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Major histocompatibility complex-I (MHC-I) molecules play a central role in the immune 
response to viruses and cancers. They present peptides on the surface of affected cells, 
for recognition by cytotoxic T cells. Determining which peptides are presented, and in 
what proportion, has profound implications for developing effective, medical treatments. 
However, our ability to predict peptide presentation levels is currently limited. Existing 
prediction algorithms focus primarily on the binding affinity of peptides to MHC-I, and 
do not predict the relative abundance of individual peptides on the surface of anti-
gen-presenting cells in situ which is a critical parameter for determining the strength and 
specificity of the ensuing immune response. Here, we develop and experimentally verify 
a mechanistic model for predicting cell-surface presentation of competing peptides. 
Our approach explicitly models key steps in the processing of intracellular peptides, 
incorporating both peptide binding affinity and intracellular peptide abundance. We use 
the resulting model to predict how the peptide repertoire is modified by interferon-γ, 
an immune modulator well known to enhance expression of antigen processing and 
presentation proteins.

Keywords: antigen presentation, major histocompatibility class i, mechanistic model, interferon-γ, peptide 
competition, abundance

inTrODUcTiOn

Cellular immunity has a major role in resistance to infection and cancer. CD8 T cells play an important 
part, by recognizing protein fragments (peptides) that are generated within an infected or cancerous 
cell and presented on the cell surface by class I major histocompatibility complex (MHC-I) molecules. 
The recognition of a specific peptide bound to MHC-I, called a peptide–MHC complex (pMHC), 
is achieved by the T cell receptor (TCR). The abundance of infection- or cancer-specific pMHC 
complexes on the cell surface is a key factor in the development of an efficient T cell response, where 
high abundance has been associated with an immunodominance phenomenon in which immune 
responses focus on only a few of the many potential peptides (1, 2). Other factors influencing the 
efficiency of the T cell response include the frequency of T cell precursors of a certain specificity (3), 
and the affinity of the TCR to its multiple target pMHC complexes. In viral infections, additional 
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factors such as the temporal appearance of peptides that trigger 
an immune response (epitopes) also have a major impact (4).

Development of efficient vaccines or immunotherapies relies 
on the identification of peptides that can be presented in high 
abundance on the cell surface. In the field of cancer immunother-
apy, recent development of high-throughput gene sequencing 
has generated catalogs of mutations found in individual tumors 
(mutanomes) and has led to the identification of large numbers 
of novel peptides, generated as a result of a mutation and only 
present in some tumor cells (neo-epitopes), that can potentially 
be targeted for vaccine development or immunotherapy (5, 6). 
T cell immunotherapy has gained widespread interest following 
successful treatments in the clinic [reviewed in Pardoll (7, 8)], 
and could be further enhanced with anti-cancer vaccines that 
elicit strong CD8 T  cell responses to tumor-specific peptides. 
Success of those strategies will rely on the choice of the most 
appropriate peptides, and good predictive methods could nar-
row down the number of candidate peptides to a realistically 
testable number.

The abundance of a given pMHC complex on the cell surface 
is determined partly by the affinity of the peptide to the MHC-I 
molecule, and is further controlled by the antigen processing and 
presentation machinery. Peptides binding to MHC-I molecules 
are produced by proteasomal degradation of newly synthesized 
defective ribosomal products, short-lived proteins, or of fully 
mature proteins naturally degrading over time (retirees) (9–12). 
Peptides enter the endoplasmic reticulum (ER) via the trans-
porter associated with antigen processing (TAP) and compete 
for binding to an MHC-I molecule within the peptide loading 
complex, comprising TAP and the chaperone molecules, such as 
tapasin, calreticulin, and ERp57 [reviewed in Van Hateren et al. 
(13)]. The absence of each of these chaperones affects the overall 
cell surface abundance of peptide, but the absence of tapasin has 
the additional effect of modifying the relative proportions of 
these peptides (14–16) and consequently the CD8 T cell immu-
nodominance hierarchy (17, 18).

The affinity of a peptide for a specific MHC-I molecule can  
be directly measured experimentally, which has aided the devel-
opment of algorithms predicting the affinity of any peptide for 
specific MHC-I alleles based on the sequence of the peptide 
[BIMAS (19, 20), NetMHC (21)]. These algorithms have been 
improved over time and can also include proteasomal cleav-
age and TAP transport predictions [IEDB (22)]. However, the 
identification of cell surface peptide repertoires, made possible 
by the development of high-throughput mass spectrometry 
technology (23, 24) showed in several cases that predicted 
peptide affinity to MHC-I has poor correlation with cell surface 
abundance [(25) Supplementary Figure]. We propose, there-
fore, that improving the prediction of cell surface abundance of 
pMHC complexes requires peptide sequence-based algorithms 
to be combined with known mechanisms of the antigen process-
ing and presentation pathway (26). These mechanisms include 
the phenomenon of cofactor-assisted loading of peptides onto 
MHC-I by tapasin, the rate of generation of peptides and their 
intracellular abundance. These may be linked to the abundance of 
the source proteins (25, 27) and their degradation rates (27, 28), 
as well as to the rate of translation of the source proteins (29).  

Poor correlations between cell surface abundance of pMHC 
and each of these factors individually have been observed 
[source protein abundance (25, 30) and peptide affinity (25)]. We 
hypothesize that these factors need to be appropriately incor-
porated within a mechanistic model in order to obtain good  
predictions.

We have previously developed mathematical models that 
simulate cell surface abundance of multiple peptides bound to 
MHC-I, at steady-state on the surface of living cells, and incor-
porate variations in peptide supply and peptide affinity to MHC-I 
(31, 32). In this context, a high affinity peptide is defined as having 
a low off-rate, unbinding slowly from MHC-I. The models were 
used to interpret how tapasin could preferentially select peptides 
that form stable complexes with MHC-I molecules, and further 
suggest how MHC haplotypes differ in the extent of their tapasin-
mediated selection, some haplotypes have the intrinsic ability to 
select and assemble with optimal peptides independent of tapasin 
whereas others are dependent on tapasin to be stably loaded. A 
key quantitative prediction of the models was that equilibrium 
cell surface abundance of a given peptide (Pi) bound to MHC 
at the cell surface (Me) can be approximated by the following 
filtering relation:

 
MeP

g
ui

i

i

 ≈ α
 

(1)

where gi is the supply of the peptide via TAP and ui is the rate 
of dissociation of the peptide from MHC-I. We found that the 
exponent α is increased by tapasin, leading to greater filtering of 
peptides based on their off-rate from MHC. The model has also 
been used to simulate the competition of peptides for cell surface 
presentation (32). However, predictions for the direct competi-
tion between peptides of known supply and affinity to MHC have 
so far not been tested in vivo.

