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Abstract 

 

Background: Genome-wide association studies have recently identified over 400 loci that harbor 

DNA sequence variants that influence blood pressure (BP). Our earlier work identified and 

validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of Exome 

Chip genotype data. An additional 100 variants yielded suggestive evidence of association.  

 

Methods and Results: Here, we augment the sample with 140,886 European individuals from the 

UK Biobank, in whom 77 of the 100 suggestive SNVs were available for association analysis with 

systolic or diastolic blood pressure (SBP, DBP) or pulse pressure (PP). We performed two meta-

analyses, one in individuals of European, South Asian, African and Hispanic descent (pan-

ancestry, ~475,000), and the other in the subset of individuals of European descent (~423,000).  

  

Twenty-one SNVs were genome-wide significant (P < 5x10-8) for BP, of which four are new BP 

loci: rs9678851 (missense, SLC4A1AP), rs7437940 (AFAP1), rs13303 (missense, STAB1) and 

rs1055144 (7p15.2). In addition, we identified a potentially independent novel BP-associated SNV 

(rs3416322 (missense, SYNPO2L) at a known locus, uncorrelated with the previously reported 

SNVs. Two SNVs are associated with expression levels of nearby genes, and SNVs at three loci 

are associated with other traits. One SNV with a minor allele frequency < 0.01, (rs3025380 at 

DBH) was genome-wide significant. 

 

Conclusions: We report four novel loci associated with BP regulation, and one independent 

variant at an established BP locus. This analysis highlights several candidate genes with variation 

that alter protein function or gene expression for potential follow-up. 

 

Key words from the journal subject terms and two additional in red color: “Blood Pressure”, 

“Genetics”, “Genetic, Association Studies”, “Gene Expression and Regulation”, “Exome chip”, 

“UK Biobank”. 

 

 



Page 11 of 24/R2 
 

High blood pressure (BP) is a major risk factor for coronary artery disease, heart failure,  stroke, 

renal failure and premature mortality 1. High BP has been estimated to cause 10.7 million deaths 

worldwide in 2015 2, 3. Pharmacologic interventional trials of BP-lowering therapies in patients 

with hypertension have demonstrated reductions in cardiovascular complications, including 

mortality 4. While several anti-hypertensive drug classes exist, variability in treatment response 

by individual patients and ethnic/racial groups, and residual risks, suggest that identification of 

previously unrecognized BP regulatory pathways could identify novel targets and pave the way 

for new treatments for cardiovascular disease prevention. 

 

Genetic association studies have identified over 400 loci at P < 5x10-8 that influence BP 

5-11. Two recent reports independently performed discovery analyses, in sample sizes of up to 

~146k (CHARGE Exome BP consortium) and ~192k individuals (the European-led Exome 

consortia [contributory consortia, CHD Exome+, ExomeBP, and GoT2D:T2DGenes]) 8, 9.  All 

samples were genotyped on the Illumina Exome array that was designed to interrogate rare and 

low frequency non-synonymous and other putative functional variants, as well as non-coding 

variants for association with biomedical traits. They each identified ~80 promising single 

nucleotide variant (SNV) associations with systolic blood pressure (SBP), diastolic blood 

pressure (DBP), pulse pressure (PP) or hypertension and took them forward for replication in the 

reciprocal consortium 8, 9 resulting in the identification of 56 novel BP-associated loci across the 

two reports, including associations with coding and rare SNVs. A total of 100 SNVs remained 

of interest, but did not achieve genome-wide significance. Increasing the sample size, is likely to 

identify additional BP-associated SNVs among these variants.  

 

In the current report, we augmented the sample size of these studies with up to 140,886 

European individuals from the UK Biobank, and analyzed 77 SNVs available in the UK Biobank 

for association with SBP, DBP and PP, in a total sample size of up to ~475,000 individuals (up 

to ~423,000 EUR).  

