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ABSTRACT
Purpose: There is a need for adjuvant/neo-adjuvant treatment strategies to 

prevent metastatic relapse in soft tissue sarcoma (STS). Tumor hypoxia is associated 
with a high-risk of metastasis and is potentially targetable. This study aimed to derive 
and validate a hypoxia mRNA signature for STS for future biomarker-driven trials of 
hypoxia targeted therapy.

Materials and Methods: RNA sequencing was used to identify seed genes induced 
by hypoxia in seven STS cell lines. Primary tumors in a training cohort (French 
training) were clustered into two phenotypes by seed gene expression and a de 
novo hypoxia signature derived. Prognostic significance of the de novo signature was 
evaluated in the training and two independent validation (French validation and The 
Cancer Genome Atlas) cohorts. 

Results: 37 genes were up-regulated by hypoxia in all seven cell lines, and a 24-
gene signature was derived. The high-hypoxia phenotype defined by the signature 
was enriched for well-established hypoxia genes reported in the literature. The 
signature was prognostic in univariable analysis, and in multivariable analysis in the 
training (n = 183, HR 2.16, P = 0.0054) and two independent validation (n = 127, 
HR 3.06, P = 0.0019; n = 258, HR 2.05, P = 0.0098) cohorts. Combining information 
from the de novo hypoxia signature and a genome instability signature significantly 
improved prognostication. Transcriptomic analyses showed high-hypoxia tumors had 
more genome instability and lower immune scores. 

Conclusions: A 24-gene STS-specific hypoxia signature may be useful for 
prognostication and identifying patients for hypoxia-targeted therapy in clinical trials.

INTRODUCTION

Soft tissue sarcomas (STS) are a group of rare 
cancers arising from mesenchymal cells that account for 
less than 1% of solid tumors in adults. They are extremely 
heterogeneous with over 50 malignant histologic subtypes 
and can occur in any anatomical position [1]. Most 
patients present with localized disease, for which surgery 
(+/– radiotherapy) is the cornerstone of treatment. Despite 

high local control rates, the five-year overall survival is 
only around 50% in patients with high-risk disease (high 
grade, deep, large tumors) [2, 3], where most deaths are 
attributable to distant metastasis. Clinical trials have 
failed to demonstrate a consistent overall survival benefit 
for conventional neo-adjuvant/adjuvant chemotherapy, 
which is not currently recommended as an international 
standard of care [4]. Novel strategies to target and prevent 
metastatic spread are urgently needed.
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Failure of previous neo-adjuvant/adjuvant trials on 
unselected patients may reflect the molecular heterogeneity 
of STS.  Assigning neo-adjuvant chemotherapy based on 
histologic subtype has also been unsuccessful [5].  An 
alternative approach may be to target a feature of tumor 
biology present across multiple subtypes and associated 
with an increased risk of metastasis. 

Hypoxia is a generic feature of the tumor 
microenvironment which can drive metastatic spread [6] 
and is associated with distant relapse in localized STS 
[7].  Systemic agents targeting hypoxic cell populations 
[8] reduced the risk of lung metastasis in animal sarcoma 
models when administered adjuvantly [9, 10]. A biomarker 
of tumor hypoxia could identify patients for hypoxia 
targeted therapy in STS in clinical trials.

Hypoxia mRNA signatures are progressing towards 
clinical implementation as predictive biomarkers for 
response to hypoxia-targeted therapies. A 26-gene hypoxia 
signature is currently undergoing prospective validation in 
the UK phase III NIMRAD trial in head and neck cancer 
[11].  The transcriptomic response to hypoxia varies 
by tumor type and hypoxia signatures perform better 
when they are tumor type specific [12]. No STS-specific 
hypoxia signature exists, although a head and neck hypoxia 
signature had prognostic significance in a small cohort of 
high-grade STS patients [13]. The main aim of this study 
was to derive an STS-specific hypoxia mRNA signature 
by generating new in vitro data and accessing publically 
available in vivo whole transciptome expression data, and to 
test its prognostic significance in multiple clinical cohorts.

