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We study the spin dynamics of ZnSe layers with embedded type-II ZnTe quantum dots using time

resolved Kerr rotation (TRKR). Three samples were grown with an increasing amount of Te, which

correlates with increased quantum dot (QD) density. Samples with a higher quantum dot density

exhibit longer electron spin lifetimes, up to �1 ns at low temperatures. Tellurium isoelectronic centers,

which form in the ZnSe spacer regions as a result of the growth conditions, were probed via spectrally

dependent TRKR. Temperature dependent TRKR results show that samples with high QD density are

not affected by an electron-hole exchange dephasing mechanism. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4978314]

INTRODUCTION

Systems of reduced dimensionality, such as quantum

wells (QWs), quantum dots (QDs), and defect centers have

been proposed as promising candidates for spintronic applica-

tions.1 ZnSe based semiconductors are particularly appealing

and have also been recently explored for this purpose.2–4 In

contrast to their III–V counterparts (i.e., GaAs),5 II–VI based

semiconductors have the advantage of having a low abun-

dance of spin 1=2 nuclear spins and reduced hyperfine cou-

plings. Yet, spins in wide bandgap II–VI semiconductors have

a strong electron-hole exchange interaction, which is the main

dephasing mechanism at low temperatures, limiting lifetimes

to tens of picoseconds due to fast hole-spin decoherence.6

Mino et al.7 explored a type-II ZnSe/BeTe QW structure as a

means to decouple the electrons and holes. Under photoexci-

tation electrons are localized in the ZnSe wells, and holes are

in the BeTe barriers. They observed the longest spin dephas-

ing times, as large as 6.1 ns, for undoped QWs.

During the past several years, our group has investigated

the growth of ultra-small type-II quantum dots of ZnTe

embedded in a ZnSe matrix and explored their unique physi-

cal properties based on their type-II band alignment.8 In

these structures the type-II band alignment ensures that holes

are confined within the ZnTe-based QD regions, while elec-

trons are delocalized in the ZnSe matrix. As a consequence of

the growth mechanism, tellurium isoelectronic centers (Te-

ICs) also form within the ZnSe matrix. In this paper, we report

on the electron spin dynamics of these samples. Our results

indicate that significantly longer electron spin lifetimes are

achieved in the samples with larger densities of ZnTe QDs.

We were also able to directly probe the spin dynamics of tellu-

rium isoelectronic centers (Te-ICs) present in the ZnSe matrix,

which have not been previously reported.

GROWTH

Three ZnTe/ZnSe type-II QD nanostructure samples were

studied having varying effective tellurium concentrations. The

structures were grown by a combination of molecular-beam

epitaxy (MBE) and migration enhanced epitaxy (MEE) on

(001) oriented GaAs substrates.9 The structure for all the sam-

ples consists of a 55 nm ZnSe buffer layer, followed by a

superlattice of 100 periods of 1.7 nm ZnSe spacers and ZnTe

QDs. The formation of ZnTe QDs was achieved by using a

shutter sequence of alternating zinc and tellurium fluxes,

known as MEE.9 Two different MEE shutter sequences were

used to form the QDs. In the single cycle sequence, first the

surface was exposed to a Zn flux only, followed by a short

interruption, then the Te flux only was opened followed again

by an interruption, and finally the Zn flux was opened before

resuming the ZnSe spacer layer growth. Each step had a dura-

tion of 5 s. The interruptions are intended to allow zinc and

tellurium to aggregate, and form quantum dots. In the triple

cycle, the alternating Zn and Te fluxes, separated by interrup-

tions, were repeated three times before resuming the spacer

layer growth.9

Sample A was grown with a single cycle sequence,

while samples B and C were grown with triple cycle sequen-

ces. The Te flux was also varied to adjust the Te content of

the samples, which was measured using high resolution x-

ray diffraction (HRXRD) and secondary ion-mass spectros-

copy (SIMS) as described in Ref. 10. Table I summarizes

some of the relevant growth parameters. From the table, it is

evident that sample A has the lowest average effective Te

content, while sample C has the highest.