 

Materials and Methods 

Samples 
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These analyses consisted of a meta-analysis of results from three independent 

publications, the CHARGE Exome BP consortium8, European-led Exome consortia 

(contributory consortia, CHD Exome+, ExomeBP, and GoT2D:T2DGenes) 9 and the BP analyses 

from the UK Biobank Cardiometabolic consortium11.  

 

The CHARGE Exome BP consortium included 120,473 individuals of EUR descent from 

15 cohorts, 21,503 individuals of African (AFR) descent from 10 cohorts and 4,586 individuals 

of Hispanic (HIS) ancestry from 2 cohorts as previously described8. The European-led consortia 

included 165,276 individuals of EUR descent from 51 cohorts and 27,487 individuals of South 

Asian (SAS) descent from two cohorts 9. The UK Biobank data included 140,886 unrelated 

individuals of EUR descent11.  

 

All samples from the CHARGE and European-led Exome consortia were genotyped on 

Exome arrays that includes ~242,000 markers > 90% of which are non-synonymous or splice 

variants, with enrichment for variants with MAF < 0.05. The UK Biobank used the Affymetrix 

UK Biobank Axiom Array (N~100,00), or the Affymetrix UK BiLEVE Axiom Array 

(N~50,000) to genotype ~800,000 SNVs with subsequent imputation based on UK10K 

sequencing and 1000 Genomes reference panels. SNVs with an imputation threshold INFO score 

of < 0.10 were filtered by the Warren et al. UK Biobank Nature Genetics 2017 manuscript, from 

which the SNV association statistics for UK Biobank were provided 11. Imputation scores in the 

UK Biobank samples for the variants presented in Table 1 had INFO > 0.6. SNVs that produced 

significant results are highlighted in green in Supplemental Tables 1 and 2, with a median INFO 

of 1. The studies by Surendran et al., Liu et al. and Warren et al. examined genomic inflation 

factors in the contributing studies and the combined meta-analyses for each of the traits analysed. 

Genomic inflation ranged between 1.04 and 1.11 in these contributing studies and therefore did 

not suggest there were significant issues with population stratification 8, 9, 11. In the current 

analyses, 77 non-validated BP-associated SNVs were available for analysis across all three 

datasets.   

 

Institutional Review Board (IRB) approval was obtained from each participating cohort 

and informed consent was obtained from all subjects 8, 9. The UK Biobank study has approval 
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from the North West Multi-Centre Research Ethics Committee and has Research Tissue Bank 

approval. 

 

Phenotypes 

Three BP traits were examined: systolic BP (SBP), diastolic BP (DBP) and pulse pressure 

(PP), where PP was calculated as the difference between SBP and DBP. For individuals taking 

anti-hypertensive therapies, 15 mm Hg and 10 mm Hg were added to the observed SBP and DBP, 

respectively, to estimate the BP that would be observed off anti-hypertensive therapy 12, 13. The 

traits were approximately normally distributed, and no transformations of the traits were 

performed. 

 

Statistical analyses 

In the CHARGE Exome BP consortium, in cohorts of unrelated individuals single SNV 

association tests were implemented via linear regression in R/PLINK/SNPTEST. For family-

based cohorts linear mixed effects models in R was used to estimate kinship via R KINSHIP2 

package and using the LMEKIN function, to account for familial correlations (https://cran.r-

project.org/web/packages/coxme/vignettes/lmekin.pdf; Supplemental Table 21 of Liu et al. 8). 

The component studies of the European-led consortia (CHD Exome+, ExomeBP and 

GoT2D:T2D genes) used linear regression as implemented in PLINK 14 or linear mixed models 

as implemented in Genome-Wide Efficient Mixed Model Association (GEMMA) 15 or EPACTS 

(the Efficient Mixed-Model Association eXpedited, EMMAX) 16, to test variants for association 

with BP traits. The UK Biobank study used linear regression models as implemented in 

SNPTEST 17. All studies assumed an additive allelic effects model. 