RESULTS 

Transcriptomic response to hypoxia is preserved 
across seven STS cell lines 

RNA sequencing data were generated in triplicate 
for seven cell lines, representing the most common 
histologic STS subtypes reported in adults. A replicate 
for HT1080 and one for SW872 had lower percentages 
of reads counted into genes (~50%) compared to the other 
samples ( > 90%). The two replicates were outliers in 
principal component analysis and were therefore omitted 
from further analysis. 734, 451, 553, 875, 1367, 1160 
and 966 genes were up-regulated by hypoxia in 93T449, 
HT1080, SKUT1, SNF96-2, SW684, SW872 and SW982, 
respectively. Monte Carlo sampling (n = 1000) generating 
seven random gene sets showed an average of 5.7 genes 
appeared in ≥ 3 gene sets by chance. By contrast, 37 
genes were induced by hypoxia in all seven STS lines 
(Supplementary Table 2). 93, 179 and 342 genes were 
significantly up-regulated by hypoxia in more than six, 
five and four cell lines, respectively. The number of 
genes down-regulated by hypoxia was smaller with 5, 
24, 58 and 187 genes suppressed in all seven, six, five 

and four cell lines, respectively. Simulation of random 
gene sets showed only 1.7 genes would appear in more 
than three cell lines by chance. The results indicated that 
transcriptomic response to hypoxia was preserved across 
molecularly heterogeneous STS cell lines. 

Of the genes induced by hypoxia in all seven 
cell lines, SLC2A1, BNIP3L, BNIP3, MXI1, PDK1, 
P4HA2, DDIT4, SLC2A1 were among the 20 genes most 
frequently included in published hypoxia signatures [12]. 
CA9, a well-studied hypoxia target gene, was up-regulated 
by hypoxia in five STS cell lines. Gene ontology terms 
enriched with genes inducible by hypoxia ≥ 5 cell lines 
include response to hypoxia, canonical glycolysis, positive 
regulation of apoptotic process, oxidation-reduction 
process, and circadian regulation of gene expression. 
Enriched KEGG pathways included HIF-1 signaling 
pathway, glycolysis/gluconeogenesis, biosynthesis of 
antibiotics and carbon metabolism (Supplementary Tables 
3 and 4). For many of the above identified processes, their 
alteration under hypoxia was previously documented in 
other tumor sites [14–16]. The 187 genes down-regulated 
in ≥ 4 cell lines were mainly enriched in G1/S cell cycle, 
nucleolus, DNA replication and RNA binding processes 
(Supplementary Table 5).

Genes induced in vitro segregate STS in vivo into 
high- and low-hypoxia phenotypes

The 33 protein coding genes induced by hypoxia in 
all seven cell lines and available in both the French and 
TCGA cohorts were used as seed genes to derive a hypoxia 
signature in vivo. In the French training cohort, 182 STS 
clustered into two groups (n = 48 and n = 134) based on 
the expression similarity of the 33 seed genes. 193 genes 
(1.2% of all genes) were significantly up-regulated in the 
48-tumor group (multiple test corrected fdr < 0.05 and > 1.5 
fold change). Twenty-four of the 33 seed genes (73%) were 
significantly up-regulated in the 48-tumor group. Another 
eight seed genes were up-regulated but not significantly 
and one seed gene was slightly down-regulated. Of those 
not in the seed gene list, the well-recognized hypoxia-
inducible CA9, CA12 and ADM were the 2nd, 6th and 18th 
most up-regulated genes (by fold change) in the 48-tumor 
group. Other in vitro induced hypoxia genes were also 
highly expressed in the 48-tumor group: 45%, 38% and 
25% of genes up-regulated by hypoxia in six, five and 
four cell lines, respectively. In comparison only 1.2% of 
the whole ~18,000 genes studied were up-regulated in the 
48-tumor group. Gene set enrichment analysis identified 
168 pathways significantly enriched in the 48-tumor group 
(fdr < 0.01), 16 of which were hypoxia gene sets derived 
in different tumor sites and experimental conditions 
(Supplementary Table S6). The analyses therefore clearly 
indicate that the two tumor groups have distinct high-
hypoxia and low-hypoxia molecular phenotypes. 
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A de novo 24-gene hypoxia signature is derived 
using the in vitro induced genes as seeds

