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ABSTRACT  

Electron-promoted desorption (EPD) from compact amorphous solid water (c-ASW) has been 

studied. Low-energy electron bombardment with 200 to 300 eV electrons leads to H2O depletion 

as monitored by reflection-absorption infrared spectroscopy (RAIRS) of the remaining c-ASW 

film. Cross-sections for H2O depletion were calculated to be in the range 1.6±1.0 × 10
-16

 to 

5.2±3.0 × 10
-16

 cm
2
. However, mass spectrometric measurements identify a major component of 

the desorbing material as H2, which appears with similar kinetics to those for H2O loss. 

Molecular H2O is observed as a minor desorption product in the gas phase. 
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1. Introduction 

Water (H2O), in its solid and gaseous forms, is a key molecule in the Solar System and beyond. 

It has been detected in both forms in many galactic environments including planets, comets, and 

the interstellar medium (ISM) itself.
1
 Observations show that H2O is a major component of 

interstellar ices along most lines-of-sight, with a typical abundance of 1×10
−4

 with respect to 

atomic hydrogen.
2
 The formation of H2O ice in astrophysical environments occurs at low 

pressure and low temperatures (10-90 K). The dominant H2O formation pathway in the ISM is 

through reactive accretion involving efficient atomic oxygen (O),
3
 molecular oxygen (O2),

4,5
 and 

ozone (O3)
6
 hydrogenation directly on grain surfaces. Gas-phase H2O formation followed by 

freeze-out onto grain surfaces does not account for observed solid H2O abundances.
7
 In most 

astrophysical environments, H2O is found to exist as amorphous solid water (ASW) which is 

metastable with respect to the crystalline state due to a high activation barrier for the structural 

transformation.
8,9

 

During the formation of dense cores, freeze-out of gas phase species onto the surfaces of dust 

grains takes place, adding to the icy mantles created by reactive accretion. At the low 

temperatures (<20 K) found in dense regions, these ices will adsorb a variety of chemical 

species.
10,11

 As the core density increases and a protostar is formed and begins to heat its 

environment, thermal desorption begins to return the species locked in the ices to the gas 

phase.
12-17

 Non-thermal processes, however, can liberate species under conditions where they 

cannot be thermally evaporated. The key non-thermal process is assumed to be photodesorption 

driven by VUV photons.
18,19

 However, cosmic rays,
20

 electrons
21,22

 and longer wavelength 

optical
23

 radiation can also promote desorption. 
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Laboratory experiments focusing on the thermal desorption of H2O have enhanced our 

knowledge of H2O-based ices on model interstellar dust grains.
24-26

 These experiments have 

revealed how H2O binds with different surfaces and show that H2O islands are formed on 

surfaces such as SiO2 due to the dominance of H2O-H2O interactions over those of H2O-SiO2. i.e. 

H2O de-wets from the silica surface. Furthermore, infrared spectroscopic experiments have 

shown that H2O begins to de-wet from the SiO2 surface at temperatures below 40 K.
26,27

 

Electron-promoted desorption (EPD) is of interest to the astrophysical community due to the 

wide array of energetic ionizing radiation interacting with interstellar ice surfaces. As radiation 

passes through the molecular ice film such interactions result in an abundance of secondary 

electrons and secondary electronic excitations. A variety of EPD experiments have been 

performed, both with H2O itself and with molecules adsorbed on a H2O film. Such experiments 

have, for instance, shown D
+
 formation from pure D2O when bombarding the film with a 100 eV 

electron beam;
28

 H2, O2 and H2O2 formation in a pure H2O film after irradiation with 5 keV 

electrons;
29

 and morphological changes have also been observed.
30,31

 More recent studies have 

highlighted an efficient non-thermal desorption mechanism for species weakly hydrogen-bonded 

to the ASW surface mediated by the transport of excitons with energies of 8-12 eV.
21,32

 

However, there is a perception that radiation-driven non-thermal desorption is akin to thermal 

desorption and hence can be used to explain the observation of molecular species in cold, dense 

environments e.g. H2O,
33

 methanol
34

 and acetonitrile.
35

 The majority of experiments in the 

astrochemical literature, however, look at surface loss as a guide to desorption rate and do not 

look to the nature of the species leaving the surface, which may be dominated by fragments and 

reaction products rather than the parent ice species. An interesting conclusion then follows that 

EPD of COMs may therefore not lead to intact COMs in the gas-phase, but rather their molecular 
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fragments. Literature data, however, shows that simple species, e.g. C6H6, weakly hydrogen-

bonded to the surface of water films may desorb efficiently as intact molecules. The observations 

reported herein, however, suggest that we must be cautious with extrapolating that observation to 

molecules buried in the near-surface bulk. This work opens a window on that question by 

reporting the detection of molecular hydrogen (H2) during EPD of ASW and a comparison of the 

kinetics of its appearance with our previously reported H2O loss data. 