 

All studies adjusted for age, age2, sex, body mass index and additional cohort- specific 

covariates including (where appropriate) principal components of genetic ancestry, field centers, 

genotyping array, or case/control status for samples ascertained on case/control status for a non-

BP trait. Both study-level QC and central QC was performed prior to the meta-analyses being 

performed. Full details are given in the reports from the component consortia 8, 9, 11.  

 

https://cran.r-project.org/web/packages/coxme/vignettes/lmekin.pdf
https://cran.r-project.org/web/packages/coxme/vignettes/lmekin.pdf
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At the consortium level, meta-analyses of cohort-level association results were performed 

independently within CHARGE-Exome and the European-led Exome consortia using invervse 

variance-weighted fixed effects meta-analysis. These meta-analyses results were combined with 

the UK Biobank association results using fixed effects inverse variance weighted meta-analysis 

as implemented in METAL 18. Two meta-analyses were performed, one pan-ancestry (AA, EUR, 

HIS, SAS), and a second of EUR ancestry. Statistical significance was set at genome-wide 

significance, P < 5x10-8.  

 

Functional annotation 

 Associated variants were annotated using HG38 dbSNP and Entrez Gene (NCBI). We 

interrogated publically available gene expression regulatory features from ENCODE and 

ROADMAP Epigenome projects using HaploReg 19 and RegulomeDB 20. eQTLs were assessed 

using data from GTEx 21 GRASP 22, Westra et al. 23, Lappalainen et al. 24 and STARNET 25. In 

addition we used the FHS eQTL results from microarray-based gene and exon expression levels 

in whole blood from 5,257 individuals 26. We queried whether any of the five BP-associated 

SNVs were eQTLs for genes in the five BP-associated regions, or whether they were in LD (r2 > 

0.8) with any of the eQTLs for genes in these regions. Where putative eQTLs were identified, we 

verified the BP-associated SNVs were in LD (r2 >0.8) with the top eQTL for that gene.  

We interrogated publically available GWAS databases through PhenoScanner 27, a 

curated database holding publicly available results from large-scale genome-wide association 

studies facilitating “phenome scans”. We report results for SNVs with P-value  ≤ 5x10-8. 

Capture HiC interactions were accessed from the Capture HiC Plotter (www.CHiCP.org). 

Javierre et al 28 used an interaction confidence score derived using CHiCAGO software 29. The 

interactions with a CHiCAGO score ≥ 5 in at least one cell type were considered as high-

confidence interactions. 

 

Results 

Association results for the 77 SNVs with the three BP traits are shown in Supplemental 

Table 1 for the pan-ancestry (PA: European, South Asian, African and Hispanic descent) meta-

analysis and in Supplemental Table 2 for the European (EUR) meta-analysis. Twenty-one of the 



Page 15 of 24/R2 
 

77 SNVs were associated with at least one BP trait with genome wide significance, P < 5x10-8 

and concordant directions of effects across the results from all contributing datasets (Table 1). 

Sixteen SNVs (PKN2, ARHGEF3, AFAP1, ANKDD1B, LOC105375508, ZFAT, RABGAP1, 

DBH, SYNPO2L, BDNF-AS, AGBL2, NOX4, CEP164, HOXC4, CFDP1 and COMT) were 

genome-wide significant in both PA- and EUR samples. Two SNVs at SLC4A1AP and 7p15.2, 

respectively, were significant only in the PA sample; and three SNVs at STAB1/NT5DC2, 

KDM5A and LACTB only in the EUR sample. All the significant SNVs were common (minor 

allele frequencies ≥ 0.19), except the SNV at the DBH locus (PA, MAF = 0.0043). While this 

report was in preparation, 17 of these loci were published elsewhere 7, 10, 11. Four loci remain 

novel: rs9678851 (SLC4A1AP, missense), rs7437940 (AFAP1, intron), rs13303 (STAB1, 

missense) and rs1055144 (7p15.2, non-coding transcript; Supplemental Figures 1a-d). The 