A de novo 24-gene hypoxia signature was derived 
from the 33 seed genes using prediction analysis for 
microarray (PAM) [17], which had an optimal 10-fold 
cross validation accuracy of 96.7. The 24 genes are listed 
in Supplementary Table 7. Expression of the 24 signature 
genes in seven cell lines and in the French training cohort 
are illustrated in Figure 1A and 1B, respectively. In the 
French validation cohort, the de novo 24-gene hypoxia 
signature assigned 27 (21%) and 100 (79%) of tumors into 
high-hypoxia and low-hypoxia groups respectively. In the 
TCGA cohort, the de novo signature assigned 51 (19%) 
and 212 (81%) tumors into high-hypoxia and low-hypoxia 
groups respectively (Supplementary Table S8). 

Expression of the de novo signature correlates 
with another measure of hypoxia

As no cohorts were available, it was not possible to 
investigate relationships between our de novo signature 
with other measures of hypoxia. The most commonly 
used approach for assessing hypoxia in tumors involves 
measuring the protein expression of strongly inducible 
hypoxia genes, the most widely studied being CA9, GLUT1 
(SLC2A1) and HIF1α. Data were available from another 
project where both mRNA and protein expression of CA9, 
GLUT1 (SLC2A1) and HIF1a were studied in a cohort of 
urothelial cancer patients [18]. Significant correlations 
were seen for CA9 (r = 0.47) and GLUT1 (SLC2A1, r = 

0.56), but not HIF1a (r = 0.10, Supplementary Figure 2). 
As there are correlations between mRNA and protein 
expression for the widely studied hypoxia markers, we 
investigated them further to provide evidence the 24-gene 
signature would select tumors identified as hypoxic using 
another approach. In three STS cohorts, mRNA expression 
of CA9, SLC2A1 and HIF1a was significantly higher in 
tumors stratified as high-hypoxia by the 24-gene signature 
(Supplementary Figure 3). 

Relationship of the de novo hypoxia signature 
with clinico-pathological factors

There was an association between the 24-gene 
hypoxia signature and histological subtype (chi-square 
test P = 0.03 for combined French cohort and 0.004 for 
TCGA). 29% of leiomyosarcoma tumors were stratified 
as high-hypoxia by the de novo 24-gene signature in 
comparison with a level of ~11% for liposarcoma and 
~20% across all subtypes. There were no associations 
between the hypoxia signature with tissue site, age 
at diagnosis, gender and pathological lesion length 
(Supplementary Table 9).

High-hypoxia tumors have a poor prognosis

In the French training cohort, tumors stratified by the 
de novo 24-gene signature as high-hypoxia had significantly 
worse 5-year DMFS than those stratified as low-hypoxia 
(HR 2.43, 95% CI 1.49-3.96, P = 0.00036, Figure 2A). 
Tumors stratified as high-hypoxia also had poorer DMFS in 

Figure 1: Heatmap of the de novo 24-gene hypoxia signature in (A) seven STS cell lines under hypoxia (1% oxygen, 24 hours) and 
normoxia conditions; (B) French training cohort. Tumor samples were clustered into high-hypoxia and low-hypoxia phenotypes based on 
the expression pattern of the 24 signature genes. 
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the French (HR 2.73, 95% CI 1.40–5.34, P = 0.0033, Figure 
2B) and TCGA (HR 2.03, 95% CI 1.26–3.29, P = 0.0037, 
Figure 2C) validation cohorts. Prognostic significance was 
retained in multivariable analyses adjusting for histological 
diagnosis, tumor tissue site, gender, age and pathological 
lesion length  in the French training (HR 2.16, 95% CI 
1.25–3.70, P = 0.0054), French validation (HR 3.06, 95% 
CI 1.51–6.19, P = 0.0019) and TCGA (HR 2.05, 95% CI 
1.19–3.53, P = 0.0098) cohorts (Table 1). 

