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cUniversità di Messina, Dipartimento di Scienze Matematiche e Informatiche, Scienze
Fisiche e Scienze della Terra, Viale F. Stagno d’Alcontres, 31, I-98166 Messina, Italy
dCNR-IMM sezione di Bologna, Istituto per la Microelettronica e Microsistemi, Via P.

Gobetti 101, I-40129 Bologna, Italy
eUniversity College London, Department of Physics and Astronomy, Gower Street, London

WC1E 6BT, UK

Abstract

Optical tweezers, tools based on strongly focused light, enable optical trap-

ping, manipulation, and characterisation of a wide range of microscopic and

nanoscopic materials. In the limiting cases of spherical particles either much

smaller or much larger than the trapping wavelength, the force in optical tweez-

ers separates into a conservative gradient force, which is proportional to the

light intensity gradient and responsible for trapping, and a non-conservative

scattering force, which is proportional to the light intensity and is generally

detrimental for trapping, but fundamental for optical manipulation and laser

cooling. For non-spherical particles or at intermediate (meso)scales, the situa-

tion is more complex and this traditional identification of gradient and scattering

force is more elusive. Moreover, shape and composition can have dramatic con-

sequences for optically trapped particle dynamics. Here, after an introduction

to the theory and practice of optical forces with a focus on the role of shape and

composition, we give an overview of some recent applications to biology, nan-
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otechnology, spectroscopy, stochastic thermodynamics, critical Casimir forces,

and active matter.

Keywords: Optical trapping, optical manipulation, T-matrix, spectroscopic

tweezers, critical Casimir forces, active matter

1. Introduction

Mechanical effects of light are known since Kepler’s explanation of comets

tail [1]. The advent of the laser has brought to novel concepts and applications

of optical forces yielding a real scientific revolution [2, 3, 4]. Optical tweezers [5]

(OT), in their simplest configuration, are instruments based on a tightly focused5

laser beam that is capable to trap and manipulate a wide range of particles in

its focal spot [6]. Since their first demonstration in 1986 by Sir Arthur Ashkin

[5], they have become a key technique for the trapping, manipulation, and char-

acterisation of atoms [7], microscopic [8, 9] and nanoscopic particles [10], as well

as biomolecules, viruses, bacteria and cells [11, 12, 13]. When used as a force10

transducer, optical tweezers are able to measure forces in the femtonewton range

[6, 10]. The concept of photonic force microscopy has been also developed by

scanning a trapped particle over surfaces in a liquid environment and sensing

the force interaction between trapped probe and surface [14, 15].

Despite the tremendous progress in optical trapping techniques, the devel-15

opment of an accurate theoretical modeling for optical tweezers has been slower

and often based on approximations [6]. In the limiting cases of spherical parti-

cles either much smaller (dipole approximation) [16] or much larger (ray optics

approximation) [17] than the trapping wavelength, the force in optical tweezers

separates into two different contributions: a conservative gradient force, pro-20

portional to the light intensity gradient, responsible for trapping, that can be

related to an effective potential, and a non-conservative scattering force, that has

a dissipative nature, cannot be related to an effective potential, is proportional

to the light intensity and is generally detrimental for trapping, but fundamental

for optical manipulation and laser cooling [6, 10]. However, for non-spherical25
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particles or at intermediate (meso)scales, the situation is more complex and

this traditional identification of gradient and scattering force is more elusive

[18]. Moreover, shape and composition can have dramatic consequences for the

dynamics of optically trapped particles [10, 19, 20, 21].

Here, we first give a review on the theory of optical forces and optical trap-30

ping with a focus on modeling optical tweezers with T-matrix methods. Then

we discuss some of the most common experimental implementation and methods

for optical force calibration. Finally, we discuss a selection of recent applica-

tions in biology, nanotechnology, spectroscopy, critical Casimir forces, stochastic

thermodynamics, and active matter.35

2. Optical forces and optical tweezers

Optical trapping of particles is a consequence of the radiation force that

stems from the conservation of electromagnetic momentum upon scattering

[6, 22]. Historically, the theoretical understanding of this physical process has

been investigated through the use of suitable approximations that depend on the40

size of the particle with respect to the light wavelength [4]. While calculations

based on a full electromagnetic theory and the integration of the Maxwell stress

tensor [6] can be rather complex and computationally intensive, exploiting ap-

proximations can be an advantage, e.g., when combining optical force modeling

with stochastic simulations [23, 24].45

For calculating optical forces acting on spherical or quasi-spherical particles,

it is customary to identify several regimes which depend on the particle size

[6]. For each regime, simplifications and approximations have been made for a

better and more quantitative understanding and calculation of optical forces.

The size parameter, x = kma, is crucially used to determine the range of va-50

lidity of these approximations, where km = 2πnm/λ0 is the light wavenumber

in the medium surrounding the particle, a is the particle radius, λ0 is the laser

wavelength in vacuum used for trapping and nm is the refractive index of the

surrounding dielectric, non-magnetic, non-absorbing medium. When the parti-
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cle size is much bigger than the wavelength of the laser beam, that is x � 1,55

optical trapping forces can be calculated with the ray optics approximation [25].

The accuracy of this approximation increases with the size parameter, whereas

electromagnetic scattering theories might become unpractical due to increasing

computational complexity. This makes ray optics very useful when dealing with

large particles. However, we note that ray optics is approximate by definition60

as it ignores the information on the phase of the incident electromagnetic wave

and all related interference effects [26]. Thus, the lower size limit of validity is

often dependent on the computed quantity [27, 28, 29]. If the size of the particle

is much smaller than λ0 (x � 1), we can adopt the dipole approximation and

consider the particle as a dipole [30, 16, 31]. This means we are considering65

the electromagnetic fields homogeneous inside the particle under the condition

|np/nm|x � 1, where np is the refractive index of the particle. This condition

has to be considered with care when dealing with high refractive index dielectric

particles (e.g., silicon) or noble metal (e.g., gold, silver) nanoparticles, where

the presence of plasmonic resonances dominate the optical response [32]. In the70

intermediate regime, that is when the particle size is comparable with the light

wavelength (x ' 1) or for highly non-spherical or non-homogeneous particles,

we need a complete wave-optical modeling of the particle-light interaction to

calculate the trapping forces and different methods can be considered [6].

2.1. Ray optics75

In the ray optics regime [17] the optical field is described by considering it

as a collection of N light rays and employing the tools of geometrical optics [6].

Each ray carries with it a portion of the incident power, Pi, so that the total

power is Pi = N
∑

m P
(m)
i , and a linear momentum per second nmP

(m)
i /c. When

a ray impinges on a surface with an incident angle θi, it will be partly reflected80

and partly transmitted with a transmitted angle θt, according to the Snell’s

law [33]. As a consequence of energy conservation, the power is split between

the reflected and transmitted part of the ray following Fresnel coefficients [23].

Moreover, at each scattering event, the ray changes its direction and hence its

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

momentum change causes a reaction force on the center of mass of the particle.85

Most of the power carried by the incident ray is delivered to the transmitted ray

that travels inside the particle until it impinges on the opposite surface. Here it

will be reflected and transmitted again and a large portion of the power will be

transmitted outside the sphere. The process will continue until all light escapes

from the sphere.90

In general, if more than one ray interacts with a particle, the total force

is given by the sum of the forces generated by the reflection and refraction of

each ray. For simplicity we consider in the following a highly focused laser

beam impinging on a spherical particle. To calculate the optical force of the

focused beam, we model it as a set of many rays that converge at a very large95

angle in the focal spot. Thus, we need to sum up all force contributions, F(m)
ray ,

associated to the reflection and transmission of each m-th ray with power P
(m)
i

in the direction r̂
(m)
i forming the beam. Thus, the total force acting on the

centre of mass of the sphere is FGO =
∑
m F(m)

ray , and more explicitly [6, 23]:

FGO =
∑

m


nmP

(m)
i

c
r̂

(m)
i − nmP

(m)
r

c
r̂

(m)
r,0 −

+∞∑

j=1

npP
(m)
t,j

c
r̂

(m)
t,j


 . (1)

where r̂
(m)
r,0 , P

(m)
r and r̂

(m)
t,j , P

(m)
t,j are the unit vector and power in the direction100

of the reflected 0-ray and the transmitted j-th ones, respectively. Each optical

force, associated with the m-th ray, has components only in the incidence plane

and can be split in two perpendicular components (note that this is valid only

for spheres). The component in the direction of the incoming ray represents the

scattering force that pushes the particle away from the center of the trap. The105

component perpendicular to the incoming ray is the gradient force, that pulls

the particle towards the optical axis when nm < np. Instead, if nm > np the

particle is pushed away from the high intensity focal region and different optical

trapping strategies must be used [34]. It is often useful to define the dimension-

less quantities (trapping efficiencies) obtained dividing these force components110

by nmP
(m)
i /c, that quantify how efficiently the momentum is transferred from
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the ray to the particle.

For a single-beam optical tweezers, the focused rays will generate a restoring

force proportional to the particle’s displacement from an equilibrium point,

that is for small displacements optical trapping can be modeled as an harmonic115

response. Due to the scattering force, the particle is displaced away from the

focal point to an equilibrium position Ceq = [xeq, yeq, zeq]. Thus, for small

displacements optical trapping forces are approximated as Hookean restoring

forces, i.e., Fx ≈ −κx(x − xeq), that can be related to an effective harmonic

potential with trap stiffnesses κx, κy and κz.120

A ray optics approach can be employed to study more complex particle

shapes as long as the characteristic particle dimensions are much larger than

the wavelength. For non-spherical particles two main differences occur. First,

an optical torque can be generated from the difference between the angular

momentum carried by the incoming rays and the outgoing rays with respect to125

the particle center-of-mass [6]. This shape-dependent optical torque can yield

alignment [35] or rotation [36] of the particle. The second difference is the

occurrence of a transverse component of the radiation pressure, i.e., a set of

parallel rays on a non-spherical particle can produce a force transverse to the

incident light propagation direction, yielding an optical lift effect [37].130

2.2. Dipole approximation

When the particle size parameter is small, x� 1, optical trapping forces can

be calculated exploiting a dipole approximation, i.e., the particle can be approx-

imated as a small induced dipole immersed in an electromagnetic field E(r, t),

which can be considered homogeneous inside the particle (x|np/nm| � 1) [30].135

An induced dipole is thus generated and experiences electrostatic forces arising

from its interaction with the inducing electric field. Consequently, an oscillating

electromagnetic field, such as that of the laser beam used for an optical tweez-

ers, induces an oscillating dipole, which also experiences forces arising from its

interaction with the inducing electromagnetic field. Furthermore, an oscillating140

dipole radiates an electromagnetic field that can produce a mechanical effect on

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

other induced dipoles leading to, in some cases, optical binding [38].