In this study, we develop a method for predicting the direct 
competition of peptides for presentation by MHC-I. We experi-
mentally measure the influence of varying peptide supply on the 
selection of two competing peptides of different off-rates, and 
calibrate the peptide filtering relation (Eq. 1) with these data. We 
also generate model predictions for how competition for surface 
presentation varies when the competitor peptide off-rate is varied. 
In doing so, we demonstrate, for the first time, that the filtering 
relation holds for individual peptides in direct competition with 
one another and show that the same level of competition can be 
achieved by a high concentration of a low affinity peptide or a 
low concentration of a high affinity peptide. We apply this model-
based approach to derive a more quantitative understanding of 
the changes in cell surface abundance of two competing peptides 
as the antigen-presenting cell is exposed to interferon-γ (IFNγ), 
a cytokine which has a profound effect on the antigen processing 
and presentation pathways in infections, autoimmune diseases 
(33), and cancer.

MaTerials anD MeThODs

cells
The B6 fibroblasts cell line was produced from primary ear 
fibroblasts cells harvested from C57Bl/6 wild-type mice and 
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Table 1 | Peptide sequences and off-rates.

Peptide biMas 
score

netMhc  
4.0 (nM)

t1/2 (min) Off-rates (s-1) e10 
score

ASNEaMETM 3.4 2208.8 43 2.7 × 10−4 8.2
ASNENMETa 17 94.6 52 2.2 × 10−4 14.2
ASNENMETV 17 13.2 132 8.8 × 10−5 16.8
ASNENMETl 343 9.6 191 6.1 × 10−5 11.8
ASNENMETi 343 6.6 212 5.4 × 10−5 13.1
ASNENMETM 343 7.3 223 5.2 × 10−5 11.5
ASNENlETM 411 10 238 4.9 × 10−5 4.1
SSLENFRAYV 0.5 23.4 408 2.8 × 10−5 3.8
ASiENMETM 1029 3 456 2.5 × 10−5 8.9
ASiENlETM 1235 3.6 502 2.3 × 10−5 1.8

BIMAS score was determined using BIMAS (http://www-bimas.cit.nih.gov/molbio/
hla_bind/) for 9mers binding to H-2Db. Equivalently, analysis was conducted using 
NetMHC 4.0, which returns the predicted IC50 of H-2Db binding (nM). Peptide half-
lives (t1/2) were determined experimentally by BFA decay assays and converted into 
off-rates as log(2)/half-life (s). E10 score: E10 Fab binding affinity for all ASN–H2Db 
complexes was determined by flow cytometry surface staining of RMA-S cells pulsed 
with peptides (Figure S7 in Supplementary Material). The E10 score represents the 
MFI/1000.
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immortalized by transfection with pSV3-neo plasmid (ATCC) 
encoding the SV40 T-Ag. RMA-S, TAP2-deficient mouse 
T  cell line, and the above fibroblasts were cultured in RPMI 
1640 (Lonza, Verviers, Belgium) supplemented with 10% FCS 
(Globepharm, Guildford, UK), 2  mM glutamine (Lonza), and 
50 μM β-mercaptoethanol.

Fab antibodies
Plasmids expressing Fab antibodies specific for ASNENMETM-
H2Db (E10) and SSLENFRAYV-H2Db (1C3) were a kind gift 
from J. Bennink (34). Rosetta2 (DE3) pLacI competent bacteria 
(Novagen) were transformed, grown to OD600  =  1–1.2 and 
then induced by the addition of 1 mM isopropyl b-d-thioga-
lactoside (IPTG) for 3 hr at 30°C. Proteins were extracted with 
BugBuster reagent (Novagen) and applied to a HisTrap Excel 
column (GE Healthcare, Uppsala, Sweden). Bound Fabs were 
eluted with 250 mM imidazole and then further purified by gel 
filtration on a 26/600 Superdex GF column (GE Healthcare). 
Purified peak fractions were concentrated using Amicon Ultra-
15 10 kDa cut-off centrifugal concentrator (Merck/Millipore, 
Cork, Ireland).

generation of 1c3 chimeric  
Monoclonal antibody
To allow for a more efficient production of the 1C3 reagent we gener-
ated a chimeric monoclonal antibody using the Invivogen pFUSE 
system allowing expression in mammalian cells. VL and VH were 
amplified from the original plasmid (34) using primers VL_for 
(GTCTTGCACTTGTCACGAATTCACTTGATGTTGTGAT 
GACTCAG) and VL_rev (GCATCTGCCCGTTTGATCTCGAG 
TTTGATCTCCACCTTGGTCC), and VH_for (CTTGCACTT 
GTCACGAATTCGGTGGAGTCTGGGGCTGAGG) and VH_
rev (GGTGTCGTTTTAGCGCTGCTAGCGCTTGAGACGGTG 
ACCAGG) respectively. VL and VH sequences were inserted 
respectively into pFUSE2ss-CLIg-mk and pFUSEss-CHIg-mG1 
(Invivogen, Toulouse, France) using the SLIC cloning method 
to produce a chimeric monoclonal antibody containing a mouse 
IgG1 Fc fragment. Both plasmids were co-transfected into 293F 
cells and supernatant was harvested 1  week after transfection, 
clarified by centrifugation, and filtered through a 0.22 µm filter 
before use.

Peptides
Peptides (listed in Table 1) (GL Biochem, Shanghai, China) were 
synthesized by fluorenylmethoxycarbonyl chemistry and were 
>95% pure by HPLC and mass spectrometry.

Peptide-expressing Plasmids
pSC11 plasmids containing Venus/mCherry-ubiquitin-peptide  
cassettes were obtained from J. Bennink. These plasmids were  
used in Ref. (35) to generate recombinant vaccinia viruses 
expres sing the following peptides: SSLENFRAYV, PA224–233 and  
ASNENMETM, NP366–374. To be able to use those constructs 
in transient transfection assays the cassettes were recloned  
into pEGFP-Ub-SIINFEKL (36) (obtained from J. Neefjes). Venus/ 
mCherry-Ub-peptide cassettes were amplified from the pSC11  

plasmids by PCR using primers CGCTAGCGCTACCGGTCGC 
CACCATGGTGAGCAAGGGCGAG and CGCTCACAGAAT 
TCCCAGCG containing a Nhe1 and EcoR1 restriction sites 
respectively (underlined). The PCR product was amplified using 
GoTaq Flexi DNA Polymerase (Promega) to enable ligation into 
the pGEM-T vector system (Promega). pGEM-T-cassette plas-
mid sequences were checked by sequencing using SP6 and T7 
promoter primers. pGEM-T-cassette and pEGFP-Ub-SIINFEKL 
plasmids were then cut with Nhe1 and EcoR1 and the EGFP-
Ub-SIINFEKL cassette was replaced with the Venus/mCherry-
Ub-peptide cassette using the Roche Rapid Ligation Kit (Roche). 
Resulting plasmids were checked by sequencing using the above 
primers.

generation of asnenMeTM Variant 
Plasmids
The pVenus-Ub-ASNENMETM construct was used as a template 
to generate a series of variants by site-directed mutagenesis using 
the QuickChange II Site-Directed Mutagenesis Kit following the 
manufacturer’s protocol using the Pfu Ultra enzyme (Agilent). 
The list of the variants can be found in Table 1.

