delays at MEC nodes and lead to potential latency violations.

The core idea of the CVD mechanism is to identify the time when such limitations

will be reached so as to allow the system to pro-actively allocate new MEC node(s).

Algorithm 4 presents the pseudocode of the CVD mechanism.

For CVD, we first assume that the workload can be reasonably predicted (e.g.,

perfect prediction). In practice, prediction algorithms predict workloads based

on historical workload data. Algorithms such as generalized autoregressive con-

ditional heteroscedasticity model [57] and various more [73] can be accommo-

dated into CVD. We note that prediction techniques are not the main focus of this

work. Given the current MEC node locations, resource utilization level and AP-
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to-MEC assignment, we predict over the time window ∆t the aggregated workload

∑
pbv′∈Pbv′

∑
b∈B

At ′
b X t

pbv′
at v′ (i.e., v′ is the MEC node that invokes the detection) and

check if the predicted workload results in a capacity violation at v′ (Line 1 in Al-

gorithm 4). If the current state is predicted to be insufficient to accommodate the

projected workload, we then estimate the future system state by virtually running

ALB on the current system state with the projected workload.

The virtual ALB (VALB) aims to fully exploit computational resources pro-

vided by MEC nodes located in different network locations before triggering

NLCG. It checks if load (e.g., offloading tasks from the same AP) from v′ could

be redirected to other MEC nodes while still conforming to the response time re-

quirements of these flows. If virtual load balancing fails, virtual auto-scaling will

be triggered to check if it can accommodate additional workloads by invoking auto-

scaling. If this fails again, it means ALB will reach its limit within the projected

time horizon and the overloaded MEC needs more computational resources to guar-

antee the service performance. Then, CVD records the excess load that cannot

be served by v′ as Lv′ = ∑
pbv′∈Pbv′

∑
b∈B

At ′
b X t ′

pbv′
− kv′Y t

v′ and triggers the online NLCG

heuristic. It is worth mentioning that VALB is running as a real-time simulation

where no actual ALB and any network configurations take place.

4.3.2.4 Network Latency Constraint Greedy Heuristic

The NLCG algorithm simultaneously determines the new placement of MEC

node(s), the required resources and the corresponding routes. The idea of NLCG

(Algorithm 5) is to search for a new MEC node located within the applications’

network latency constraints that can accommodate the excess flow, Lv′ , from the

overloaded MEC node v′ within the projected time. At the same time, the newly

selected MEC node needs to satisfy as many flows (e.g., flows from APs served by

other MEC nodes) as possible without violating network access delay to increase

potential gain via load balancing to the new MEC node.

Specifically, NLCG first derives, for each network node other than existing

MEC node v ∈Vs, the number of APs covered by both the overloaded MEC node v′

and v. To this end, NLCG finds the set of APs, denoted by A Pv′ = {b|dbv′ ≤D,b∈
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Algorithm 5 Network Latency Constraint Greedy (NLCG)

Input: G(V,E),B represents APs, existing MEC nodes Vs, latency constraint D,
overloaded MEC node v′, excess flow Lv′ , predicted workload At ′

Output: newly selected MEC node(s) and the corresponding routes
1: New MEC node initialization vbmax← /0
2: Find the set of APs, A Pv′ , located in the distance cover of overloaded MEC

node v′
3: For each network node v ∈ V\Vs, find the APs, A Pv′v , that are located both

in the cover of v and v′
4: for all b ∈A Pv′ do
5: for all v ∈ Nb and v not in Vs do
6: if v can accommodate excess flow Lv′ and

|A Pv′v| ≥ |A Pv′vbmax | then
7: vbmax← v
8: end if
9: end for

10: end for
11: if no MEC found vbmax == /0 then
12: vbmax← argmax(|A Pv′v|)
13: trigger NLCG again with newly derived excess flow

Lv′ = Lv′− kvbmax
14: end if
15: Find network routes for the newly allocated MEC node(s) Xt ′ ←

MinMaxFaireness(vbmax,A Pv′vbmax)

16: Update Y t ′ with Vs←Vs∪ vbmax
17: return MEC node locations Y t ′ and routings X t ′

B}, within the latency coverage of the overloaded MEC, v′ (Line 2 in Algorithm 5).

Next, it adds all APs that are located within the distance cover of both v′ and v

into A Pv′v = {b|dbv ≤ D,dbv′ ≤ D,b ∈ B} (Line 3). Then, for each AP within

the distance cover b ∈A Pv′ of overloaded MEC v′, NLCG searches the potential

MEC node v from the candidate set Nb = {v|dbv ≤ D,v ∈V}, and greedily chooses

the node vbmax that has the highest A Pv′v and can support excess load Lv′ (Line

4-10). If no viable vbmax can be found, NLCG assigns the v that has the largest

A Pv′v as vbmax (Line 11-12). This means that there is no single node location that

can host all the excess flows Lv′ from v′. In this case, NLCG will be triggered again

with a reduced Lv′ = Lv′ − kvbmax
to find the next location to add (Line 13). NLCG

then directs flows in A Pv′ previously served by v′ to vbmax and solve the routing

problem using min-max fairness [22] (Line 15).

Upon completion of NLCG, VM instantiation will start at NFV-enabled servers

that have been selected to serve as MEC nodes. This instantiation process needs to
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Algorithm 6 Set Cover Partition Approximation (SCPA)

Input: G(V,E),B represents APs
Output: MEC nodes and the corresponding routes

1: Vs← /0 where Vs is the set of MEC nodes
2: while Vs is not a feasible solution do
3: Select v ∈V that maximizes the increase of newly

covered APs in Vs
4: Store newly covered APs by v into A Pv
5: Vs←Vs∪ v
6: end while
7: for all v ∈Vs do
8: fv← G. f ractionalMaxFlow(v,A Pv)
9: Construct subgraphs Gv(Vv,Ev) with edges and nodes

traversed by fv
10: Gv.partition(A Pv) [130] finds the unsplittable flows

between APs in A Pv and v
11: end for
12: Superimpose paths found in each subgraph Gv
13: return MEC node locations and routings

accomplish before application workload At ′ arrives so that application’s response

time will not be affected by VM instantiation. In other words, the overall time of

VM instantiation and NLCG running time needs to be smaller than CVD’s detection

interval. In our framework, since CVD interval (e.g., on the order of minutes [57])

is not on the same order as VM instantiation time (e.g., on the order of tens of

milliseconds [126, 127]), the abovementioned condition can be achieved if NLCG’s

running time is fast. We will evaluate NLCG’s running time and heuristic’s resulting

application response time in Section 4.4.

4.3.3 Global Optimal Reoptimization Algorithm

To complement our incremental allocation mechanism, we devise the SCPA reopti-

mization algorithm (see Algorithm 6) with guaranteed performance bounds where

an approximation ratio is derived to indicate how far the obtained solution is from

the optimal solution. The SCPA algorithm first finds the locations and resources of

MEC nodes by solving a CSCP with each MEC node being assigned a subset of

demand nodes (e.g., APs) without considering the capacity constraint of each link

in the network. Clearly, this solution does not represent a feasible solution to our

original problem, as the network link capacity constraint and AP-to-MEC paths are

not incorporated. To obtain a feasible solution, SCPA then applies a graph partition
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technique to find the routes between each AP and MEC node that are assigned such

that the link capacity constraint is satisfied. Specifically, we decompose the original

MEC operational cost minimization problem into a CSCP and a set of single-source

unsplittable flow problem (SSUFP)9. The solution to the CSCP gives MEC node

allocation and the corresponding AP assignment, while the solution to each SSUFP

derives the specific path between each MEC node and its assigned AP.

MEC node selection: We first show how the MEC node allocation for delay-

sensitive applications without bandwidth constraints is transformed into a CSCP

problem. To this end, we consider each network node v ∈ V as a set in the CSCP

problem, and its computational capacity represents the supply of the set. An AP b

denotes an element in the CSCP problem, and it can be covered by v if the network

latency constraint is satisfied with dbv ≤ D. The number of requests at b denotes

the demand of its corresponding element in the CSCP problem. Without loss of

generality, we assume that the total demand of all APs can be fulfilled by the total

resources available in the network. Then, the MEC node allocation without band-

width constraints but with latency constraints becomes finding a capacitated set

cover for the CSCP problem. Let Vs be such a feasible solution to the CSCP prob-

lem, which can be found by utilizing the algorithm due to [46]. Each network node

in v ∈Vs is selected to serve as a MEC node, and the APs, A Pv, that are within its

range in terms of network latency, will be covered by the MEC node allocated at v.

The procedures of finding each MEC node v ∈Vs is described in Algorithm 3 (Line

2-5), whereby the basic idea is to find a network node at each iteration that covers

the most of APs until all APs are assigned to one of the selected network node in Vs

.