 

2. Experimental Method 

The ultrahigh vacuum (UHV) chamber, with a base pressure of lower than 2 × 10
-10

 mbar, and 

ancillary experimental equipment have been described in detail previously.
36

 A brief description 

of the experimental procedure is provided herein. The substrate was a polished stainless steel 

disc coated with a 200 nm film of amorphous silica (aSiO2) deposited by electron beam 

evaporation as described previously.
36

 The substrate was cooled through contact with a liquid 

nitrogen reservoir, reaching a base temperature of 112 K as measured by a K-type thermocouple 

spot-welded to the edge of the stainless steel disc. Molecules were background dosed onto the 

aSiO2 film in units of Langmuir (L, where 1 L represents an exposure of 1.0 × 10
-6

 Torr for 1 s). 

Film thickness, d, can then be estimated from Equation 1:  

  
   

√      
 
 

  
 
   

  
 

(1) 

where S is the sticking coefficient assumed to be unity, P is the pressure recorded with the ion 

gauge with the approximate molecular ionization efficiency of 1.1 for H2O,
37

 t is the exposure 

time, kB is the Boltzmann constant, T is the temperature of the dosed molecules, ZW is the 

bombardment rate (the incident flux), ρS is the molecular volume density and m is the molecular 
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mass. Electron irradiation of H2O films was done with an ELG-2 (Kimball Physics) electron gun 

with energies as stated in the following paragraphs. 

In our original experiments,
38

 a 20 L ASW film was deposited corresponding to an estimated 

average film thickness of 2.4±0.2 nm. However, in the light of our knowledge of such films, the 

H2O is likely present on the silica surface in the form of islands several molecules thick.
27

 

Electron irradiation was performed with an angle of 45° with respect to the surface normal and 

with electrons having energies in the range of 200-300 eV with an energy spread of 0.5 eV. The 

electron beam was rastered over the approximately 0.75 cm
2
 of substrate surface with a 

frequency of 2 s
-1

 and this resulted in a typical electron flux of up to (1.7±0.1) × 10
12

 electron 

cm
-2

 s
-1

. Changes in the ASW film during electron irradiation were monitored using reflection-

absorption infrared spectroscopy (RAIRS) at a grazing angle of 86
o
 to the substrate normal. 

RAIR spectra were acquired by the co-addition of 1024 scans with a resolution of 2 cm
-1

 as 

collected by a liquid N2 cooled MCT detector using a BioRad Model FTS-80 FT-IR 

spectrometer. The data we use from reference 38 can be seen in Figure 1 (ii) and is discussed in 

the following text. 

In the more recent experiments, thicker ASW films, typically exposures of 150 L and hence 

thickness of around 18±2 nm, were investigated. Both H2O and D2O were investigated and each 

film had 1 L of benzene (C6H6) deposited on top of the ASW films. The presence of the C6H6 

reflecting the original intent of the work to probe exciton-mediated desorption.
21,32,38

 The data 

and results presented in this work come as a fortuitous addition to that story in the light of a more 

thorough review of our data. At this exposure, C6H6 is present as small islands dispersed over the 

H2O/D2O surface with isolated molecules diffusing between.
32

 As such the H2O solid surface 

itself is largely unobscured. Thus, the islanded C6H6 overlayer does not significantly impact on 



 6 

desorption of the ASW substrate. Electron irradiation was performed at ca. 30° with respect to 

the substrate normal giving an irradiated area of 1 mm
2
. CASINO simulations indicate that the 

electrons penetrate deeply into the ASW.
21

 The electron beam was not rastered in these 

measurements. The resulting average electron flux was (9.0±2.0) × 10
13

 electron cm
-2

 s
-1

, 

typically with a value of (1.1±0.2) × 10
14

 electron cm
-2

 s
-1

 in the first 50 s and quickly reaching a 

limiting value of (7.5±0.5) × 10
13

 electron cm
-2

 s
-1

 at longer times. Substrate charging is believed 

to be the reason for the change in electron flux as reported previously in studies of electron 

irradiation of thin films in the same UHV chamber.
21

 The evolution of gas phase H2 and other 

species (m/z = 2, 16 and 18) from the electron irradiated ASW film was monitored by a cross-

beam source, quadrupole mass spectrometer (VG Microtech PC300D, further modified by 

European Spectrometry Systems) with a homemade line-of-sight tube facing the front of the 

substrate upon which the molecular film is deposited. 