EXPERIMENTAL MEASUREMENTS

The samples were characterized using low temperature

photoluminescence (PL) and time-resolved Kerr rotation

(TRKR) measurements. TRKR measures the spin dephasing

time of electrons and holes initiated by a circularly polarized

pump light. A linearly polarized probe beam is focused at

the same spot on the surface as the circularly polarized

pump, and the polarization rotation in the probe beam

induced by spin polarized carriers is measured as a function

0021-8979/2017/121(11)/115702/5/$30.00 Published by AIP Publishing.121, 115702-1

JOURNAL OF APPLIED PHYSICS 121, 115702 (2017)

http://dx.doi.org/10.1063/1.4978314
http://dx.doi.org/10.1063/1.4978314
http://dx.doi.org/10.1063/1.4978314
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4978314&domain=pdf&date_stamp=2017-03-16


of the pump-probe time delay. Pulses of light are generated

by a tunable mode-locked Ti:sapphire laser with a pulse

width of 130 fs and a repetition rate of 76 MHz. A degener-

ate pump probe setup is used. The area illuminated on the

sample had a diameter of �100 lm. Typical excitation pow-

ers were 5 and 1 mW. A coupled photodiode bridge was

used to enhance the sensitivity of the probe signal.11 A pho-

toelastic modulator was used to modulate the pump ampli-

tude at 50 kHz, whereas the probe pulse was chopped

mechanically at 5 kHz. Lock-in detection frequency differ-

ence allowed us to separate the pump and probe signals.

Permanent magnets were attached to the sample holder of an

optical cryostat to give a �0.5 T magnetic field perpendicu-

lar to the growth direction of the sample. PL measurements

were performed with a TriVista SP2 500i Triple monochro-

mator coupled with a thermoelectrically cooled CCD cam-

era. Samples were loaded onto a closed system He-cryostat

and cooled down to 8 K. The 351-nm laser line from an

Argon ion laser was used to excite samples with varying

power from 0.06 W/cm2 to 60 W/cm2.

RESULTS AND DISCUSSION

Figure 1 shows the PL spectra at 8 K, for the three sam-

ples studied as well as that of a reference bulk ZnSe sample

(100 nm) grown in the same chamber. A single sharp near-

band-edge peak is observed at �2.80 eV in the ZnSe sample.

By contrast, two prominent bands with maxima centered

around 2.5 eV (green band) and 2.7 eV (blue band) can be

identified in the three QD samples studied. Sample A, with

the lowest Te concentration, is dominated by the high-

energy blue band, which is overlaid with near-band-edge

sharp lines originating from Te isoelectronic centers (ICs).

The blue band has been identified to be due to tellurium clus-

ters of Ten�2 that form at anionic sites in the ZnSe spacer.9

A series of sharp lines can be resolved at 2.752 eV, 2.759 eV,

and 2.767 eV that have been assigned to the non-nearest

neighbors of Te pairs.9 Strong phonon coupling can be seen

in all samples, with up to four phonon replicas separated by

32 meV clearly resolved within the blue band. The green

band in sample A is only evident by the presence of the long

tail on the low energy side of the peak. Sample B shows a

more well-defined green band but the blue band still domi-

nates. Sharp lines are no longer resolved in the blue band but

rather a peak at 2.759 eV can be seen, which is identified as

the combination of different transitions from several centers

due to a larger distribution of different orientations of Te-IC

pairs. Sample C, with the highest Te concentration, shows a

dominant green band. This band has been previously

identified with the type-II emission from ZnTe QDs and

larger clusters of Te atoms.10 It has been shown that higher

effective concentrations of Te in these type-II QD samples

increase the green band intensity corresponding to a larger

QD density. Excitation intensity dependent PL of the peak

energy of the green band in sample C exhibits a one third

power law dependence confirming the type-II band align-

ment between the ZnTe-based QDs and the ZnSe matrix.12

This is shown in Figure 1(b), along with a schematic of the

type II band alignment.

A typical TRKR trace for sample C measured with and

without an applied magnetic field is shown in Figure 2. Both

pump and probe energies were tuned to 2.798 eV near the

bandedge of ZnSe at 80 K. We observe that the Kerr rotation

(KR) signal has an initial fast decay but is non-zero even at

negative time delays at zero field, indicative of spins persist-

ing from the previous laser pulse (13 ns). This is demonstrated

by blocking the pump prior to the start of the measurement,

allowing it to come through at some negative time delay, and

then blocking it again, by which we clearly see a change in

the KR signal. These long spin lifetimes outlast the ZnSe exci-

ton lifetime typically observed to be 100 ps at low tempera-

tures.13 One possible explanation for this is that the signal

persists from resident electrons in the conduction band due to

FIG. 1. (a) PL spectra for the three samples studied; a ZnSe bulk layer is

also included for reference. The dashed lines at 2.51 and 2.70 eV indicate

the center of the green and blue bands, respectively. (b) Left: Type II band

alignment of the ZnTe QDs in a ZnSe matrix illustrating the separation of

carries, which leads to the observed intensity dependence of the peak posi-

tion. Right: Excitation intensity dependence of the green band peak energy

for sample C. The dotted red line is a fit to a 1/3 power dependence, consis-

tent with type-II behavior.