SLC4A1AP (rs9678851) was associated with SBP and AFAP1 (rs7437940) and 7p15.2 

(rs1055144) were associated with PP. We also observed a potentially new independent BP 

association (r2 ~ 0.001 in 1000G EUR and PA samples) at a recently published locus rs34163229 

(SYNPO2L, missense; Table 1; Supplemental Figure 1e). We used a conservative r2 < 0.1 

threshold to minimize the possibility of an association due to corelation with a strongly associated 

established BP variant. Furthermore, conditional analyses within the ~140,000 UK Biobank 

participants with comprehensive genomic coverage suggested that the association with SBP of 

rs34163229 was independent of the established SNV, rs4746172. Regional association plots in 

UK Biobank are provided in Supplemental Figures 2a-e.  Conditional analyses within the full 

dataset was not possible given the targeted nature of the Exome array which makes claims of 

independence provisional. Twenty-two of  the 77 SNVs had minor allele frequency (MAF) ≤ 

0.01, and one rs3025380, a missense variant in DBH was confirmed as a BP-associatd locus. 

 

Three of the five newly discovered BP-associated SNVs are missense variants, mapping 

to SLC4A1AP, STAB1 and SYNPO2L (Table 1 and Supplemental Table 3). At SLC4A1AP, 

rs9678851 (C>A,  Pro139Thr) has MAF=0.46 and the C allele is associated with an increase of 

0.23 mmHg in SBP. This variant is correlated with two other missense variants in C2orf16 

(rs1919126 and rs1919125, r2 = 0.81 (EUR) based on 1000G 30, for both). At STAB1, the C allele 

of rs13303 (T>C, Met2506Thr, with MAF=0.44) is associated with an increase of 0.15 mmHg 

in PP per minor allele in EUR. This residue is located in a conserved region of the protein 31 
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(Supplemental Table 4). The T allele of rs34163229, the new association at the SYNPO2L locus, 

(G>T, Ser833Tyr, with MAF=0.15), is associated with an increase of 0.36 mmHg in SBP per 

allele. This variant is in LD with another missense variant in SYNPO2L (rs3812629 r2=1, 1000G 

EUR) 30. Using Polyphen2 (http://genetics.bwh.harvard.edu/pph2/index.shtml), the SNVs 

rs9678851 in SLC4A1AP, and rs13303 in STAB1 were predicted to be benign, while rs34163229 

in SYNPO2L was predicted to have a possible damaging impact on the corresponding human 

proteins’ structure and function. 

 

We interrogated publicly available expression quantitative trait loci (eQTL) datasets 

through GTEx, ENCODE, RoadMap projects, PhenoScanner 27, STARNET 25 and Framingham 

Heart Study 26 to further highlight potential causal genes and mechanisms at each of the newly 

identified BP loci (Supplemental Table 3). The PP-associated SNV, rs13303, at STAB1 is 

correlated (r2 >0.8 1000G EUR) with the top eQTLs for NT5DC2 in atherosclerotic-lesion free 

internal mammary artery, atherosclerotic aortic root, subcutaneous adipose, visceral abdominal 

fat and liver tissues (all P < 1x10-11) 25. The rs13303 was also associated with expression levels 

of NT5DC2 in EBV-transformed lymphocytes, transformed fibroblasts 25 and thyroid cells 

(Supplemental Table 3) 21. The SBP-associated SNV at SYNPO2L (rs34163229) is correlated 

(r2=0.86 in 1000G EUR) with the top eQTL (rs2177843) for MYOZ1 in heart atrial appendage 

tissue (Supplemental Table 3) 21. The five new BP associated SNVs were not in LD with the top 

eQTLs for these gene regions in whole blood in the Framingham Heart Study eQTL data. We 

also took the opportunity to assess whether the additional fifteen recently established genome-

wide significant BP-associated SNVs were eQTLs in the Framingham sample. Amongst the 

genome-wide significant BP SNVs, three, rs4680 at COMT, rs12680655 at ZFAT and 

rs10760260 at RABGAP1, were the top eQTL for the corresponding genes in whole blood  

