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Highlights

• We use the Bautista-Manero-Puig model to investigate channel ow insta-
bilities.

• Instability is seen when viscoelastic effects dominate; thixotropy is stabil-
ising.

• Very unstable ows have the low to high shear transition point near the
wall.

• The thixotropic structure recovery rate determines the growth rate of
instability.

• We predict a critical wall shear stress that is in agreement with experi-
ments.
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Abstract

We study the stability of pressure-driven channel flow of a thixotropic-
viscoelasto-plastic fluid. Several recent experiments have shown that
channel flows of shear-thinning polymer solutions can be linearly unstable
even at very low Reynolds numbers. We use the Bautista–Manero–Puig
model (BMP) to attempt to capture the physics of these instabilities. We
obtain an analytic solution for the steady-state velocity profile, depen-
dent on our fluid parameters, that is able to predict a large variety of
base states. We derive dimensionless groups to compare the effects of vis-
coelasticity, thixotropy and plasticity on the flow stability. We find that
sinuous perturbations are slightly more unstable than varicose modes, and
we identify the values of our model parameters for which the instability
has its strongest effects. We conclude that dominant thixotropy can sta-
bilise the flow, but instability occurs when the characteristic timescale of
viscoelasticity is much longer than both those of plasticity and thixotropy.
The most dangerous situation is a plug flow with an apparent yield surface
just within the channel, and we find that the growth rate of the instability
scales with the rate of thixotropic structure recovery.

1 Introduction

In recent years, it has been shown that viscoelastic fluids exhibit instabilities
in inertialess flows that are not seen in Newtonian fluids: these are commonly
described as elastic instabilities. Petrie and Denn [25] were the first to identify
such instabilities arising in extensional and shearing flows in polymer processing
operations. Since then, extensive theoretical and experimental research has
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been made by rheologists in order to understand the mechanisms behind these
instabilities.

Several categories of elastic instabilities are more or less understood: curved
streamline [11, 12], interfacial [13, 14] and shear-banding [15] instabilities. Early
work by Wilson and Rallison [3] predicted theoretically an instability that had
not previously been seen, for pressure-driven channel flows of highly shear-
thinning viscoelastic fluids having a constant elastic modulus and a single poly-
mer relaxation time that depends instantaneously on the shear rate. No experi-
mental evidence of this instability was found until 2015, when Bodiguel and his
team [2] demonstrated an elastic instability, occurring at a reproducible crit-
ical flow rate, in a channel flow of a high molecular weight polymer solution
(18 × 106 g/mol partially hydrolysed polyacrylamide in water) having neither
curved streamlines, nor an interface, nor any evidence of shear-banding. Similar
results were seen in experiments by Poole [16] in 2016, who also identified an
instability for a shear-thinning viscoelastic polymer (1% polyacrylamide). How-
ever, theoretical work at that stage was restricted to a very simple model which
could not capture the non-constant shear modulus of Bodiguel’s polymer.

The theoretical work was subsequently extended by [4] and [5] to decou-
ple shear and normal stresses and incorporate a solvent viscosity. However,
all these studies were restricted to instability modes with no cross-channel mo-
tion at the centreline because of their use of power-law rheometric functions.
An additional issue is that the models they used have fluid properties (such
as the relaxation time) that depend instantaneously on the flow environment.
Therefore in this paper we consider a structural parameter (such as molecular
entanglements, network junctions, or micelle length) that is changing with de-
formation history and on which the material properties depend. A finite value
of the zero shear viscosity will permit cross-channel motion at the centreline,
and the model also captures more complex rheological behaviours: thixotropic-
viscoelasto-plasticity. Our chosen model, which satisfies all these requirements,
is the BMP model [1], a structural model which has been proven to accurately
reproduce the complex rheological behaviour of viscoelastic systems that also
exhibit plasticity and thixotropy. In addition, the model is capable of matching
the flow curve of shear-thickening and shear-thinning fluids, non-vanishing nor-
mal stress differences, shear-banding [18] and even yield stress behaviour [19].

A paper similar to our research presented here was recently published by
Renardy [22], who studied the linear stability of a shear-banded flow with vis-
coelasticity and thixotropic yield stress behaviour in a two-dimensional plane
Couette flow; they identified bulk instabilities in the yielded phase (high shear
rate zone) along with long wave interfacial instabilities.

In this work, we will stay away from shear-banded flows and focus on identi-
fying only bulk instabilities present in thixotropic-viscoelasto-plastic materials
in pressure-driven channel flows. In section 2 we introduce the simplest ver-
sion of the BMP model and the behaviour of our fluid in steady simple shear.
We derive dimensionless equations and construct a group of dimensionless num-
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bers recently proposed by Ewoldt [6] that allow us to compare the effects of
thixotropy, viscoelasticity and plasticity in our fluid. In section 3 we obtain
an analytic solution for the velocity profile, and derive the perturbed govern-
ing equations for linear stability analysis. In section 4 we present our results
and discuss them in terms of the dimensionless groups introduced in section
2. Finally, in sections 5 and 6, we make general observations and draw our
conclusions.

2 Model fluid: The BMP model

Many of the materials we use in our daily life — such as foods, personal
care products, paints, ink, adhesives, waxy oils, gels, biological fluids such as
blood, and pharmaceuticals — fall into the category of thixotropic-viscoelasto-
plastic materials (TVEP). These are structured fluids that display a combina-
tion of three time-dependent complex rheological behaviours: viscoelasticity,
thixotropy and plasticity. Unlike Newtonian fluids (that simply consist of an
homogeneous phase), these kinds of materials are usually composed of multiple
phases, such as solid particles or a microstructure dispersed in a viscous (or vis-
coelastic) continuous phase. The rheological response of these structured fluids
usually depend on multiple characteristic time scales of the material and on the
level of deformation imposed.

TVEP materials show a complex combination of rheological behaviours. Un-
der steady shear, the microstructure will reach a steady configuration that is
determined by an equilibrium between the microstructure breakdown and build
up processes. After a step change of either shear rate or shear stress, they may
exhibit time dependence if a new equilibrium is not reached instantaneously.
Above some threshold shear rate or shear stress, they can show microstructure
collapse, with a dramatic drop in both elasticity and viscosity; and of course
the viscoelastic nature of the fluid can both store energy elastically and dissi-
pate it through viscosity. The mathematical modelling of this kind of fluid is
challenging, but there has been progress in recent years. Most models rely on
introducing a structural parameter, used as a measure of the microstructure,
which evolves according to a kinetic equation including both breakdown and
buildup processes.

Care needs to be taken when modelling these fluids, to distinguish the effects
of thixotropy from nonlinear viscoelasticity. Thixotropy is often defined as a
reversible decrease in viscosity over time during flow, but Larson [7] argues that
we should instead define thixotropy as a memory that viscosity has of past strain
rate, and viscoelasticity as a memory that stress has of past strain.