 

3. Results and Discussion 

We begin by summarizing our previously reported observations.
38

 RAIR spectra in the region of 

the νOH stretching bands following electron irradiation of 14 L of H2O adsorbed on the aSiO2 

surface show a clear and significant decrease in intensity of the νOH stretching band with 

increasing time of exposure to the electron beam as the ASW film is irradiated. No other changes 

in the entire IR spectrum are observed during irradiation suggesting that no significant 

concentration of new chemical species are being formed and then retained in the ice on the 

timescale of our experiment. Figure 1 shows the behavior of the integrated intensity of the νOH 

stretching band with exposure time for a number of incident electron energies. The total EPD 
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cross-section,     , is derived from the first-order loss of H2O from the ASW film assuming we 

are in the thin film limit:
39-41

 

 
  

  
                  

(2) 

where C is the surface concentration of H2O in cm
-2

, kEPD is the rate constant for EPD and   is 

electron flux in electrons cm
-2

 s
-1

. By integrating Equation 2, we can describe the exponential 

decays in Figure 1 in terms of their decay time constant or life-time, τ.  

 

Figure 1. Decay of the integrated νOH stretching band intensity as a function of irradiation time 

(black symbols) along with the fitted exponential decay function (red line). Electron energies are: 

(i) 200 eV, (ii) 250 eV, and (iii) 300 eV. The thickness of the 150 L H2O film is 18 nm and 0.035 

nm for the 1 L C6H6 film present as islands on the H2O film. 
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Electron energy / eV Electron flux / electron cm
-2

 s
-1

 EPD cross section / cm
2
 

200 

250 

300 

(1.4±0.1) × 10
12

 

(1.7±0.1) × 10
12

 

(1.6±0.1) × 10
12

 

(1.6±0.1) × 10
-16

 

(3.2±0.4) × 10
-16

 

(5.2±0.6) × 10
-16

 

Table 1: The calculated total cross-section of H2O loss, EPD cross-section, observed through 

RAIRS. The error on the electron flux is due to the ammeter accuracy while the cross sections 

have uncertainties due to the ammeter accuracy as well as the exponential decay functions of 

Figure 1. 

 

The total cross-section for H2O loss,     , is then calculated from Equation 3: 

     
 

 
         

(3) 

where the incident electron flux was scaled to take into account the 2 s
-1

 raster. Table 1 

summarizes the calculated cross-sections for H2O loss. These results indicate that the cross-

section increases monotonically with increasing electron energy. The results seem to suggest that 

the cross-section increases monotonically with increasing electron energy. This can be explained 

in terms of a combined effect of a greater penetration depth, and larger yield of secondary 

electrons and excitations, when irradiating the ice with more energetic electrons. However, more 

experiments are needed in order to confirm this hypothesis. 

It is worth re-iterating at this point that the cross-sections in Table 1 are many orders of 

magnitude larger than the reported cross-sections for photon-stimulated desorption in the VUV, 

which are typically of the order of ~10
-18

 cm
2
 and ~10

-19
 cm

2
 in the near UV-Visible for doped 

ASW.
38,42

  This would imply that electron-promoted desorption, initiated by cosmic ray 
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interactions in icy grains, could be the primary non-thermal desorption mechanism in cold, dense 

regions in the ISM.
38

 

Figure 2 shows desorption signals as a function of irradiation time for the electron irradiation 

of 1 L of C6H6 on solid H2O (left panel) and on solid D2O (right panel). The recorded traces for 

m/z = 2 (H2), = 4 (D2), and = 16 (O) are fully consistent with H2
43

 and O2
44,45

 forming during the 

electron irradiation of thick pure ASW. The m/z = 16 signal can be attributed to both O atoms 

and O2 which is seen to increase and reach a plateau.  

 

Figure 2. Time dependence of the QMS signals in m/z channels 2 [4] (H2 [D2]), 16 (O) and 18 

[20] (H2O [D2O]) during irradiation of 1 L of C6H6 on a thick ice of solid H2O (150 L) and on 

solid D2O (150 L) in the left and right panels, respectively. Irradiation starts at t=0 s with 250 eV 

electrons. Traces have been offset for clarity with the dashed lines showing the zero lines for 

each curve. 