Network path selection: Next, we proceed to find the paths between each of

the selected MEC node v ∈ Vs and its covered APs, A Pv, where the bandwidth

resource constraint of each link in G is taken into account. We first get a frac-

9In a single-source unsplittable flow instance (SSUFP), we are given a network G = (V,E), a
source vertex s, a set of k commodities with sinks t1, ..., tk and the associated real-valued demands
ρ1, ...,ρk. The objective is to route the demand ρi of each commodity i along a single s− ti flow path
so that the total flow routed across any edge e is bounded by the edge capacity BWe.
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tional maximum flow fv
10 for each MEC node v ∈Vs and its assigned APs in A Pv

(Line 8). Based on fv, we construct |Vs| subgraphs Gv(Vv,Ev) by including v, its

assigned A Pv, all other intermediate network nodes (Vv) that connect v and its

A Pv, and the links (Ev) traversed by fv (Line 9). We then find SSUFP in the con-

structed subgraph for each selected network node v ∈ Vs, by using the algorithm

PARTITION described [130] (Line 10). The basic idea of algorithm PARTITION

is to further partition each subgraph into ε subgraphs by including APs that have

demands in the same demand interval and the corresponding fractional paths from

fv. Then, in order to find a feasible unsplittable path for all APs in each new sub-

graph, PARTITION updates edge capacities in each newly obtained subgraph by

rounding up APs’ demand to the upper bound of its demand interval (i.e., this leads

to the increase of edge capacity in subgraphs). Next, PARTITION iteratively applies

augmenting path algorithm to find a feasible (e.g., conforms to augmented link ca-

pacities) unsplittable path for each AP. Finally, we superimpose unsplittable flows’

solutions of each subgraph Gv to obtain the complete network paths (Line 12) for

all APs. However, PARTITION violates at most (4+ ε) relative edge capacity for

any ε > 0, where n1
2

ξ−1
6 ε and ξ represents the number of partition intervals in

algorithm PARTITION.

4.3.4 Algorithm Analysis

In this section, we derive the performance bounds of our SCPA global reoptimiza-

tion algorithm detailed in Section 4.3.3. For this purpose, we will first re-state the

following Theorems 4 and 5 given in [46] and [130] respectively.

Theorem 1. [46]: Given a CSCP, there exists a greedy algorithm that finds a ln(N)

approximation solution within running time of O(|V |), where N gives the largest

number of APs served by a MEC node in Vs.

Theorem 2. [130]: Given an UFP, algorithm PARTITION finds a (4+ ε) approxi-

mation for relative congestion for any ε > 0. The running time of the algorithm is

10Note that maximum flow is a common problem where many different solutions can be applied
(e.g., augmenting path algorithms [131]).
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O(T1(|V |, |E|)+ |V ||E|+ |E|ε), where T1(|V |, |E|) is the time to solve a fractional

maximum flow problem.

Using the above, we can state the following theorem for our global reoptimiza-

tion algorithm:

Theorem 3. Given a NFV-enabled network environment, G(V,E), where network

node v ∈ V has virtual computational resources kv, network edge e ∈ E has band-

width BWe, and APs b ∈ B,B ⊆ V has user demands Ab, there is a fast approxi-

mation algorithm for the delay-guaranteed cost minimization problem that delivers

a feasible solution with a cost no more than ln(N) times of the optimal cost in

O(|V |+ |Vs|(T1(|V |, |E|)+ |V ||E|+ |E|ε)) time, where N gives the largest number

of APs served by a MEC node in Vs, |Vs| gives the number of resulting MEC nodes

and T1(|V |, |E|) is the time to solve a fractional maximum flow problem.

Proof. We first show that the approximation ratio of our proposed SCPA algorithm

is ln(N) times the optimal solution. Let C∗ and C′∗ be the optimal solutions to our

problem with and without capacity constraints of network links.

The approximation solution to CSCP (Theorem 1) gives the lower bound of

our original problem, i.e., C′∗ ≤C∗. Specifically, in the aforementioned SCPA al-

gorithm, the first step is to find the MEC node locations and the assignment of APs

to the selected MEC nodes, which are given by solving the CSCP problem. Such

node locations determine the resulting cost of both CSCP and our original problem

defined in Section 4.2.2. However, CSCP does not answer through which paths the

APs and MEC nodes are connected and the network bandwidth capacity constraints

are ignored, which is a special case of our original problem. Hence, the solution to

CSCP is the lower bound to the original problem.

Denote by C′ and C the solutions of the first (node selection) and second (path

selection) steps of the proposed SCPA algorithm. Clearly, we have C′ =C, because
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in the second step no network nodes are included or removed. We thus have

C =C′

≤C′∗ · ln(N) , since Theorem 4

≤C∗ · ln(N).

This means that the approximation ratio of the proposed algorithm is ln(N).

We then show that feasible unsplittable paths between MEC nodes and the APs

assigned to each MEC node can be found in polynomial time and the resulting edge

congestion is no more than (4+ ε)|Vs| times edge capacity.

The idea of showing the bound of edge congestion is by considering the worst-

case where the edge that has the maximum flow in a subgraph Gv overlaps with all

edges from other subgraphs that also have the maximum flow. This situation could

occur as we partition the original graph into |Vs| subgraphs after we solve CSCP, and

an edge from the original graph G can be shared by many subgraphs. According to

Theorem 5, the relative edge congestion is at most (4+ε) in a subgraph Gv. Hence,

the worst-case relative edge congestion in the original graph is at most (4+ ε)|Vs|

since an edge in Gv can overlap with at most |Vs| edges when it is superimposed

with other edges.

We have now shown that there is a set of unsplittable flows for each subgraph

Gv obtained from the solution to CSCP and each edge has a congestion no more than

(4+ ε)|Vs|. However, the edge congestion could violate the bandwidth constraint

(2). This can be solved by setting the subgraph edge capacity by BWe
(4+ε)|Vs| . Then,

the edge capacity at all edges can be satisfied. Thus, the solution of the proposed

SCPA algorithm satisfies all constraints and there is a feasible solution of paths

for the lower bound (e.g., CSCP) of the original problem. This means that the

approximation ratio of CSCP is the approximation ratio of the original problem.

Finally, we derive the running time of the proposed SCPA algorithm based on

the running time from [130], where they showed solving a SSUFP requires a run-

ning time in O(T1(|V |, |E|)+ |V ||E|+ |E|ε). More specifically, since our problem
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consists of solving a CSCP and |Vs| SSUFP, we derive the running time by adding

the running time of solving each subproblem. Therefore, the running time in our

problem is O(|V |+ |Vs|(T1(|V |, |E|)+ |V ||E|+ ε|E|)).

4.4 Performance Evaluation
In this section, we evaluate the efficiency of our proposed framework in terms of

service response time (i.e., round-trip time and processing delay at VMs) and cost

efficiency under different MEC settings (e.g., network size, application latency re-

quirement and server capacity). We first show in Section 4.4.1 that our dynamic

resource allocation framework achieves the low latency requirement of the appli-

cation while resulting in lower operational costs compared to existing approaches.

We then focus on the performance analysis of the SCPA reoptimization algorithm

in Section 4.4.2. We compare SCPA’s results against optimal and heuristic-based

incremental allocation and show how close our SCPA algorithm can drive MEC

systems back to the optimal state.

We clarify the schemes that will be compared against as follows:

1. Overprovisioning – We first solve the MEC placement and allocation at the

peak workload with CPLEX in an offline manner and then, for each chosen

location, we overprovision VMs with the maximum possible physical capac-

ity to serve user requests, i.e., ALB and new MEC instantiation are never

needed in this case.

2. ALB – We implement the initial solution from the static allocation problem

at t = 0. The network performs ALB on the initial MEC locations (fixed

locations) when needed.

3. Heuristic – Our proposed heuristic-based incremental allocation including

NLCG algorithm, ALB and CVD (see the right-side of Fig. 4.3).

4. Heuristic+Reoptimization – Our proposed dynamic framework in full, com-

bining heuristic-based incremental allocation and periodic SCPA global reop-

timization that performs every 30 minutes.
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4.4.1 Service Latency and Operational Costs

We use packet-level simulations to examine detailed MEC service latencies and

operational costs. To this end, we create a realistic online NFV-enabled MEC sim-

ulation environment with OMNeT++ [132] complemented with an OpenFlow ex-

tension module provided by [133]. We implemented our dynamic resource alloca-

tion framework that operates as part of the centralized software-defined networking

(SDN) controller. The controller connects to each network node through a dedicated

network link (see Fig. 4.1), and dynamically carries out network configuration dur-

ing MEC node instantiations.

We create a three-layer metropolitan wireless network shown in Fig. 4.1, con-

sisting of APs, aggregation nodes and mobile core network nodes. In this network,

the APs are deployed over an area of 46km2 where the deployment density is 0.65

APs per km2. We further consider 1,800 mobile users moving following the mobil-

ity traces of a fleet of taxis operating in San Francisco [129]. Accordingly, we set

up 30 APs, 5 aggregation nodes and 5 core network nodes (e.g, set according to part

of Paris’ core network model [134]) for the considered number of users and area

where each network node is equipped with a cluster of commodity servers. In terms

of server size, we follow [135] such that each network node has 21 servers and each

server has 2.1GHz CPU of 18 cores. Moreover, we consider an AR application [29]

where users upload street views captured by their mobile devices for annotations

(e.g., building name, available parking places, etc.) computed by MEC. Such appli-

cation requires a service response time of 480ms [1] and generates upload frames

of size 0.5MB at 0.3FPS [29] which requires 230ms for a VM of 600MHz CPU

to process [29]. For simplicity, we assume homogeneous frame size and upload

rate for all users. In terms of network latency constraint, we set a maximum of 4

network hops11 from AP to MEC node [136].

Given the aforementioned setup, we first derive the initial MEC node loca-

tions, resources needed and the corresponding network paths by CPLEX solver in

an offline manner. Two MEC nodes are selected among all NFV-enabled nodes (the

11According to [136], when maximum number of network hops are no more than 4, MEC always
outperforms DC-based cloud in terms of latency.



4.4. Performance Evaluation 95

Table 4.2: Performance comparison with realistic topology.

Latency Maximum Number of Cost
Requirement Latency MEC nodes saving(%)

(start)−→(end)
Overprovision Succeed 480ms 3−→3 0%

ALB Fail 132s 2−→2 42.6%
Heuristic Succeed 480ms 2−→3 33.6%

Heuristic+ Succeed 480ms 2−→3 33.6%
Reoptimization

“Number of MEC nodes, (start)−→(end)” column in Table 4.2 shows this number).