Existing TVEP models have been grouped by de Sousa Mendes [10] into two
types. Type I models are based on the Bingham model, with thixotropy and
viscoelasticity are introduced (as in [24]). On the other hand, Type II models
incorporate thixotropy into a viscoelastic stress equation based on the Maxwell
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model. For these models, no additional equations are required to describe plas-
ticity, as it is implicitly introduced by expressing the bulk model parameters
as a function of the level of structure (when the fluid is completely structured,
the viscosity is unbounded). Type II models are more robust than Type I, and
are able to describe a wider range of cases, including viscoelasto-plastic fluids
with no thixotropy, inelastic thixotropic viscoplastic materials, and of course,
thixotropic viscoelasto-plastic or viscoelasto thixo-plastic fluids.

There are several Type II models available in the literature that can suc-
cessfully describe TVEP behaviour, including de Sousa Mendes’ [23] thirteen-
parameter model, which is commonly used in the oil and polymer industry due
to its ability to model multiple rheological flows. Seeking a simpler model that
can still distinguish between thixotropy and nonlinear viscoelasticity, we select
the Bautista–Manero–Puig (BMP) model [1]. The BMP model can accurately
describe rheological flows of associative polymers, worm-like micellar solutions,
dispersions of lamellar liquid crystals, and blood. It has five rheological parame-
ters, which can be estimated from simple rheological experiments in steady and
unsteady flows. For various choices of the parameters, it can reproduce shear
thinning or shear thickening behaviour, apparent yield stress and actual yield
stress.

The simplest version of the model consists of a coupled system of equations:
the Upper Convected Maxwell constitutive equation, which calculates the poly-
mer contribution to the stress tensor, along with a kinetic equation proposed by
Fredrickson [8], which introduces a structural parameter. In thixotropic systems
it is observed that the instantaneous rheological properties (such as viscosity)
depend on the level of internal structure of the system, and this level changes
with deformation history. The evolution of the internal microstructure of the
fluid (and therefore, the viscosity) depends on the balance between two pro-
cesses. The first, structural reformation (or spontaneous build up of viscosity),
occurs whenever the fluid is not perfectly structured, at a rate that is assumed
to be independent of the rate at which shear work is done on the material,
but instead depends on a characteristic recovery timescale of the material. The
second process, structural destruction (or breakdown of viscosity), occurs only
under flow, at a rate that depends on the shear work applied to the mate-
rial. Fredrickson [8] initially coupled his kinetic equation with a Newtonian
stress equation to predict inelastic thixotropic behaviour of suspensions under
shear flow. Bautista and colleagues [1] simply introduced the Upper-Convected
Maxwell model instead of the Newtonian constitutive equation to incorporate
nonlinear viscoelasticity.

A family of models originating from the BMP model have been developed in
recent years, introducing extra parameters to predict even more complex rheo-
logical phenomena. Examples include shear-banding flows in wormlike micellar
solutions [18], and diffusion of species [26]. For the current work we have se-
lected the original BMP for simplicity, and in order to focus on bulk, rather than
interfacial, instabilities. Another complication we can avoid is the addition of a
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solvent viscosity, as it has been shown in our previous work [5] that the addition
of an inelastic solvent stabilises the flow. Although we will not consider shear
banding effects, the model we use is still valid for, for instance, micellar systems
above the critical temperature, for which shear-banding is not observed [17].

2.1 Governing equations

The stress tensor σ for a BMP fluid flowing with velocity u evolves according
to the UCM model:

σ +
1

G0ϕ

∇
σ=

2

ϕ
D, (1)

in which the upper-convected derivative is defined as

∇
σ=

Dσ

Dt
− σ · (∇u)− (∇u)> · σ, (2)

and D/Dt denotes the material derivative (for any scalar, vector or tensor quan-
tity A):

DA

Dt
=
∂A

∂t
+ u · ∇A, (3)

and D is the symmetric part of the flow gradient tensor:

D =
1

2

[
∇u+∇u>

]
Dij =

1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
. (4)

The parameters here are G0, the stress modulus, and the variable ϕ, which is
our structural parameter called fluidity, simply defined as the inverse of the
viscosity (≡ η). It evolves according to Fredrickson’s equation:

Dϕ

Dt
=

1

λ
(ϕ0 − ϕ) +K0(ϕ∞ − ϕ)σ : D, (5)

The right hand side of (5) consists of two terms: the reformation process (build
up of viscosity or breakdown of fluidity), parametrised by λ, the structural
relaxation time and ϕ0, the plateau fluidity observed at low shear rates; and the
destruction process (breakdown of viscosity or build up of fluidity), described
by K0, a rate parameter for structure destruction, ϕ∞, the fluidity at high shear
rates, and σijDij , the rate of energy dissipation in the fluid.

Equations (1) and (5) are then coupled with the continuity and momentum
equations, which are (in the absence of external forces such as gravity):

∇ · u = 0 (6)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P +∇ · σ, (7)

where ρ is the fluid density and P is the pressure.
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2.2 Behaviour in steady simple shear

For simple steady shear flow, given in cartesian coordinates by u = γ̇yex with
γ̇ > 0, equations (1) and (5) give:

σ =

(
2γ̇2G−10 ϕ−2 ϕ−1γ̇

ϕ−1γ̇ 0

)
, (8)

0 =
1

λ
(ϕ0 − ϕ) +K0(ϕ∞ − ϕ)

γ̇2

ϕ
. (9)

Equation (9) is a quadratic equation for the fluidity, whose solution is:

ϕ =
−(K0λγ̇

2 − ϕ0)±
√

(K0λγ̇2 − ϕ0)2 + 4(K0λγ̇2ϕ∞)

2
, (10)

For a given set of parameters K0, λ, ϕ0 and ϕ∞, equation (10) has exactly
one real positive root. If the product K0λ is zero (this is no destruction of
structure), we have a simple Maxwell fluid with constant viscosity η0 (≡ ϕ−10 ).
On the other hand, if the product K0λ → ∞ (this is dominant reformation of
structure), we reach the other extreme ϕ = ϕ∞ for any nonzero shear rate.

The viscometric functions (viscosity η, shear stress σ12 and the first normal
stress difference coefficient Ψ1) are given as:

η = ϕ−1 σ12 = ηγ̇ Ψ1 =
σ11 − σ22

γ̇2
= 2G−10 η2. (11)

Figure 1 illustrates the behaviour of these viscometric functions with shear rate,
using parameter values ϕ∞ = 15 Pa−1s−1, ϕ0 = 1.3 Pa−1s−1, G0 = 68 Pa and
K0λ = 7×10−6 Pa−1 s chosen to fit a shear-thinning low-concentration micellar
solution of CTAT above the shear-banding temperature [17].