 

Kimmel and co-workers have thoroughly investigated the chemistry occurring in H2O ices 

deposited on Pt(111) upon irradiation with low energy electrons (e.g. 100 eV, 87 eV). They first 

observed molecular hydrogen formation in earlier work
43

 and discussed the mechanism of such 

electron induced chemistry (EIC) in subsequent work.
46,47

 The data in Figure 2 is consistent with 
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the so-called prompt desorption of H2 that forms at the ASW interface as reported in the 

previously mentioned literature, despite the presence of 1 L of C6H6 as an adlayer. The evident 

agreement of our data with these earlier findings suggests that dehydrogenation of the aromatic 

molecule mediated by the H2O substrate is not significant and can be considered as negligible, at 

least for C6H6/ASW. It follows that some of the reactive steps involved in the observed H2 

production are:
46

 

H2O + e
-
 → H2O

+
 + 2e

-
NT (i) 

H2O
+
 + H2O → H3O

+
 + OH (ii) 

e
-
NT → e

-
TE (iii) 

H2O
+
 + e

-
TE → H2O*(bulk) (iva) 

H3O
+
 + e

-
TE → H3O*(bulk) (ivb) 

H2O*(bulk) → H2O*(interface) (va) 

H3O*(bulk) → H3O*(interface) (vb) 

H2O*(interface) → Products (H2 + O, H2O, H + OH)   (via) 

H3O*(interface) → Products (vib) 

This mechanism initially involves direct excitation of H2O molecules leading to secondary 

electrons and ions. Then a sequence of inelastic scattering events thermalize the non-thermal 

primary electrons (e
-
NT) inside the bulk, leading to electronic excitations and trapped thermal 

electrons (e
-
TE) culminating with electron-ion recombination. Excitons (electronically excited 

molecules generated by absorption of a quantum of energy corresponding to a molecular orbital 
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transition) are produced along the track of the incident electron beam in the solid. Such excitons 

can be localised on a single molecule or are free to move throughout a solid. In solid H2O, there 

is much experimental evidence that the excitons are mobile and able to diffuse from their point 

of generation to the surface probably via a non-radiative resonant energy transfer 

mechanism.
21,32,48

 Molecular oxygen (O2) formation has also been observed and investigated by 

Petrik et al.
44,45

 and requires additional steps to those listed above involving the accumulation of 

precursors, such as H2O2 and HO2, in order to release O2 starting from the OH produced at the 

vacuum interface by the  reactions (via) and (vib): 

2OH ⇌ H2O2 (vii) 

OH + H2O2 → HO2 + H2O (viii) 

HO2 + M (electron or short lived species) → O2 + products  (ix) 

where M is an unknown reaction partner that can be either an energetic electron or a short-lived 

species. By comparing the EIC curves corresponding to H2 and D2, one might note that the 

former is almost twice as intense as the latter. This can be explained simply as different 

sensitivities for the ion signal corresponding to m/z = 2 and = 4 of the QMS. However, this 

observation may also infer an actual effect of isotopic substitution. Further studies are required to 

clarify this observation. It could simply be a classical kinetic isotope effect due to changes in the 

zero-point and transition state vibrational energies of the two isotopologues or it might be 

associated with changes in the excited state dynamics due to the impact of the isotope exchange 

on the strength of the hydrogen bonding network in the ASW. Either effect may possibly impact 

on the propagation of excitons to the vacuum interface and the resultant EIC. 
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At the most fundamental level, the mechanism of H2 formation proposed by Kimmel and co-

workers is probably the same as that of the fast C6H6 desorption from ASW. The key difference 

is that the electronically excited H2O molecule at the C6H6 interface transfers the excitation to 

the hydrogen-bonded aromatic ring allowing this to desorb (Reactions (via) and (vib)), rather than 

leading to H2O desorption or bond cleavage:  

H2O
*
 + C6H6 → H2O + C6H6

*
 (x) 

C6H6
*
 → C6H6(g) (xi) 