brefeldin a Decay assay
Dissociation of pMHC complexes at the cell surface was assessed 
by BFA decay assay as described previously (17). RMA-S cells were 
incubated overnight at 26°C to maximize MHC-I surface expres-
sion. After being washed, 5 × 105 cells per well of a 96-U-bottom 
plate were pulsed, at different time intervals, with peptides (final 
concentration of 20  μM) for 1  h at 26°C. After washing with 
medium, de novo transport of MHC-I to the cell surface was 
blocked by the addition of BFA, and peptide-loaded RMA-S cells 
were incubated at 37°C to allow decay of unstable molecules. 
Cells were washed in FACS buffer and stained with B22 primary 
monoclonal Abs (conformation sensitive anti-H-2Db MAb) and 
goat anti-mouse IgG-PE secondary Abs (Abcam, Cambridge, 
UK) to detect peptide-loaded MHC-I molecules. Samples were 
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analyzed by flow cytometry on a Fortessa X20 flow cytometer 
(BD, Oxford, UK), and data were analyzed with the Diva soft-
ware. MFI values were background deducted by subtracting the 
MFI value obtained in the DMSO control at the last time point. 
Half-lives and off-rate constants were then determined by fitting 
the curves using an exponential trend line in the Excel software 
(Microsoft, USA).

pMhc competition assay
Fibroblasts were seeded at 2 × 105 cells per 6 cm diameter Petri 
dish. When IFNγ treatment was applied, 1  µg of mouse IFNγ 
(Peprotech, Rocky Hill, USA) was added per Petri dish 4  h 
after seeding. Cells were transfected the following day with 
TransIT-LT1 (Mirus, Madison, USA) following the manufac-
turer’s recommendations using 2.5 µg of each Venus-Ub-peptide 
and mCherry-Ub-peptide constructs. 1  day after transfection 
cells were stained for 45 min on ice with primary reagents, 1C3 
hybrid Mab neat supernatant, E10 purified Fab, B22, or Y3 puri-
fied Mabs to detect surface pMHC complexes. After washing, 
cells were incubated for 45  min with AF647-conjugated goat 
anti-human IgG (used after Fab primary) or goat anti-mouse 
(after mouse antibodies including 1C3) (Invitrogen/Molecular 
Probes, Eugene, USA). Flow cytometry was performed using a 
Fortessa X20 cytometer (BD) and the data were analyzed using 
FACS Diva software (BD).

mcherry calibration
mCherry flow cytometry calibration beads (Clontech/Takara, 
USA) were used, as recommended by the manufacturer, to 
calibrate the amount of mCherry molecules, equivalent to the 
number of peptide molecules expressed in the transfected cells. 
Beads were run through the flow cytometer using the same setup 
as for acquiring cells.

Quantitation of pMhc surface expression 
by indirect immunofluorescence assay 
Using Qifikit calibrator beads
The number of SSLENFRAYV-H2Db complexes presented on  
the cell surface was estimated using Qifikit beads (Dako, 
Glostrup, Denmark). Beads were treated as recommended by 
the manufacturer but stained with AF647-conjugated goat anti-
mouse IgG (Invitrogen) at the same dilution as used to detect 
the 1C3 Mab on transfected cells. A calibration curve was drawn 
by plotting the MFI of the 5 peaks (x-axis) versus the lot-specific 
numbers of antibody molecules per bead (y-axis). The curve 
was then used to calculate the number of SSLENFRAYV-H2Db 
complexes presented on the cell surface expressed in antibody-
binding capacity units (number of primary mouse monoclonal 
antibodies per cell).

calibrating the Peptide Filtering Model  
to Flow cytometry Data
The peptide filtering model established in Ref. (32) was adapted 
to analyze measurements of peptide competition. The peptide 
filtering model is described by a system of biochemical interac-
tions, as follows:

•
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where i denotes the peptide (e.g., SSLENFRAYV, ASNENMETM, 
or self) and ∅ denotes no molecule. All parameters in the peptide 
filtering model were taken to be identical to those in the original 
publication (32), except for the on-rate for ASNENMETM, bASN, 
which was allowed to differ from the nominal binding rate that 
was used for SSLENFRAYV. Also, a new variable γ was used 
to approximately quantify the increase in MHC-I and tapasin 
supply in IFNγ-treated cells. The peptide supply rates were 
defined using fluorescence measurements corresponding to 
intracellular peptide abundance (Fi), which were multiplied by 
scale factors fi:

 g f Fi i i= ×  

To relate the output of the model to fluorescence measure-
ments corresponding to cell surface presentation (Hi), model 
outputs were scaled by peptide-specific scale factors hi, to give 
estimates

 H h MePi i i
 =  ×  

All new parameters were inferred by fitting the simulated 
fluorescence measurements Hi  to the experimental fluorescence 
measurements.

We used the Visual GEC software1 to perform param-
eter inference, which uses the domain-specific Language for 
Biochemical Systems (LBS) for specifying the reaction system, 
and an adaptive Metropolis–Hastings Markov chain Monte 
Carlo (MH-MCMC) algorithm from the Filzbach software.2 

1 http://research.microsoft.com/gec.
2 https://github.com/predictionmachines/Filzbach.
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The inference of parameters in LBS models using MH-MCMC 
is described in the Supplementary Information of Ref. (37), 
but we provide a short summary here. MH-MCMC enables 
the calculation of the posterior distribution of the parameter 
values θ, given observation data D, and some prior belief of the 
parameter values. We write the posterior distribution as π (θ|D). 
The MH-MCMC algorithm uses an iterative stochastic search 
technique in which parameter sets are sampled in such a way 
that a Markov chain is formed, with the history of the chain 
converging to π (θ|D). At each iteration, the current parameter 
set θ is perturbed to generate a new proposed set θ*. The new 
parameter set is accepted or rejected based on the ratio of a like-
lihood function L(θ) evaluated at each parameter set, such that 
improvements are always accepted, but lower likelihoods are 
accepted with some probability. In this way, the chain converges 
toward and does random walks in regions of high probability 
mass, avoiding wasting time (computational effort) in regions 
of lower probability mass. For more details on MCMC algo-
rithms, we recommend (38) in addition to the Filzbach software 
documentation.