This picture can be extended to a small particle, so that if the external field

is not too large, the induced dipole moment, p(r, t), can be expressed in terms

of a linear complex polarizability, αp, with respect to the surrounding medium,

given by [39]:

αp = α0

(
1− ik

3
mα0

6πεm

)−1

(2)

with εm dielectric permittivity of the medium and α0 being the static Clausius-

Mossotti polarizability, α0 = 3V εm (εp − εm) / (εp + 2εm), where V is the par-

ticle volume and εp dielectric permittivity of the particle.145

The polarizability in the dipole regime is linked to the cross-sections. In fact,

the light-particle interaction, including optical forces, can be described in terms

of extinction, σext, scattering, σscat, and absorption, σabs = σext − σscat. For a

small particle of polarizability αp, we can write the extinction and scattering

cross-sections as [6]:150

σext,d =
km

εm
={αp}, σscat,d =

k4
m

6πε2
m

|αp|2. (3)

Thus, we can consider the time-averaged optical force experienced by a small

particle when illuminated by a time-varying electromagnetic field [16, 31, 40]:

〈F〉DA =
1

2
<
{∑

i

αpEi∇E∗i

}
. (4)

where Ei are the electric field components. Starting from this expression, one

can explicitly write the optical force in terms of extinction cross-section and

particle’s polarizability [16, 31, 40, 41, 42]:155

〈F〉DA =
1

2

nm

cεm
<{αp}∇I(r) +

nm

c
σext〈S〉 −

1

2
cnmσext∇× 〈s〉 (5)

where I(r) = 1
2nmc|E(r)|2 is the intensity of the electric field, 〈S〉 = 1

2<{E×H∗}
is the time-averaged Poynting vector of the incoming wave and 〈s〉 = i εm2ωE×E∗

is the time-averaged spin angular momentum density [40, 41, 42].
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The first term in Eq. (5) represents the gradient force and is responsible for

particle confinement in optical tweezers. Arising from the potential energy of a

dipole immersed in the electric field, it is conservative. Particles with a positive

<{αp} will be attracted toward the high intensity region of the optical field.

Conversely, when the real part of the polarizability is negative the particles are

repelled by the high intensity region. As an example, for an incident paraxial

laser beam with a typical Gaussian intensity profile which propagates along the

z axis, the trap stiffnesses κG,ρ in the polarisation plane and κG,z along the

direction of propagation related to the gradient force are [43]:

κG,ρ = 2
<{αp}
cnm

I0
w2

0

, κG,z =
<{αp}
cnm

I0
z2

0

. (6)

where I0 is the maximum intensity at the center of the beam, w0 is the Gaussian

beam waist and z0 is the beam Rayleigh range[6].160

The second term in Eq. (5) is the scattering force. It is responsible for the

radiation pressure and is non-conservative. Furthermore, it is directed along

the propagation direction of the laser beam [3]. The last term in Eq. (5) is a

spin-dependent force [40, 41]. This term is also non-conservative and dependent

on the extinction cross-section. It can be generated by polarisation gradients in165

the electromagnetic field, but usually does not play a major role in optical trap-

ping because it is either zero or very small compared to the other contributions.

However, it may play a more significant role when considering optical trapping

with optical beams of higher order with inhomogeneous polarisation patterns

such as cylindrical vector beams [44, 45, 46] or superpositions of circularly po-170

larised Hermite-Gauss beams [47]. Note that the time-averaged Poynting vector

can be decomposed into the sum of an orbital and spin momentum density [48]

and hence the non-conservative optical forces are related to the orbital compo-

nent of the field momentum directed as the local wavevector [40, 49]. Thus,

spin-dependent optical forces occur when the Poynting vector is not directed as175

the local wavevector and a transverse spin-dependent force component occurs

[50, 51].
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2.3. Electromagnetic theory and modeling

Particles illuminated by a radiation field experience a radiation force Frad

and torque Γrad, which contribute to determining their dynamical behaviour.180

Since the interaction between radiation and matter is regulated by conservation

laws, it is possible to derive Frad and Γrad using the conservation of linear and

angular momentum. So, the time-averaging optical force and torque exerted by

a monochromatic light on a particle is given by [22, 52, 53, 54]:

Frad =

∮

S

n̂ · 〈TM〉 dS , Γrad = −
∮

S

(〈TM〉 × r) · n̂ dS (7)

where the integration is carried out over the surface S surrounding the scattering185

particle, n̂ is the outward normal unit vector, r is the vector position, and 〈TM〉
is the averaged Maxwell stress tensor which describes the mechanical interaction

of light with matter [55]. The general expression of the Maxwell stress tensor

in a medium in the Minkowski form [6] can be simplified since we consider

always harmonic fields, at angular frequency ω in a homogeneous, linear, and190

non-dispersive medium. In fact, writing the real physical fields, e.g. E(r, t) =

<
{
E(r)e−iωt

}
, in terms of the complex amplitudes, e.g. E = E(r), the averaged

Maxwell stress tensor simplifies as [6, 18]:

〈TM〉 =
εm

2
<
{

E⊗E∗ +
c2

n2
m

B⊗B∗ − 1

2

(
|E|2 +

c2

n2
m

|B|2
)
I

}
(8)

where the fields, E = Ei + Es and B = Bi + Bs, are the total electric and

magnetic fields, superposition of the incident (Ei,Bi) and scattered (Es,Bs)195

fields and I is the dyadic unit.

Several techniques have been proposed for computing electromagnetic scat-

tering by non spherical particles and actually there is no single universal method

that provides the best results in all cases. Depending on the specific particle

parameters, one particular technique may prove to be the most appropriate200

in terms of efficiency, accuracy, and applicability [26]. While a comprehensive

overview of numerical methods for optical tweezers it is beyond the scope of this

work, some cover of the topic can be found elsewhere [56, 57, 58, 59]. Here we

10
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give a very brief description of some common computational methods that have

been applied to the modeling of optical trapping of irregular shaped particles,205

such as discrete dipole approximation [60, 61] (DDA), finite-difference time-

domain [62, 63] (FDTD), and we focus our attention to transition (T-)matrix

[64] methods with some notes on the connection with generalised Lorenz-Mie

theories [65] (GLMTs).

The DDA is a finite element method originally devised by Purcell and Penny-210

packer [66] and later improved by Draine and Flatau [67]. In the DDA method,

a particle is split into a series of dipoles, each of which interacts with the inci-

dent electromagnetic wave and with the electromagnetic waves re-radiated by

all the other dipoles [60, 61]. DDA methods have been applied successfully to

optical tweezers modeling of both single-beam optical trapping of non-spherical215

particles [68] and holographic multiple trapping of complex shaped structures

[69, 70]. The FDTD, instead, is based on the numerical integration of the

Maxwell equations in the time domain [62, 63]. The electric and magnetic fields

are sampled at discrete times and positions and, therefore, do not assume a har-

monic time-dependence. Applications of FDTD to optical trapping problems220

have been explored for single-beam [71] and holographic [72] optical tweezers.

More recently, finite elements methods have been also used to model optical

trapping by near-field and plasmonic structures [73, 74]. The DDA and FTDT

methods, although more computationally intensive than T-matrix or GLMT,

can be readily applied to particles of any shape and composition, and to any225

light field configuration.

T-matrix [64] methods have been widely used in optical tweezers modeling.

They are particularly suitable to describe optical trapping of composite and

arbitrary-shaped particles. Such approach provides a compact formalism based

on the multipole expansion of the fields suitable for dealing with scatterers of230

(almost) arbitrary morphology [22, 26], e.g., aggregates of spheres or clusters

[75, 76, 18, 19], plasmonic particles [77, 78, 79], stratified spheres [80, 81], and

spheres with internal aggregation (spheres within spheres) [22, 82]. The T-

matrix approach has been widely used for rigorously computing electromagnetic

11
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scattering by single and composite particles. It yields a computational procedure235

computationally less intensive than those required by finite elements methods.

Moreover, the transformation properties[75, 83, 84, 85, 26] under rotation and

translation of the T-matrix make it possible several simplifications in optical

force calculations as it requires the T-matrix to be computed only once, with

respect to the particle reference frame thus saving much computational time.240

For spherical particles, accurate modeling of optical tweezers can be obtained

by generalizing Mie theory [86] through the so-called generalised Lorenz-Mie

theories (GLMTs). In this approach a generic laser beam is expanded on a

base of functions, e.g., vector spherical harmonics, and the scattering problem

is solved for spheres, so that separation of variables can be used to get the245

expansion coefficients of the scattered fields [65, 87]. The precise connection

between the T-matrix formulation and GLMTs can be found in [88], while a

description of the use of GLMTs for calculations in optical tweezers can be

found, e.g., in [89, 90, 91, 92, 93].