Then, we execute our simulations for a duration of 1 hour from the abovemen-

tioned initial state, during which we gradually increase the AR application work-

load from 0.3FPS to the peak workload at 3.0FPS in steps of 0.1FPS every 400s.

We set a threshold-based VM auto-scaling mechanism for our packet-level simula-

tion. Whenever VM load reaches a threshold of 80%, auto-scaling mechanism is

triggered with a VM instantiation time of 100ms, This is set according to a realistic

NFV commodity servers’ instantiation time following [126]. In addition, we set

the workload prediction time window, ∆t = 400s [57] for the NLCG algorithm, and

consider a 100% prediction accuracy. This assumption has been largely adopted

in the design of online resource allocation algorithms [15, 64, 137]. On the other

hand, an inaccurate workload prediction would result in overprovisioning or un-

derprovisioning of MEC resources in practice, which leads to poor cost efficiency

and long processing delay respectively. Many existing work such as [138] have

studied the impact of prediction inaccuracy and the compensation techniques (e.g.,

[138] proposed a method to minimize the impact of prediction inaccuracy, in which

they minimized the underprovisioning-caused latency violations less than 2% of all

requests). Therefore, our evaluation focuses on the proposed algorithms.

Now, we compare our solution against existing solutions in terms of service la-

tency and operational costs. Table 4.2 shows our results with respect to satisfaction

of the response time requirement, number of resulting MEC nodes (i.e., operational

costs) at the start and end of the simulation and the cost savings over time in com-

parison to the Overprovision scheme. From the table, we can see that only the
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costly Overprovision and our solutions (Heuristic and Heuristic+Reoptimization),

manage to satisfy the delay requirement of the considered AR application. In addi-

tion, ALB results in the lowest number of MEC nodes at the end of the simulations,

but it comes with delay penalties due to computation congestion at the two ini-

tial MEC nodes. Our solutions have all increased the resulting number of MEC

nodes by 1 in response to the increased workload. When we compare the costs

over time against Overprovision, ALB achieves a saving of 42.6%. In contrast, our

Heuristic and Heuristic+Reoptimization lead to a more modest saving (i.e., 33.6%

in both cases), but achieves the latency requirement by increasing the overall com-

putational resources through the new allocation of MEC nodes. Such saving is

achieved by minimizing the number of required MEC node instantiations whereby

the CVD mechanism derives the time instance when the resources of MECs will

be fully utilized and cannot accommodate more workloads. However, due to the

packet-level simulator’s limitation, only a small topology is evaluated, whereby the

performance improvement of Heuristic+Reoptimization cannot be revealed (e.g.,

identical results of cost saving in Table 4.2).

In addition, we observe from the cumulative distribution function (CDF) of re-

sponse time in Fig. 4.4 that the resulting response time of our solutions overlap with

that of Overprovision. This further shows the seamless transition to the new sys-

tem state, and Heuristic approach is fast enough to get VMs ready before workload

arrives. On the other hand, ALB fails to conform to the latency requirement with

20% (see Fig. 4.4) of the overall requests exceed the latency threshold (maximum

latency at 132s) due to insufficient physical capacity in the fixed limited number of

MECs.

Our detailed packet-level simulator allows us to track and examine each and

every individual request and response packet in the system. The tradeoff to this is

the scalability of the simulator which constrained us to smaller scale simulations.

To more comprehensively evaluate our solution, we further evaluate our framework,

specifically on the benefits brought by global reoptimization algorithm, SCPA, with

larger network topologies in the next section. Also, we thoroughly investigate the
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impact of different network sizes, network hop constraints and MEC service-hosting

servers’ sizes to our solution.

4.4.2 System Cost Optimality

We proceed to evaluate the improvements provided by SCPA via flow-level simula-

tions with large network topologies, and investigate by how much SCPA can drive

the NFV-enabled MEC back to the optimal state. To this end, we compare the re-

sulting MEC operational cost of Heuristic+Reoptimization against Heuristic and

lower bound of optimal solution12 denoted by OPTLB under different network sizes,

latency requirements and physical capacities of NFV-enabled servers. Furthermore,

in order to more intuitively present SCPA reoptimization’s optimality difference to

OPTLB and take into account MECs’ resource utilization level, we introduce two

12Such OPTLB is solved by relaxing both the edge capacity constraint and the routing decision
variable Xp (i.e., from integer to linear programming). Note that this is a conservative estimation
of the optimal solution, which is smaller than the optimal value. In addition, due to the complexity
in deriving the OPTLB solutions for large size networks (e.g., larger than 300 nodes), we stop the
CPLEX solver when the optimality gap reaches 5% to avoid long execution time.
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metrics: cost efficiency and cost efficiency gap. The cost efficiency, Ce f f , quan-

tifies the number of mobile users per MEC node who achieve the required service

response time.

Cost efficiency, Ce f f =
Nbusers

|Vs|
(4.7)

where Nbusers is the total number of users who receive their services within the

services’ latency requirements.

Cost efficiency gap shows how close the resulting cost efficiency of our so-

lutions (i.e., Heuristic+Reoptimization and Heuristic) is to the OPTLB, that is, the

smaller this gap is, the more cost-efficient the solution is. More specifically, this

metric is derived as the normalized difference between cost efficiency of our solu-

tions and that of OPTLB.

Cost efficiency gap, Gape f f =

∣∣∣∣∣∣C
OPTLB
e f f −Ce f f

COPTLB
e f f

∣∣∣∣∣∣ (4.8)

where COPTLB
e f f denotes the cost efficiency of OPTLB.

4.4.2.1 Impact of Network Size

We adopt GT-ITM [139] to generate synthetic network topologies where the prob-

ability of having an edge between two nodes is 0.2 with edge capacities uniformly

distributed between 300Mbps and 10Gbps. Other setup / parameters related to the

application, workload and server capacity remain the same as previously described

(see Section 4.4.1). We plot in Fig. 4.5(a) the average number of MEC nodes

in function of different network sizes ranging from 100 nodes to 1000 nodes for

Heuristic, Heuristic+Reoptimization and OPTLB. It must be stressed that the av-

erage number of MEC nodes at each network size (e.g., 100 to 1000 nodes) is the

average number of MEC nodes of 4 simulations with different service latency re-

quirements (e.g., maximum number of hops from 1 to 4 hops). By doing so, the



4.4. Performance Evaluation 99

 0

 20

 40

 60

 80

 100

 120

 140

100 200 300 400 500 600 700 800 900 1000

N
u

m
b

e
r
 o

f 
M

E
C

 N
o

d
e

s

Network Size

Heuristic
Heuristic+Reoptimization

OPTLB

(a) Average costs for each network size over different latency requirements.

 0

 10

 20

 30

 40

 50

100 200 300 400 500 600 800 1000

C
o

s
t 

E
ff

ic
ie

n
c

y
 G

a
p

 (
%

)

Network Size

Heuristic
Heuristic+Reoptimization

(b) Cost efficiency gap to OPTLB.

Figure 4.5: Impact of network sizes to costs.

impact of a specific latency requirement to the MEC node number is reduced, and

hence Fig. 4.5(a) can reflect the impact of network sizes to MEC node number in a

more accurate way.

From Fig. 4.5(a), we see that the Heuristic+Reoptimization solution achieves

lower operational costs (i.e., lower number of resulting MEC nodes) for all network

sizes compared to Heuristic. The resulting MEC operational cost of our Heuris-

tic+Reoptimization also closely follows that of OPTLB. The relative poorer per-

formance achieved by Heuristic is due to its local search nature where the search

of a new MEC node is triggered by overloaded existing MEC nodes and carried

out in the vicinity of these affected nodes. As a result, the optimal MEC location

that may benefit the maximum number of users could potentially be omitted during
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Heuristic’s search process, leading to a relatively lower cost efficiency. In contrast,

Heuristic+Reoptimization utilizes resources more efficiently by searching the opti-

mal MEC locations over the entire network.

We show in Fig. 4.5(b) the cost efficiency gap to OPTLB for Heuris-

tic+Reoptimization and Heuristic. We see that Heuristic’s cost efficiency gap

to OPTLB is always above 25%, whereas Heuristic+Reoptimization can improve

nearly 20% of Heuristic’s cost efficiency due to the global search. In addi-

tion, Heuristic+Reoptimization consistently achieves an efficiency gap below 15%

for any network sizes (see Fig. 4.5(b)). In particular, we observe that Heuris-

tic+Reoptimization’s efficiency gap does not increase with network size, which jus-

tifies the theoretical performance bound ln(N), whereby N represents the largest

number of APs served by a MEC node, which is independent to the size of network.

4.4.2.2 Impact of Latency Requirements

The latency requirement can be interpreted as the maximum tolerable number of

network hops between APs and MEC nodes. It directly affects the number of APs

that a NFV network node can cover (i.e., serving the APs without violating latency

requirements). This, in turn, affects the required MEC nodes to cover all APs in

the proposed algorithms. To show the impact of this factor, we vary the maximum

tolerable number of network hops from 1 to 4, which reflects latency requirements

of different nature such as extremely strict network latencies (e.g., 10ms network

delay) to loose latencies (e.g., 150ms network latency). We show, with Fig. 4.6,

both Heuristic and Heuristic+Reoptimization’s cost efficiency gap ratio for each

of considered latency requirement. Note that the cost efficiency gap at each latency

requirement in Fig. 4.6 is the average of that of all network sizes (e.g., 100 to 1000).