Internally to Visual GEC, the LBS model is simulated as 
deterministic rate equations, and the simulation output is then 
related to the experimental data using the log-likelihood function

 
log log ( | ), ,L P y y N x

k

N

k k k

d

θ θ σ( ) = ∼ ( )
=
∑

1

2

 

where the xk are the model simulations, Nd is the number of 
measurements, and σ is the SD of the measurement error, which 
is inferred along with the calibration parameters. As Visual GEC 
expects time-series measurements, the experimental data were 
specified at a time of 48 h, to enable the peptide filtering model 
to reach its equilibrium (LBS code is available from the authors 
upon request). During application of the MH-MCMC algorithm, 
the calibration parameters are varied, and there is convergence 
toward values that yield simulation values that are closer to the 
measured data, thus approximately maximizing the likelihood 
function.

resUlTs

surface Presentation of a Target Peptide 
Decreases With increasing amounts of 
competitor
To establish how variation in the intracellular abundance 
of competing peptides influences cell surface presentation, 
we developed an assay in which intracellular peptide sup-
ply and pMHC cell surface abundance could be measured 
simultaneously (Figure  1A), assay adapted from Ref. (35). 
Furthermore, this method measures the abundance of pep-
tides actually presented at the surface of living cells and not, 
as for quantitative high-throughput methods, the abundance 
of peptides remaining bound to MHC after biochemical 
purification of pMHC I complexes from cell lysates. Two fluo-
rescent fusion proteins, Venus-ubiquitin-ASNENMETM  
(faster off-rate, see Table  1) and mCherry-ubiquitin-SSLEN-
FRAYV (slower off-rate) are co-expressed in fibroblasts. Once 

expressed in the cytoplasm, the fusion proteins are cleaved by 
endogenous cytoplasmic ubiquitin hydrolases, releasing the 
peptides at an equimolecular ratio to their respective fluores-
cent reporter protein (Figure 1A) that can be quantified by flow 
cytometry (36) (Figure S1 in Supplementary Material). Using 
this system, the generation of peptides bypasses the proteasome. 
After translocation into the ER, peptides compete for loading 
onto MHC-I molecules and are transported to the cell surface 
where they can be quantified by flow cytometry (Figure  1A). 
Both fusion proteins were naturally expressed at a broad range of 
concentrations after transient transfection, allowing in a single 
experiment to compare peptide surface presentation in cells 
expressing low to high levels of both fusion proteins (Figure 1B). 
To analyze competition between both peptides, cells were parti-
tioned into different gates according to their expression level of 
mCherry, reporter for the level of expression of SSLENFRAYV, 
and Venus, reporter for the level of ASNENMETM (Figure 1B). 
Competition was then assessed by plotting surface expression 
of SSLENFRAYV-H2Db as a function of increasing cytoplasmic 
expression of the SSLENFRAYV target peptide for increasing 
levels of competing peptide (Venus levels 1–7 in Figure  1B). 
Figure 1C (top panel) shows that surface expression of the slower 
off-rate SSLENFRAYV (2.8 × 10−5 s−1) decreased as expression of 
the faster off-rate ASNENMETM (5.2 × 10−-5 s−1) increased from 
P(.,1) to P(.,6). Simultaneously, ASNENMETM (Figure 1D, top 
panel) became more abundant on the cell surface.

To determine the order of magnitude of the inferred param-
eters for our previously published model (32) we quantified the 
supply of the target peptide (gSSL). We considered that the number 
of SSLENFRAYV target peptides expressed in the cytoplasm was 
proportional to the number of mCherry molecules, using the 
simplifying assumptions that all of the fusion proteins are cleaved 
and that the degradation rate of the fluorescent protein equals 
the degradation rate of the peptide. This number was determined 
using mCherry calibration beads (Figure S1 in Supplementary 
Material) and indicated that transfected cells expressed up to 
108 copies of SSLENFRAYV per cell and that surface expression 
could be detected when cytoplasmic expression approached 106 
copies per cell (Figure S1E in Supplementary Material). Venus 
expression could not be calibrated in the same way due to the lack 
of available reagents.

Quantification of the number of Target 
pMhc complexes on the cell surface
The number of SSLENFRAYV pMHC presented on the cell 
surface (MePSSL) was then quantified using Qifikit calibration 
beads, coated with well-defined quantities of monoclonal anti-
bodies mimicking cells with different antigen densities bound to 
a primary antibody (Figure S1 in Supplementary Material). In 
untreated cells, up to 80,000 pMHC complexes were presented 
on the cell surface in the absence of ASNENMETM competition, 
and that number was reduced to 10,000 or less in the presence 
of the highest level of competitor (Figure S1E in Supplementary 
Material). These values are consistent with the level of expres-
sion of abundant peptides measured previously. For example, 
between 70,000 and 80,000 SIINFEKL–H2Kb complexes 
were observed on L-Kb cells infected with VV-SIINFEKL 
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FigUre 1 | Simultaneous measurement of intracellular peptide abundance and cell surface peptide–MHC complex (pMHC). (a) Experimental setup. Fibroblasts 
were co-transfected with constructs expressing fusion proteins made of a fluorescent protein, ubiquitin, and a peptide. Cytoplasmic ubiquitin hydrolases cleave the 
fusion proteins, releasing an equimolar ratio of peptide and fluorescent protein. Peptides are transported to the endoplasmic reticulum where they can compete for 
loading onto MHC-I molecules. Then they migrate to the cell surface where ASNENMETM-H2Db complexes can be detected using E10 Fab and SSLENFRAYV-
H2Db using the 1C3 chimeric Mab followed by a secondary antibody conjugated to AF647. (b) In a single transfection assay, cells were expressing low to high 
levels of both fusion proteins and were separated in different gates for the purpose of the analysis. (c) Level of SSLENFRAYV-H2Db surface expression in the 
presence of increasing amount of competitor. The dark blue curve shows the maximum surface expression as the cytoplasmic level of SSLENFRAYV peptide, 
represented on the x-axis, increases. The other curves represent the SSLENFRAYV-H2Db surface expression in the presence of different levels of ASNENMETM 
competitor [top dark blue curve corresponds to gates P(1, 1) to P(8, 1) with no competitor, down to the light blue bottom curve corresponding to gates P(1, 8) to 
P(8, 8) with the maximum level of competitor] in untreated wild-type cells (top panel) or in IFNγ-treated cells (bottom panel). (D) Corresponding ASNENMETM-H2Db 
surface expression.
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recombinants using the same Qifikit assay (39); around 45,000 
copies of a human peptide (AETPDIKLF) derived from the 
RS5 protein were eluted from B44:02 complexes on B lympho-
blastoid cell lines (25); some 32,000 copies of the A47138–146 
vaccinia peptide were eluted from DC2.4 cells infected with 
vaccinia WR (4) and ca 24,000 copies of the most abundant 
peptide were eluted from B-LCL-JY pp65 cells (40). Thus our  
assay and model are consistent with physiological values.

surface Presentation of Two competing 
Peptides is enhanced in the Presence  
of iFnγ
IFNγ is known to increase expression of MHC-I, together with 
chaperones involved in antigen processing and presentation, 
and plays an important role in inflammatory immune responses 
to viruses and cancer. However, it is not known whether IFNγ 
enhances presentation of all peptides or focuses the immune 
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response on a selected few. To model the effect of IFNγ on 
peptide presentation, we generated an equivalent dataset for the 
simultaneous presentation of SSLENFRAYV and ASNENMETM 
on cells treated with IFNγ for 48 h. Surface expression of total 
H-2Db and H-2Kb (Figure S2 in Supplementary Material) as well 
as both SSLENFRAYV and ASNENMETM complexes increased 
around fourfold (Figures 1C,D), in agreement with the increase 
in the number of MHC-I molecules available for binding a 
peptide. The presentation of SSLENFRAYV was less inhibited by 
ASNENMETM even at high expression levels (Figure 1C bottom 
panel), such that less competition was observed. For example, 
when mCherry-SSLENFRAYV was expressed at around 104 
MFI units, yielding a cell surface abundance of around 4 × 104 
complexes in the absence of competitor, around ten times more 
ASNENMETM expression was required to inhibit its presentation 
by 50% in the presence of IFNγ compared to non-IFNγ-treated 
cells (where 25  ×  104 copies were expressed at the cell surface 
in the absence of competition) (Figures S1E,F in Supplementary 
Material).