2.4. T-matrix methods250

In order to calculate radiation forces and torques acting on an optically

trapped particle through Eqs. (7), we give as an example a description of a

T-matrix approach [18]. For simplicity we consider a generic non-magnetic

(µ = 1) particle with refractive index np in a medium of refractive index nm

illuminated by an incident field Ei(r) (the case µ 6= 1 can be treated con-255

sidering the corresponding multipole expansion of the magnetic fields). The

scattered electric field is Es(r), so that the total electric field outside the parti-

cle is E(r) = Ei(r) + Es(r), while inside the particle is Ep(r). The key point of

T-matrix methods is the expansion of the fields into a basis of vector spherical

harmonics and the consequent application of the boundary conditions across the260

particle surface [22, 26]. The incident, Ei(r), and internal, Ep(r), fields have to

be regular at the origin (fixed inside the scattering particle). Thus, they can

be expanded in J-multipoles that are a combination of vector spherical har-

monics whose radial function is a spherical Bessel function, jl(kr), ensuring the

12
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finiteness at the origin [6, 22], e.g.:265

Ei(r, r̂) = E0

∑

p=1,2

∑

lm

W
(p)
i,lmJ

(p)
lm (kr, r̂). (9)

where E0 is the field amplitude, W
(p)
i,lm are expansion coefficients, the label p is

referred to the multipolar components of magnetic (p = 1) and electric (p = 2)

nature and it is linked with parity [83]. In analogy to the incident and internal

fields, the scattered wave is expanded in H-multipoles, whose radial function is

a spherical Hankel function, hl(kr), of the first kind because the scattered field270

has to satisfy the radiation condition at infinity [94]:

Es(r, r̂) = E0

∑

p=1,2

∑

lm

A
(p)
s,lmH

(p)
lm (kmr, r̂), (10)

where A
(p)
s,lm are the amplitudes of the scattered fields which are determined by

imposing the boundary conditions across the surface of the particle. In general,

they depend on the orientation of the scattering particle with respect to the

incident field. The multipole expansion of the normalized scattering amplitude275

is obtained by taking the limit of the H-multipole fields for kr →∞ from which

the asymptotic form of the scattered field is obtained [22].

The T-matrix of the scattering particle is the operator that, acting on the

known multipole amplitudes of the incident field W
(p)
i,lm, gives the amplitudes

of the scattered field, A
(p)
s,lm. Because of the linearity of Maxwell’s equations280

and of the boundary conditions, the T-matrix is a linear operator, T , so that

Es = T Ei. Consequently, if both Ei and Es are expanded on suitable bases,

T relates the coefficients of such expansions, encompassing all the information

on the morphology and orientation of the particle with respect to the incident

field [64]. The transition matrix T = {T (p′p)
l′m′lm} of the scattering particle acts on285

the known multipole amplitudes of the incident field W
(p)
i,lm to give the unknown

amplitudes of the scattered field A
(p′)
s,l′m′ , i.e.,

A
(p′)
s,ηl′m′ =

∑

plm

T
(p′p)
l′m′lm W

(p)
i,ηlm. (11)
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The quantities T
(p′p)
l′m′lm take into account the morphology of the particle, but

are independent of the state of polarisation of the incident field. Therefore,

Eq. (11) holds true whatever the polarisation and it relates the basis-polarised290

amplitudes of the incident and of the scattered field.

The special case of a homogeneous sphere (Mie theory) of radius a yield a

diagonal T-matrix, independent of m, whose coefficients are linked to the Mie

coefficients, al = −A(2)
s,lm/W

(2)
i,lm and bl = −A(1)

s,lm/W
(1)
i,lm [22].

By substituting the expansions of the incident [Eq. (9)] and scattered waves295

[Eq. (10)] in terms of multipoles taken in the asymptotic limit (r → ∞), the

general expression for the radiation force along the direction of a unit vector û,

i.e., Frad(û) = Frad · û can be obtained [18]:

Frad(û) = −εmE
2
0

2k2
m

<




∑

plm

∑

p′l′m′

il−l
′
I

(pp′)
lml′m′(û)

[
A

(p)∗
s,lmA

(p′)
s,l′m′ +W

(p)∗
i,lmA

(p′)
s,l′m′

]


 ,

(12)

where the integrals I
(pp′)
lml′m′(û) can be expressed in closed form in terms of

spherical harmonics [18]. Note how the force expressed by Eq. (12) can be

separated into two parts related to extinction and scattering terms, Frad(û) =

Fext(û)− Fscat(û), where:

Fext(û) = −εmE
2
0

2k2
m

<




∑

plm

∑

p′l′m′

W
(p)∗
i,lmA

(p′)
s,l′m′i

l−l′I(pp′)
lml′m′(û)



 (13)

and

Fscat(û) =
εmE

2
0

2k2
m

<




∑

plm

∑

p′l′m′

A
(p)∗
s,lmA

(p′)
s,l′m′i

l−l′I(pp′)
lml′m′(û)



 . (14)

Fext(û) depends both on A
(p)
s,lm and on the amplitudes W

(p)
i,lm of the incident300

field, while Fscat(û) depends on the amplitudes A
(p)
s,lm of the scattered field only.

The subscript are used since this dependence is analogous to that on the ex-

tinction and scattering cross sections for the force exerted by a plane wave on

a sphere [52]. In fact, the generic expressions for the radiation force are valid
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for any scatterer and for any direction of the incident field. In the particular305

case of a linearly polarised plane wave that impinges on a spherical particle, the

radiation force is simplified as [52]:

Frad =
nm

c
I0

[
σextk̂i −

∮

Ω

dσscat

dΩ
r̂dΩ

]
, (15)

in which σext and dσscat/dΩ are the extinction and differential cross-sections,

respectively, that can be expressed in terms of Mie coefficients [6], I0 is the

intensity and k̂i is the propagation direction of the incident plane wave.310

A similar procedure can be followed for the expression of the torque that

can be split into extinction and scattering terms [95, 96]. Thus, for the axial

z-component, Γrad,z = Γrad · ẑ = Γext,z − Γscat,z., we have that:

Γrad,z = −εmE
2
0

2k3
m

∑

plm

mRe
{
W

(p)
i,lmA

(p)∗
s,lm

}

︸ ︷︷ ︸
extinction

− εmE
2
0

2k3
m

∑

plm

m|A(p)
s,lm|2

︸ ︷︷ ︸
scattering

, (16)

where we have explicitly distinguished the extinction and scattering contribu-

tions. This relation obtained by Borghese et al. [95, 96] is a generalisation of the315

result obtained by Marston and Crichton [97] for a spherical particle illuminated

by a circularly polarised plane wave, for which the longitudinal component of

the torque is simply proportional to the absorption cross section, σabs:

Γrad,z = ±I0
ω

(σext − σscat) = ±I0
ω
σabs (17)

where the ± sign is related to left-handed of right-handed helicity of the inci-

dent circularly polarised light, respectively. The transverse components of the320

radiation torque, i.e., Γrad,x = Γrad · x̂ and Γrad,y = Γrad · ŷ, can be calculated
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in a similar way [6, 95], obtaining:

Γrad,x =−εmE
2
0

4k3
m

∑

plm

<
{
s

(−)
lm W

(p)
i,l,m+1A

(p)∗
s,lm + s

(+)
lm W

(p)
i,l,m−1A

(p)∗
s,lm

}

︸ ︷︷ ︸
extinction

− εmE
2
0

4k3
m

∑

plm

<
{
s

(−)
lm A

(p)
s,l,m+1A

(p)∗
s,lm + s

(+)
lm A

(p)
s,l,m−1A

(p)∗
s,lm

}

︸ ︷︷ ︸
scattering

(18)

and

Γrad,y =−εmE
2
0

4k3
m

∑

plm

=
{
−s(−)

lm W
(p)
i,l,m+1A

(p)∗
s,lm + s

(+)
lm W

(p)
i,l,m−1A

(p)∗
s,lm

}

︸ ︷︷ ︸
extinction

− εmE
2
0

4k3
m

∑

plm

=
{
−s(−)

lm A
(p)
s,l,m+1A

(p)∗
s,lm + s

(+)
lm A

(p)
s,l,m−1A

(p)∗
s,lm

}

︸ ︷︷ ︸
scattering

(19)

where s
(−)
lm =

√
(l −m)(l + 1 +m) and s

(+)
lm =

√
(l +m)(l + 1−m).

2.5. Focused fields325

Finally, to calculate the radiation forces in an optical tweezers we need to

consider the multipole amplitudes W̃
(p)
i,lm of a highly focused beam. The ex-

pansion of a focused beam around the focal point is obtained by exploiting the

angular spectrum representation [6, 18, 90]:

Ef(x, y, z) =
iktfe

−iktf

2π

θmax∫

0

sin θ

2π∫

0

Eff,t(θ, ϕ)ei[kt,xx+kt,yy]eikt,zz dϕ dθ , (20)

in which f is the focal length, kt is the wavenumber transmitted through the

objective lens, and each transmitted plane wave, Eff,t(θ, ϕ), can be expanded

into multipoles according to Eq. (9). Therefore, the amplitudes of the focused

field are:

W̃
(p)
i,lm(P) =

iktfe
−iktf

2π

θmax∫

0

sin θ

2π∫

0

Ei(θ, ϕ) W
(p)
i,lm(k̂i, êi) e

ikt·P dϕ dθ, (21)
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where the centre around which the expansion is performed is considered dis-

placed by P with respect to the focal point O and the amplitudes W̃
(p)
i,lm(P)

define the focal fields and can be numerically calculated once the characteristics

of the optical system are known. The expression for the radiation force along the

direction of a unit vector û, i.e., Frad(û) = Frad · û can be obtained through the330

knowledge of the scattered amplitudes Ã
(p)
s,lm related to the incident focal fields

through the particle T-matrix [Eqs. (11)]. In practice, the expression of the

optical force in the focal region is obtained from the correspondent one for the

plane wave, Eq. (12), by changing E0W
(p)
i,lm → W̃

(p)
i,lm(P) and E0A

(p)
s,lm → Ã

(p)
s,lm

[18].335

2.6. Size scaling in optical trapping for spherical particles

As application of the T-Matrix approach we investigate the size scaling of

the optical trapping for non-absorbing polystyrene spheres. Size scaling is a

paradigm of nanoscience [98] as it characterises condensed matter systems for

many applications in the most different research fields [99]. Crucial properties340

of materials and interactions change dramatically with size [100] influencing a

wide variety of technological applications [101]. The size scaling properties of

optical forces help us understand the important features of optical trapping in

a wide size range and their comparison with experiments [102].