TABLE I. Important growth parameters for the three ZnTe/ZnSe QD

samples.

Sample

Te Flux

(10�7 Torr)

No. of MEE

cycle No. of periods % Te % Strain

A 0.4 1 100 0.1 80

B 0.26 3 100 0.2 80

C 0.4 3 100 0.3 80
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the presence of the type-II QDs which form indirect excitons.

These indirect excitons can last up to 86 ns.12 Quantum beat

oscillations are observed when a magnetic field is applied in

the Voigt geometry. The oscillations correspond to a Larmor

precession through which the electron spin evolves. Oriented

electron spins precess around a perpendicular component of

the applied field. These oscillations can be fitted to the equa-

tion: Acos(glBBDt/h), where A is the amplitude, g the effec-

tive g-factor of the sample, lB the Bohr magneton, and B the

magnitude of the total magnetic field experienced by the elec-

trons. Using the above formula, we can fit the data to extract

the electron g-factor. A g-factor of �1.1 was found for all

cases, very close in value to the electron g-factor in ZnSe.14

This supports the notion that the electrons are within the ZnSe

matrix. The fast dephasing time of 217 ps found with an

applied magnetic field can be attributed to inhomogeneities

within the ZnSe matrix from QDs and defects.

Figure 3 compares the TRKR contour plots for the three

samples studied, measured at �10 K. Pump and probe

energies were kept degenerate, scanned over a region from

2.75 eV to 2.82 eV and plotted as a function of excitation

energy. In sample A, shown in Figure 3(a), the TRKR signal

vanishes for excitation energies below 2.785 eV. Pumping

directly at energies corresponding to the Te-IC centers (blue

band) and QDs (green band) did not show any TRKR signal.

Keeping the pump helicity fixed, a spin flip is observed going

from the ZnSe heavy hole (HH) to light hole (LH) excitation

energies, indicated by the Kerr rotation signal changing from

positive to negative at 2.795 eV and 2.810 eV, respectively.

The biaxial strain induced by the GaAs substrate splits the LH

and HH degeneracy at the valence band minimum. The opti-

cal selection rules are such that when a LH is excited by a

r- photon (S¼�1), a spin-down electron (ms¼�1=2) and a

spin-up hole (ms¼ 1=2) are created simultaneously. The LH

state relaxes quickly and is depolarized, whereas accumula-

tion of spin-up electrons breaks the balance of spin population

in the conduction band.15 This is observed as a negative polar-

ization by the linearly polarized probe. The spin lifetimes

observed in this sample were very short, on the order of tens

of picoseconds. Similar TRKR lifetimes were measured by us

(not shown) and have been observed by others15 for bulk

undoped ZnSe at low temperatures.

Samples B and C, with a larger amount of Te (0.2% and

0.3%, respectively), behave quite differently from sample A

(which has 0.1% Te content). The data are shown in Figures

3(b) and 3(c). In both samples the TRKR signals persist as we

probe deeper in energy into the region of the blue band, which

originates from the Te-ICs. We interpret these observations

by considering that we are able to probe the Te ICs in these

samples that have increased Te content. Direct excitation of

Te-bound excitons has been observed as a phonon-broadened

peak below the band edge in photoluminescence excitation

spectroscopy experiments in other II–VI materials.16 In partic-

ular, in sample C we are able to probe deep within the band-

edge of ZnSe at energies that clearly correspond to Te ICs.

Sample C exhibits long spin lifetimes of up to 1 ns at low tem-

peratures, in sharp contrast to the lifetimes measured in

FIG. 2. Kerr rotation signal for sample C at T¼ 75 K with (lower trace) and

without (upper trace) an applied magnetic field in the Voigt geometry. The

persistence of the signal at negative times is evident by the small signal in

the zero field measurement when the pump is on during a short interval prior

to the start of the experiment. The red line in the lower trace is a fit to the

Larmor precession as discussed in the text.

FIG. 3. Spectral dependence of the TRKR signal for samples A through C. Dashed lines indicate the position of the excitonic levels associated with the ZnSe

spacer layers. Energies corresponding to direct excitation of Te-ICs are also labeled. Regions with no color indicate the absence of a TRKR signal.
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sample A. In addition, we observe a spin flip near the energies

corresponding to the Te isoelectronic centers for both samples

C and B. The origin of this spin flip is still under investigation.