a calibrated Mechanistic Model explains 
experimental Observations of Peptide 
competition
Our previously published model (32) describes the endogenous 
antigen presentation pathway from the point where peptides are 
supplied to the ER, through presentation at the cell surface. The 
model also explicitly describes the interaction between MHC and 
tapasin, incorporating the binding of peptides to MHC–tapasin 
complexes, that influences peptide loading.

To test the extent to which peptide competition could be pre-
dicted based on both peptide affinity and intracellular abundance, 
we adapted the peptide filtering model of Ref. (32). To relate the 
model directly to the fluorescence measurements corresponding 
to intracellular peptide abundance and cell surface abundance in 
Figure  1, we transformed the experimental data from units of 
fluorescence into units of molecule numbers using calibration 
parameters (Figure  2A). For peptide supply, we specified the 
parameters of the model to be proportional to the intracellular 
abundance measurements, with proportionality factors fSSL and 
fASN (see Materials and Methods). These factors incorporate the 
conversion from fluorescence units into numbers of peptides, but 
also implicitly account for any differences in TAP translocation. 
To compare the model output with the cell surface fluorescence 
measurements, a similar strategy was used, whereby two scale 
factors converted from numbers of cell surface pMHC into 
equivalent measured fluorescence (hSSL and hASN; see Materials 
and Methods). In addition to the target and competitor peptides, 
we also included a third peptide in the model to represent the 
presence of self-peptides in the system (Figure 2A), with a pMHC 
unbinding rate uself, and ER supply rate gself.

We experimentally measured the stability of pMHC complexes 
by following their decay from the cell surface over time (“BFA 
decay assay” in Figure  2A), and used these measurements to 
calculate the corresponding unbinding rates of the peptides from 
MHC (Table 1; Figure S3 in Supplementary Material). Finally, to 
incorporate the effect of IFNγ into the model, we specified a new 

parameter (γ) that quantifies the increased supply of MHC and 
tapasin following IFNγ treatment.

To establish estimates for the parameters, we used MCMC 
parameter inference (see Materials and Methods for further details) 
applied to two experimental datasets measuring intracellular and 
cell surface abundance of a target peptide SSLENFRAYV and 
competitor peptide ASNENMETM. Two repeated peptide com-
petition experiments between SSLENFRAYV and ASNENMETM 
were used to infer the model calibration parameters. This enabled 
us to account for inter-experiment variations in the measurement 
of SSLENFRAYV-H2Db at the cell surface using the 1C3 mono-
clonal antibody. Accordingly, hSSL and γ were allowed to take on 
different values between the two experiments, whereas the other 
parameters were assumed to be invariant. To obtain a good fit to 
the data, and establish robust estimates of all parameters, we made 
two additional changes to the setup described thus far: (i) a better 
fit to the data could be obtained when allowing the peptide on-rate 
for ASNENMETM to take on a different value from SSLENFRAYV 
and (ii) we found that both uself and gself could not be identified 
uniquely, so we assumed a value of uself = 10−4 s−1, representing a 
peptide of average affinity for MHC-I, and inferred gself.

The results of the MCMC procedure illustrate only moderate 
uncertainty in the parameter estimates (Figure S4 in Supple-
mentary Material), and also low pairwise correlation (Figure 
S5 in Supplementary Material). This suggests that the param-
eters are well constrained by the data. When parameters are not 
well constrained by data, there can be flexibility in assigning 
parameter values, for instance changes in one parameter can be 
compensated for by changes in another parameter. When this 
happens, the likelihood function (which quantifies the goodness 
of fit to the data) will be equally high over a structured region 
in the parameter space, leading to strong correlation and broad 
marginal posterior distributions. As such, plots of the pairwise 
correlations and marginal posterior distributions are commonly 
used as a diagnostic in Bayesian parameter fitting.

Simulation of the resulting maximum likelihood parameter set 
displayed a reduced presentation of each peptide in response to 
increasing abundance of the other (Figures 2B,C; Figure S6 in 
Supplementary Material), as observed experimentally. Further-
more, our hypothesized increase in MHC-I and tapasin supply 
in IFNγ-treated cells led to increased simulated presentation 
of both peptides, and a reduction in the effect of competition 
(Figures 2D,E), as observed experimentally.

The Model Predicts the effects of Different 
competitors on the surface Presentation 
of a Target Peptide
The purpose of the calibrated model is to predict surface 
presentation of a target peptide in the presence of competitors 
of different off-rates. In order to test predictions made by the 
model, surface expression of SSLENFRAYV was measured 
experimentally in the presence of competitor peptides of dif-
ferent off-rates. Using peptide binding prediction tools (BIMAS 
and NetMHC 4.0), we selected ASNENMETM variant peptides 
which should have a range of affinities either lower or higher than 
the original peptide (Table 1). Off-rates were then determined 
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FigUre 2 | Calibration of a mechanistic model of peptide competition. (a) Diagrammatic representation of the process of model calibration. The cytoplasmic 
concentration of each peptide and their MHC unbinding rate were used as inputs to the model, which was then fit to fluorescence data of the pMHC complex 
surface abundance. Square colored boxes indicate measured or simulation data, gray boxes indicate models, and rounded boxes represent inference algorithms. 
The red and blue line connectors represent peptide-specific information, and the dashed blue lines indicate that inferred parameters are eventually substituted back 
into the models for simulation/prediction. (b–e) Comparison of the model (solid lines) evaluated at the maximum likelihood parameter values against experimental 
measurements (circles) for a single experiment measuring SSLENFRAYV/ASNENMETM competition. The different colors represent different cytoplasmic levels of 
ASNENMETM, as shown in Figure 1. The normalized root mean square error (NRMSE) between the data and the simulation is also indicated for each comparison. 
An equivalent comparison for a second experiment that was also included in the parameter calibration is shown in Figure S6 in Supplementary Material.
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experimentally in brefeldin A decay assays and comparison to 
the predicted values showed that in this case BIMAS performed 
better than NetMHC (Table  1). The corresponding plasmids 
encoding each Venus-Ub-variant were generated and used in 
competition assays. Surface expression of ASNENMETM and 
its variants was determined in parallel by staining with E10 
Fab (Figures  3C,D). This was only possible for variants of 

ASNENMETM that were recognized well by E10 (Figure S7 in 
Supplementary Material; Table 1) and precluded variants with 
leucine at position 6.