The French sarcoma group [19] developed a highly 
prognostic 67-gene CINSARC (Complexity INdex in 
SARComas) transcriptomic signature. Combining the 
24-gene hypoxia and the CINSARC signatures improved 
prognostication (log rank P = 4.74*10-12, Figure 2D) 
compared with the hypoxia (P = 1.6*10-6) or CINSARC 
(P = 1.47*10-9) signatures alone. Using patients stratified 
as low-hypoxia and low CINSARC as a reference, patients 
stratified as high-hypoxia and high CINSARC had a 

Figure 2: Kaplan-Meier plots for (A) the French training cohort stratified by the 24-gene signature; (B) the French validation cohort 
stratified by the 24-gene hypoxia signature; (C) the TCGA cohort stratified by the 24-gene hypoxia signature; (D) the combined French 
cohort stratified by both hypoxia signature and CINSARC signature.
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Table 1: Univariable and multivariable analysis of the de novo 24-gene hypoxia signature 
Study Variable Univariable Analysis Mulitvariable Analysis

Cohort studies HR (95% CI) P-value HR (95% CI) P-value

French
training

Hypoxia signature 2.43 (1.49-3.96) 0.00036 2.16 (1.25–3.70) 0.0054

Tumor tissue site

Extremities

Head and neck 0 1 0 1

Internal trunk 1.14 (0.64–2.03) 0.65 1.26 (0.66–2.40) 0.49

Trunk wall 1.62 (0.88–2.96) 0.12 1.34 (0.72–2.49) 0.35

Histologic diagnosis

Liposarcoma

Undifferentiated sarcoma 1.19 (0.60–2.37) 0.62 1.30 (0.60–2.79) 0.51

Leiomyosarcoma 2.23 (1.14–4.37) 0.02 1.91 (0.94–3.88) 0.076

Other 1.48 (0.58–3.75) 0.41 1.12 (0.39–3.16) 0.84

French
validation

Hypoxia signature 2.73 (1.40–5.34) 0.0033 3.06 (1.51–6.19) 0.0019

Tumor tissue site

Extremities

Head and neck 0 1 0 1

Internal trunk 1.07 (0.49–2.32) 0.87 1.70 (0.70–4.15) 0.24

Trunk wall 1.12 (0.50–2.52) 0.78 1.02 (0.43–2.40) 0.97

Histologic diagnosis

Liposarcoma

Undifferentiated sarcoma 2.81 (0.65–12.18) 0.17 3.86 (0.78–19.10) 0.10

Leiomyosarcoma 7.44 (1.73–32.00) 0.0071 9.83 (2.12–45.54) 0.003

Other 0 1 1.14 (0.1–13.04) 0.92

TCGA
validation

Hypoxia signature 2.03 (1.26–3.29) 0.0037 2.05 (1.19–3.53) 0.0098

Tumor tissue site

Extremity

Abdomen 0.42 (0.17–1.08) 0.071 0.39 (0.13–1.19) 0.099

Head and neck 0 1 0 1

Pelvic 0.58 (0.21–1.64) 0.31 0.63 (0.19–2.14) 0.46

Retroperitoneal 0.61 (0.36–1.05) 0.074 0.88 (0.45–1.71) 0.71

Thorax 0.44 (0.17–1.13) 0.088 0.50 (0.19–1.30) 0.16

Uterine 1.17 (0.62–2.19) 0.64 1.13 (0.49–2.63) 0.77

Histologic diagnosis

Liposarcoma

Leiomyosarcoma 3.33 (1.63–6.81) 0.00099 3.82 (1.63–8.97) 0.0021

Malignant Peripheral 
Nerve Sheath Tumors 1.74 (0.37–8.03) 0.48 2.47 (0.44–13.88) 0.30

Myxofibrosarcoma 2.70 (1.10–6.64) 0.031 3.26 (1.09–9.72) 0.034

Undifferentiated 
pleomorphic sarcoma 2.70 (1.19–6.11) 0.017 3.67 (1.34–10.05) 0.012