We see from Fig. 4.6 that Heurisitc+Reoptimization still outperforms Heuris-

tic for each latency requirement, and it always achieves an efficiency gap below

20%. In particular, when the maximum network hop is set to zero, both Heuristic

and Heurisitc+Reoptimization achieve an optimal operational cost where the ef-

ficiency gap equals to zero. This is due to the fact that the extreme low latency

constraint (e.g., 0 hop) restricts all APs to be served as MEC nodes, which makes
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Figure 4.6: Cost efficiency gap to OPTLB.

the resulting number of MEC nodes identical for any MEC allocation algorithms

that conforms to the network latency constraint. Similarly, when we look at the

other extreme case where the latency constraint is extremely loose (see ∞ in Fig.

4.6) and the physical NFV servers have infinite capacity, only one MEC node is

required in Heuristic, Heurisitc+Reoptimization and OPTLB (e.g., this leads to 0%

cost efficiency gap). From the above two cases, we observe that the selection of

MEC resource allocation algorithm does not play a critical role in the resulting

MEC operational cost when latency is either extremely loose or strict. However,

when the latency requirement is between the two extremes cases, it significantly

affects the cost efficiency. For instance, when the latency requirement is set to 1, 2,

3 and 4 network hops, we observe from Fig. 4.6 that the cost efficiency gap of both

Heuristic and Heurisitc+Reoptimization first increases and then decreases as the

maximum tolerable network hops increase. The increase of cost efficiency gap at

network hop 1 and 2 compared to 0 hop is due to the enlarged search space for MEC

nodes in Heuristic and Heurisitc+Reoptimization. Such search space enlargement

increases the chance of selecting less optimal MEC nodes where MECs’ resource

utilization is poorer compared to MECs derived by OPTLB. On the other hand, the

decrease of efficiency gap at 3 and 4 network hops is the consequence of improved

MEC utilization compared to cases with 1 and 2 network hops. Specifically, due to

the relaxed latency constraint, a MEC node can serve a larger number of users with-

out violating the network latency requirement, and hence achieve a better resource
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utilization compared to strict latency requirements. In particular, the relaxed la-

tency constraint at 4 network hops results in a situation where the number of served

users in each MEC reaches servers’ physical capacity limits, that is, the resource

utilization at each derived MEC is almost 100%. Knowing that an optimal MEC re-

source allocation achieves the least number of MEC also by fully utilizing MECs’

resources. Therefore, the fully utilized MEC nodes at 4 network hops achieve a very

close cost to OPTLB. Similarly, when the latency becomes even less strict (e.g., ∞),

the allocated resources at MECs will reach the servers’ physical capacity limits and

result in the same operational cost as OPTLB (see ∞ in Fig. 4.6). Clearly, there is an

inter-correlation between applications’ latency requirement and the server capacity,

which we elaborate in the next subsection.

4.4.2.3 Impact of Physical Capacities

Next, we evaluate the impact of servers’ physical capacities to Heurisitc+Reoptimization’s

MEC costs. To this end, we consider three NFV-enabled servers sizes, namely,

FULL (i.e., the considered server size (see Section 4.4.1)), HALF (i.e., half of

FULL size), DOUBLE (i.e., two times the FULL size) [64, 135]. Furthermore,

servers of different sizes result in different energy consumption, which can be esti-

mated based on the server size and resource utilization [15]. We take a simplistic

assumption in our evaluation whereby the energy consumption is proportional to

the server size. That is, we consider HALF size servers consume half of FULL size

servers’ energy and correspondingly, DOUBLE size servers consume double the

amount of energy of FULL size servers. We plot in Fig. 4.7 the average energy

cost incurred by Heurisitc+Reoptimization under different network latency require-

ments for each of the abovementioned server sizes. We observe that simulations

with DOUBLE server size result in higher costs than HALF and FULL server when

network latency requirement is extremely low (e.g., 1 network hop). This is due

to the inter-correlation between the two impact factors: latency requirement and

server size. More specifically, when network latency requirement is extremely low,

the latency requirement impact factor dominates the MEC node searching process

leading to almost the same number and placement of resulting MEC nodes for
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Figure 4.7: Heuristic+Reoptimization’s average cost for each latency constraint over dif-
ferent network sizes.

HALF, FULL and DOUBLE size servers. However, the per MEC energy consump-

tion of DOUBLE size server is significantly more than that of HALF and FULL

size which results in the overall higher costs (see Fig. 4.7). In contrast, when the

latency requirement becomes less strict (e.g., network hops 3 and 4), DOUBLE size

servers’ energy cost decreases drastically as a consequence of decreased number

of required servers and better resource utilization compared to that of strict latency

requirements (i.e., each server supports a larger number of users within its network

latency constraint). At the same time, we see from Fig. 4.7 that the resulting cost of

the 3 server sizes converges to the same level after 3 network hops. For each server

size, more users are served per MEC after the relaxation of latency requirements,

and hence all MECs are almost fully utilized. As a consequence, the overall num-

ber of MEC nodes with full-size servers is half of that of half-size case and double

of double-size case. Given the simplified energy cost assumption, our dynamic

resource allocation framework results in the same level of energy consumption for

each server size when latency requirement is loose.

Given the above observations, we see that the performance of dynamic re-

source allocation framework is independent of the network size. In particular,

Heurisitc+Reoptimization can always improve Heuristic’s resulting operational

cost except when the latency requirement is extremely low (e.g., 0 hops) or ex-

tremely high (e.g., ∞ hops). Also, the observations from the impact factor analysis
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of latency and server capacity provide insights on the server size selection in the

NFV-enable MEC cost minimization problem. We conclude that for extreme low

latency applications (e.g., under 10ms), deployment of smaller servers are more

desirable in order to achieve lower MEC cost through dynamic resource allocation.

However, when the latency requirement is loose, the server size does not have strong

influence on the MEC operational costs.

4.4.2.4 Algorithm Running Time

Last, we show in Fig. 4.8 the average running time of NLCG heuristic and SCPA

reoptimization for each network size whereby the average running time is derived

over different latency requirements. As Fig. 4.8 shows, the SCPA takes more

time to execute than NLCG heuristic, but achieves a cost efficiency within 20%

of OPTLB’s cost efficiency (see Fig. 4.6). In addition, we observe that when net-

work size is larger than 500 nodes, SCPA running time increases drastically due to

the increased complexity in finding unsplittable flows. However, it must be stressed

that conventional metropolitan-level wireless networks have network size smaller

than 700 nodes [64, 76], and even the maximum execution time (e.g., 200s) for

700 nodes does not affect the desired latency requirements in the considered on-

line NFV-enabled MEC (e.g., SCPA is performed less frequently than incremental

MEC allocation in dynamic resource allocation framework). On the other hand,

the NLCG’s running time is below 50s in the worst case (e.g., network size 1000),
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which does not affect the latency requirements (i.e., the sum of VM instantiation

time and NLCG’s running time is always smaller than CVD detection interval).

4.5 Conclusion
Having resolved the cost-efficient low latency network planning problem in Chap-

ter 3, this chapter addresses the dynamic resource management for cost-efficient

low latency networks. That is, how to fully and dynamically exploit different net-

work resources from the physical underlying network. Specifically, we adopt NFV-

enhanced MECs to achieve both cost efficiency and low latencies by dynamically

instantiating network resources at the optimal network locations. As such, the min-

imum amount of required network resources are allocated to achieve the required

low latency, so that the operational cost of low latency networks can be minimized.

For this, we formulate an optimization problem for allocating end services at any

resource-constrained NFV-enabled MEC nodes. We demonstrate the effectiveness

of our dynamic resource allocation framework in NFV-enabled MEC through both

packet-level and flow-level simulations. Our results show that only our proposal

always ensures that end services respond to user requests on time, while achiev-

ing up to 33% operational cost reduction in comparison to the current practices.

Meanwhile, our proposal achieves a near-optimal MEC operational cost whereby

the cost efficiency is no more than 20% of that incurred by optimal MEC resource

allocation. In addition, our impact factor analysis indicates that MEC applications

with extreme low latency requirements (e.g., 10ms) are more in favour of small size

servers for cost efficiency purposes.



Chapter 5

Fault-Tolerant End-to-End Resource

Management

Having studied the minimization problem of deployment cost and operational cost

for low latency networks, in this chapter, we focus on enhancing the fault tolerance

of cost-efficient low latency networks. The objective is to further guarantee both

cost efficiency and low latencies in face of network failures. In particular, different

end-to-end resources such as active and back-up computing/bandwidth resources

from on-path VNFs (i.e., components of service function chains) and network links

will be jointly optimized. As such, we complement the studies carried out in Chap-

ter 4, whereby only routing resources and stateless computing resources at end ser-

vices are jointly optimized.

5.1 Introduction
Cloud service provides exploit different network functions (NFs), such as network

address translation (NAT), firewall and deep packet inspection (DPI), to improve

network performance and security. These NFs are embedded into dedicated hard-

ware that are costly and difficult to reconfigure. The advent of NFV provides a more

flexible and inexpensive support of NFs compared to conventional hardware-based

approaches [8]. Specifically, NFV decouples NFs from physical devices by imple-

menting NFs as software running in VMs in the form of VNFs. As such, VNFs

can be instantiated on any DC with available computing resources. This flexibil-
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ity in VNF instantiation further enables advanced VNF placement schemes [140],

through which the cost and performance of NFs can be largely improved [141].