Figure  3 shows the experimentally determined sur-
face presentation of SSLENFRAYV and four measurable 
ASNENMETM variants in the presence (Figures  3B,D) and 
absence (Figures  3A,C) of IFNγ; as well as the presentation 
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FigUre 3 | Cell surface abundance is differentially affected by competitor peptides with varying major histocompatibility complex stability. SSLENFRAYV-H2Db 
surface expression in the presence of ASN-variant peptides of different off-rates in untreated cells (a) and in cells treated with IFNγ (b) and corresponding ASN 
variants-H2Db surface expression in untreated cells (c) or in cells treated with IFNγ (D). pMHC surface expression is plotted over the level of SSLENFRAYV peptide 
cytoplasmic supply, determined by the mCherry MFI, in the presence of increasing concentrations of the ASN variant peptides: the dark blue curve is obtained with no 
ASN variant expression [gates P(n, 1)], the orange curve corresponds to gates P(n, 2), etc. The arrows on the top graphs show a similar competition level achieved 
with a high concentration of a lower affinity peptide (ASNENMETV) or lower concentrations of higher affinity peptides (ASNENMETi and ASiENMETM). (e,F) 
Comparison of the level of competition in the presence of an increasing concentration of each ASN-variant peptide at constant SSL supply [gates P(7, )]. In order to 
normalize MFI between experiments the y-axis represents the percentage of maximum SSLENFRAYV-H2Db surface expression in P(7, 1). The x-axis represents the 
cytoplasmic expression levels of each ASN variant expressed as the Venus MFI. Untreated cells (e) and IFNγ-treated cells (F) were compared.
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of SSLENFRAYV in the presence of increasing intracellular 
expression of all nine Venus-Ub-ASN(variant) constructs in 
the presence (Figure 3F) and absence (Figure 3E) of IFNγ. It 
shows a trend of increased competition with SSLENFRAYV for 
H-2Db binding and presentation as the stability of the variants 
increased, with maximum competition observed in the presence 

of the slowest off-rate peptides ASIENMETM and ASIENLETM 
(off-rates of 2.5 × 10−5 s−1 and 2.3 × 10−5 s−1 respectively; Table 1; 
Figures 3A,E). However, the same level of competition could be 
achieved by a low concentration of a high affinity competitor or 
by a higher concentration of a low affinity competitor, empha-
sizing the importance of both peptide stability and intracellular 
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FigUre 4 | Predicting cell surface presentation between peptide competitors. Using the calibrated model, cell surface presentation was predicted for SSLENFRAVY 
competing against variants of the ASNENMETM peptide, by changing the peptide off-rates to the measured values in Table 1. Shown are predictions and 
measurements for cell surface presentation of SSLENFRAYV, both in untreated (top panels) and IFNγ-treated (bottom panels) cells, when competing against ASN variant 
peptides (a) ASIENLETM, (b) ASIENMETM, (c) ASNENLETM, (D) ASNENMETI and (e) ASNENMETV. Predictions of the cell surface presentation of ASNENMETM 
variants are shown in Figure S8 in Supplementary Material. Different colored traces represent different cytoplasmic levels of the competing ASNENMETM variant, as 
indicated in Figure 1b. The normalized root mean-squared error (NRMSE) between the data and the simulation is also shown for each panel.
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abundance in determining cell surface presentation (Figure 3A, 
black arrow).

In IFNγ-treated cells, in all cases, surface expression of 
SSLENFRAYV was less affected by the competitors than without 
IFNγ (Figures  3B,F) and a higher surface expression of the 
competitors was also observed for the slower off-rate peptides 
(Figure 3D). IFNγ did not, however, enhance surface expression 
of the fast off-rate variants (ASNEAMETM, ASNENMETA, and 
ASNENMETV) which are still unable to reach or remain at the 
cell surface at detectable levels.

We next sought to determine the predictability of peptide 
competition, based on a quantitative knowledge of cytoplasmic 
abundance and off-rate from MHC-I. Using the calibrated pep-
tide filtering model, we predicted the cell surface presentation 
of SSLENFRAYV pMHC when competing against variants of 

the ASNENMETM peptide, by simulating with their measured 
off-rates (Table  1). To control inter-experiment variability, the 
competition experiments were carried out at the same time as 
a SSLENFRAYV-ASNENMETM competition experiment. We 
therefore used the corresponding MHC-I and tapasin supply 
rates inferred for these experiments during model calibration. The 
Venus fluorescence intensity can be used to compare correspond-
ing levels of expression of the different ASNENMETM variants 
as they are all expressed in the cytoplasm at the same ratio of 1 
peptide per molecule of Venus. We assumed that ASNENMETM 
variants bind to TAP with similar affinities and, therefore, that their 
rate of ER entry is similar. As the hierarchy of competition follows 
the hierarchy of peptide stability, this assumption is reasonable. 
The resulting predictions are superimposed on the corresponding 
experimental measurements in Figure 4. The model predictions 
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display the same characteristics as the data: increasing abundance 
of the competing variant of ASNENMETM leads to an increase 
in its own cell surface presentation (Figure S8 in Supplementary 
Material) but a drop in SSLENFRAYV presentation (Figure 4), and 
IFNγ treatment increases presentation of both peptides. However, 
similar to the model output for SSLENFRAYV presentation when 
competing with ASNENMETM in IFNγ-treated cells (Figure 2D), 
only a modest reduction in competition could be seen in predic-
tions of competition against ASNENMETM variants (Figure 4).

cell surface abundance is accurately 
Predicted by a Peptide competition Metric
While the full peptide filtering model is demonstrably capable of 
reproducing and predicting measurements of peptide competition 
across a range of peptides, the complexity of the model does not 
offer a simple quantitative explanation. Therefore, we considered 
whether competition could be explained by the filter relation [(32); 
see above], which approximates equilibrium cell surface presenta-
tion of a peptide in terms of its supply and off-rate from MHC-I. 
To incorporate a contribution from the competitor peptide, we 
investigated a normalization of the filter relation (Eq. 1) as

 
MeP
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ASN cyt ASN self self/
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where SSL denotes the SSLENFRAYV peptide, ASN denotes 
an ASNENMETM variant, and MePratio represents the ratio of 
egressed SSL complexes to other complexes (ASN and self). 
[ ] .P f Fk k kcyt =  denotes the calibrated cytoplasmic abundance of 

peptide k [i.e., k is either SSL or ASN; the scaling factor fk converts 
units of fluorescence Fk into number of molecules (Pk)cyt]. In this 
definition (Eq.  2), the absence of competitor peptides leads to 
surface presentation of SSLENFRAYV being given purely in 
terms of the background self-peptides.