2.2.1 Shear viscosity and critical shear stress

Figure 1(a) shows the nonlinear global behaviour of the shear stress as a function
of shear rate. There are two distinct Newtonian-like regions, which correspond
(figure 1(b)) to regions of near-constant fluidity. The low-shear rate phase of
complex entangled networks (fully structured state) has ϕ ≈ ϕ0, and the un-
structured state (or highly oriented flow region) has ϕ ≈ ϕ∞. The shear stress
is a monotonic function of shear rate, and for moderate shear rates there is a
small transition zone between the phases.

Fredrickson [8] observed that under the sudden startup of shear (with im-
posed shear stress) there are two different types of behaviour: primary creep,
at low shear stress, in which the strain rate decreases over time; and acceler-
ating flow, in which the strain rate increases monotonically towards its steady
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Figure 1: Plots of viscometric functions against shear rate for the BMP model:
(a) shear stress, (b) fluidity and (c) first normal stress difference coefficient. In
all cases, ϕ∞ = 15 Pa−1s−1, ϕ0 = 1.3 Pa−1s−1, G0 = 68 Pa, and K0λ = 7 ×
10−6 Pa−1s. The point marks the critical shear stress defined by equation (12).
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value. He defined a critical stress σc separating these two regimes, which can
be calculated as:

σc =
1√

K0 λϕ∞ (1− 2ϕ0/ϕ∞)
. (12)

This critical stress value is marked in figure 1(a) by a black circle. At small
values of ϕ0, an apparent yield stress is observed, and at ϕ0 = 0, the first
Newtonian region (located at low values of shear rate) vanishes and a non-zero
stress σy is found even for vanishing values of shear rates:

σy = (K0 λϕ∞)−1/2. (13)

Calderas [19] and his team showed experimentally that the yield stress measured
for Kaolin suspensions can be modelled using the BMP model.

2.2.2 Fluidity and first normal stress difference coefficient

The BMP model exhibits plateaus at low and high shear rates for both the fluid-
ity ϕ and the first normal stress difference coefficient Ψ1 (shown in figures 1(b)
and 1(c)). We can think of a viscoelastic relaxation time τ defined via the shear
viscosity as

τ =
η

G0
=

1

G0ϕ
; (14)

in that case, the normal stress coefficient is

Ψ1 =
2η2

G0
= 2G0τ

2. (15)

In the transition region, if we fit the fluidity curve with a power law ϕ ∼ γ̇1−n

then τ will follow the same power law and it follows that Ψ1 grows as γ̇2(1−n).

Returning to the plateaus, we can use equation (10) to estimate the range
of shear rates applying to each:

ϕ ≈ ϕ0 when γ̇2 � ϕ0

K0λ
; ϕ ≈ ϕ∞ when γ̇2 � ϕ∞

K0λ
. (16)

2.3 Dimensionless form of the governing equations

We consider a two-dimensional channel flow of a fluid that satisfies equations (1)–
(7). The channel has an infinite extent in x-direction, and has half-height L.
The fluid is driven by a pressure gradient P in the x-direction, and flows with
centreline velocity U0. The dimensionless flow geometry is sketched in figure 2.

We scale lengths with L, times using the average shear rate U0/L, and fluidi-
ties with the high-shear rate value ϕ∞. The natural stress scale then becomes
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Figure 2: Schematic of two-dimensional channel flow. The pressure gradient
drives flow from left to right; the fluid obeys no-slip boundary conditions at the
walls.

ϕ−1∞ (U0/L). In terms of dimensionless variables, the governing equations be-
come:

∇ · u = 0 (17)

Re

(
∂u

∂t
+ u · ∇u

)
= −∇P +∇ · σ (18)

σ +
W

ϕ

∇
σ=

2

ϕ
D (19)

Dϕ

Dt
=

1

Λ
(Φ− ϕ) + Γ(1− ϕ)σ : D (20)

Five dimensionless numbers appear in our system of equations, being the well-
known Reynolds number Re and Weissenberg number W :

Re = ρU0 Lϕ∞ W = λve

(
U0

L

)
=

1

G0ϕ∞

(
U0

L

)
. (21)

along with the extra parameters required by the model:

Φ =
ϕ0

ϕ∞
=
η∞
η0

Λ = λ

(
U0

L

)
Γ =

(
1

ϕ∞

U0

L

)
K0 (22)

Φ, the thixotropic ratio, is simply the ratio between zero and high shear rate
fluidities. Despite its simplicity, this dimensionless number is highly important
to distinguish between shear-thinning (Φ < 1) and shear-thickening (Φ > 1)
fluids. The thixotropic ratio is analogous to the exponent n used in power-law
models [3]; both indicate the strength the shear-thinning behaviour: for low
values of both parameters (Φ and n � 1) we have a strongly shear-thinning
fluid. The remaining parameters Λ and Γ are timescale and stress ratios, which
we discuss in the following sections. They are crucial in defining the key dimen-
sionless quantities of thixo-elasto-plasticity: the thixoelastic, thixoplastic and
elastoplastic numbers.
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2.3.1 Thixoviscous and thixoelastic numbers

A recently published paper by Ewoldt and McKinley [6] shows how plasticity and
thixotropy can be incorporated with viscoelasticity. Each one of these complex
rheological behaviours has a characteristic timescale. These timescales allow us
to form dimensionless groups that can be mapped into a three dimensional space
to represent thixotropic elastoviscoplastic material responses. In this section we
form Ewoldt and McKinley’s three dimensionless groups for the BMP model.

The first grouping is Λ, as defined in equation (22), and is the ratio of the
fluid’s reformation time to a typical flow time. It is known as the thixoviscous
number ; its form looks similar to the Weissenberg number of equation (21), but
critically, the timescale λ here is not the viscoelastic relaxation time but the time
over which structure recovers from flow. For high values of the thixoviscous
number (Λ → ∞), the fluid will exhibit a slow or null recovery of viscosity
after the cessation of flow; fast structural recovery is seen for the opposite case
(Λ→ 0).

The next grouping is the thixoelastic number. There is often confusion in the
literature between non-ideal thixotropy and nonlinear viscoelasticity. Larson [7]
states that pure thixotropic behaviour can only occur when the viscoelastic
relaxation time λve is much shorter than the thixotropic timescale λ. We define
the thixoelastic number as

Wte =
λve
λ

=
W

Λ
. (23)

Large values of Wte correspond to pure viscoelasticity, with any thixotropic
response happening very quickly; strong thixotropy is the opposite limit Wte →
0.