(Supplemental Table 5). We also examined the five BP-associated SNVs in endothelial precursor 

cell Hi-C data (www.chicp.org; 28, 32) to explore long-range chromatin interactions. rs13303 was 

found to contact NISCH (score 17.34) and rs34163229 contacts USP54 (score 33.89)  

 

 Finally, we assessed the association of the new BP-associated variants and their close 

proxies (r2>0.8) with cardiovascular disease risk factors, molecular metabolic traits and clinical 

phenotypes using PhenoScanner, the NHGRI-EBI GWAS catalog and GRASP 27. We observed 



Page 17 of 24/R2 
 

five of the newly discovered BP-associated SNVs to have genome wide significant associations 

with other traits, including height (7p15.2) 33, waist-to-hip ratio (STAB1 and 7p15.2) 34, 35, 

triglycerides (SLC4A1P), adiponectin levels (STAB1) 36, and atrial fibrillation (rs7915134 

which has r2=0.92 in the EUR 1000G samples with rs34163229 in SYNPO2L)  37 (Supplemental 

Table 3).  

Of the 77 analysed SNVs, from the original Exome array analyses, 56 SNVs were not 

genome-wide significant in the current analysis. With ~300 BP loci reported since the time of 

our analysis, we investigated whether any of the 56 SNVs that were not genome-wide 

significant in our meta-analysis have been reported as new BP-associated loci in any of the 

three recent publications 7, 10, 11. Twelve SNVs in our dataset were located within 1 Mb of a 

recently reported BP locus : CACNA1S, TSC22D2, RPL26L1, EDN1, GPRC6A, ACHE, CAV1, 

NOX5, PGLYRP2, NAPB, EDEM2 and KCNB1; (Supplemental Tables 1 and 2), although none 

of the SNVs were in LD (r2 >0.1 in all 1000G populations) with the published variants at these 

loci. 

 

Discussion 

We identified genome-wide significant associations with BP for 21 additional SNVs from 

our original Exome array analyses 8, 9 by including UK Biobank participants to augment our 

sample size to ~475,000 individuals. Four of the twenty-one BP-related loci we identified were 

novel, of which two were missense variants, and one was a putative new independent signal at an 

established locus and was a missense variant.  

A missense SNV in SLC4A1AP (rs9678851) marks the PP-associated locus on 

chromosome 2. SLC4A1AP, encodes a solute carrier also known as kidney anion exchanger 

adapter protein, although it is widely expressed in most GTEx tissues.  

  

 At the new locus on chromosome 3 (rs13303), three potential candidate genes are 

highlighted: STAB1, NT5DC2 and NISCH. STAB1 encodes stabilin1, a protein known to 

endocytose low density lipoprotein cholesterol, gram-positive and -negative bacteria, and 

advanced glycosylation end products 38, 39. The gene product is also referred to as CLEVER-1, 

a common lymphatic endothelial and vascular endothelial receptor-1 40, which is expressed in 

macrophages 41. SNX17 interacts with STAB1 and is a trafficking adaptor of STAB1 in 
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endothelial cells 38, 42. The rs13303 is located 500bp downstream of NT5DC2. This additional 

gene is highlighted through the association of rs13303 with expression of NT5DC2 in multiple 

tissues (Supplemental Table 3). NT5DC2 encodes the 5'-nucleotidase domain containing 2 

protein. The gene is widely expressed, with higher levels observed in the heart and coronary 

artery, although its function is unknown. Lastly, exploration of long-range chromatin 

interaction identified contact of the SNV region with the genetic sequence including the gene 

NISCH, which encodes the nonadrenergic imidazoline-1 receptor protein localized to the 

cytosol and anchored to the inner layer of the plasma membrane. This protein binds to the 

adapter insulin receptor substrate 4 (IRS4) to mediate translocation of alpha-5 integrin from the 

cell membrane to endosomes. In human cardiac tissue, this protein has been found to affect cell 

growth and death 43.  