Despite the achieved flexibility, moving NFs from hardware to software poses

grand concerns especially in terms of reliability. For instance, VNFs are software

running in DCs, which are vulnerable to various problems such as misconfigura-

tion, faulty VMs and software malfunctions [142, 143]. In order to enhance VNF

fault tolerance, backup VNFs that run in stand-by instances are required [144]. In

case of failures, requests to stateless VNFs can be immediately redirected to one

of their stand-by instances. In contrast, stateful VNFs generate states during traf-

fic processing [145] that need to be transferred to stand-by instances in order to

guarantee seamless request redirection. For instance, a stateful NAT VNF needs

to maintain existing user connections to support its correct operation. If a NAT

fails, the transient states created by the traffic itself have to be transferred to the

backup NAT to avoid NAT disconnection. Given that such state transfers need to be

continuously performed while active instances are in operation [146, 90], it could

consume considerable network bandwidth resources, and lead to significant network

link overheads. Furthermore, if the network path used for state transfers overlaps

with the VNF request routing path, the active VNF instance’s request admissions

may fail due to delay violations caused by link congestion. As such, decisions re-

garding 1) the placement of active instances, 2) the placement of stand-by instances,

3) request routings, 4) the state transfer paths need to be jointly considered so that

the number of admitted user requests can be maximized. In this paper, we study the

fault-tolerant stateful VNF placement problem, whereby the aforementioned four

decisions are jointly determined under DC computing and bandwidth resource con-

straints.

Providing efficient solutions to the fault-tolerant VNF placement problems

poses several challenges. On one hand, as stated earlier, a naive solution that sepa-

rately determines the instance locations and routings may result in network conges-

tion and admission failures. It may also lead to significant network communication

costs if the active/stand-by instances are placed with long network distance to the
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source and destination nodes of requests. On the other hand, the number and place-

ments of stand-by instances directly influence the state update cost for VNFs. At

the same time, the number of stand-by instances affects the robustness of the net-

works. Clearly, a higher number of stand-by instances indicates a higher degree of

fault tolerance.

Previous studies on the fault-tolerant VNF placement problem have either fo-

cused on backup instances or stateless VNFs [93, 144, 147, 148, 149]. For example,

[93] investigated the planning-stage VNF backup instances (i.e., do not consider ac-

tive instances) deployment problem while taking into account the failure probabili-

ties of network nodes. [148] studied the placement problem of redundant stateless

VNFs in LTE networks with a focus on deriving the optimal number of VNFs to

guarantee reliability. [144] investigated the joint active and backup stateless VNF

placement problem, but did not consider request routing and VNF state transfers. To

the best of our knowledge, this work is the first study that jointly considers stateful

active/stand-by VNF placement, request routing and state transfers.

In the remainder of this paper, we first introduce the considered scenario and

the related definitions in Section 5.2. Then, we propose an efficient heuristic based

on the joint availability of DC computing resources and the accumulative bandwidth

resources of DC’s inbound links in Section 5.3. The proposed heuristic jointly com-

putes the placement of both active and stand-by stateful VNF instances. For a spe-

cial case of our problem without bandwidth constraint, we propose a (2,4+ ε) bi-

criteria approximation algorithm with proved approximation ratios on the achieved

cost and maximum DC utilization in Sections 5.4. The proposed algorithm exploits

an approach based on auxiliary graph that allows active/stand-by instances, request

routings and state update paths to be jointly considered. The evaluation results pre-

sented in Section 5.5 suggest that the proposed algorithms significantly improve

the request admission rate while reducing DCs’ cost. At the same time, they out-

perform existing solutions that separately consider placements, routings and update

paths. Concluding remarks are finally presented in Section 5.6.
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Figure 5.1: An example of fault-tolerant placement problem in G with a set DC =
{DC1,DC2,DC3} connected by a set V = {v2,v3,v5} of switches.

5.2 Fault-Tolerant Virtual Network Function Place-

ment Problem

5.2.1 System Model

We model the network G = (V ∪DC ,E) operated by a cloud service provider with

a set V of switches, a set DC of DCs attached to V , and a set E of network links

(see Fig 5.1). We follow the convention to assume that the number of DCs is far less

than the number of switches. Each DCi ∈DC has computing resources C(DCi) that

can be utilized to instantiate VNFs instances. A sequence of VNFs forms a service

chain, denoted as SC, and an instance of a service chain is defined as an imple-

mentation of its specified VNFs in a VM. Given the computing capacity C(DCi) of

DCi , a limited number of instances of different service chains can be supported in

each DC. Similarly, each link e ∈ E has a capacity B(e) of bandwidth resources that

can be allocated to user requests. Without loss of generality, we assume that each

DC and the switch node attached to it is connected by a high-speed optical cable

with abundant network bandwidth (see Fig 5.1) so that the delay and communica-

tion cost incurred at these links can be considered as negligible. Furthermore, the

transmission delay on each link e ∈ E is denoted as de.
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5.2.2 Requests for Service Chains

We denote as r j = (s j, t j;SC j,ρ j,D j) user request j. Each user request requires

to be routed from a source node s j to a destination node t j at a given packet rate

ρ j within D j time, such that its traffic passes through one instance of its required

service chain SC j.

Different user requests have different demands for SC, with each type of ser-

vice chains having a different sequence of VNFs. Without loss of generality, we

assume that the computing resource requested by an instance of service chain SC j

for processing the traffic of r j is proportional to its packet rate, i.e., ρ j ·cb, where cb

is a given constant representing the amount of computing resources that is needed

to process each unit packet rate. The total amount of computing resource allocated

to all instances of service chains in a data center DCi must not exceed its computing

capacity C(DCi).

The end-to-end delay requirement D j of each request r j specifies the maximum

tolerable delay experienced by its traffic from its source node, s j, to its destination

node, t j. It consists of the processing delay of service chain SC j at a DC and the

transfer delay on each link. Specifically, assuming an instance of SC j at DCi is as-

signed to process the traffic of r j, then its experienced delay consists of the transfer

delay d(s j,DCi) from s j to DCi, the processing delay d(SC j,DCi) by an instance of

SC j at DCi, and the transfer delay d(DCi, t j) from DCi to t j. The end-to-end delay

requirement of r j is:

d(s j,DCi)+d(SC j,DCi)+d(DCi, t j)≤ D j. (5.1)

5.2.3 Stateful Active and Stand-by Instances

Faults can occur anywhere and at anytime in a network due for example to natural

disasters in the locations of DCs, software malfunctions in VNFs, and hardware

failures in DCs. To avoid service interruption due to such failures, we assume that

an active instance of service chain of each request is placed into one DC, and a few

stand-by instances of the service chain are placed into other DCs. For simplicity, the
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instances are considered at the service chain level which consists of various VNFs.

Once the active instance fails (e.g., one of the composite VNFs within a SC fails), its

traffic can be seamlessly redirected to one of the stand-by instances for processing.

In this work, we consider stateful VNFs (i.e., stateful SCs), whereby the states from

the active instance need to be constantly transferred to stand-by instances while the

active instance is still in operation. Such state transfer plays a vital role in enabling

the seamless and correct request redirection from an active stance to a stand-by

instance.

We denote as DCa
j the DC where the active instance of service chain SC j of user

request r j is placed and denote as DC s
j the set of DCs where stand-by instances of

SC j are placed. We assume that the state update rate of each request from its active

instance to stand-by instances is proportional to its packet rate, i.e., β ·ρ j, where β

(> 0) is a given constant. We further assume that the computing resource demand

of stand-by instances will be allocated only when they are activated (i.e., stand-by

instances do not consume computing resources in the placement problem). Since

the focus of our work is on the pre-failure placement of active/stand-by VNFs, we

consider the resource provisioning of back-up instances (after VNFs fail) out of the

scope of this paper.

5.2.4 Cost Model

Minimizing the implementation cost for user requests is usually considered as an ef-

fective objective to reduce the operational cost of network service providers. Here,

the implementation cost of a request r j = (s j, t j,SC j,ρ j,D j) consists of (i) the op-

erational cost of computing resource to process requests, i.e., the use of an active

instance of service chain SC j in DCa
j , (ii) the communication cost of transferring

its traffic from s j to DCa
j for processing, (iii) the communication cost of transfer-

ring the processed data from DCa
j to its destination t j, and (iv) the communication

cost of updating status from DCa
j to DCs in DC s

j. Let c(SC j,DCi) be the cost of

implementing an instance of service chain SC j of r j in DCi, and c(e) be the cost

of transferring a unit packet rate for request r j through link e ∈ E. Without loss of

generality, we assume that the edge cost c(e) is within the range of (0,1]. Then, the
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implementation cost c(r j) of r j in active DCa
j and a set DC s

j of stand-by DCs of the

network is:

c(r j) = ρ j

(
c(SC j,DCa

j )+ ∑
e∈p(s j ,DCa

j )

c(e)+ ∑
e∈p(DCa

j ,t j)

c(e)

+ ∑
DCi∈DC s

j

∑
e∈p(DCa

j ,DCi)

c(e)
)
,

(5.2)

where p(y,z) is the shortest path in G from node y to node z.

5.2.5 Problem Definition

Different cloud service providers may have different network performance indica-

tors to optimize the service delivery process of their networks. To cater for the

different optimization objectives of different network service providers, we study

two different fault-tolerant VNF placement problems that correspond to different

operators’ needs as follows.

1) Considering that start-up service providers have limited computing and

bandwidth resources, their main interest is to admit as many requests as possible,

so that their limited resources are perfectly utilized while achieving the least oper-

ational cost. Thus, we consider the optimization objective as the maximization of

the admitted number of requests. Specifically, the goal of the fault-tolerant VNF

placement problem is for all user requests r j in R to place an active instance of

service chain SC j to a DCa
j , to place a number of stand-by instances to a set of DCs

j,

to find the routing path for requests from s j to t j via DCa
j and to find the state up-

date path from DCa
j to DCs

j, so that as many requests as possible are admitted while

the total cost of implementing these admitted requests is minimized, subject to the

computing resource capacity constraints C(DCi), the network bandwidth capacity

B(e) for e ∈ E, and the end-to-end delay constraints.