Synovial 1.91 (0.52–7.06) 0.33 3.14 (0.67–14.75) 0.15

Male 0.98 (0.64–1.50) 0.91 1.53 (0.94–2.51) 0.088

Pathological lesion 
length 1.00 (0.98–10.2) 0.89 1.02 (0.99–1.04) 0.064

Age 0.99 (0.98–1.01) 0.69 0.99 (0.97–1.01) 0.44
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significantly poorer outcome (HR 6.74, 95% CI 3.84–
11.84, P = 3.13*10-11). Patients with low-hypoxia signature 
and high CINSARC signature also had a poor prognosis 
(HR 3.18, 95% CI 1.89–5.37, P = 1.44*10-5).

Comparison with a published hypoxia signature

A published 15-gene hypoxia signature for head and 
neck cancer had prognostic value in high-grade STS [13]. 
In two out of the three STS cohorts, the 15-gene signature 
also achieved prognostic significance in multivariable 
analyses (French training: HR 1.8, P = 0.017; French 
validation: HR 1.51, P = 0.21; TCGA: HR 1.72,  
P = 0.03). Due to the higher HRs in multivariable analyses 
and significance across all three cohorts, the de novo 24-
gene signature is a better prognostic biomarker in STS. 

High hypoxia tumors have high genomic 
instability

Hypoxia was recently proposed as a driver of genome 
instability [20]. Therefore we investigated the association 
between the 24-gene hypoxia signature with two indices 
reflecting genome instability. In the TCGA cohort, data 
are available for the percentage of the genome with copy 
number alterations. Genome alterations were significantly 
higher in high- versus low-hypoxia tumors (47% vs 33%; 
t-test P = 0.0007, Supplementary Figure 4). The CINSARC 
signature was used as a measure of genome instability in 
the combined French cohort. There were more high-risk 
CINSARC classifications in high- versus low-hypoxia 
tumors (76% vs 48%; chi-square test P = 0.0035). Similarly, 
there were more high-hypoxia classifications in high 
versus low CINSARC signature tumors (31% vs 12%; 
Supplementary Table 10). Therefore, our data are consistent 
with hypoxia being a driver of genome complexity. 

High hypoxia tumors have low immune cell 
infiltration

The ESTIMATE [21] computational algorithm was 
used to evaluate the presence of tumor-infiltrating immune 
cells. Of 30 tumor types included in TCGA, STS had the 9th 
highest abundance and the largest intra-cancer variability 
in estimated immune cell infiltration (Supplementary 
Figure 5). High-hypoxia tumors had significantly lower 
immune infiltration scores than the low-hypoxia tumors 
(t-test P = 0.0007, Supplementary Figure S6). 

In the French training cohort, Gene set enrichment 
analysis showed that 19 of the 49 gene ontology terms 
that were significantly (fdr < 0.01) over-represented in the 
low-hypoxia tumors were related to innate and adaptive 
immune response, T cell proliferation, inflammatory 
response, B cell and lymphocyte mediated immunity. 
Another three terms relating to interferon signaling 
were also enriched. Similar results were seen for KEGG 

pathways with eight immune and ten interferon signaling 
pathways significantly up-regulated in the low-hypoxia 
tumors (Supplementary Table 11). Interferon signaling 
proteins have important functions in initializing immune 
response and activing immune cells [22]. We also analyzed 
the associations between hypoxia signature status and 
expression of 192 cancer-related proteins available for 
the TCGA cohort. Three of the ten protein markers most 
down-regulated in high- versus low-hypoxia tumors 
induce immune responses (CD31, Lck and PD1; fdr < 
0.05; Supplementary Figure 7). Our analyses, therefore, 
suggest that in STS hypoxia is associated with an impaired 
immune response. 