 

The PP-associated variant, rs7437940 on chromosome 4 is intronic to AFAP1, and is 

located in promoter histone marks in right atrial tissue, based on regulatory chromatin states 

from DNAse and histone ChIP-Seq in Roadmap Epigenomics Consortium (identified with 

HaploReg, Supplemental Table 4) 44. AFAP1 encodes actin filament associated protein 1. This 

protein is thought to have a role in the regulation of actin filament integrity, and formation and 

maintenance of the actin network 45.  

 

At the locus on chromosome 10 (rs34163229), two candidate genes were highlighted 

(SYNPO2L and MYOZ1). SYNPO2L encodes synaptopodin like 2, which is not well 

characterized, but may play a role in modulating actin-based shape. The lead SNV is also 

associated with expression levels of MYOZ1 in heart appendage tissues. MYOZ1 encodes 

myozenin 1, an alpha actinin and gamma filamin binding Z line protein predominantly 

expressed in skeletal muscle 46.  

 

At two loci (SLC4A1AP and SYNPO2L) we observed more than one missense variant in 

high LD (r2 > 0.8). Functional follow up of these variants may be challenging to disentangle the 

causal variants. At the SLC4A1AP locus, there are three misssense variants, none of which are 

predicted to be damaging. Two of these are in C2orf16, which is predicted to encode an 

uncharacterized protein. Current evidence is at the transcriptional level. Cellular assays 
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comparing the function of SLC4A1AP with the missense variant may be developed or an animal 

model could be created and BP can be measured. In the first instance, a knockout model may 

be required, due to the predicted weak effects of the BP variants. At the SYNPO2L locus, the 

two missense variants are both in SYNPO2L, of which one is predicted damaging, cellular 

experiments testing functional effecs of this variant alone or part of a haplotype maybe a good 

starting point.  

 

In conclusion, we identified four new loci and one potential new SNV in a known locus, 

that influence BP variation and highlight specific genes and pathways that could potentially 

facilitate an improved understanding of BP regulation, and identify novel therapeutic targets to 

reduce the burden of cardiovascular disease. 
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Table 1. Variants associated with SBP, DBP or PP in the Pan-ancestry or EUR-ancestry meta-analyses in up to ~475,000 individuals.  

rsID Gene Annotation chr-pos Trait Meta a1/2 Freq1 b(S.E.) P-value Dir HetP N UK-
BioBank 

INFO 

New loci              

rs9678851 SLC4A1AP missense 2-27664167 S PA a/c 0.54 -0.23 (0.04) 1.07E-09 --- 0.09 474,569 1.0000 

rs13303* STAB1 missense 3-52523992 P EUR t/c 0.44 -0.15 (0.03) 3.72E-08 --- 0.11 418,405 1.0000 

rs7437940 AFAP1 Intronic 4-7885773 P EUR,PA t/c 0.47 -0.15 (0.03) 2.88E-08 --- 0.007 420,616 0.9974 

rs1055144 7p15.2 nc-transcript 7-25831489 P PA a/g 0.19 0.19 (0.03) 3.47E-08 +++ 0.18 453,880 1.0000 