2.3.2 Dimensionless critical stress and thixoplastic number

The parameter Γ in equation (22) is associated with the destruction or breaking
down of structure. K0 has units (stress)−1, which indicates that Γ is in some
way a ratio of stresses. When we come to solve for steady channel flow, the
parameter Γ only appears in the combination ΓΛ, which has been defined by
Herrera [27] as the ratio between viscous work and kinetic structural work:

ΓΛ =
η∞(U0/L)2

(K0λ)−1
. (24)

This means that for high values of ΓΛ the structural destruction dominates over
reformation and we have a highly thixotropic material. For small ΓΛ, we have
either weak destruction or quick structural reformation.

For a steady, homogeneous flow, the limit Λ → ∞ (no fluidity recovery)
yields a viscoelastic fluid having a dimensionless fluidity equal to 1 (i.e. a value
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of the dimensional fluidity equal to the high-shear rate fluidity, ϕ∞). If, on
the other hand, the destruction parameter Γ = 0 (this is no breaking down of
structures), we have a similar scenario: a viscoelastic fluid but with a fluidity
ϕ0.

The dimensionless form of the critical stress in (12) can be defined in terms

of Γ, Λ and Φ:

τc =
1√

ΓΛ (1− 2Φ)
. (25)

If the product ΓΛ is large, only a small stress is required to destroy the complex
structural networks. Note that yield stress behaviour is recovered when Φ = 0,
and equation (25) is reduced to:

τy = (ΓΛ)
−1/2

. (26)

As discussed in [6], for thixo-plastic fluids in which the (apparent) yield
stress σc or σy is re-established after the cessation of flow, we can define the
(dimensionless) timescale over which this process occurs:

λtp =
η∞
σc

Wtp = λtp

(
U0

L

)
=
√

ΓΛ (1− 2Φ). (27)

This new dimensionless number Wtp is the thixoplastic number, and is simply
the inverse of the Bingham number. If Wtp → 0, an apparent yield stress is
observed; for higher values of Wtp the recovery of critical stress after flow is
slower, and in the limit Wtp →∞ no critical stress is observed.

We have now derived all the dimensionless groups described in [6] in terms of
our dimensionless numbers from equation (22). Of course, other combinations
of these can be made; but these three parameters Λ, Wte and Wtp, serve to link
our results to the framework introduced by [6].

3 Stability calculation

3.1 Base state

We consider a two-dimensional channel flow (see figure 2) of infinite extent
in the x-direction, dimensionless height 2 (in the y-direction) and driven by a
dimensionless constant pressure gradient P in the x-direction. We assume a
steady, unidirectional flow profile u = U(y)ex satisfying a no-slip condition at
y = ±1. Under these conditions, and denoting U ′ = dU/dy, equations (17)–(20)
become:

0 = P +
dσ12
dy

(28)
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σ12 =
1

ϕ

dU

dy
ϕ =

Φ + ΓΛσ12U
′

1 + ΓΛσ12U ′
. (29)

Equation (28) immediately gives:

σ12 = −Py + C, (30)

where we can discard the constant C by symmetry arguments. Substituting
equation (30) into equation (29), we obtain an equation for the velocity gradient:

γ̇0 = |U ′| = 1

2
Py − 1

2ΓΛPy ±
√
by4 − cy2 + 1

2ΓΛPy , (31)

in which
b = Γ2Λ2P4, c = 2W 2

tpP2 = 2ΓΛ(1− 2Φ)P2. (32)

Equation (31) (which has only one physically possible root) is the analytic form
of the shear rate γ̇0. For the case no structural breakdown, or of fast recovery,
we are in the limit ΓΛ = 0 and equation (31) is reduced to γ̇0 = ΦP|y|, which
is the profile of a Maxwell fluid with our low-shear viscosity. In that case we
have a simple velocity profile U = (1/2)ΦP(1 − y2). In the opposite limit of
null structural relaxation ΓΛ → ∞ the fluid takes on the high-shear viscosity
and the shear rate and velocity profiles are 2|y| and (1− y2), respectively.

Integrating equation (31) and applying the no-slip boundary conditions on
the channel walls, we have an analytic equation for the velocity profile:

U =
1

4
P(1− y2)− 1

4ΓΛP (U1 + U2 + U3), (33)

where:

U1 =
√
by4 − cy2 + 1−

√
b− c+ 1 (34)

U2 =
c

2
√
b

ln

[
2
√
b
√
b− c+ 1 + 2b− c

2
√
b
√
by4 − cy2 + 1 + 2by2 − c

]
(35)

U3 = ln

[
2− c+ 2

√
b− c+ 1

2− cy2 + 2
√
by4 − cy2 + 1

]
, (36)

with centreline velocity:

U0 =
1

4
P − 1

4ΓΛP
(

1−
√
b− c+ 1

+
c

2
√
b

ln

[
2
√
b
√
b− c+ 1 + 2b− c

2
√
b− c

]
+ ln

[
2− c+ 2

√
b− c+ 1

4

])
. (37)

Equations (33) and (37) allow us to calculate the velocity profile, and along with
the fluidity (29) and shear rate (31) equations, we can fully describe the base
state for our system. However, the value of the dimensionless gradient pressure
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gradient P has to be determined numerically to satisfy the constraint that the
dimensionless centreline velocity U0 of equation (37) is equal to 1.

A dimensional equation for the velocity profile and shear rate can be found
in appendix A.

3.2 Velocity profiles

3.2.1 Dependence on the thixotropic ratio

In this section we will illustrate some of the different velocity and fluidity profiles
that can be obtained for various values of our model parameters.

	
0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1.1	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Ve
lo
ci
ty
	p
ro
7il
e,
	U
	

Channel	coordinate,	y	

(a) Velocity profile
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(b) Fluidity profile

Figure 3: Velocity and fluidity profiles from equations (33)–(36) and (29) with
ΓΛ = 0.005. For both panels, dotted line (Φ = 0.1), dashed line (Φ = 0.01) and
top solid line (Φ = 0.001, highly shear-thinning fluid). The bottom solid line in
(a) is the velocity profile for the Maxwell case, Φ = 1).

In figure 3 we show profiles of velocity and fluidity different values of the
thixotropic ratio Φ, keeping the structural evolution parameter constant, ΓΛ =
0.0005. The bottom solid line in (3a), which we have not included in the fluidity
plot, represents the case Φ = 1, for which the fluidity is constant: the Maxwell
model. As the thixotropic ratio decreases, the curves approach a plug flow near
the centreline of the channel; this is most evident for the case when Φ = 0.001
(solid line), where a Bingham-like behaviour is observed. A higher value of the
dimensionless pressure gradient is required to keep the centreline velocity at 1
as Φ→ 0.