DISCUSSION

Tumor hypoxia is associated with metastatic relapse 
in STS and can be targeted pharmacologically. Despite 
showing early promise, the bioreductive drug TH-302 
did not improve survival in a phase III trial in unselected 
patients with metastatic STS [23], highlighting the need 
for carefully designed biomarker driven trials. There is 
currently no reliable hypoxia biomarker available for clinical 
trials. Direct measurements using oxygen electrodes are 
invasive and impractical [24], but a biomarker that can be 
measured using pre-treatment diagnostic biopsies would 
be attractive. Immunohistochemical expression of widely 
studied hypoxia markers (CA9, GLUT1, HIF1a) has been 
explored but findings are equivocal [25–27]. A limitation 
of immunohistochemistry is the need for manual pathology 
scoring and concern over using a single protein marker in 
histologically heterogeneous STS. A transcriptomic signature 
overcomes these issues. This study generated a novel 24-
gene signature that reflects tumor hypoxia in STS and was 
validated as a prognostic marker in two independent cohorts.  

To be useful as a predictive biomarker the signature 
must reflect hypoxia in STS. It was shown previously 
that the transcriptional response to hypoxia varies across 
different cancer types [12,28], which highlights the need 
for tumor type specific signatures. A hypoxia signature 
originally derived for head and neck cancer was shown 
to be prognostic in a small cohort of soft tissue sarcomas 
[13], but correlated poorly with oxygen electrode 
measurements in 16 patients. In addition, our de novo 24-
gene signature performed better than the head and neck 
cancer classifier across the three cohorts studied. 

In order to ensure our signature reflects hypoxia in 
STS, our study was the first to assess comprehensively 
the transcriptome-wide response to hypoxia in STS cell 
lines. Despite the molecular heterogeneity of STS, the 
transcriptomic response to hypoxia was well preserved across 
the seven cell lines, implying that a single signature could be 
applied to all adult STS subtypes in clinical practice. Among 
the genes consistently up-regulated by hypoxia, many were 
well-known hypoxia genes that are included in published 
signatures. The genes induced by hypoxia in all seven STS cell 
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lines were used to define a high-hypoxia and a low-hypoxia 
phenotype in vivo. Hypoxia genes and pathways identified 
in different tumor sites and experimental conditions were 
highly enriched in the high-hypoxia phenotype, increasing 
confidence that the signature reflects hypoxia in STS.

Genes induced by hypoxia in vitro were used as 
seed genes to derive a STS-specific 24-gene signature. 
The de novo hypoxia signature had strong and independent 
prognostic value in three STS cohorts and was validated 
across two different platforms (array versus RNA 
sequencing). In current practice the strongest prognostic 
indicator for STS is grade [4].  The main limitation of this 
work is the omission of grade from the multivariate analysis. 
Further development of the signature for clinical use will 
involve two new cohorts with extensive clinical data 
available (including the UK phase III VorteX trial cohort 
[29]) to allow assessment of independence from grade. 
Another proposed prognostic marker for STS is the 67 gene 
CINSARC signature [19].  Combining the CINSARC and 
hypoxia signatures improved prognostication and may be 
helpful in identifying very high-risk patients.

In vitro studies suggest that tumor hypoxia can drive 
genome instability by altering DNA damage response 
and producing free radical damage [20], and so promote 
tumor aggressiveness. High-hypoxia tumors (determined 
by the signature) had high levels of somatic copy number 
alterations, which is a surrogate marker of genome 
instability. Our study is the first to explore relationships 
between hypoxia and genome instability in primary STS. 
Future work could investigate drugs targeting aberrant 
DNA repair mechanisms in high-hypoxia STS. 

There is increasing interest in understanding how 
reduced immune responses promote cancer progression 
and can be targeted with drugs such as immune checkpoint 
inhibitors STS [30]. STS had the largest variation in immune 
infiltrates (measured by ESTIMATE) of all the cancer types 
included in TCGA. High-hypoxia STS had significantly 
lower immune scores (reflecting decreased immune 
infiltration) compared to low-hypoxia STS. This could be 
clinically useful when identifying patients for immunotherapy 
trials in STS as patients with high-hypoxia tumors may not 
benefit. Further investigation of the relationship between 
hypoxia and immune response in STS is warranted. 