Recently reported loci             

rs786906 PKN2 synonymous 1-88805891 S,P EUR,PA t/c 0.44 0.19(0.03) 1.29E-12 +++ 0.08 422,556 1.0000 

rs3772219 ARHGEF3 missense 3-56737223 S,D EUR,PA a/c 0.68 0.25(0.04) 2.00E-10 +++ 0.25 474,558 1.0000 

rs40060 ANKDD1B 3'UTR 5-75671561 D EUR,PA t/c 0.65 -0.17(0.02) 3.47E-12 --- 0.46 422,598 0.9938 

rs972283 LOC105375508 intronic 7-130782095 S,D EUR,PA a/g 0.47 -0.23(0.04) 9.12E-10 --- 0.1 474,569 1.0000 

rs12680655 ZFAT intronic 8-134625094 S,D EUR,PA c/g 0.6 -0.29(0.04) 1.62E-12 --- 0.18 402,962 1.0000 

rs10760260 RABGAP1 intronic 9-122951247 P EUR,PA t/g 0.14 -0.25(0.04) 2.88E-10 --- 0.12 421,223 0.9975 

rs3025380 DBH missense 9-133636634 S,D EUR,PA c/g 0.004 -1.14(0.19) 1.23E-09 --- 0.05 400,891 0.8763 

rs34163229* SYNPO2L missense 10-73647154 S,P EUR,PA t/g 0.15 0.36(0.05) 1.15E-11 +++ 0.32 448,759 1.0000 

rs925946 BDNF-AS intronic 11-27645655 D EUR,PA t/g 0.31 -0.16(0.02) 7.08E-12 --- 0.25 474,564 1.0000 

rs12286721 AGBL2 missense 11-47679976 S,D EUR,PA a/c 0.56 -0.17(0.02) 3.39E-13 --- 0.05 422,593 1.0000 

rs10765211 NOX4 intronic 11-89495257 P EUR,PA a/g 0.38 -0.19(0.03) 6.46E-12 --- 0.05 474,550 0.9964 

rs8258 CEP164 3'UTR 11-117412960 P EUR,PA a/g 0.37 0.22(0.03) 1.95E-15 +++ 0.003 422,546 1.0000 

rs11062385 KDM5A missense 12-318409 P EUR a/g 0.73 -0.17(0.03) 2.69E-08 --- 0.84 422,563 1.0000 

rs7136889† HOXC4 intronic 12-54043968 S,P EUR,PA t/g 0.69 0.36(0.05) 1.58E-13 +++ 0.33 419,905 0.6070 

rs2729835* LACTB missense 15-63141567 S EUR a/g 0.68 -0.24(0.04) 1.29E-08 --- 0.25 394,656 1.0000 

rs2865531 CFDP1 intronic 16-75356418 S,P EUR,PA a/t 0.6 0.42(0.06) 2.14E-13 +++ 0.51 217,419 0.9998 

rs4680 COMT missense 22-19963748 P EUR,PA a/g 0.51 0.16(0.03) 2.24E-09 +++ 0.005 418,385 1.0000 

 

Note: rsID-SNV name, Gene-name of the closest gene or cytogenetic band based on Gene Entrez of NCBI; Annotation-SNV 

annotation based on dbSNP of NCBI; Chr-pos-chromosome-bp position in Human Genome build 38; Trait- the blood pressure trait 
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(DBP, SBP or PP) the variant is associated with; Meta- the meta-analysis the variant is associated in, Pan-Ancestry and/or EURopean; 

A1/2-allele 1/allele 2; Freq1-allele frequency for allele 1;  (SE)-effect estimate,  and its standard error for allele 1 from the 

corresponding meta-analysis (highlighted in bold); P-value – P from meta-analysis (highlighted in bold); Direction- direction of effect 

in each of the contributing consortia in the following order: EUROPEAN led Exome Consortia, UK-BIOBANK and CHARGE-BP 

Consortium; HetP- P-value of heterogeneity across the three contributing consortia, N- Sample size for the trait and meta-analysis 

with the lowest P-value (bold). * indicates potential new signal at a recently reported locus (LD- r2 < 0.1 with a published BP SNV), 

and † indicates first report of this variant as genome-wide significant. For more details, see Supplemental Tables 1 and 2. UK-

BIOBANK INFO- a quality of imputation score in UK BIOBANK.  

 