We see in figure 3b that the fluidity at the centreline is given by Φ; and that
the fluidity increases as we move away from the centreline. For the case Φ =
0.1 (dotted-line), the fluidity is almost constant across the channel, yielding a
nearly-parabolic velocity profile similar to the Maxwell model. For the particular
case Φ = 0.001, the critical stress τc (calculated with equation (25)) is reached
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within the channel (at y ≈ 0.867), giving a higher value of fluidity at the wall
than the other cases.

3.2.2 Extremes of structural destruction and reformation

In this section, we focus on a fixed value of the thixotropic ratio (Φ = 0.001,
highly shear-thinning) to study the dependence of the velocity and fluidity on
the product ΓΛ. Since the parameters Γ (structural destruction rate) and Λ
(structural reformation timescale) only affect the flow profiles through their
product, it follows that the effect of increasing destruction by increasing Γ is
exactly equivalent to decreasing structural recovery by increasing Λ; in dimen-
sional terms, for a given material this corresponds to increasing the flow rate.
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(a) Velocity profile with ΓΛ = 0.
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(b) Fluidity profile with ΓΛ = 0.
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(c) Velocity profile with high ΓΛ.
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(d) Fluidity profile with high ΓΛ.

Figure 4: Velocity and fluidity profiles from equations (33)–(36) and (29) with
Φ = 0.001. Parts a) and b) shows a fluid with extremely quick structural
recovery or null destruction, ΓΛ→ 0. Part c) and d) show a fluid that exhibits
fast destruction and slow reformation (ΓΛ = 106).

In figure 4 we show velocity and fluidity profiles for the two extreme cases.
In the case of fast recovery and slow destruction, ΓΛ→ 0, shown in figures (4a)–
(4b), the fluidity retains its zero-shear value of Φ across the whole channel, giving
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constant viscosity and a parabolic velocity profile. Because our Φ = 0.001 is
so small, the fluid is very viscous and we require a large dimensionless pressure
gradient P = 2/Φ to drive a flow with unit velocity at the centreline. In the
opposite case ΓΛ � 1, shown in figures (4c)–(4d), there is a very small zone
around the centreline where the dimensionless fluidity is equal to Φ = 0.001
(unyielded zone), but the bulk of the channel falls in the yielded zone, i.e. the
zone where highly oriented structures have been reached and ϕ ≈ 1. Again, the
viscosity is constant across almost all of the channel, so the velocity profile is
approximately parabolic; but the fluidity is much higher than the previous case
so the required pressure gradient is much smaller (P = 2).

3.2.3 Strong to moderate destruction

In figure 5 we show velocity and fluidity profiles at Φ = 0.001, over a range
0.025 ≤ ΓΛ ≤ 0.4. Here the central “plug flow” region where ϕ ≈ Φ, that we
could just make out in figure (4d) when destruction was strong, becomes much
wider as the fairly low shear rates near the centre of the channel fail to break
down the fluid structure. On the velocity profiles in figure (5a) we have marked
the channel location of the critical stress τc defined in equation (25); we see that
it is a good proxy for the edge of the plug flow. As ΓΛ decreases, so does the
fluidity at the walls.
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(b) Fluidity profile

Figure 5: Velocity and fluidity profiles calculated using (33)–(36) and (29) with
Φ = 0.001. For both figures, dotted line (ΓΛ = 0.025), solid line (ΓΛ = 0.10)
and dashed line (ΓΛ = 0.40). The vertical lines in figure (5a) indicate the
location of the critical stress τc calculated with (25).

3.2.4 Weak destruction

When the destruction is very weak indeed, or the flow very slow (e.g. the dotted
lines in figure 6, which correspond to ΓΛ = 10−6) we do not see a yielded region
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(c) Velocity profile with Γ = 0.00007.
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(d) Simple shear flow and shear stress vs y

Figure 6: (a) Velocity and (b) fluidity profiles from equations (33)–(36) and (29)
with Φ = 0.001. Dotted line: ΓΛ = 10−6; solid line ΓΛ = 7× 10−6; dashed line
ΓΛ = 5 × 10−5. (c) Velocity profile at ΓΛ = 7 × 10−6 again, with the critical
stress τc marked; it lies just within the channel at y ≈ 0.983. (d) Flow curve
(shear stress against shear rate) for the same parameters as (c), with (inset) the
stress profile across the channel.

as the whole channel is below the critical stress. The fluidity is almost constant
across the channel and the velocity profile is almost parabolic. If we increase ΓΛ
to 7×10−6, the critical stress is reached close to the channel wall (as marked in
figure (6c)) and the fluidity increases markedly in the wall region. As we increase
ΓΛ further, this trend continues until eventually (as seen in section 3.2.3) the
wall fluidity saturates at a value close to 1.

3.3 Equation formulation: perturbation flow

We add an infinitesimal perturbation to the base flow, modifying every flow
variable in a similar way (taking velocity as an exemplar):

u = (U, 0) + ε(û, v̂), (38)
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in which ε is a small parameter and the perturbation quantities û and v̂ can
depend on space and time. We can then expand our governing equations in
powers of ε. Discarding terms of order ε2 allows us to investigate the linear
stability of the system. The leading-order terms involve only base-state quan-
tities and are already satisfied. The remaining terms are linear in perturbation
quantities, and because the base state variables are independent of x and t it is
helpful to take a Fourier transform with respect to those variables. We then use
the theory of normal modes to argue that perturbations of a given wavelength
do not interact (at linear order) with those of any other wavelength. This is
equivalent to assuming that our perturbation quantities are of the form

û(x, y, t) = Real (u(y) exp [ikx− iωt]) , (39)

in which k is the (real) wavenumber and ω the (complex) frequency.

Our perturbed quantities are then:

u = (U + uε, vε) (40)

σtot = σ + εΣ σtot =

(
σ11 + Σ11ε σ12 + Σ12ε
σ21 + Σ21ε σ22 + Σ22ε

)
(41)

ϕ′ = ϕ+ φε (42)

D = D
0

+ dε, (43)

in which all the perturbation quantities are functions of the cross-channel coor-
dinate y, and ε denotes a single Fourier mode:

ε = ε exp [ikx− iωt]. (44)

The continuity equation becomes:

iku+ Dv = 0, (45)

where D denotes differentiation with respect to y. In order to reduce one de-
pendent variable, we introduce the streamfunction ψ, defined as:

u = Dψ v = −ikψ, (46)

which automatically satisfies (45). The remaining governing equations become:

Re(−iωDψ − ikψDU + ikUDψ) = ikΣ11 + DΣ12 (47)

Re(−kωψ + k2Uψ) = ikΣ12 + DΣ22 (48)

φ =
(1− ϕ)Γ

[
ikσ11Dψ + σ12(D2 + k2)ψ + Σ12DU

]
+ ikψDϕ

(−iω + ikU + Λ−1 + Γσ12DU)
(49)
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Σ22(−iωWη + ikUWη + 1) = 2η(Wσ12k
2ψ − ikDψ) (50)

Σ12(−iωWη + ikUWη + 1) = η(D2 + k2)ψ − ξDU + ikψWηDσ12

+ Wη(σ11k
2ψ + Σ22DU) (51)

Σ11(−iωWη + ikUWη + 1) = 2ηikDψ − 2Wξσ12DU + ikψWηDσ11

+ 2Wη(ikσ11Dψ + σ12D2ψ + Σ12DU) (52)

in which:

ξ =
φ

ϕ2
(53)

and the base state quantities η and σij are:

η = ϕ−1 =
1 + ΓΛσ12DU

Φ + ΓΛσ12DU
σ =

(
2WP2y2 −Py
−Py 0

)
. (54)

Note that if W = 0, the term (−iωWη + ikUWη + 1) in equations (50)–(52) is
equal to one, in which case the system of equations (47)–(53) would just describe
temporal stability analysis for a simple inelastic-thixotropic fluid.