Polystyrene spheres are a typical sample used in optical tweezers experiments345

since they are easily purchased in accurate spherical shape and are used as size

standard in microscopy techniques. They are easily functionalized and are well

suited for optical tweezers applications in a biological environment [13]. Thus,

they often represent the standard sample used for optical force calibration in

optical tweezers [6, 102]. The particle refractive index is np(λ0 = 830 nm) = 1.57350

[103]. We fix the wavelength of the linearly polarised trapping laser beam at

λ0 = 830 nm and we consider the particles immersed in water (nm = 1.33). We

consider a Gaussian laser beam focused by an ideal aplanatic lens which does

not absorb and does not produce any aberration. The numerical aperture of

the objective lens is taken as NA= 1.3.355

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

We are interested in the exact calculation of optical forces, related trap

stiffnesses, their scaling with particle size, and comparison with dipole approx-

imation and ray optics calculations. We cover a wide size range with particle

radius ranging from 50 nm up to 1.4 µm. Therefore, the size parameter range is

[0.5− 14.1] and only at the extreme values of the considered interval ray optics360

or dipole approximation calculations are safe to be used. This is indeed the typ-

ical size range of optical tweezers experiments [6]. The direction of propagation

of the beam is taken along z and the polarisation axis along x.

A graph of the calculated strongly focused incident field intensity is provided

in Figs. (1a - 1b - 1c). In these field intensity maps it is evident how the most365

elongated region is along the propagation (axial) direction, z, as expected for

a focused Gaussian beam. Moreover, in the xy plane the linear polarisation of

the incident beam breaks the cylindrical symmetry in the focal plane producing

a tighter spot size along y with respect to the polarisation direction, x. This

has observable consequences also on the symmetry of the optical trap and the370

transverse stiffnesses, κx and κy, particularly when dealing with nanostructures

[10, 104, 20].

Within the T-matrix approach we have computed the (x, y, z) components

of the optical force on the points of a computational grid employed with ap-

propriate resolution. These components are calculated in a micron-sized range,375

[−1.4 µm,1.4 µm], around the paraxial nominal focus of the beam. So, we can

plot the force as a function of particle displacement in each spatial direction,

x, y, z. The trapping position of the particle in the longitudinal (z) direction

is typically offset from the centre of the coordinate system due to the offset of

the optical scattering force. To calculate the transverse force on the particle380

at the equilibrium position, the z (longitudinal) coordinate at which the axial

force vanishes must first be found. The force plots in the transverse directions

(x, y) can then be calculated. It is often convenient to calculate the dimension-

less force efficiencies along the three cartesian directions, Qi = cFi/nmP with

i = x, y, z. In Fig. (1d) we show them as calculated for a polystyrene sphere385

with radius a = 300 nm. The graphs present a relative maximum and minimum
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Figure 1: The figures (a), (b) and (c) are maps of the focused field intensity normalized to

the field entering the objective lens in the xy (a), xz (b), and yz (c) planes. We have

considered a strongly focused field (NA = 1.3) that is linearly polarised along x and

propagates along the z direction. Therefore, in the xy plane the cylindrical symmetry of the

intensity map is broken by the polarisation, while in xz and yz planes the shape of the field

appears elongated because of the beam propagation. With this incoming field, in the figure

(d), the trapping efficiencies (Qx, Qy , Qz) for a polystyrene (np = 1.57) sphere (radius of

300 nm) immersed in water (nm = 1.33) are graphed in the transverse x, y (black and blue

lines respectively) and longitudinal z (red line and dots) directions, as function of the

particle displacement from the nominal paraxial focus. In (e), we compare the trapping

efficiency along x direction for spheres of different radii: 200 nm (magenta line), 300 nm

(blue line), 400 nm (green line) and 600 nm (red line).
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approximately at the particle radius. As expected, it is here at these extremal

points that the greatest restoring force is exerted because the sphere occupies

approximately the entire focal region. To confirm this, we can see the trend

of trap efficiencies as the radius changes, i.e. for Qx, Fig. (1e). Instead, for390

larger dimensions of the particle, the slope of the curves gets smaller around

the equilibrium point. The reason is that for larger particles the volume of

the particle exceeds the interaction volume related with the laser spot, and the

corresponding stiffness tends to zero as the particle radius increases.

In proximity of the equilibrium point the optical force can be linearized as an395

elastic restoring force with negative slope, e.g., Fx ≈ −κxx for the x-direction.

Thus, optical tweezers can be approximated with an effective harmonic potential

with spring constants or trap stiffnesses κx, κy κz. These quantities are of

crucial importance in experiments because represent quantities measured when

performing optical tweezers calibration [105]. In order to calculate the optical400

trap stiffnesses, we simply get the slope of the force-displacement graphs at the

equilibrium position, where the force vanishes. In Figs. (2a - 2b - 2c) we show

the calculated stiffnesses as a function of particle radius, a.

In the three graphs, an absolute maximum is present corresponding to a

radius of a ≈ 300 nm. This is the radius for which the volume of the scatterer405

overlaps the laser spot, optimizing the interaction region[27, 28]. However, the

peak in the axial direction, Fig. (2c), is more depressed than in the transverse

ones, see Figs. (2a - 2b). This is due to the shape of the focal spot shown in

Figs. (1a - 1b - 1c), representing the maps associated with the incident field,

which show a tighter profile in the transverse direction than in the axial one,410

yielding a tighter effective potential and a larger stiffness in x, y with respect

to z. For size larger than the one corresponding to this maximum, the scaling

of the force constants follows a hyperbolic scaling behaviour, κ ∝ a−1, this

is also consistent with calculations in the ray optics approximation [6], blue

lines in Figs. (3a - 3b). Using the T-matrix approach, we can reproduce the415

full electromagnetic theory of optical forces with great precision. In fact, when

particles become larger than the interaction region, we also find the onset of
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Figure 2: Optical trap stiffnesses, κx (a), κy (b), κz (c), for a polystyrene (np = 1.57) sphere

immersed in water (nm = 1.33) in the transverse, x (a) - y (b), and longitudinal z (c)

directions, as a function of the particle radius a. The figures (d) and (e) show respectively

the polarisation anisotropy, κpol, and trap aspect ratio, κar, as a function of a. The radius of

the considered spheres spans in the interval [50 nm - 1400 nm]. The symbols, excluding zero,

are the calculated points by a T-matrix approach.
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Figure 3: Optical trap stiffnesses along the x-direction for a polystyrene (np = 1.57) sphere

immersed in water (nm = 1.33) as a function of the particle radius a. The radius of the

considered spheres spans in the interval [50 nm - 1400 nm]. The black data are obtained

using the T-matrix approach. The red line is, instead, referred to the dipole approximation

calculations considering a diffraction limited Gaussian beam. While the blue line represent

optical trapping calculations in the ray optics approximation. In (a) we show a linear scale

plot, while in (b) we show the same data in logarithmic scale to explicitly follow the size

scaling.
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modulation in the stiffnesses caused by the interference between the different

multipoles [27, 28]. An exhaustive explanation of the interplay between the

multipole interference for mesoscale particles is described by Nieminen et al.420

[29]. In fact, the gradient force from which we obtain the trap stiffnesses appears

to be only weakly affected by this interference and good agreement between T-

matrix and ray optics calculations is found for values of particle size well below

the typical ray optics validity range (x & 50) [27, 28, 29]. Note that this

agreement is not occurring for other relevant quantities such as the scattering425

force where ray optics (that by definition neglects interference effects) fails to

predict its strong variation with size and it only yields an average value [29].

On the other hand, for smaller values, the behaviour of the trap constants

increases with a cubic power law, κ ∝ a3, in agreement with the volumetric

scaling of the particle polarizability in the dipole approximation. As an example,430

in Fig. (3a), we compare the scaling of the transverse stiffness, κx, calculated

with the T-matrix approach, Fig. (2a), with what is analytically obtained by

a dipole approximation and considering a diffraction limited Gaussian beam

spot. In our analytical calculation, the paraxial Gaussian beam waist w0 is

provided by the Abbe criterion [33, 106] so that w0 = 0.5λ0/NA. As shown by435

a logarithmic scale plot in Fig. (3b), the comparison between values calculated

in dipole approximation and T-matrix is very good up to 200 nm. The same

type of comparison and considerations hold for the size scaling of κy and κz.

Such behaviour has been experimentally verified by measuring trap stiffnesses

in a wide range of particle size from nano to the microscale [102].440

Finally, in Figs. (2d - 2e) we represent respectively the polarisation anisotropy,

κpol ≡ 1−κx/κy, and the aspect ratio κar ≡ (κx+κy)/κz. These quantities are

related to both laser beam (polarisation, propagation) and particle properties

(size, shape, asymmetry) and can be easily measured in experiments and linked

to theoretical predictions [102, 104, 20].445
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Figure 4: Scheme of a typical OT setup. Trapping is achieved by a tightly focussed laser

beam using a high-numerical-aperture objective lens (OBJ), which is also used to image the

sample on a camera. The beam produced by the laser source (LS) is enlarged through a

telescope lens system (lenses L1 and L2) to overfill the back aperture of the objective. A

dichroic mirror (DM1) is used to reflect the laser light to the objective and to transmit the

visible light to the camera. The sample is held and moved by a sample holder (SH). Inset (a)

represents the real image of a SiNW optically trapped and aligned along the propagating

axis of the laser beam [20, 107]. When the laser is switched off the SiNW performs Brownian

motion and its alignment is randomized. Scattered and transmitted lights are collected and

overlapped by a condenser lens (C) and projected on a QPD by a second dichroic mirror

(DM2) and a lens (L4). Signals from the QPD are analyzed by a PC in order to calculate

the calibration factors and to reconstruct the 3D Brownian motion of the trapped sample.