In fact, EPD of C6H6 from solid H2O surfaces involves rather complex kinetics, which can be 

phenomenologically reproduced by a multi-exponential decay and involves additional processes 

such as non-thermal diffusion of the aromatic molecule from the edges of C6H6 islands to 

dangling OH groups at the ASW interface and changes in the morphology of the H2O/vacuum 

interface. However, for low C6H6 doses (10 L) the fast component of the EPD traces is 

accurately described by Reactions (x) and (xi), that run in parallel with Reaction (via) and hence 

can be compared to H2 desorption. In previous work, we measured the cross-section for the fast 

non-thermal desorption of C6H6 from H2O to be (1.0±0.4) × 10
-15

 cm
2
 during irradiation with 250 

eV electrons.
21,32

 In order to quantitatively compare the cross-sections corresponding to 

Reactions (vi), (x) and (xi), it is necessary to estimate the kinetics of H2 desorption. Therefore, 

the EIC curves for H2 and D2 in Figure 2 have been normalized with respect to each maximum 

and have been plotted in Figure 3 along with a fitting function.  
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Figure 3. H2 and D2 evolution during 250 eV electron irradiation of 1 L of C6H6 on a thick ice 

(150 L) of solid H2O and on solid D2O reported in black and in green, respectively. Traces have 

been offset for clarity and each curve has been normalized with respect to its highest value for 

ease of comparison. The red line represents a bi-exponential fit. 

 

Given the quality of the m/z = 2 data, a good exponential fit while possible is challenging due to 

the signal-to-noise considerations. Conversely, D2 desorption displays a good S/N and the data 

were fitted up to 500 s with the following expression:  

 ( )     
         

         (4) 

where   is the electron flux (in this case there was no need to scale it due to rastering), σ1 and σ2 

are the cross-sections in cm
2
 for the two components of the decay, I1 and I2 are the corresponding 

amplitudes, while I is the residual. The same fitting function as derived from the D2 kinetics is 

superimposed on both EIC traces in Figure 3. The agreement with the experimental data is rather 

good for D2. While this is less convincing for H2, the fit does provide a sensible representation of 

the overall H2 appearance kinetics from solid H2O, especially in the first 50 s where the fast 

component is most relevant.  
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 C6H6/H2O C6H6/H2O 

EIC(H2) EPD(C6H6) 

σ1 / cm
2
 (1.0±0.2) × 10

-15
 (1.0±0.4) × 10

-15
 

σ2 / cm
2
 (2.7±0.5) × 10

-16
 (6±2) × 10

-17
 

Table 2: List of values for the cross-sections corresponding to the fast and slow components 

observed in the EPD study of 5 L C6H6 from ASW and the EIC study of H2 desorption from 250 

eV electron irradiated ASW capped with 1 L of C6H6. The EPD values shown for C6H6/H2O area 

also found in references 21 and 32 where further details can be found. 

 

The values for the cross-sections are reported in Table 2 along with the analogous values 

obtained for EPD of C6H6 from ASW surfaces. It is noticeable that by analyzing the variation of 

the desorption signal, whether of H2 or C6H6, some common kinetic features are found for both 

cases. Firstly, the recorded traces show a similar immediate rise when the irradiation begins, 

followed by a bi-exponential decay comprised of a fast and a slow component. Secondly and 

most importantly, the cross-section corresponding to the fast event is the same within the error 

bars providing semi-quantitative evidence for the assumed common initial mechanism in these 

two distinct processes. It follows that the energy transfer from the excited H2O to the aromatic 

ring followed by C6H6 desorption (Reactions (x) and (xi)) or the dissociation of H2O to 

subsequently form H2 occur in parallel at the interface of the solid H2O. Observing these species 

in a parallel kinetics fashion leads to the observation of a single common cross-section reflecting 

the sum of the cross-sections for the individual parallel processes. Without additional 

measurements of the relative yields (branching ratio) of the parallel channels, we cannot 
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definitively give individual cross-sections for the two processes. In contrast, the slow component 

is longer for EIC with respect to C6H6 EPD implying that additional steps should be taken into 

account in order to explain the decay at longer times.  

It is important to stress that the observed traces are the result of several processes that take 

place as competitive and parallel kinetics during the electron irradiation. The mechanism so far 

presented does not explain the reason why an exponential decay, as per Equation 2, is observed. 

However, assuming a partially common mechanism for both C6H6 (EPD) and H2 (EIC) 

desorption from ASW, some similarity between the kinetics of the two systems should be 

expected. This is supported by our data. In contrast, at longer times, other processes such as 

surface roughening and erosion, diffusion, and the formation of reactive species (H2O2, HO2), 

will introduce additional differences between the EPD of C6H6 and the EIC followed by 

desorption of H2. Indeed, there is still noticeable agreement between slow H2 production (see 

Table 2) and overall H2O loss reported in Table 1. In conclusion, although the RAIRS 

experiment cannot probe fast processes on and in the ASW, it does provide an important window 

on long timescale processes associated with electron irradiation given that by controlling the 

electron flux we can control the timescale of the processing. 