2) Service providers that provide computing-intensive workload processing in

distributed DCs may want their DCs to be balanced (e.g., geographical load bal-

ancing), such that users in different locations have maximum resource availabil-

ities with guaranteed user experiences. Assuming that links in G have abundant
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resources to implement all requests in R, let Ri be the set of instances of service

chains that are admitted by DCi. The goal of the fault-tolerant VNF placement prob-

lem without bandwidth capacity constraint is the same as the fault-tolerant VNF

placement problem except that the objective is to minimize the maximum DC uti-

lization for all DCs, i.e.,

min max
DCi∈DC

∑
r j∈Ri

ρ j · cb

C(DCi)
, (5.3)

while the cost of implementing all requests is minimized, i.e.,

min ∑
DCi∈DC

∑
r j∈R j

c(r j), (5.4)

subject to the computing resource capacity constraints of DCs in DC and the end-

to-end delay constraints of requests.

Both problems are clearly NP-hard given that a special version of these prob-

lems without considering fault-tolerant requirements and (or) bandwidth resource

constraints is NP-hard by simple reduction from another NP-hard problem, the un-

splittable single-source flow problem [150].

5.3 Fast Heuristic Solution for Fault-Tolerant Place-

ment Problem
Due to the NP-hardness of the problem, in the following, we propose an efficient

heuristic to solve it.

5.3.1 Algorithm

To avoid poor performance in terms of request admission rate and cost, the place-

ment of active/stand-by instances, request routings and update paths need to be

jointly computed. Conventional approaches such as naive greedy algorithm select

DCs for the active and stand-by instances separately. It first finds the DC with the

largest amount of available computing resources to host the active instance for r j,
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and then selects a random number of DCs with lowest transfer costs to host stand-by

SC instances for r j. As a result, the separate placement and routing decision may

result in situations where no update paths are available from the active instance to

one of its stand-by instances due to link congestions.

In contrast, our heuristic jointly selects a DC for the active instance and a

number of DCs for its stand-by instances. Specifically, the heuristic first sorts all

requests in R in increasing order of their rates, and then sequentially considers

the requests in the sorted list. Next, for the jth request r j in the sorted list, the

algorithm ranks DCs based on the increasing order of the product of the available

computing resources and the accumulative available network bandwidth resources

of DC’s inbound links. Let NR(DCi, j) be the ranking of DCi after considering the

( j− 1)th request in the sorted list. Let also denote A(DCi, j) and A(e, j) as the

available computing and bandwidth resources of DCi and link e after considering

the ( j−1)th request. Then,

NR(DCi, j) = A(DCi, j) · ∑
e∈E i

ad j

A(e, j), (5.5)

where E i
ad j is the set of inbound links of DCi. The idea of such ranking is to find

a set of DCs that not only have enough computing but also network bandwidth

resources for both active and stand-by instances.

Based on the obtained ranking, the algorithm selects the DC with the highest

rank, denoted DChr. Then, the algorithm checks if (1) DChr has enough computing

resources to host an active instance of SC j for r j; and (2) if the shortest path from s j

to t j via DCa
j has enough bandwidth resources to transfer r j at rate ρ j. The algorithm

also checks whether (3) DChr conforms to r j’s delay requirement. If the above three

requirements are all satisfied, DChr is selected as DCa
j . The algorithm then searches

stand-by instances for r j. To this end, the rest of DCs other than DChr are sorted in

the increasing order of state update costs to DChr. Each DC in the sorted DC list is

further added to DC s
j until there is a DC that cannot meet the bandwidth resource

requirement for updating states from DChr. To avoid all the other data centers to
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be selected to host stand-by instances, we set a threshold K (1 ≤ K ≤ |DC |) for

the number of DCs that can be used for stand-by instances. This prevents a large

number of DCs to be selected to place stand-by instances and as such avoids the

creation of unnecessary burden for state updates. If no stand-by DC exists after

considering the rest of the DCs, request r j is rejected.

In case constraints (1), (2) and (3) cannot be satisfied, DChr is added to DC s
j as

the accumulative bandwidth resources to nearby DCs might make DChr a promis-

ing candidate for stand-by instances. DCs other than DChr are sorted in a list Lhr

based on the increasing accumulative communication cost to DChr. The algorithms

then iterates through DCs in Lhr until a DCi that can serve the active service chain

instance is found, i.e., a DC that meets constraints (1), (2) and (3). Once such a

DCi is found, it is selected to be the DC that hosts the active instance of r j. Among

the rest DCs in Lhr, only the ones that have enough bandwidth resources for state

updates rate β ·ρ j from DCa
j are added to DC s

j (with |DC s
j| ≤ K). If neither such

DC can be found for its active instance nor a set of DCs can be determined for its

stand-by instances, r j is rejected.

The above procedure continues until all requests in R are considered. The

details of the proposed heuristic are shown in Algorithm 7.

5.3.2 Algorithm Complexity

The performance of the proposed heuristic is given by the following theorem.

Theorem 4. Given a network G= (V ∪DC ,E), let R be a set of requests with each

represented by r j = (s j, t j,SCk,ρ j,D j). Algorithm 7 delivers a feasible solution

to the fault-tolerant VNF placement problem in O(|R|(|DC | log |DC |) + (|V |+

|DC |)3) time.

Proof. To show the feasibility of the algorithm, we need to show that the resource

demands of each admitted request and its end-to-end delay requirement are met.

Clearly, this is true due to steps 8 and 24.

For the running time of the proposed heuristic, we can see that the most time-

consuming phases of Algorithm 7 are (1) finding all pair shortest paths in G, (2)
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Algorithm 7 Heuristic
Input: Network G(V ∪DC ,E); Set of requests r j ∈ R where r j = (s j, t j,SC j,ρ j,D j), K.
Output: Assignments of each request in r j ∈ R to DCa

j for active SC instances and to DC s
j for

stand-by SC instances.
1: for r j ∈R j do
2: Sortedlist ← SortIncreaseOrder(DC ) based on Eq. (5.5)
3:
4: DChr← Sortedlist .getFirst();
5: DC s

j← /0 and DCa
j ← NIL;

6: A(p(s j ,DChr))← G.shortestPathAvailBandwidth(s j,DChr);
7: A(p(DChr ,t j))← G.shortestPathAvailBandwidth(DChr, t j);
8: if ρ j ≤ A(p(s j ,DChr)) && ρ j ≤ A(p(DChr ,t j)) && Dhr ≤ D j then
9: DCa

j ← DChr;
10: U pdatelist ← SortIncreaseOrder(DC \DChr) based on state update costs to DChr;
11: for each DCi ∈ Lhr do
12: DC s

j←DC s
j ∪{DCi}

13: if K = |DC s
j| or A(p(DCi,DChr))≤ β ·ρ j then

14: Break;
15: end if
16: end for
17: else
18: DC s

j←DC s
j ∪{DChr}

19: Lhr← SortIncreaseOrder(DC \DChr) following state update costs to DChr;
20: for each DCi ∈ Lhr do
21: if DCa

j 6= NIL && A(p(DCa
j ,DCi))≥ β ·ρ j && |DC s

j| ≤ K then
22: DC s

j←DC s
j ∪{DCi};

23: else
24: if ρ j ≤ A(p(s j ,DCi)) && ρ j ≤ A(p(DCi,t j)) && Di ≤ D j then
25: DCa

j ← DCi;
26: else
27: if |DC s

j| ≤ K then
28: DC s

j←DC s
j ∪{DCi};

29: end if
30: end if
31: end if
32: end for
33: end if
34: Update DCs’ available resources and network link resources
35: end for

return The assigned DC to place the service chain of each request for the processing of its
traffic, and a set of DCs to replicate its service chain.

ranking all DCs, and (2) iteratively selecting a number of DCs for each request.

Clearly, phase (1) takes O((|V |+ |DC |)3) time, phase (2) takes O(|DC | log |DC |)

time, and phase (3) takes O(|DC |) time. Since the ranking of DCs is performed

every time when a request is admitted, the overall running time of algorithm 7 is

O(|R|(|DC | log |DC |)+(|V |+ |DC |)3).
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5.4 Approximate Solution for a Special Problem In-

stance
In this section, we consider the fault-tolerant VNF placement problem without

bandwidth capacity constraint. We assume that the network G has enough band-

width resources on its links, and all requests in R can be admitted. For this prob-

lem, we propose a bicriteria approximation algorithm with an approximation ratio

of (2,4+ ε). Such a ratio indicates that (1) the implementation cost of all requests

is twice the optimal cost, and (2) the minimum maximum utilization of computing

resources in a DC is (4+ε) times the optimal one, where ε is a constant with ε > 0.

5.4.1 Overview

Given network G and a set R of requests, the fault-tolerant VNF placement prob-

lem without bandwidth capacity constraint is to balance the workloads among DCs

by not only minimizing the maximum resource utilization of DCs but also mini-

mizing the total requests’ implementation costs. One challenge is with respect to

the tradeoff between the balance of DC utilizations and the implementation costs of

requests. For instance, the active instance of some requests may have to be placed

into DCs with high communication costs in order to achieve a balanced workload

among DCs. In order to achieve a near optimal solution, we jointly consider the

active/stand-by instance placements, request routings and state update paths.