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3. Experimental practice

An optical tweezers setup is an ideal tool to trap and manipulate micro and

nanoparticles in liquid solultions with nanometer accuracy and to measure and

apply piconewtonian forces [14]. Experimentally, optical trapping is achieved by

focussing a laser beam to the diffraction limit by an objective lens with a high450

numerical aperture. For this reason optical tweezers setups are usually realized

coupling a laser light source with an optical microscope, where the objective is

also used to image the sample on a camera. An optical tweezers setup can be

based on different kinds of optical microscopes: normal or inverted, commercial

or customized, according to user requirements and budget. Usually, customized455

microscopes have lower costs and a bigger flexibility compared to commercial

ones. Furthermore, more stable traps are obtained using optical tweezers based

on inverted microscopes, because the laser beam is directed upwards and gravity

works in an opposite direction to the radiation pressure. Since the realization

of the first single-beam optical tweezers in 1986 [5], several technologies have460

been developed and merged with optical tweezers to customize setups for several

purposes[105]. Currently, thanks to the new generation of digital sensors it is

possible to investigate phenomena having spatial and time scales not reachable

until few years ago. Liquid crystal displays (LCDs) with high resolution have

been employed as reflective elements in holographic optical tweezers (HOT) to465

shape laser beams. In doing this, it is possible to create and move multiple

traps in real time and to generate vector beams able to carry optical spin and

angular momentum [108]. Furthermore, real time tracking and feedback position

systems are now available [109]. Although there are several kinds of optical

tweezers setups, their principle of operation can be understood by considering470

a standard optical tweezers setup (fig. 4). This is a forward-scattering setup

mounted around an inverted microscope. A laser source generates a collimated

beam, which is expanded by a telescope lens system and reflected by a dichroic

mirror to overfill the back aperture of an oil immersion objective having an high

numerical aperture. The overfilling creates the maximal optical field gradient475
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in the focal spot for a more efficient trapping. The dichroic mirror acts like a

short pass filter, it reflects the laser light and transmits the visible light to a

camera, preventing the saturation of the CMOS detector and allowing the view

of the sample on a monitor. The sample is held and moved by micrometric

translational stage mounted on an inverted microscope. Forward scattered light480

from trapped particle is collected by a condenser and reflected by a dichroic

mirror to a quadrant photo detector (QPD) [6]. Thus, particle tracking and

optical tweezers calibration can be achieved either by video microscopy either

by photonic force microscopy, i.e., by the temporal or frequency analysis of the

light scattered onto the QPD. Digital video microscopy is based on the analysis485

of the images from a digital camera to track the trajectories and displacements

of the imaged objects with a subpixel resolution and a sampling rate depending

on the camera performances [110]. Photonic force microscopy allows to track

the displacements of a single trapped particle, using a photodetector, with a

typical spatial resolution of 0.1 nm and sampling rate above 100 kHz [111].490

3.1. Optical tweezers calibration

The main goal of calibrating an optical tweezers is to determine their trap

stiffness κ and to measure the absolute displacements of the trapped particles.

For small displacements from the equilibrium position (e.g. along x axis), the

trapping potential is considered to be harmonic with a Hookean restoring force495

Fx = −κxx and potential energy Ex = 1
2κxx

2 (we will refer only to the x com-

ponent in order to shorten the notation). In doing this, once the trap stiffness

κx is known, the x component of an external force acting on the particle can

be quantified by measuring the particle displacement x. For spherical particles

measuring these three stiffnesses, κx, κy, κz, fully characterise the optical trap.500

However, this is strictly valid for spherical particles where only translational de-

grees of freedom can be considered. For non-spherical particles optical torque,

polarisation, and angular fluctuations play a role and must be included in the

calibration analysis and the reconstruction of the effective trapping potential

[20, 21, 45, 104, 107, 112] (see for example fig. 5). In fact, the dynamics of505
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Figure 5: Data analysis for a SiNW with a diameter of 10 nm and a length of 3.6 µm. a) x

component of Brownian motion. b) Probability distribution function ρ(x). c) Potential well

profile of the trap U(x). Red lines represents a quadratic fit, from which the trap stiffness κx

can be calculated as fitting parameter.
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non-spherical particles in optical traps can be very complicated due to the oc-

currence of transverse components of the scattering force and optical torques

[54, 56]. For example elongated rod-shaped (e.g. nanowires) or ellipsoidal par-

ticles align with the optical (z-)axis of the trap (see fig. 4) due to the optical

torque and show small angular thermal fluctuations about their stability axis510

that can be measured together with optical aligning torques [20, 104]. More-

over, the translation-rotation coupling in non-spherical particles can yield regu-

lar biased orbital motion that has been the subject of recent experimental and

theoretical investigations [107, 113, 114, 115, 116].

Typical optical tweezers setups, use cameras or photo-detectors to detect515

the motion of trapped particles. In both cases, their measurements units (pixels

and volts) are proportional, by a calibration constant and around the equilib-

rium position, to the absolute particle displacement [6, 117]. There are several

active or passive calibration protocols, but here we briefly discuss only the most

common passive ones as applied to spherical particles: potential analysis, au-520

tocorrelation function analysis, power spectrum and mean square displacement

analysis [6, 117]. The simultaneous application of different calibration methods

is a good check to confirm their consistency and the quality of the acquired ex-

perimental data. Spatial calibration with digital video microscopy is easier than

QPD since it is possible to image directly reference targets having well know525

dimensions to find the conversion factor pixel/µm. Once this factor is known it

is possible to proceed to the force calibration.

Optical potential method.– Considering the Brownian motion of a trapped

particle (fig. 5a) it is possible to calculate its positional distribution functions

ρ(x) (fig. 5b). This can be used to determine the profile of the trapping potential530

U(x) = kBT log ρ(x) (fig. 5c). In doing this, the trap stiffness κx can be

obtained as fit parameter of the potential U(x) (fig. 5c).

Autocorrelation method.– In this case the starting point of the calibration

procedure is the Langevin equation describing displacement x(t) of an optically
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trapped particle in liquid solution [118, 119, 120]:535

m
d2x(t)

dt2
+ γ

dx(t)

dt
+ κxx(t) = Fx(t) (22)

where γ dxdt is the viscous damping term, κxx(t) is the restoring force term, Fx(t)

is a random fluctuating force and γ is the hydrodynamic viscous coefficient

related to the medium viscosity η and to the particle size and shape, which for

spherical particles with radius r becomes γ = 6πηr, according to the Stokes

law. In the low Reynolds number limit, applicable to microparticles suspended540

in water, the system can be considered overdamped and the first term of eq. (22)

can be neglected when compared to the others. In this special case, the particle

motion x(t) can be well described by the overdamped Langevin equation:

dx(t)

dt
+ ωx(t) = ξx(t) (23)

where ξ(t) = F (t)
γ .

This equation can be properly recast to determine the analytic expression of545

Cxx(τ), which is the autocorrelation of the displacement x(t) [6, 117]. In partic-

ular, for a spherical particle Cxx(τ) decays exponentially with a characteristic

time τ dependings on the trap spring constant κx and on the hydrodynamic

drag coefficient γ [121]:

Cxx(τ) = Cxx(0) exp

(
−κx
γ
τ

)
(24)

Since the QPD produces voltage signals Vx(t) = βxx(t) proportional by550

the position calibration factor βx to x(t), the autocorrelation function of the

experimental displacements can be expressed as CVxx(τ) = 〈Vx(t)Vx(t + τ)〉 =

β2
xCxx(τ), where according to the equipartition theorem CVxx(0) = β2

xCxx(0) =

β2
xkBT/kx and the calibration factor βx can be expressed as:

βx =

√
CVxx(0)κx
kBT

(25)
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The experimental autocorrelation function CVxx(τ) can be fitted by eq. (24)555

to obtain the stiffness κx which, together with the experimental value of CVxx(0),

are employed to calculate the calibration factor βx according to the eq. (25).

Power spectrum method.– The power spectral density (PSD) of a signal,

describing how its energy is distributed with frequency, can be also employed to

calibrate optical tweezers. Considering the Fourier transform of the overdamped560

Langeven equation (eq. 23):

−iωx̃(ω) + ωxx̃(ω) = ξ̃x(ω) (26)

where we defined ωx = κx/γ and solved for x̃(ω) = ξ̃x(ω)/(−iω + ωx).

The corresponding power spectrum shows a Lorentzian profile:

Sx(ω) = |x̃(ω)|2 =
2D

ω2 + ω2
x

(27)

where the half-width of the distribution is the relaxation frequency of the trap

ωx. By fitting the power spectrum of the signal, it is possible to obtain the corner

frequency ωx as fit parameter and hence deduce the trap spring constant κx.

Also in this case the power spectrum of the signal from a QPD is proportional

to the power spectrum of the particle fluctuation:

SVx (ω) = β2
xSx(ω) = β2

x

2D

ω2 + ω2
x

(28)

Setting ω = 0 the calibration factor βx can be expressed as:

βx =

√
SVx (0)ω2

x

2D
(29)

Mean square displacement.– This calibration method is based on the analysis

of the mean square displacement (MSD) of the trapped particle: a measure of

the deviation of the particle position from its initial position in a time interval565

τ [122, 117]:

MSDx(τ) = 〈[x(t+ τ)− x(t)]2〉 = 2
kBT

κx

[
1− e−ωx|τ |

]
. (30)

Considering this equation it is possible to notice that MSD(0) = 0, MSD(τ)

presents a transition from a linear growth corresponding to a free diffusion
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behaviour at low short time scale (τ � ω−1
x ) to a plateau value of 2kBTκx

for

τ � ω−1
x , due to the particle confinement at long timescales. Also in this case570

the MSD of the QPD signals is proportional to that of the particle displacements,

MSDV
x (τ) = β2

xMSDx(τ). Combining the relations above and setting τ → ∞
we get MSDV

x (∞) = 2β2
x /

kBT
κx

from which the calibration factor can be calculated as:

βx =

√
MSDV

x (∞)κx
2kBT

(31)

It is noteworthy that all the calibration methods used to calibrate optical575

tweezers based on photodetectors, can be also applied to camera ones, in this

case instead of volt there will be pixel units.

4. Applications

In this section we give an overview of some recent applications of optical

tweezers and optical forces in liquid environment. The contactless manipula-580

tion of particles promotes the use of OT in a wide variety of research fields.