3.4 Boundary conditions

The coupled system of equations (47)–(53) can be combined and the resulting
equation is a fourth-order ODE in ψ dependent on y. The boundary conditions
are conditions of no flow on the boundaries:

ψ = Dψ = 0 at y = ±1. (55)

This system is governed by six dimensionless parameters: the Reynolds and
Weissenberg numbers, the wavenumber k, the thixotropic ratio Φ and the refor-
mation/destruction parameters Λ and Γ. We solve the ODE using the shooting
method of Ho & Denn [9].

Previous work on shear-thinning instabilities [3, 4, 5] used power law models,
and as a result had to deal with with a singularity in the viscometric functions
at the centreline y = 0 where the base-state shear rate is zero. Their solution
was to limit themselves to perturbations for which the streamfunction ψ is an
odd function of y, for which the perturbation also has zero shear rate at the
centreline. These perturbations are called varicose because of the form of the
perturbations to streamlines, sketched in figure 7. With the BMP model there
is no zero-shear singularity, so we are no longer constrained in which forms of
ψ are allowed.

Since we are solving a linear problem, any solution ψ can be split into its
even and odd components, each of which will also be a solution to our system.
For this reason, we will consider separately the two cases of varicose modes (ψ
odd) and sinuous modes (ψ even), shown in figure 7. For each of these, we can
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(a) (b)

Figure 7: Sketch of the shape of the perturbed streamlines for (a) varicose
modes, for which ψ is an odd function of y; (b) sinuous modes, for which ψ is
an even function of y.

solve over the half-channel 0 ≤ y ≤ 1 with the appropriate symmetry boundary
conditions at y = 0:

ψ = D2ψ = 0 at y = 0 for varicose modes, (56)

Dψ = D3ψ = 0 at y = 0 for sinuous modes. (57)

The limit Φ = 1 of our system is the UCM model, whose dispersion relation is
well known. We use parameter continuation to obtain the eigenvalue ω for any
given set of physical parameters.

4 Results

4.1 Wavelength dependence

4.1.1 Long waves

Wilson [3] expanded ω and ψ in the long wave limit (k → 0) in terms of k:

ω = ω0 + kω1 +O(k2) ψ = ψ0 + kψ1 +O(k2). (58)

If we consider the case of small destruction (Γ → 0), the leading order solu-
tion (k → 0) can be obtained from solving equation (51) using the boundary
conditions established in (55), which gives the following dispersion relation:

ω0 = − i

W
Φ, (59)

from which we conclude that long waves are stable in this limit, since Φ and W
are positive. The Maxwell model solution (Φ = 1) is simply ω0 = −i/W .

The order k solution is obtained from substituting the leading order quan-
tities into the first order expansion, giving as result a third-order ODE for ψ1.
For each mode (varicose or sinuous), a characteristic equation is obtained by
scaling all the quantities, then taking superposition of the solutions of the ODE
and applying their respective boundary conditions [20]. For varicose modes, the
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polynomial f(ω1) has four roots that are independent of W , which were already
calculated by Wilson and Renardy [20] :

ω1 =

{
0.29039769± 0.05012283i

0.89882760± 0.12682973i.
(60)

On the other hand, the characteristic equation for sinuous modes g(ω1) has only
two roots, which are:

ω1 = 0.3257438± 0.171948i. (61)

4.1.2 Scaling for short waves

Now we study the other extreme of the wavelengths: the short wave case k →∞.
In this limit, the size of the boundary layer where the shear rate changes near
the wall is greater than the wavelength O(k−1), and therefore, any disturbance
will be localised in a region of size k−1. We therefore scale all lengths with the
wavelength, as in [21], and assume that modes will be localised near the channel
walls.

We define a new variable z as z = k(y− 1), the symbol d will denote deriva-
tives w.r.t. z, and we take the limit k−1 → 0. The relevant timescale is the wall
shear rate, γ̇w, and we scale the dimensionless stresses Σij by a factor of k2γ̇−1w .
Applying these transformations to equations (54)–(53), and assuming Re = 0,
we obtain:

σ12 = −P γ̇w = −DUw =
1

2
P − 1

2ΓΛP +

√
b− c+ 1

2ΓΛP (62)

ηw =
1

ϕw
=

1 + ΓΛP γ̇w
Φ + ΓΛP γ̇w

W = Wηw (63)

χ = −iωγ̇−1w − iz + Λ−1γ̇−1w − ΓP (64)

Θ =
(1− ϕw)Γ

χϕ2
wγ̇w

[
2iWP γ̇wdψ − P(d2 + 1)ψ

]
(65)

ζ =
(1− ϕw)Γ

[
2iWP γ̇wdψ − P(d2 + 1)ψ − Σ12

]

γ̇wϕ2
wχ

(66)

Σ22(−iωγ̇−1w − iz +W−1γ̇−1w ) = −2Pψ − 2i

W
dψ (67)

Σ12

(
−iωγ̇−1w − iz +W−1γ̇−1w + (1− ϕw)ΓW−1ϕ−2w χ−1

)
=

1

W
(d2 + 1)ψ

− Σ22 + 2iWP γ̇wψ −W−1DUwΘ (68)
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Σ11(−iωγ̇−1w − iz +W−1γ̇−1w ) =
2

W
idψ − 2γ̇2wζ + 4iWP γ̇wdψ

− 2Pd2ψ − 2Σ12, (69)

(d2 + 1)Σ12 + id(Σ11 − Σ22) = 0 (70)

with boundary conditions:

ψ(0) = dψ(0) = 0 and ψ → 0 as z → −∞. (71)

As before, the limit Φ = 1 reduces to the Maxwell model, which is stable. We
show results for this short-wave calculation in figure (9a) along with the results
for other wavelengths.