The idea behind the proposed approach is to reduce the fault-tolerant NFV

placement problem without the bandwidth capacity constraint in G into a single-

source unsplittable flow problem [150] in an auxiliary graph G′ = (V ′,E ′). Then,

a feasible unsplittable flow in G′ that minimizes both the implementation cost of

requests and the maximum congestion of links in G′ is a feasible solution to the

original problem in G. Note that the aim of the single-source unsplittable flow

problem is, given a network G = (V,E,u), a source vertex s, and a set of M com-

modities with sinks t1, ..., tM and associated real-valued demands σ1, ..., σM, to

route the demand σm of each commodity m along a single s− tm flow path so that

the congestion, i.e., maxe∈E{ fe
ue
,1}, and the cost of flow f are minimized, while the
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edge capacities constraints of G are met. To solve the unsplitable flow problem,

Kolliopoulos and Stein [150] gave (2,4+ ε) approximation algorithm for flow cost

and link congestion.

5.4.2 A (2,4+ ε) Bicriteria Approximation Algorithm

The approximation algorithm first constructs the auxiliary graph G′ = (V ′,E ′). Re-

call that the traffic of each request r j is processed by an active instance of its SC j

in a DC, and by one of its stand-by instances in other DCs if the active instance

fails. Thus, each DCi corresponds to a DC node (see Fig. 5.2), and is added into

the auxiliary graph G′, i.e., V ′← {DCi | 1 ≤ i ≤ |DC |}. For each DC node DCi,

we further add a virtual DC node DC′i (see Fig. 5.2) into V ′, i.e., V ′← V ′∪{DC′i}

so that the DC capacity constraint is converted into a link constraint. Next, for each

DC node, we add a few stand-by set nodes to G′, whereby each stand-by set node

represents a candidate set of DCs for stand-by instances (see Fig. 5.2). Specifically,

the stand-by set nodes of DCi are different combinations of DCs from DC \{DCi}

whereby each stand-by set node has no more than K DCs. For example, DC1 from

Fig. 5.2 has a 3 stand-by set nodes DC2, DC3 and node DC2,DC3 where k = 2. Note

that a stand-by set node will not be added twice (e.g., there is only one DC1 ins

stand-by set nodes). Last, we add a request node into V ′ for each request r j, and

add a common source s0 for all requests into V ′.

An edge from the common source s0 to each of stand-by set node is added into

E ′. Its capacity and cost are set to infinity and zero, respectively (i.e., no bandwidth

constraint). Also, there is an edge from each stand-by set node to a DC node DCi

if DCi is not in the set of DCs represented by the stand-by set node (e.g., DC1 has

edges to DC2, DC3 and DC2 & DC3 in Fig. 5.2). The capacity of the edge is set to

infinity, and its cost is the accumulative cost of state updates from DCi to the DCs

within the set of DCs represented by the stand-by set node. Further, an edge from

DCi to DC′i is added. Its capacity is the processing capacity of DCi, and its cost is

set to 0. We add an edge from each DC′i to a request r j if DCi provides a total delay

(e.g., sum of processing and communication delay) for request r j smaller than the

request delay requirement. The capacity of this edge is set to infinity. Its cost is
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DC1	 DC1’	 rj	
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DC1	
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Figure 5.2: An example of the auxiliary graph G′ = (V ′,E ′) constructed from network G
with a set DC = {DC1,DC2,DC3} of DCs that are connected by a set V =
{v2,v3,v5} of switches. R = {r j,r j+1,r j+2}.

Algorithm 8 An (2,4+ε) Bicriteria Approximation Algorithm for the fault-tolerant
VNF Placement Problem without Network Bandwidth Constraint
Input: A network G(V ∪DC ,E), a set requests r j ∈ R where r j = (s j, t j;SC j,ρ j,D j).
Output: Assignments of each requests in r j ∈ R to DCa

j for active SC instances and to DC s
j for

stand-by SC instances.
1: Construct an auxiliary graph G′ = (V ′,E ′) from network G(V ∪DC ,E) as exemplified by Fig.

5.2;
2: Find a single-source unsplittable flow f in the auxiliary graph G′ by applying the algorithm

presented in [150];
3: The requests that are assigned into DCi in the flow f will be processed by an instance of a service

chain in DCi, and request will be assigned a set of DCs that are represented by the stand-by set
node in f .

return The assigned DC to place the service chain of each request for the processing of its
traffic, a set of DCs to replicate its service chain, the request routings and update paths.

the total cost of processing costs of DCi for request r j (e.g., ρ jc(SC j,DCa
j )) plus the

communication costs from s j to DCi and from DCi to t j at packet rate ρ j. Fig. 5.2

shows an example of the constructed auxiliary graph G′.

Given the constructed auxiliary graph G′(V ′,E ′), the original problem is trans-

ferred to the problem of single source unsplittable flow problem in G′. To find a

feasible flow f in G′, the algorithm presented in [150] is invoked. The main steps

of the approximation algorithm are shown in Algorithm 8.

5.4.3 Algorithm Analysis

We now analyze the correctness and performance of the proposed algorithm.
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Theorem 5. Given a network G = (V ∪DC ,E), let R be a set of requests with

each represented by r j = (s j, t j,SCk,ρ j,D j)). Algorithm 8 delivers a bicreteria ap-

proximate solution with an approximation ratio of (2,4+ε) with (1) the implemen-

tation cost of all requests twice the optimal cost, and (2) the minimum maximum

utilization of computing resource in a DC (4+ ε) times the optimal one, for the

fault-tolerant VNF placement problem without bandwidth capacity constraint, in

O(T2(|R|+ |V |+ |DC |
(|DC |−1

k

)
, |R| · |DC |+ |DC |

(|DC |−1
k

)
)) time, where T2(m,n)

is the time to solve a fractional minimum-cost flow problem with m edges and n

nodes in the flow graph, and ε is a constant with ε > 0.

Proof. We first show the feasibility of the proposed algorithm. Given an unsplit-

table flow f , it starts at a request node r j and ends at the common source s0 in G′

according to the construction of auxiliary graph G′. Clearly, a DC node DCi for

active instance and a stand-by set node exists in the route. The traffic of request

r j is processed by the placed active instance in DCi, and it is routed on the paths

from r j’s source s j to DCi and from DCi to destination t j (e.g., represented by edge

〈DC′i ,r j〉 in auxiliary graph). Also, since an auxiliary edge between a stand-by node

to DCi denotes the state update path from DCi to one of the stand-by set nodes, the

processing states are then updated to one of the stand-by set nodes following the

traversed edge by f . In addition, the delay requirement of r j is met, as f only exists

when there is an edge between r j and DC′i (i.e., delay is met).

We then show the approximation ratio of the devised approximation algorithm.

It is clear that the solution to the single-source unsplittable flow problem in auxiliary

graph G′ corresponds to the solution to the VNF placement problem without band-

width constraint in network G. The approximation ratio obtained for the former

problem thus is the approximation ratio for the latter, i.e., (2,4+ ε).

We then show the time complexity of the approximation algorithm, which can

be divided into two stages: (1) the construction of the auxiliary graph G′(V ′,E ′);

and (2) finding an unsplittable flow in the constructed auxiliary graph using the al-

gorithm proposed by Kolliopoulos and Stein [150]. Clearly, the construction of G′

takes (|V ′|+ |E ′|) time, where |V ′| = O(|R|+ |V |+ |DC |+∑
|DC |−1
k=1

(|DC |−1
k

)
) =
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O(|R|+ |V |+ |DC |
(|DC |−1

k

)
), and E ′ = O(|R| · |DC |+ |DC |

(|DC |−1
k

)
), where

∑
|DC |−1
k=1

(|DC |−1
k

)
is the maximum number of stand-by set nodes for all DCs.

According to [150], finding a unsplittable flow in G′ takes O(T2(|V ′|, |E ′|) +

|E ′| log(|V ′|/ε)) = O(T2(|R|+ |V |+ |DC |
(|DC |−1

k

)
, |R| · |DC |+ |DC |

(|DC |−1
k

)
))

time.

5.5 Evaluations

5.5.1 Experiment Settings

We consider synthetic networks generated by GT-ITM [151]. The network size

ranges from 50 to 250 nodes with a node connectivity of 0.2 (i.e., the probability

of having an edge between two nodes is 0.2) [24]. In these networks, the server

to DC ratio is set to 0.1, and each DC has a CPU capacity in the range 4,000 to

8,000 Mhz. The transmission delay of a network link varies between 2 millisec-

onds (ms) and 5 ms [152]. The costs of transmitting and processing 1 GB (approxi-

mately 16,384 packets with each having size of 64 KB) of data are set within [$0.05,

$0.12] and [$0.15, $0.22], respectively, following typical charges in Amazon EC2

with small variations [153]. We consider five categories of NFs: Firewall, Proxy,

NAT, DPI, and Load Balancer, their computing demands (e.g., CPU) are adopted

from []. Further, the consumed computing resources of a service chain is the sum

of the computing demands of its contained NFs (the number of contained NFs is

randomly selected between 1 and 50). The processing delay of a packet for each

NF is randomly drawn from 0.045 ms to 0.3 ms [127], and the processing delay of

a service chain is the total processing delay of its NFs. Each request r j is generated

by randomly selecting its source s j and destination t j from G with packet rate ρ j

randomly selected between 400 and 4,000 packets/second [154]. Each request has

a delay requirement ranging from 10 ms to 100 ms [155, 23]. The running time is

obtained based on a machine with a 3.40GHz Intel i7 Quad-core CPU and 16 GB

RAM.