Here, we describe a selection of systems where OT has enabled advances in

biology, microbubbles manipulation, chiral optomechanics, nanotechnology, op-

tical binding, spectroscopy, critical Casimir forces, stochastic thermodynamics,

and active matter.585

4.1. Mechanical properties of red blood cells

Optical tweezers have numerous applications in biological sciences, ranging

from single molecule studies [123, 124] to cell biophysics [125, 126]. In this

section we will consider one particularly successful application, namely the in-

vestigation and determination of the mechanical and elastic properties of red590

blood cells (RBCs). Very early in the history of optical tweezers Ashkin et al.

showed that RBCs (and many other biological species) could be trapped with-

out optical damage using and infra-red laser beam [11]. Subsequent experiments

aimed at determining mechanical properties of RBCs have used both the direct
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trapping method, or applied forces to the cell indirectly using optically trapped595

microbeads bound to the cell as ‘handles’. The first method has the advantage

of simplicity of set-up and sample preparation, in the second calibration of the

applied forces is more straightforward.

Hénon et al. attempted to determine the shear modulus of the RBC mem-

brane by stretching cells using microbead handles in calibrated optical traps [127].600

Experiments were performed on cells in the native bocincave discoid shape, and

cells that were osmotically swollen to a spherical shape, which permitted an ex-

act algebraical solution to the deformation geometry. In both cases for applied

forces below 15 pN a linear (with increasing force) deformation of the cell was

observed, producing a shear modulus of µ = 2.5 ± 0.4 µN · m−1. At higher605

applied forces the cell entered a nonlinear deformation regime. Later, Dao et

al. [128] used the same experimental geometry in a system capable of applying

much higher forces of up to 340 pN. These experiments were complemented by

computed simulations, and suggested that at high applied stress where defor-

mations as large as 50% were observed, the membrane shear modulus could be610

as high as µ = 11.1 µN ·m−1

Bronkhorst et al. showed that optical tweezers could be used to deform a red

blood cell under direct trapping using a line of three optical traps to ‘fold’ the

cell and observe the relaxation time [129]. Later Liao et al. showed that RBCs

could also be stretched under direct trapping, using a single beam that jumped615

rapidly between two locations to grip the cell [130]. As the separation between

the two trap locations was increased the cell was stretched along the line joining

them. In this work the elongation of the cell was explained qualitatively using a

two-dimensional model. Later theoretical work accurately calculated the optical

stress distribution over the surface of an RBC osmotically swollen to adopt a620

spherical shape and its resulting deformation in the dual tweezers stretching

experiment [131]. By solving for the dynamic deformation of the RBC, that

is, accounting for the change in shape and redistribution of optical stress as

the cell deforms towards the stretched state the authors could determine the

membrane mechanical properties (Young’s modulus and shear modulus) before625
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and after treatment with N-ethylmaleimide, which is known to cause a decrease

in cellular deformability. This work was further refined for the RBC in its native

biconcave discoid shape [132]. When predicting the deformation of the RBCs

under optical stress it is necessary to account for both the non-linear [133, 134]

and viscoelastic [135] properties of the cell. By combining optical tweezers630

stretching with Raman spectroscopy, Raj et al. found that at large deformation

the RBC must undergo a structural transformation in order to bear the high

load [136].

An alternative technique for deforming cells using optical forces is the optical

stretcher [137]. Rather than using strongly focused laser beams as is the case635

in optical tweezers, the optical stretcher employs two weakly diverging counter-

propagating beams to trap particles. The distribution of optical stress over the

surface of the trapped object leads to elongation along the beam propagation

axis [137]. When complemented by deformation modelling [138, 139], the optical

stretcher can be used to quantify cell mechanical properties in a high throughput640

manner [140] as the cells flow in a microchannel through the stretching beams

rather than being captured individually in optical tweezers. In some situations,

extreme stretching can give rise to irrecoverable shape changes of the cell into

a so-called “columnar” form [141].

Altered mechanical properties of RBCs has been linked with a number of645

pathological conditions [142, 143], and optical tweezers have been used to test

several of these including malaria (plasmodium falciparum) [144, 145], diabetic

retinopathy [146] and birdshot chorioretinopathy [147]. Similarly optical tweez-

ers have been used to show that the drug Atorvastatin softens the RBC mem-

brane [148].650

4.2. Microbubbles

Optical trapping of gas microbubbles presents additional challenges due to

their buoyancy, and to their refractive index which is lower than the suspending

medium. Due to their low relative refractive index the optical gradient force

acts to repel them from the high intensity part of a laser beam and conse-655
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quently alternative strategies are needed for optical trapping. One possibility

is to use a Laguerre-Gaussian (LG) beam [149] whose annular intensity pro-

file provides transverse confinement of the bubble to the beam’s dark core. In

the vertical direction the position of the bubble is determined by the balance

between optical forces and buoyancy, and so the LG beam does not form a three-660

dimensional optical trap. When implemented in an upright microscope with the

trapping LG beam propagating downwards it is a form of ‘counter-levitation’.

Three-dimensional optical trapping requires the addition of a second counter-

propagating hollow beam [34]. In principle, structured light such as optical

bottle beams [150] can be also used for three-dimensional optical trapping of665

microbubbles.

A second strategy is to use a ‘time-averaged’ optical trap, created by scan-

ning a focussed Gaussian around the circumference of the microbubble. If the

scanning frequency is high enough, that is, if the beam rotates around the bub-

ble faster than it can diffuse away then the bubble remains trapped on the axis670

of rotation [151]. Such a trapping scheme was implemented in an upright mi-

croscope, and the dependence and scaling of the trapping force on the bubble

radius and radius of the trap beam scanning circle has been investigated [152].

A theoretical analysis of the optical forces in this configuration [153] has shown

that that there is a sufficient optical gradient force in all directions to provide675

a restoring force on the bubble, and hence it is a true three-dimensional optical

trap. Indeed, the axial gradient force can be enough to confine a microbubble

in an inverted microscope optical tweezers [154].

Microbubbles are also amenable to trapping using acoustic fields. The com-

bination of acoustic and optical trapping presents a great advantage in the680

differing length scales over which they operate: the acoustic field may be used

for long-range manipulation before an optical trap is used for high-resolution

control of position [155]. The optical and acoustic traps also complement each

other as, once calibrated [156], the optical trap may be used to measure the

acoustic forces on the bubble [157]. Such a system may be used to characterise685

an individual microbubble, and in particular its acoustic reponse, with a view to
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reducing the uncertainies from population averaging [158]. Further applications

of optically trapped of microbubbles include Raman spectroscopy of the gas

enclosed by the bubble [159], measuring the microbubble shell thickness [160],

and positioning the bubble adjacent to cells prior to it being irradiated by ul-690

trasound. The cells may then be damaged or destroyed by the oscillations and

subsequent collapse of the microbubble [161].

4.3. Chiral optical forces.

Chirality derives from the lack of mirror symmetry of an object. A chi-

ral object exists in left- and right-handed version (enantiomers) that cannot695

be superimposed by translations and rotations within the space where they

are embedded. Also circularly polarised light is chiral, with handedness de-

pending on the electric field sense of rotation with respect to the propagation

axis. Besides linear momentum, circularly polarised light may transfer also

spin angular momentum [162]. Recently, several works considered chirality-700

dependent optical forces on small particles aiming at all-optical separation of

enantiomers [163, 164, 165]. The optomechanical interaction of chiral light with

mesoscopic objects has been studied in optical tweezers, giving the opportunity

to investigate the transfer of spin angular momentum to birefringent particles

and observe spin-dependent light-induced rotations [166, 167, 168, 169]. Chiral705

optomechanics on supramolecular chiral particles has been recently investigated

on cholesteric liquid crystals (CLC) [170, 171, 172, 173, 174]. In particular, left-

handed CLC solid microparticles have been synthesized [175], optically trapped,

and chiral rotations observed for the corresponding left-handed circularly po-

larised light [176, 177]. In fact, the left-handed CLC particles behave as chiral710

mirrors, which reflects only left-handed light, while maintaining its handedness

[176]. On the contrary, right-handed light is transmitted unaffected. Due to

the conservation of angular momentum, a reaction torque is transferred from

the circularly polarised trapping beam to the chiral microparticle [176]. In case

of microparticles in the low chirality regime [178], an additional contribution to715

the optical torque due to residual birefringence must be taken into account to
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with radius a = 1.24 µm, immersed in a water–2.6-lutidine critical solution performs

rotations around the trapping beam. The performances of the engine can be tuned by

adjusting the criticality of the mixture via the ambient temperature. At low temperature

(a), the particle is stably trapped. When the temperature increases (b), the particle starts to

rotate around the optical beam (white solid lines trajectories), reaching its maximum value

for a temperature of 26◦ (c) with a very reproducible trajectory. A further increase of the

temperature results in a decrease of the engine rotations and performances (d, e). The white

bars in (e) correspond to 1 µm. Figure adapted from [179]

fully explain the rotation dynamics of trapped CLC particles at variable degree

of ellipticity of the trapping beam [177]. The combination of chiral and optical

retardance properties allows to better control the optomechanics of these mi-

croparticles that open perspectives for the study of chiral optical sorting, laser720

trapping and cooling of chiral mesoscopic particles based on the coupling of their

translational and rotational degrees of freedom, and microcavity optomechanics,

by embedding at the centre of the chiral microparticle a resonant nanoparticle.

4.4. Nanotechnology applications

During the last few decades much effort has gone into the miniaturization725

of machines down to microscopic scales, often inspired by biological systems

[180]. This miniaturization process is crucial for the development of nanotech-

nology [181] and, in this context, optical tweezers are a powerful tool to as-

semble micro- and nanodevices thanks to their ability of contactless manip-

ulation [182, 183, 10]. Moreover, they are capable of applying and detect-730

ing extremely small (femtonewton) forces and torques yielding potential for

driving nanomachines [184, 185, 186, 187]. At the nanoscale, semiconducting

[188, 104, 185, 20, 45, 21], metal [125, 189, 190, 191, 192, 193, 194], and hy-
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brid [81, 78] colloidal particles have been trapped and manipulated opening

novel exciting possibilities for assembly, characterisation and optical control of735

nanodevices and biomolecules [10].