In summary, we generated and validated the first 
STS specific hypoxia signature. The signature could be 
used as a biomarker to select enriched populations for 
hypoxia targeted therapy in STS in future trials.

MATERIALS AND METHODS

Methodology and study design

We previously derived hypoxia mRNA signatures 
for head and neck squamous cell [31] and urothelial 
[18] cancer using literature curated hypoxia-inducible 
genes as seeds. The seed genes used however could be: 

1) non-specific for STS as transcriptomic response to 
hypoxia is tumor site specific; 2) of low quality as they 
were identified from different labs using heterogeneous 
experimental conditions (in vitro/in vivo/bioinformatics 
analysis) and technologies. The updated methodology 
used in this study involved generating seed genes that 
are consistently up-regulated by hypoxia in multiple 
STS cell lines. Our previous hypoxia signatures assigned 
continuous signature scores to individual tumors, and high-
hypoxia and low-hypoxia groups were created by splitting 
from manually specified cut-off values (e.g. cohort median 
signature score). Our updated methodology applied a 
machine learning method in a training cohort to partition 
tumors into two groups (high-hypoxia and low-hypoxia) 
based on the maximum inter-group difference in gene 
expression of seed genes. A de novo signature was then 
derived with cross validation that was able to stratify new 
tumors into high-hypoxia and low-hypoxia groups without 
the need for a manual cut-off. A schematic presentation of 
the study design is provided in Supplementary Figure 1.

Cell culture

HT1080, SKUT1, sNF96.2, 93T449, SW684, 
SW872 and SW982 were purchased from the American 
Type Culture Collection (ATCC, Teddington, Middlesex, 
UK), and cultured according to their recommendations. 
Cell lines and culture conditions are summarized in 
Supplementary Table 1. Cell lines were authenticated 
by the Promega Powerplex 21 System and underwent 
mycoplasma screening (Molecular Biology Core Facility, 
CRUK Manchester Institute, UK). 

Hypoxia exposure

Cells were seeded in 75 cm2 flasks at an appropriate 
density to achieve 60% confluence after 48 hours culture 
under normoxia for each individual cell line (calculated 
from growth curves, data not shown). Cells were cultured 
under normoxia for 24 hours, after which the media 
was changed prior to a further 24 hours culture under 
normoxia or 1% oxygen (Ruskin Invivo2 400 hypoxia 
workstation, Ruskinn Technology Ltd, Bridgend, UK). 1% 
oxygen was chosen as it is widely used in the literature 
and HIF, a major regulator of transcriptional responses to 
hypoxia, expression stabilizes in cell lines at this oxygen 
concentration. Experiments were repeated for three 
different passages for each cell line. Hypoxia exposed 
cells were harvested under 1% hypoxia.  

RNA extraction and sequencing

RNA was extracted using the Phenol-Choroform 
(TRIZOL) method and cleaned using a Qiagen RNeasy 
mini kit (cat no 74104). Sample yields were obtained 
using a Nanodrop spectrophotometer (ThermoFisher 
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Scientific) and RNA integrity (RIN) measured using an 
Agilant Bioanalyzer. The 42 samples had RIN values 
between 8.6 and 10 and were sent for RNA sequencing. The 
sequencing libraries were prepared using Illumina’s TruSeq 
stranded mRNA protocol and sequenced using the Illumina 
HiSeq4000 platform (150 cycle protocol - 2x76bp paired 
end reads) at a depth of ~50 M (pairs of) reads per sample.

Identification of genes induced by hypoxia in 
vitro

Unmapped paired-end sequences from an Illumina 
HiSeq4000 sequencer were tested by FastQC v0.11.5 using 
a variety of metrics.  Sequence adapters were removed 
and reads trimmed using Trimmomatic (v0.36) [32]. The 
reads were mapped against the reference human genome 
(version hg38) using STAR (v2.4.2) [33]. Counts per gene 
were calculated with HTSeq (v0.6.1) [34] using annotation 
from GENCODE (v24). Normalization and differential 
expression were calculated with DESeq2 (v1.10.1) [35]. 
Genes up- and down-regulated by hypoxia were identified 
with DESeq2 (multiple test corrected fdr < 0.05 and ≥ 2 
fold change on pre-log2 transformed expression). Gene 
ontology terms and KEGG pathways enriched with 
protein-coding genes consistently induced by hypoxia 
in multiple cell lines were identified using DAVID v6.8 
[36] (Benjamini corrected P < 0.1). RNA seq data were 
uploaded to ArrayExpress (accession E-MTAB-6087).