Probing at energies around the LH to free exciton (FE) transi-

tion of ZnSe the TRKR signal is significantly diminished. In

addition, we do not observe the spin flip seen in bulk ZnSe

and in sample A due to the non-degenerate LH and HH. We

tentatively explain the latter behavior for samples B and C as

being due to the capture of light holes by the presence of the

type-II QDs within the samples. These ZnTe-based QDs form

a staggered band alignment with the ZnSe matrix producing a

potential well for holes (see Figure 1(b)). Moreover, trying to

probe the green band in all samples did not produce a TRKR

signal. This was not unexpected since the type-II alignment of

the QDs results in optically forbidden transitions.

To better characterize the increase in spin lifetime

observed for the samples with higher Te content, we inves-

tigated the temperature dependence of the Te-IC center

related spin lifetimes in samples A and C. Sample B, with

an intermediate Te content, was also measured. Here we

compare A and C since they exhibit the largest effect. In

order to probe the Te-IC centers directly we used the lowest

energies at which we observed the TRKR signal for each

sample. This value varied depending on the Te content of

each sample. For sample A, this was near the band edge of

ZnSe, at 2.81 eV and for sample C it was at 2.75 eV. Figure

4 shows the temperature dependence of the TRKR lifetime

for samples A and C. In both cases, the TRKR measure-

ments typically exhibit a bi-exponential decay which is

denoted by a long s*2 and a short s*2 on the graphs. This

bi-exponential decay is illustrated in a typical TRKR decay

curve for sample C, shown as an inset in Figure 4. The fast

component of the initial decay can be explained by the

rapid decoherence of the hole spins initialized by the pump,

while the long decay corresponds to the electron spin deco-

herence lifetime.

The principal observation is that sample C exhibits a

much longer long s*2 lifetime at low temperature, exceeding

1 ns. The value of the long s*2 increases further as the temper-

ature grows but an exact determination of its value is limited

by the delay stage (the maximum displacement corresponds to

1 ns). For sample A the value of the long s*2 is much shorter

below 50 K, resulting in a single exponential decay behavior.

Above 40 K the long s*2 spin lifetime measured is �100 ps.

This behavior is similar to that seen in bulk undoped ZnSe

(not shown). This sharp drop off of the lifetime at �50 K has

been explained as the motional narrowing of excitons.17 In

that mechanism, electron and hole overlap increases at lower

temperatures. Since hole spin decoherence is much faster, it

contributes to the decrease of the electron spin lifetime, last-

ing only tens of picoseconds. In sample C, which has a much

larger density of type-II quantum dots, this decoherence

mechanism does not seem to play a dominant role. A similar

behavior to that of sample C has been observed in undoped

type-II quantum wells, which also exhibit spin lifetimes in

excess of 1 ns at low temperatures.7 The decoherence mecha-

nism responsible for the behavior of sample C has not been

established.

CONCLUSION

In conclusion, we have investigated the spin decoherence

lifetimes of ZnSe samples with embedded ZnTe type-II QDs.

Three samples with different effective Te content, 0.1%, 0.2%,

and 0.3%, were investigated using spectrally resolved TRKR.

Low temperature PL confirms the presence of type II QDs

which increase in density with increasing Te- content, as well

as with the presence of Te-ICs in the ZnSe barrier regions. We

found that the QDs could not be probed directly by TRKR,

which we attribute to their type-II nature. On the other hand,

the TRKR signal from the Te ICs that are present in the ZnSe

barrier regions could be observed, but only in the samples with

a higher Te content, and consequently with larger QD densi-

ties. The spin coherence lifetimes increase significantly as the

Te content increases in the samples. The sample with the high-

est Te content exhibited a lifetime of �1 ns at 10 K, compared

to less than 20 ps for the sample with the lowest Te content.

Furthermore, a spin flip near the energy of the Te-IC could be

detected in the samples with high Te content. The spin flip

near the band-edge seen in pure ZnSe was not observed in

samples with large Te content, which hints at the capture of

light holes by the type-II QDs present in the samples.

FIG. 4. Temperature dependent spin relaxation lifetimes measured by

TRKR pumped and probed at 2.78 and 2.75 eV for samples A and C, respec-

tively. Typically a biexponential decay is observed consisting of a long and

short lifetime component illustrated in the TRKR shown in the inset for sam-

ple C at 65 K. Red lines in the inset indicate straight lines for the two sepa-

rate decays observed in the curve.
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