Nanodevices or micro-engines need power to operate and to be controlled. A

solution to this demand can be provided by structured optical beams, carrying

orbital and spin angular momentum (SAM and OAM), generated by holographic

optical tweezers (HOT) or similar techniques [195]. In particular, microrotators740

and micropumps have been realized by transferring SAM and OAM to micropar-

ticles [196, 166, 197, 176, 177].

Another approach to power nanodevices is to emulate the working principles

of heat engines. The nucleation of vapour bubbles inside silicon micro-cavities

has been used to realize several microscopic heat engines with a working vol-745

ume of only 0.6 mm3 [198, 199]. Also, a micro-particle has been employed as

a piston in an optical tweezer, realising a microscopic steam engine powered by

the periodic generation of cavitation bubbles [200]. Microscopic versions of the

Stirling and Carnot cycles have been realized using optically trapped particles

to study their stochastic thermodynamic properties [201, 202]. Recently, a mi-750

croscopic engine powered by the density fluctuations of a critical solution has

also been proposed [179], where a micron-sized particle performs revolutions

around the optical beam when optically trapped in a water-2.6-lutidine critical

mixture. The work performed by this engine is adjustable by the power of opti-

cal trap, the temperature of the environment and the criticality of the mixture755

(Fig. 6)[179].

4.5. Optical binding

Optical binding describes the spontaneous organisation of large numbers of

colloidal particles in an optical field that arises as a result of multiple optical

scattering[38, 203, 204]. It was first observed by Burns et al.[205], who demon-760

strated an optical binding interaction between a pair of particles in a line-shaped

focus by showing that there existed discrete values of the particle’s separation

in the transverse direction where they formed a stable bound pair. This work
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was followed by the observation of a large number of particles that ‘crystallised’

in the interference pattern formed in the transverse plane of the intersection of765

a number of laser beams[206].

The optical binding interaction can be simply understood by considering a

pair of dipoles in an optical field[6]. Consider the case of two dipolar particles

arranged parallel to the propagation direction of a laser beam. The first dipole

scatters radiation, and the scattered field propagates in the forward direction to770

impinge on the second dipole but with a fixed phase difference with the incident

field. The net effect is to modify the magnitude of the scattering force in the

forward direction, but as the phase difference between the two fields is constant

the force does not change sign, both particles are pushed in the same direction

and the first tends to catch up with the second. Now, if we consider the fields775

impinging on the first particle, these are the incident field and the fields that is

backscattered by the second particle. The phase difference between these fields

depends on the relative separation of the particles, and hence the force between

the particles oscillated with a change of sign with a period of half the optical

wavelength. This gives rise to the observed optical binding interaction and the780

existence of stable inter-particle separations.

Optical binding may be realised experimentally in a number of configura-

tions. The original experiments of Burns et al.[205, 206] used shaped optical

fields to produce optical binding in the transverse plane. Longitudinal optical

binding can be realised with counter-propagating free-space beams, for example,785

emerging from a pair of optical fibres [207, 208], or with counter-propagating

evanescent fields [209, 210]. The evanescent field may be generated by a weakly

focusing a laser beam onto an interface at an angle just greater than the crit-

ical angle for total internal reflection. When the radiation pressure from this

beam is balanced by a counter-propagating beam a variety of optically bound790

structures form that depend on the optical fields configuration and the particle

size and optical properties [209, 211]. In such experiments video tracking of

the Brownian motion of the particles in the optically bound structure provides

a powerful technique for evaluating the optical forces and structure form and
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dynamics [212, 213].795

An alternative method for creating an evanescent field is to use a waveguide

with suitably small dimensions. This scheme was first demonstrated using a

channel waveguide in a planar surface, the evanescent field of which can trap

and propel micropaticles [214, 215]. More recently a tapered optical fibre scheme

has been demonstrated for unidirectional transport using a single beam [216,800

217], and stable trapping using counter-propagating beams [218, 219]. Tapered

optical fibres are fabricated from standard fibre using a ‘heat-and-pull’ tech-

nique [220] to draw the fibre to micron- or sub-micron dimensions, at which

scale the majorit of optical power is carried in the evanescent field that ex-

tend into the region surrounding the fibre [221]. The high degree of control805

that can be exerted over the tapering process permits selective excitation of

higher modes of the fibre and an extra degree of control over the trapping and

binding [222, 223].

The optical binding phenomenon is not limited to dielectric particles: opti-

cal binding of silver [224] and gold [225] has been observed, with a plasmonic810

enhancement of binding forces. Nor is it limited to spherical particles: bind-

ing of rod-shaped particles (carbon nanotube bundles) has also been demon-

strated [10]. In this case, similarly to spherical particles, a variety of bound

structures is predicted to occur [226, 227].

4.6. Optical force positioning, aggregation, and spectroscopy.815

As already pointed out, the behaviour of a nanoparticle in the focal spot of a

laser beam is controlled by the balance between the gradient force and the radi-

ation pressure. In ordinary trapping measurements, the radiation pressure must

be minimized, aiming at confining the nanoparticle in the optical trap. However,

several other interesting applications can be developed by exploiting the push-820

ing effect of the radiation pressure. Optical force printing [228, 229, 230, 231]

is one of these applications. The all-optical patterning of surfaces is allowed by

single-beam trapping and subsequent positioning of Au colloids [228]. However,

the process can be improved by directly using the strong axial force acting on
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Figure 7: (a) Sketch of the optical force position and aggregation operation.

Nanorods-protein complexes intercepted by a focussed laser beam are optically pushed

towards the bottom surface of a glass microfluidic chamber. Here they aggregate, yielding

efficient SERS-active clusters. Proteins embedded at the clusters hot spots undergo a strong

local field giving rise to a SERS emission that allows to reach picomolar sensitivity in

biomolecular detection. (b) SERS emission of BSA-NRs complexes increasing as a function

of time during the optical force aggregation process.

a plasmonic nanosphere at resonance wavelengths, which pushes it toward the825

substrate [229, 230, 231]. The use of radiation pressure instead of trapping forces

to guide the particle toward the substrate avoids the constraint on the size of

the plasmonic particle, which to be trapped must be not larger than approxi-

mately 200 nm in diameter [77]. Moreover, by using a Spatial Light Modulator

a laser beam can be split into several beams creating an optical pattern, for830

simultaneous and controlled positioning of nanoparticles on substrates [229].

In this context, it has been shown that surface-enhanced Raman scattering

[79] (SERS)-active aggregates can be created on glass substrates by optical ma-

nipulation of gold nanorods (AuNRs) in a liquid environment [232, 233] contain-

ing biomolecules. In fact, due to their very large extinction cross-sections, these835

AuNRs cannot be optically trapped with visible wavelengths [232]. However,

they can be pushed towards the sample chamber glass walls where they aggre-

gate and form hot-spots on which the Raman spectrum of diluted biomolecules

can be strongly enhanced. This method combines the great advantage of op-
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tical force printing with the capability of spectroscopic detection of molecules840

directly in liquid environment, which is the ideal condition for bio-inspired re-

search. A number of biomolecules have been studied. First measurements fo-

cused on Bovine Serum Albumin (BSA) molecule, for which the Raman limit

of detection (LOD) in water has been lowered from 10−3 M to 5× 10−8 M

[233]. Another protein, hemoglobin, has been detected at concentrations as low845

as 1 pM [232], well below the SERS LOD of approximately 100 nM. Results

on amino-acids such as phenylalanine [232] and enzymes such as lysozime [232]

and catalase [233] have been also reported [232]. This molecular detection tech-

nique can be also made protein-selective by functionalizing the AuNRs with

aptamers, which capture a target biomolecule. Proof-of-concept results have850

been obtained with ochratoxin A [233], a nephrotic mycotoxin which may con-

taminate food commodities and wine representing potential public health risk.

With this methodology, the toxin has been detected in liquid environment at

concentrations as low as 1 µM [233].

Optical positioning of AuNRs is particularly interesting because it is a low855

cost alternative to much more complex litographic techniques. As a further

advantage, it allows an easy and fast way to decorate with metallic parti-

cles also not flat substrates, such as three dimensional micro- and nanostruc-

tures obtained with direct laser writing by two-photon photopolymerization

(TPP)[234, 235, 236, 237, 238, 239, 240, 241, 242], opening the way to the re-860

alization of hybrid metal-polymer devices such as, for example, spectroscopic

probes and sensors.

Optical positioning is not limited to plasmonic particles. Optical forces have

been used to manipulate nanosheets [21] of hexagonal boron nitride (h-BN),

molibdenum disulfide (MoS2) and tungsten disulfide (WS2) obtained by liquid865

phase exfoliation (LPE). Whereas the weakly absorbing h-BN can be optically

trapped, allowing the all-optical measurement of the mean flake size directly in

liquid environment, the strongly absorbing MoS2 and WS2 nanosheets cannot

be confined in the optical trap, due to overwhelming contribution of radiation

pressure on gradient force. Thanks to the consequent optical pushing effect,870

41



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

these nanosheets can be used, in association with BSA, to pattern a common

microscope slide, without any special surface pre-treatment, in relatively short

times (minutes) and directly in liquid environment [21]. Possible applications

concern the realization of nanosheet-based devices of interest in photonics [243],

optoelectronics [244], and energy storage [245], or of van der Waals heterostruc-875

tures [246] in which nanosheets of different composition can be stacked on top

of each other.

4.7. Critical Casimir Forces

The miniaturisation of devices and machines down to the microscopic and

nanoscopic scale involves also forces in a more challenging way. Forces of the880

order of nano- and piconewton need to be generated and applied with nano-

metric precision. This is challenging because of the presence of thermal fluctu-

ations. Thermal fluctuations are often seen as a nuisance making the behaviour

of micro-engines less deterministic and less predictable [201]. However, under

appropriate conditions, fluctuations can produce tunable and localized critical885

Casimir forces to drive nanomachines.