STS patient cohort and expression normalization

Two independent patient cohorts with whole 
transcriptome and clinical outcome data were curated 
from the French sarcoma group [19] (GEO accession: 
GSE21050) and the cancer genome atlas project (TCGA) 
[37]. In the French cohort, gene expression data were 
generated for 310 fresh frozen patient samples on 
Affymetrix U133 plus2 arrays. In the TCGA cohort, 
246 patient tumors were surgically resected and RNA 
sequencing data were generated from fresh frozen material. 
The French cohort was divided into training (n = 183) and 
validation (n = 127) cohorts as per the original publication. 

For the French cohort, raw CEL files were 
downloaded and normalized with the GC-RMA method 
[38]. When multiple probe sets map to the same gene, 
their median expressions were used. For TCGA cohort, 
“rsem.genes.results” files from Broad institute Firehose 
were downloaded and transferred to transcript per million 
(TPM). A small positive constant of 0.25 was added to 
TPM before log2 transformation for gene expression. Only 
the genes present in both patient cohorts were analyzed. 
Percentage of copy number alteration for TCGA tumors 
were obtained from cBioPortal [39]. The Cancer Proteome 
Atlas (TCPA) project measured expression of ~200 
cancer-related proteins covering major signaling pathways 
using a high-throughput reverse phase protein array [40]. 

These protein expression data for the TCGA STS were 
downloaded from firehose. 

Development and validation of a hypoxia 
signature 

Genes induced by hypoxia in seven STS cell lines 
served as seeds. In the French training cohort, tumors were 
clustered into high-hypoxia and low-hypoxia groups using 
K-means clustering in R (v3.2.3; 1000 random starts) 
on log2 transformed and median centered expression 
of the seed genes. Differential expression analysis was 
performed with LIMMA [41] (v3.26.9). A signature was 
derived using prediction analysis for microarrays (PAM) 
[17], a classification model that simultaneously performs 
gene selection, and the seed genes as candidates. 10-fold 
cross validation was performed and the signature with 
the lowest classification errors was selected as the final 
de novo signature. PAM also generates class centroids 
for each signature gene. Given a new tumor sample, the 
de novo signature compares its gene expression to high-
hypoxia and low-hypoxia class centroids. The class whose 
centroid that it is closest to, in squared distance, is the 
predicted class for that new sample.

Endpoint and statistical analysis

The clinical endpoint used was distant metastasis 
free survival (DMFS) as specified in the original 
publications for the different cohorts. All patients were 
censored at 5 years. The chi-square test was used to 
compare proportions across categorical factors. The Welch 
t test was used to compare mean values for continuous 
variables between two groups. Survival estimates were 
performed using the Kaplan-Meier method and differences 
compared using the log-rank test. Hazard ratios (HR) 
and 95% confidence intervals (CI) were obtained using 
Cox proportional hazard model. Multivariable analyses 
were performed adjusting the de novo hypoxia signature 
for histologic subtypes, age, gender, tumor site and 
pathological lesion length. Association with the CINSARC 
signature [19], an index of genomic instability, was 
evaluated using Kaplan-Meier survival estimates and a 
Cox proportional hazards model. All P-values were two 
sided and statistical significance was set as 0.05.

Comparison with a literature hypoxia signature

We also evaluated a 15-gene hypoxia signature 
developed for head and neck cancer [13]. Median 
expressions of the 15 genes were taken as signature scores. 
Tumors were split into two groups using cohort median, 
upper and lower quartile values. Survival analyses were 
performed as described above. Results were broadly 
similar across the three cut-offs and therefore only those 
for median cut-off were presented.
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