There has not been any existing work considering the fault-tolerant stateful

VNF placement. One possible solution is to derive each decision variable in a
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separate step (similar to an existing approach for stateless VNF placement prob-

lem [144]). In this sense, we compare our algorithms against a greedy algorithm

(described in 5.3.1) that separately selects the placement of active/stand-by SC in-

stance, request routings and state transfer paths. The greedy aims to maximize

the throughput by admitting requests with small packet rates first. For simplicity,

we refer to this greedy algorithm as algorithm Greedy, and the greedy without

bandwidth constraint as GreedynoBW . The proposed heuristic and approximation

algorithms (Algorithms 7 and 8) are referred to as Heuristic and Appro, re-

spectively.

5.5.2 Performance Evaluation

We first compare the performance of algorithm Heuristic against that of algo-

rithm Greedy for networks with various sizes. Fig. 5.3 shows the result in terms

of the number of admitted requests, the average cost of admitting a request, and the

running time. We see from Fig. 5.3 (a) that the proposed algorithm Heuristic

consistently achieves a number of admitted requests higher than Greedy by 10%.

This is due to the fact that algorithm Heuristic jointly selects the active and

stand-by instances. As such, both network resources and DCs’ computing re-

sources are efficiently utilized, which avoids the request rejections that happened

with Greedy due to separate selection process. The surge of admitted requests

observed with both algorithms for networks with size equal to 250 can be explained

by the fact that in this case, the bandwidth resources between any two network

nodes are on average increased (i.e., more network links exist between two nodes

when network size becomes larger), which results in relaxed constraints in terms of

bandwidth. From Fig. 5.3 (b), we observe that the two algorithms achieve almost

the same total cost. However, since the overall admitted request number obtained

with Heuristic is higher than that of Greedy, we see from Fig. 5.3 (c) that

the Heuristic achieves a lower per request cost than Greedy. Furthermore,

Heuristic achieves a lower cost in terms of the average cost per admitted re-

quest than that of Greedy. Meanwhile, we see from Fig. 5.3 (d) that Heuristic

slightly results in a longer running time than that of algorithm Greedy.
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Figure 5.3: Performance of algorithms Heuristic and Greedy.

We then compare the performance of algorithm Appro with that of algorithm

GreedynoBW in terms of the maximum resource utilization of DCs, the average cost

of implementing a request, and the running time under the same network settings. It

can be seen from Fig. 5.4 (a) that the proposed algorithm Appro consistently deliv-

ers solutions with lower maximum DC resource utilization than that obtained with

algorithm GreedynoBW . For example, when the network size is 100, the minimum

maximum resource utilization of DCs of Appro is 10% lower than that of algorithm

GreedynoBW . The rationale behind is that algorithm Appro explores a fine-grained

trade-off between the resource utilizations and the cost of implementing requests.

Fig. 5.4 (a) also shows that the maximum resource utilization of DCs is decreas-

ing with the network size. This is because larger networks mean on average more

computing resources in DCs, which incurs lower resource utilization. In addition,

as shown in Fig. 5.4 (b) and (c), algorithm Appro also delivers a lower implemen-

tation cost. Regarding the running time, it should be noted that our algorithms are
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intended to be executed offline and to compute solutions that will be implemented

in DC networks at the network configuration stage. The running time of Appro

is therefore considered as tolerable. Finally, we observe that both the maximum

DC utilization in Fig. 5.4 (a) and the total cost in Fig. 5.4 (b) are not increasing

as the network size grows, which further justifies the performance guarantee of the

proposed Appro algorithm.

5.6 Conclusion
In this chapter, we proposed a novel efficient heuristic approach to enhance the fault

tolerance of cost-efficient low latency communications, which jointly computes the

placement of active and stand-by instances of stateful VNFs, the routing paths and

update paths of user requests. For a special case of the problem without network

bandwidth constraint, we proposed a bicriteria approximation algorithm with per-

formance guarantees. We evaluated the performance of the proposed algorithms

based on simulations under realistic settings. Our evaluation results show that the

performance obtained with each algorithm outperforms existing solutions that sep-

arately determine placements, routings and state update paths.
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Chapter 6

General Conclusions

6.1 Summary

In the upcoming 5G era, low latency has been defined as the essential feature to

realize the emerging innovative applications such as autonomous car control, AR

and remote surgery. The current practice to achieve low latency is to overprovision

bandwidth and computing resources. However, this approach results in resource

wastage, and is not applicable to large-scale networks due to cost issues. To make

low latency applications accessible to the general public, ISPs will need to design

their low latency networks in a cost-efficient way.

In this thesis, the problem of designing cost-efficient low latency networks has

been addressed. In particular, we proposed a cost-efficient resource management

framework that solved 1) the cost-efficient design of low latency communication

infrastructures; 2) the cost-efficient design of dynamic resource management for

low latency applications; and 3) the cost-efficient design of fault-tolerant resource

management.

In Chapter 3, three network planning algorithms for cost-efficient low latency

networks have been presented, whereby the resulting communication infrastructures

achieve significant deployment cost reduction while always providing the required

low latency (e.g., 20ms). In particular, a smart grid scenario was studied whereby

existing low bandwidth networks need to be upgraded with high-bandwidth network

links (e.g., optical fiber). The problem was formulated as an integer programming
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problem that minimizes the deployment cost for added high-bandwidth links. To

solve it, the proposed algorithms take into account the characteristics of low latency

applications together with topological characteristics to identify network locations

where network capacities are insufficient. By doing so, the optimal network loca-

tions to install high-bandwidth links can be determined. In particular, the resulting

infrastructure of one algorithm based on network calculus has guaranteed worst-

case end-to-end latencies for deterministic workloads. The solution achieves 80%

of deployment cost reduction compared to conventional approaches under a large

set of real power grid topologies.

In Chapter 4, the cost-efficient design of dynamic resource management for

low latency applications was investigated. Specifically, a fully NFV-enabled net-

work was adopted to support MECs whereby end services can be instantiated at any

network locations. The proposed dynamic resource management approach consists

of a fast heuristic-based incremental allocation algorithm and an approximation-

based reoptimization algorithm. The two algorithms jointly optimize end-to-end

routing and computing resource allocation at end services, aimed at always exploit-

ing the minimum amount of resources to achieve the required low latency. It was

shown that the proposed approach achieves 33% operational cost reduction com-

pared to current practices. Further, the in-depth impact factor analysis shows that

the approximation algorithm achieves cost efficiency within 20% of the lower bound

of the optimal solution, regardless of network size, services’ latency requirements

and MEC server capacities. Meanwhile, it was mathematically proved that given

user demands, the proposed approximation algorithm results in no more than ln(N)

times of optimal operational cost in polynomial time, where N is the largest number

of APs that are located within the latency constraint of the hosted application.

In Chapter 5, the cost-efficient design of fault-tolerant resource management

was investigated, which considers the resource allocation of both active and back-up

resources. In particular, the different stateful VNFs in a service function chaining

are considered in this problem, whereby VNF states need to be transferred to the

back-up VNFs upon failures. A fast heuristic was proposed, which jointly computes
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the placement of active and stand-by instances of stateful VNFs, the state transfer

paths and the user request routings. For a special case of the problem without net-

work bandwidth constraint, a bicriteria approximation algorithm with performance

guarantees was designed. The evaluation results suggest that the proposed algo-

rithms significantly improve the request admission rate while reducing DCs’ oper-

ational cost.

In summary, the contribution of this thesis is the development of a novel cost-

efficient resource allocation framework for the deployment of low-cost low latency

communications. Specifically, the proposed framework solved the low latency

communication problem from three different perspectives, addressing 1) the cost-

efficient design of low latency communication infrastructures; 2) the cost-efficient

design of dynamic resource management for low latency applications; and 3) the

cost-efficient design of fault-tolerant resource management.

6.2 Future Research Directions

Robust and stochastic resource management: The current dynamic resource

management approach presented in Chapter 4 minimizes the operational cost of the

entire network at every time slot under the assumption that there is no state transfer

cost. However, this is valid only for stateless low latency applications. To comple-

ment the study of dynamic resource management with stateful applications, we aim

to further investigate stochastic resource management for stateful low latency appli-

cations. For such scenarios, changing the user-to-VM assignment incurs migration

costs. Therefore, minimizing operational cost at each time slot may constantly in-

cur significant migration cost. The idea of stochastic resource management is to

minimize the average operational cost over a time period (rather than optimizing at

each time slot) by taking the probability of having network dynamics such as user

mobility over this period.

Neural network placement: In this thesis, the computing resource allocation for

AR applications was studied in Chapter 4. However, this type of applications (e.g.,

face recognition and voice recognition) require a pre-trained neural network to iden-
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tify objects, which will be placed in MECs. Then, users offload their computation

tasks to MECs to exploit the corresponding neural network for identification. As

a matter of fact, the trained models would consume a significant amount of data

storage space, and pose challenges in storing them in edge systems. In general, the

more accurate the neural network is, the larger space the trained model would con-

sume. However, low latency networks such as edge networks cannot accommodate

such neural networks in each MEC due to capacity limitations. As such, different

neural networks with different accuracy and size will need to be intelligently placed

into MECs. This necessitates research in both neural network training methods and

placement algorithms.

Low latency big data analysis: This thesis has focused on achieving low latency

communications and low latency service processing. However, the low latency data

analysis has not been studied. In smart city applications, critical infrastructures

need to have real-time monitoring to guarantee its operation, which requires fast

data analysis to predict potential failures. Failing to perform data analysis in time

could significantly affect the prediction outcome and the reliability of the infras-

tructures. To this end, the big data (monitoring data) placement for low latency data

analysis needs to be studied in the future. In particular, we will study the adaptation

of Hadoop (MapReduce) in a resource-constrained edge computing system. This

consists in optimally selecting Map and Reduce nodes (i.e., where to store data)

among edge nodes, so that the inter-node data transmission time can be reduced to

lower the final data analysis time.
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