We calculated the peptide competition metric (Eq. 2) for each 
peptide competition experiment and compared the output against 
the corresponding simulations of the peptide filtering model. This 
established the competition metric to be a good approximation of 
the equilibrium behavior of the full model, both in the untreated 
(Figure S9 in Supplementary Material) and IFNγ-treated regimes 
(Figure S10 in Supplementary Material). Variations in the 
abundance of the competitor peptides could be almost entirely 
accounted for by the metric, which can be seen in Figures S9 and 
S10 in Supplementary Material as the different colored traces 
(corresponding to different levels of competitor abundance) 
collapsed onto a consistent relationship between the metric and 
model-predicted cell surface abundance of SSLENFRAYV-H2Db.

We then applied the peptide competition metric directly 
to the experimental observations, without using the model. 
Accordingly, we calculated

 F F u
F u

ratio
SSL SSL

ASN ASN

/
/

≈ −
2

2  (3)

where FSSL and FASN represent measurements of intracellular 
peptide abundance (fluorescence intensity units). Unlike 
for MePratio, the metric does not include a contribution from 

self-peptides, as in general this quantity would not be available. 
We compared Fratio with measurements of cell surface abundance 
of SSLENFRAYV (Figure 5). We found that variations in peptide 
abundance could be predicted with high accuracy for untreated 
cells (−IFNγ; Figure 5), though the variations in the abundance 
of ASNENMETV peptide were only partially accounted for 
(Figure  5C). By contrast, the peptide competition metric was 
less accurate for IFNγ-treated cells (Figure S11 in Supplementary 
Material). This is reflected in the Pearson correlation scores 
(compare Figure 5 with Figure S11 in Supplementary Material). 
Overall, we found that differences in competitor abundance are 
not as well captured by Fratio as they are by MePratio (Figure S10 in 
Supplementary Material). In particular, Fratio over-approximates 
surface presentation of SSLENFRAYV when competitor peptide 
abundance is low. As the same over-approximation was not seen 
in the comparison of MePratio and simulated surface abundance of 
SSLENFRAYV (+IFNγ; Figure S10 in Supplementary Material), 
our interpretation is that this is due to Fratio not incorporating the 
potential impact of self-peptides. At low competitor abundance, 
self-peptide availability will be more important, leading to a 
loss of accuracy of Fratio. Nevertheless, we have found that very 
simple formulae can largely predict semi-quantitatively how the 
presentation of a given peptide will be reduced by the increased 
abundance of a competitor peptide.

DiscUssiOn

We have developed a mathematical model based on known cel-
lular mechanisms which, despite including only three components 
(MHC, peptide, and tapasin), can predict pMHC surface expres-
sion under physiological conditions, given some knowledge of the 
intracellular abundance of peptides. The abundance of specific 
pMHC on antigen-presenting cells can determine both the inten-
sity of the primary CTL (cytotoxic T lymphocyte) response to that 
pMHC and also the susceptibility of target cells bearing the pMHC 
to killing by those CTL. At present there is no predictive model for 
estimating the rate of CTL killing as a function of pMHC abundance. 
Current high-throughput methods for detecting MHC-I bound 
peptides have advanced significantly over the past decade and have 
given rise to better algorithms for estimating whether a particular 
peptide is likely to be presented as a pMHC. Nevertheless, the 
estimates are not quantitative and depend on the ability to detect 
specific peptides following stringent purification of pMHC prior 
to peptide extraction during which time peptides are progressively 
lost according to their individual dissociation rate constants. Our 
model relates intracellular peptide abundance to cell surface abun-
dance via the intracellular process of chaperone assisted peptide 
editing of MHC-I, which occurs in the face of competition between 
millions of peptides for binding to the same MHC-I. Such condi-
tions are likely to be especially important, for example, during viral 
infection where viral epitopes need to compete with a vast number 
of self-peptides, or when trying to generate an immune response 
against a polytope vaccine (multiple epitopes artificially joined 
into a single polypeptide, possibly being expressed from large 
virus vectors generating themselves many other viral epitopes), or 
against cancer neo-epitopes competing against a multitude of more 
abundant or higher affinity self-peptides.
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FigUre 5 | Cell surface abundance can be predicted by a peptide competition metric. The peptide competition metric Fratio (Eq. 3) was calculated using 
measurements of cytoplasmic peptide abundance for SSLENFRAYV and variants of ASNENMETM (fluorescence units in Figures 1 and 3). Fratio (horizontal axis) 
was then compared with experimental measurements of cell surface abundance of SSLENFRAYV (vertical axis). Different colored traces represent different 
cytoplasmic levels of the competing ASNENMETM variant, as indicated in Figure 1b. A to F represent competitions between SSLENFRAYV and ASNENLETM (a), 
ASIENMETM (b), ASNENMETV (c), ASNENMETI (D), ASNENMETM (e) and ASIENLETM (F).
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Thus, we developed a competition assay that allowed us to 
measure surface abundance of a target peptide in the presence of 
increasing amount of competitor peptides of different off-rates. 
Our results highlighted the importance of the abundance of com-
peting peptides, as indeed the same level of competition could be 
achieved by a low abundance of a high affinity competitor or a high 
abundance of a low affinity peptide. Based on these experimental 
data, we calibrated our model of MHC-I presentation, which was 
originally developed to explain how peptide optimization dif-
fers between MHC-I alleles (32). Here, we found that this same 
model was able to predict surface expression of a target peptide 
in the presence of competitors of different off-rates (Figure 4). 
Furthermore, we found that simple peptide competition metrics 
(Eqs 2 and 3), based on the filter relation (Eq. 1), could quantify 
the impact of increasing intracellular competitor abundance on 
target peptide surface presentation (Figure  5). This is the first 
time that the filter relation has been experimentally tested on 
competing peptides. The present study provides justification for 
its use in vaccine design, for instance, to assess the relative merits 
of increasing peptide abundance or improving peptide stability to 
achieve a desired level of cell surface presentation, using a simple 
calculation.