Looking at H2O desorption in Figure 2, the data are ambiguous to say the least. However, there 

does appear to be a small initial H2O signal that tracks the H2 trace. This could point to direct 

desorption of H2O at the vacuum interface termini of the hydrogen bond networks responsible 

for exciton transport due directly to exciton relaxation. Equally, this low desorption signal could 

point to energy transfer from the terminal H2O in such networks to adsorbed C6H6 at the ASW 

surface favoring reactions (x) and (xi) instead. As we have previously demonstrated, direct 

photo-excitation of C6H6 on H2O in the near-UV around 250 nm (4.96 eV) is extremely efficient 
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in producing H2O in the gas phase via an indirect adsorbate-mediated channel.
23,24,38

  Energy 

transfer from the 8-12 eV exciton in ASW and subsequent non-radiative relaxation (internal 

conversion) of the electronically excited C6H6 would reflect this adsorbate-mediated channel and 

could provide for an efficient indirect desorption mechanism for the interfacial H2O and for 

adsorbates like C6H6. Further experiments are clearly needed to explore which mechanism is at 

play in producing the small, observed H2O signal. 

 

4. Astrophysical Implications and Conclusions 

In concluding this paper, let us first state that the reported EPD cross-section for H2O reported in 

reference 38 is incorrect as the e
-
 beam raster correction was incorrectly applied. Given that, 

these present observations do not impact on our previously reported conclusions; 

 Loss of water from ASW films is promoted by interaction with low-energy electrons.
38

 

 The cross-section for the loss process is significantly larger than that for photon-

promoted desorption and so electron-promoted desorption is likely to be the dominant 

desorption channel in cold, dense environments.
38

 

As we reported in that work, a simple model based on conditions found in the object Barnard 68 

over–estimated the cold core gas phase H2O concentration by a significant factor. However, our 

observation herein of a weak H2O desorption signal may explain this discrepancy and hence, to 

some degree, the observed gas-phase H2O abundance in cold, dense environments.
49

  

This now brings us to our present observations and the conclusions we can draw in relation to 

them; 

 H2 and O2 are probably the dominant gas phase products from electron irradiation of 

ASW under the present conditions at a temperature of 100 K. The kinetics of the D2 
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appearance measured by QMS beyond ca. 20 s in Figure 3, are essentially identical to 

those of the H2O loss probed by RAIRS in Figure 1 when appropriate electron flux 

corrections are applied (non-rastered versus rastered). Understanding the composition 

of the desorbing material, i.e. the branching ratio into various product channels (both 

neutral and charged), is crucial to understanding the subsequent perturbation of the gas-

phase chemistry by the species desorbing during electron irradiation of ASW. It is also 

important to understand this as a function of temperature as lowering of the grain 

temperature will slow diffusion and likely result in retention of less volatile products 

e.g. O2. 

 Intact H2O is not the major desorption product observed, rather the molecular 

fragments of H2 and O2 are. 

 The low H2O yield might help correct the over-estimation of gas phase H2O in our 

previous model.
38,50

 

Table 2 highlights intriguing common kinetic features between EIC in ASW and EPD of 

hydrogen bonded molecules at the ASW surface under the present experimental conditions. 

These findings lead one to question the interplay between EIC and EPD for other ices, such as 

those containing methanol (CH3OH), and how this relates to the desorption of COMs in cold 

environments. In fact, there is evidence for the observation of COMs in cold dense 

environments, see for instance the review by Tielens and references therein.
1
 Both photon- and 

charged particle-induced desorption have been proposed as mechanisms to promote this. 

However, where the photons are ionizing, the basic physical processes occurring in ASW are 

identical to those expected for electron- and ion-irradiation and will yield neutral and charged 

atoms and molecules derived from a complex solid state chemistry. Non-thermal whole molecule 
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desorption by these processes is likely a very minor channel especially in reduced dimensional 

hydrogen bond network and organic-rich solids.
51

 This would point to alternative desorption 

mechanisms for COM evolution into the gas phase. At present, desorption promoted by reaction 

enthalpy release is suggested.
52,53

 An alternative scenario involving ice film disruption in grain-

grain collisions has also been proposed. Further experimental work is necessary to identify which 

is the likely mechanism. 
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