We have assumed here that short-wave modes will localise near the channel
wall. However, there are other possibilities: in particular, we will see later that
there is some potential for modes that localise close to the position where the
base state attains the critical stress τc.

4.1.3 Intermediate waves: sinuous and varicose modes

We use numerical parameter continuation to find the eigenvalue ω(k) for each
new set of physical parameters. Our starting point is the long-wave results of
equations (59) and (60) or (61) for the UCM model. In figure 8 we show this
dispersion relation for the UCM model, calculated using our BMP code with
Φ = 1. These results agree with those already available in the literature [3].
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Figure 8: Growth rate against wavenumber for both varicose and sinuous modes
for a UCM model, calculated using the BMP model parameters: W = 2, Λ = 1,
Φ = 1 and Γ = 0.0005. Inertia is neglected (Re = 0).

For varicose modes, there are four stable modes for very long waves. Two
of them (C and D) cease to exist at small k (one of them at k ≈ 0.5, and the
other one at k ≈ 2.5). The two remaining roots are still seen at longer values of
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wavenumber; one of them (A) matches the short-wave solution for a wall mode,
while root B localises around the centreline as k →∞.

Two roots are seen for sinuous modes in figure 8b; one root (F) vanishes at
small k, while the other (E) still exists at large values of the wavenumber. Root
E is less stable than root A, but they are equivalent in the limit k →∞, where
wall modes are no longer aware of the centreline boundary conditions.

We use these results as a starting point to move away from the UCM limit
Φ = 1.

4.2 Growth rate as function of the thixotropic ratio

Moving away from the UCM limit, we begin by studying the effect of the
thixotropic ratio Φ on the growth rate, keeping all other parameters fixed. Ini-
tially we look at long waves (k = 0.1), with the BMP parameters Λ = 1 and
Γ = 0.0005 and a Weissenberg number of W = 2. The results are shown in
figure 9.

For both sinuous and varicose modes (figures 9a and 9b), decreasing the
thixotropic ratio is destabilising; the greater the difference between ϕ0 and ϕ∞,
the more unstable the flow. This is in agreement with earlier work. For sinuous
modes (figure 9a) there are initially two roots, but one of them (labelled B)
ceases to exist at Φ ≈ 0.263. The other becomes unstable for values of the
thixotropic ratio below 0.043.

We have chosen a small value of ΓΛ = 0.0005 here; at these values, we
saw in section 3.1 that the base state velocity profile is close to plug flow for
small values of Φ, which is where we now see instability. We cannot calculate
growth rates in the true plug flow limit Φ = 0 because of numerical difficulties
associated with the yield stress surface; however, we can approximate it very
closely. For the case k = 0.1, we reached Φ = 5.1 × 10−5, where an instability
is still present.

The behaviour for varicose modes is similar to the sinuous behaviour but the
detailed picture is more complex as we have at least seven roots. Four remain
stable (only three of which are shown in figure 9b as the other ceases to exist
at Φ ≈ 0.62) but the other three become unstable as Φ decreases. We have
labelled the most dangerous mode E.

In figure 9c we compare the most dangerous roots (A and E); the sinuous
modes are more unstable than the varicose ones here.

Finally, in figure 9d we move away from long waves. Our instability persists
as the wavenumber increases, and the root obtained for very short waves has a
similar behaviour to roots A and E: the mode remains stable as the thixotropic
ratio decreases until Φ becomes very small (Φ < 0.046), when an instability
appears.
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(a) Long waves: sinuous modes
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(b) Long waves: varicose modes
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(c) Long waves: sinuous and varicose modes in
the unstable region
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(d) Short waves, k → ∞

Figure 9: Growth rate plotted against thixotropic ratio, at fixed values of the
other parameters: W = 2, Λ = 1, Γ = 0.0005 and (a–c) long waves k = 0.1 and
(d) short waves k →∞. (a) Sinuous modes; (b) Varicose modes; (c) Comparison
between the two unstable modes at low Φ.

However, in the short wave case the growth rate has a maximum value
located at Φ ≈ 0.007, and decreases slightly as we approach Φ→ 0 (see inset).
We found similar behaviour at moderate wavelengths k > 1.

4.3 Most dangerous wavenumber

In figure 10 we fix our physical parameters (using three sample values of Φ) and
vary the wavelength. We see that very long waves (k → 0) are always stable, but
as the wavenumber increases, the flow can become unstable. For the roots with
the smaller values of Φ (upper curves), the curve passes through a maximum
value (most dangerous wavenumber) in the range 0.35 < k < 0.6 the growth
rate then decreases for shorter waves until it reaches an asymptotic values which
matches the short-wave limit solution calculated from equations (62)–(71).

In all cases, the real part of the eigenvalue <(ω) remains finite as the
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(a) Sinuous modes
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(b) Sinuous modes
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(c) Sinuous and varicose modes

Figure 10: Plots of the eigenvalue ω against wavenumber k for different values of
thixotropic ratio. Parameters: W = 2, Λ = 1, Γ = 0.0005. Left: sinuous modes,
with Φ = 0.007, 0.01, 0.015 (top to bottom): (a) growth rate (imaginary part
of ω) and (b) convection rate (real part of ω); Right (c): comparison between
sinuous modes (dashed line) and varicose modes (solid line) at Φ = 0.01.

wavenumber tends to infinity (figure 10b), which means that the short wave
perturbations are localised in the wall region and therefore follow the scaling
proposed in section 4.1.2.

In figure 10c we compare the curve of growth rate against wavenumber for
the most unstable sinuous and varicose perturbations with W = 2, Λ = 1, Γ =
0.0005 and Φ = 0.01. As before, we see that sinuous modes are more unstable
than varicose ones; however, the difference between their growth rates becomes
much less significant for shorter waves: at intermediate values of wavenumber
1 < k < 2, the difference is less than 0.32%. We will focus on sinuous modes
henceforth.

4.4 Dependence on the Weissenberg number

In this section we show how the Weissenberg number affects the growth rate for
different values of thixotropic ratio with the other parameters fixed (figure 11).
We are looking at relatively long waves, k = 0.1, and BMP parameters Λ = 1,
Γ = 0.0005, and three different values of Φ. Again, the smaller the value of
Φ (the stronger the shear thinning), the more unstable the flow is. As the
Weissenberg number increases, the instability remains, and the growth rate
increases but remains bounded. In all cases small values of the Weissenberg
number W < 0.15 yield a stable flow, indicating that elasticity is an important
component of the instability.

4.5 Thixotropic timescales

Now that we have identified the range of values for Φ, k and W where the
instability has its strongest effects, we will discuss the effects of the parameters
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Figure 11: Growth rate against Weissenberg number with Λ = 1, Γ = 0.0005
and k = 0.1. Bottom to top: Φ = 0.01, 0.005 and 0.001.

governing structural reformation (Λ) and destruction (Γ).