We were also able to predict pMHC surface expression when 
MHC-I and tapasin supply increased following IFNγ treatment, 
by extending the basic model to incorporate a factor quantifying 
the extent of IFNγ upregulation of MHC-I and tapasin. IFNγ is 
well known to stimulate the immune system, increasing expres-
sion of MHC-I heavy chain, β2-microglobulin, subunits of the 
immunoproteasome (MECL1, LMP2, and LMP7), TAP, tapasin, 
the ER aminopeptidase associated with antigen processing 
(ERAAP) (41) and the tapasin-related protein (TAPBPR); it is 
produced as part of the immune response against viruses. IFNγ 
also plays a critical function in cancer immunosurveillance (42) 
as it can be secreted in the tumor micro-environment, determin-
ing the inflammatory status of the tumor (43) and influencing 
tumor prognosis. For many years, IFNγ has been used in the 
clinic as an immunostimulant within immunotherapy regimes 
although the details of how it works were poorly understood. 
Those studies resulted in variable outcomes, sometimes det-
rimental to the patients (44). In the current study, as both the 
target and competitor peptides were generated from cleavage by 
cytoplasmic Ub-hydrolases, we were able to bypass the effect of 
IFNγ on the proteasome [IFNγ induces a switch from constitutive 
to immunoproteasome with different cleavage specificity that can 
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be observed at the level of the immunopeptidome (45)] and only 
consider the effect on the antigen presentation machinery. We 
have confirmed in our system an increase of MHC-I and tapasin 
expression after treatment with IFNγ and observed an increase 
in surface expression of both competing peptides. The level of 
competition of the SSLENFRAYV peptide was reduced in the 
presence of IFNγ, presumably due to the increased level of avail-
able MHC-I molecules. This is in line with observations made 
by others, for example, (33) showed that after treating NIT-1 
insulinoma cells with IFNγ, presentation of the high affinity 
JAK-1355–363 (SYFPEITHI) peptide by H-2Kb was increased from 
~2,000 to ~15,000 copies per cell; whereas, the lower affinity 
IGRP206–214 peptide (VYLKTNVFK), barely detectable at 1 copy 
per cell in untreated cells, reached 25 copies per cell after IFNγ 
treatment. The differential enhancement of presentation by IFNγ 
(7.5- or 25-fold increase respectively) did not merely follow the 
fivefold increase in overall H-2Kd surface expression. This means 
that the peptide repertoire presented by β-cells shows subtle dif-
ferences under inflammatory conditions even though the length 
or binding affinity of peptides presented by either H-2Kd or 
H-2Db did not change. In other words, cytokine treatment did 
not bias toward high-affinity ligands. In this instance such a subtle 
change in the peptide repertoire might be related to the transition 
from benign to destructive insulitis.

Likewise, IFNγ can also have a dramatic effect in cancer 
immunology. The tumor environment is likely to progress from an 
inflammatory surrounding with active T cells producing IFNγ, to 
a non-inflammatory environment populated by regulatory T cells 
and exhausted T cells that have stopped producing the cytokine. 
Tumor cells can also evolve immune escape mechanisms blocking 
the IFNγ pathway. It would be, therefore, beneficial to be able 
to predict CD8+ T cell targets that are likely to be presented on 
tumor cells in both presence and absence of IFNγ.

We showed in our study that the surface expression of the lower 
affinity peptide was enhanced in the presence of IFNγ. This could 
result in a CD8+ T cell response to develop against a broader range 
of peptides as priming, activation of a T cell at first encounter with 
its target pMHC, only occurs above a threshold antigen dose (1). 
As a result, competition between different specificity CD8+ T cells 
resulting in immunodomination, occurring very early on during 
the immune response (46), might be altered in the presence of IFNγ.

Our observations of increased intracellular abundance 
enhancing cell surface presentation of low affinity peptides might 
explain why in other systems some low affinity peptides (that lie 
outside the 500 nM cut-off often used to define MHC-I-binding) 
can be presented efficiently and are able to induce strong CD8+ 
T cell responses. For example, the two immunodominant epitopes 
from the transplantable murine tumor CT26 have half-lives of 60 
and 20 min [H-2Ld binding SPSYVYHQF and H-2Dd binding 
GGPESFYCASW respectively (47)], despite there being almost 
500 neo-epitopes generated from point mutations that are con-
sidered likely to be immunogenic as they have an IEDB percentile 
rank less than or equal to 1% [(48); Table S3 in Supplementary 
Material]. Both of these peptides originate from the highly 
abundant gp70 retrovirus envelope protein encoded by a gene 
located in a CT26 tetraploid region and transcribed at high copy 
number (48). It seems, therefore, that lower affinity peptides with 

moderate half-lives can still be presented in sufficient abundance 
at the cell surface to induce immunodominance. Interestingly, 
strong CTL responses to the GGPESFYCASW-H2Dd complex 
correlate with anti-tumor efficacy in immunotherapeutic settings 
such as Tregs depletion (47) and anti-PD-1 checkpoint blockade 
(G. Sugyarto, personal communication).

Mechanistic modeling has the advantage of incorporating 
knowledge of the antigen processing pathway and of being 
modifiable as that understanding grows. For example, although 
the current model incorporates the functions only of MHC-I and 
tapasin, extensions of our model could incorporate the func-
tion of ERAAP antigen processing, calreticulin (which recycles 
empty MHC-I from ERGIC to ER), and the emerging function of 
TAPBPR [which also functions as a peptide editor in connection 
with the UDP-glucose:glycoprotein glucosyltransferase (49)]. 
Our model could also be used to simulate peptide presentation 
in tumor escape mutants with altered expression of: (i) some of 
the immunoproteasome sub-units (LMP2 and LMP7) that would 
maintain a “non-inflammatory” peptidome even in the presence 
of IFNγ; (ii) proteins involved in the IFNγ signaling pathway 
(50) also resulting in the presentation of a “non-inflammatory” 
immunopeptidome within a pro-inflammatory tumor micro-
environment; (iii) mutations affecting the expression of antigen 
processing and presentation molecules, including TAP, tapasin, 
and ERAAP. These mutations would result in a modification of 
the peptide repertoire presented by MHC-I molecules and also 
in a drastic reduction of the pMHC surface expression level. Low 
tapasin expression has been shown to correlate with low T cell 
infiltration and poor prognosis in colorectal cancer (51) together 
with the loss of presentation of some, normally, immunodomi-
nant CTL epitopes (17, 52, 53). However, tapasin expression can 
also have a negative impact on the presentation of other immuno-
dominant epitopes such as MUC1 which is revealed when tapasin 
is downregulated (54). Unfortunately, the low level of pMHC 
expression in tapasin deleted cells precludes the experimental 
measurement of cell surface peptide abundance in these condi-
tions. Modeling, however, could be used to predict shifts in the 
immunopeptidome resulting from the selective downregulation 
or loss of tapasin from cancer cells and may, therefore, help to 
guide the selection of anti-cancer vaccines or other therapies.

While we have observed how intracellular peptide abundance 
can influence cell surface presentation in a direct assay, the chal-
lenge will be to test our approach at the whole immunopeptidome 
level. However, the validation of such a model is restricted by the 
experimental methods available today: in particular, limitations 
on the biochemical isolation of peptides recovered from MHC-I 
mean that around 90% of the immunopeptidome is lost prior to 
analysis (27). Also, only a quantitative immunopeptidome gener-
ated from elution of surface pMHC would allow to demonstrate 
the benefit of our model including tapasin filtering versus the 
use of algorithms based purely on the amino acid sequence of 
the peptide. Another limitation is that our model requires prior 
quantification of intracellular peptide abundance for each peptide 
to produce a prediction of the cell surface presentation profile. 
Prediction of an entire cell surface peptide repertoire would, 
therefore, require high-throughput measurements of protein 
expression and turnover by quantitative proteomics (SILAC) (55),  
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or measurements of transcription levels or protein translation 
rates, combined with proteasomal cleavage (56) and TAP bind-
ing (57) predictions. The dynamical modeling approach that we 
advocate (26, 58) has the advantage of encoding mechanistic 
hypotheses, which should enable us to also predict how peptide 
presentation changes under a range of genetic or physiological 
perturbations to the antigen presentation machinery.
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