Critical Casimir forces are due to the confinement between multiple objects

of the density fluctuations in a critical solution close to its critical temperature.

One of the most important and useful features of these forces is their dependence

on temperature and on the surface properties of the involved objects. Critical890

Casimir forces were originally predicted in 1978 da Fisher and De Gennes [248],

and they have been measured directly only recently in 2008 [249], which spurred

a widespread interest in studying their properties with experiments [250, 251,

252].

Optical tweezers represent, again, an important tool for the measurements895

and characterisation of critical Casimir forces in nanodevices. Critical fluctu-

ations can be confined by trapped objects, using HOT, giving rise to critical

Casimir forces. Increasing the temperature of the solution toward the critical

point, it is possible to characterise the temperature dependence of these forces

by the displacement of the confining objects. This displacement can be quan-900

42



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 8: Effects of critical Casimir forces on the interdistance r(t) of a pair of micro

particles, diffusing freely in a water-2.6-lutidine solution at different temperatures. (a, b) At

the temperature T=33◦C lower than Tc ≈ 34◦C, Critical Casimir forces are not affecting (a)

the time distribution r(t) and (b) its spatial distribution P(r) which is Gaussian. (c, d)

Increasing the temperature of the solution to T=33, 6◦C, critical Casimir forces start to arise

affecting (c) r(t) and (d) P (r), which now presents an incipient peak at lower value of r. (e,

f) This effect became dominant at the temperature T=33, 9◦C, very close to Tc. Here critical

Casimir forces prevent the free diffusion of the particles, which are stuck together as showed

in panel (e) where all the values of the r(t) are confined within a small region resulting from

the equilibrium between attractive critical Casimir forces and repulsive electrostatic forces.

(f) At this temperature also the spatial distribution P (r) is strongly affected by critical

Casimir forces, presenting a narrow and intense peak corresponding to the equilibrium

distance between the particle described before. The solid lines in panels (a,c,e) indicate

representative experimental interparticle trajectories while the background colors represents

the probability distribution of 400 different r(t), while the dashed horizontal line indicates

the interparticle distance corresponding to the diameter of the colloids. Solid lines in panels

(b,d,f) are the theoretical distribution of r, obtained via Monte Carlo integration (106

samples) of two optically trapped particles subjected to the theoretical total potential[247].
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tified by digital video microscopy [110] or by photonic force microscopy [111].

Both of these techniques match the spatial and time domains of critical Casimir

forces but HOT combined with digital video microscopy provides a more flexible

investigation tool.

Recently, blinking HOT and digital video microscopy have been employed905

to investigate the effects of critical Casimir forces on the dynamics of a pair

of colloidal particles in the absence of optical potentials and dispersed in the

bulk of a water-2.6-lutidine critical mixture[252, 247]. From the measurement

of the time dependence of their center-to-center distance, it was determined

the relative diffusion and drift velocity of the particles, which are in agreement910

with the results of numerical simulations of Brownian dynamics based on the

critical Casimir forces (Fig. 8) [247]. The comparison with these simulations

allowed to infer the correlation length of the critical fluctuations, and therefore

the intensity of the critical Casimir forces and the distance from the critical

temperature, forming the basis of a protocol for the fine tuning of the critical915

Casimir force field. This possibility provided new opportunities for the design

and the realisation of self-assembled nano-structures and nanodevices.

4.8. Stochastic thermodynamics

Optical tweezers can be also employed as a very powerful tool to unveil and

characterise the statistical properties of micro- and nanoscopic systems. Here920

Brownian noise and large thermal fluctuations play a crucial role by introducing

stochasticity [254, 255]. In particular, the dynamics of optically trapped par-

ticles results from the interplay between deterministic optical force fields and

Brownian motion, which introduces a well-defined noisy background. Therefore,

optically trapped particles can be employed as probes to investigate statistical925

physics phenomena, whose dynamics are driven by both random and determin-

istic forces, ranging from biomolecules and nanodevices to financial markets and

human organisations.

For the last two decades, optical tweezers have contributed to develop nan-

othermodynamics, investigating the statical properties of nanosystems to pre-930
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Figure 9: Emergence of crossover from Boltzman to non-Boltzmann spatial distributions for

a trapped particle in an active bath. Dots represent the distribution of an optically trapped

particle, while dashed lines correspond to Gaussian distributions. in the case of not active

bath, for increasing values of the stiffness (a)=k = 0.42 fN nm−1, (b)=k = 3.6 fN nm−1 and

(c)=k = 22 fN nm−1, the particle becomes more confined and its spatial distribution

remains Gaussian. Vertical lines represent the error on six acquired trajectories. When the

particle is trapped in an active bath, as the stiffness increases the particle is confined within

a length scale comparable to the persistence length in the active bath (La red bar). In this

case the particle distribution deviate from Gaussian and can be fitted with a heavy-tailed

q-Gaussian distribution (solid black line) with (d) q = 1.013, (e) q = 1.023, and (f) q =

1.142 Panels (d-e). Figure adapted from [253]
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dict the properties and performance of nanoobjects. For example, using trapped

colloidal particles, it has been demonstrated that the presence of thermal fluc-

tuations allows the violation of the second law of thermodynamics for small

systems over short time scales, even though the second law still holds on aver-

age [255].935

One of the biggest advances that can be achieved by applying stochastic

thermodynamics to microscopic systems is the possibility to recover information

about an equilibrium state of the system from measurements where the system

is off equilibrium instead of just averaging the fluctuations out [256]. Stochastic

thermodynamics can be successfully applied to different systems, such as living940

matters [257, 258]. For example, biomolecules are often coupled, with active

baths, due to molecular motors inside the cytoplasm. This coupling is thought

to lead to anomalous diffusion within the cytoplasm, a phenomenon that is

largely not yet understood [257]. Recently, the behaviour of an optically trapped

particle, immersed in an active bath, has been investigated by digital video945

microscopy to show a transition from Boltzmann to non-Boltzmann statistic

[253] (see fig. 9). This transition takes place whenever the characteristic scale

of an optical trap becomes comparable to the characteristic correlation length

of the active noise. A consequence of this transition is that non-equilibrium

relations such as the Jarzynski equality [259] and Crooks fluctuation theorem950

[260] cannot be applied in active baths according to their classical formulation

[253]. Although this behaviour is unexpected in active system, its investigation

is crucial to develop better models for living and far-from-equilibrium systems.

4.9. Active matter

Recently, optical tweezers have proved extremely useful for the characteri-955

sation of active matter systems and the study of the interplay between optical

forces and thermophoresis. Active matter systems are those systems constituted

by natural and artificial objects capable of self-propulsion [261]. Among this

category there are systems with different size scales, from bacterial colonies to

human crowds. Thanks to their ability in converting energy to propulsion, these960
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systems show behaviours like swarming and the emergence of other collective

properties due to far-from equilibrium interactions [262]. This self-propelling

behaviour is due to the interplay between random fluctuations (responsible

for Brownian motion) and active swimming that drives them into a far-from-

equilibrium state. Although self-propulsion is a well-known feature in microor-965

ganisms to explore environments for nutrients or to run away from toxic sub-

stances [263], a lot of effort is still put in the realization of artificial self-propelling

nano and microparticles. Two typical examples of self-propelling particles are

artificial Janus particles and biological bacteria such as Escherichia coli, both

of them well characterised by optical tweezers [264, 265]. Furthermore, optical970

tweezers can be also employed to synchronize collective behaviour of active par-

ticles. In particular, this feature has been used to realize a self-assembled fluid

pump by trapped active Brownian particles [266]. Optical tweezers can be also

employed to perturb the environment of active matter modifying their collective

behaviour [267, 268]. Recently, it has been proved that the presence of spatial975

disorder can switch the behaviour of colloidal active matter from aggregative

to dispersive [269]. Colloidal particles at equilibrium are always gathered by

any attractive potential, but in presence of non-equilibrium driving forces, the

particles disperse when spatial disorder is added to the potential. In particular,

it has been shown that disordered optical potentials can alter the long-term980

dynamics of colloidal particles inside an active bacterial bath changing their

collective behaviour from aggregative to dispersive [269].

5. Conclusions

Optical tweezers are nowadays a key tool for the contactless manipulation

of a wide variety of samples at the micro and nanoscale. The modeling of985

optical tweezers with accurate T-matrix methods has brought advances in the

understanding of experiments on non-spherical particles and the role of shape.

Here we discussed some fundamental aspects of the theory and experimental

practice of optical tweezers with a focus on a selection of applications in biology,
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spectroscopy, optical positioning, and nanothermodynamics. After almost 50990

years since the pioneering experiments by Arthur Ashkin on optical forces on

microparticles, this exciting field is still acquiring momentum expanding its

treads to exciting developments from the life sciences [270], to nano-engines

[271], and quantum technologies [272].
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[42] M. I. Marqués, J. J. Sáenz, Reply to comment on scattering forces from

the curl of the spin angular momentum of a light field, Physical Review

Letters 111 (5) (2013) 059302.
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[78] D. Spadaro, M. Iat́ı, J. Pérez-Piñeiro, C. Vazquez-Vazquez, M. Correa-

Duarte, M. Donato, P. Gucciardi, R. Saija, G. Strangi, O. Marago, Optical1215

trapping of plasmonic mesocapsules: Enhanced optical forces and sers,

The Journal of Physical Chemistry C 121 (1) (2016) 691–700.

[79] V. Amendola, R. Pilot, M. Frasconi, O. M. Marago, M. A. Iati, Surface

plasmon resonance in gold nanoparticles: a review, Journal of Physics:

Condensed Matter 29 (20) (2017) 203002.1220

[80] P. J. Wyatt, Scattering of electromagnetic plane waves from inhomoge-

neous spherically symmetric objects, Physical Review 134 (7AB) (1964)

AB1.

[81] D. Spadaro, M. A. Iat̀ı, M. G. Donato, P. G. Gucciardi, R. Saija, A. R.

Cherlakola, S. Scaramuzza, V. Amendola, O. M. Maragò, Scaling of optical1225
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