4.5.1 Thixoviscous number Λ

In figure 12 we plot the growth rate against the thixoviscous number Λ for
different values of the thixotropic ratio Φ, with W = 2, Γ = 0.0005 and k = 0.1
fixed.
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Figure 12: Growth rate plotted against the thixoviscous number Λ for W = 2,
Γ = 0.0005 and k = 0.1. (a) Bottom to top: Φ = 0.005, 0.004, 0.003, 0.002 and
0.001. (b) Lower three curves from (a) for clarity.

The flow is linearly stable at both extremes of the thixoviscous number: both
for Λ > 30, which applies highly thixotropic fluids (slow structural recovery) and
in the limit Λ→ 0 (rapid structural relaxation, a Maxwell fluid). However, for
intermediate values of Λ we see an instability with an extremely high growth
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rate, which is higher for smaller values of Φ. Both the maximum growth rate
and the value of Λ at which this growth is seen, vary with the thixotropic ratio
Φ.

We see this instability for flows in which the critical stress τc is either located
near the wall or has not been reached within the channel; as we reduce Λ the
thixoplastic number Wtp reduces and the critical stress increases relative to the
stress in the channel. In the limit Λ→ 0, we regain the Maxwell limit and the
instability vanishes.

4.5.2 Thixoelastic number

The thixoelastic number (section 2.3.1) is defined as Wte = W/Λ the ratio
between the viscoelastic λve and structural relaxation times λ. Unlike the pa-
rameter Λ itself, the thixoelastic number is a material parameter which does
not depend on the timescale of the flow.
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Figure 13: Effect of the thixoelastic number on the instability. Fixed param-
eters: Λ = 0.001271, Γ = 0.0005, Φ = 0.001 and k = 0.1; the Weissenberg
number varies. Part (b) is a small region of (a).

We choose our parameters to include the maximum growth rate in figure 12:
W = 2, Λ = 0.001271, Γ = 0.0005, Φ = 0.001 and k = 0.1, then allow the
Weissenberg number to vary. We plot the resulting growth rates against the
thixoelastic number Wte in figure 13.

Large values of the thixoelastic numbers lead to the highest growth rates.
In these cases, the relaxation time associated with elastic recoil, λve, is much
longer than the structural relaxation time λ. This is the case, according to
Larson, where the fluid will exhibit complex non-linear viscoelasticity rather
than non-ideal thixotropy. This verifies our earlier conclusions [5]: that the
instability initially predicted by Wilson and Rallison is purely elastic in nature.
Here, though, we have captured sinuous modes, which are the perturbations
most commonly observed in experiments.

The growth rate remains positive for Wte ≥ 15.72, below which the instabil-
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ity vanishes (see figure 13b). Here, though λve > λ, the viscoelastic effects are
less dominant. When structural recovery is slower than viscoelastic relaxation,
Wte < 1, the flow is unconditionally stable.

4.5.3 Destruction parameter Γ; thixoplastic number

In figure 14 we fix the thixoviscous number Λ = 1 and study the effect of the
destruction parameter Γ on the growth rate. These results can also be framed
in terms of the thixoplastic number Wtp =

√
ΓΛ(1− 2Φ), since both Λ and Φ

are constant for each curve.
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Figure 14: Growth rates at fixed W = 2, Λ = 1 and k = 0.1 with Γ varying. (a)
Growth rate =(ω) against destruction parameter Γ; (b): Growth rate against
thixoplastic number Wtp. Top to bottom: Φ = 0.001, 0.002, 0.003, 0.004, 0.005
and 0.01.

There is an unstable maximum for each root, and the limits Γ → 0 and
Γ→∞ stabilise the flow. These stable limits are to be expected as either limit
reduces to a Maxwell fluid (albeit with very different viscosities), which is stable.

When we plot against the thixoplastic number Wtp the figure looks similar
but the interpretation changes: constant values of Wtp mean fixed base state
velocity profiles. As we increase Wtp beyond the most dangerous value, the
yielded region near the walls grows, and this is associated with a decrease in
growth rate. However, there is a most dangerous value of Wtp, associated with
a most dangerous flow profile. In the case Φ = 0.001, the maximum growth rate
occurs when Wtp = 0.0028, a case where we have a small yielded region and the
critical stress τc in the base state is located near the wall, at y ≈ 0.98.

4.5.4 Thixoplastic number at fixed thixoviscous number

In the previous section, we observed that intermediate values of thixoplastic
number can destabilise flows as long as the viscoelastic time scale is greater
than the structural reformation one (Wte = W/Λ � 1 or λve � λ). However,
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we should note that the thixoplastic number Wtp depends on both Γ and Λ, but
in section 4.5.3 we kept the structural reformation parameter fixed at Λ = 1. In
this section, we will study the effect of the thixoplastic number on the growth
rate with multiple combinations of the destruction and reformation parameters.

We take a set of fixed values for Λ = {0.1, 0.2, 0.5, 1, 2, 10}. In each case we
calculate the growth rate as function of the thixoplastic number, by varying the
destruction parameter Γ. The results can be seen in figure 15a.
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(a) Varying thixoplastic number
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(b) Varying Λ/Wtp

Figure 15: Dependence of growth rate on thixoplastic number, at fixed W = 2,
Φ = 0.001 and k = 0.1. For each curve Λ is constant and Γ varies. Main plots,
top to bottom: Λ = 0.1, 0.2, 0.5, 1, 2 and 10. Insets, top to bottom: Λ = 1, 2
and 10. (a) Growth rate against thixoplastic number; (b): growth rate against
the ratio Λ/Wtp.

As in figure 14, we see that the extreme limits Wtp → 0 and large Wtp are
stable, and instability can occur for intermediate values. However, we now see
a strong dependence of the growth rate of the instability on the reformation
parameter Λ. The least unstable curve shown here is Λ = 10, whose maximum
value of the growth rate is =(ω) ≈ 0.08, obtained at Wtp ≈ 0.003; but as Λ
is decreased, the growth rate increases so that at Λ = 0.1 (top solid line in
figure 15), the maximum value of growth rate is =(ω) = 7.73 at Wtp = 0.00269.
In this most unstable case, the velocity profile in the base state was shown in
figure 6c, where we observed an apparent yield region near the channel wall,
between 0.9833 < y < 1.

If we consider the most unstable values of Wtp for all the values of Λ in
figure 15, in all cases the critical stress τc is obtained near the wall (at y ≈ 0.98).

If we reframe these results instead in terms of a material parameter Λ/Wtp,
which compares the structural relaxation time λ and the time scale associated
to the destruction of structures, λtp, we obtain figure 15b. Now the maximum
growth rate shifts to the right as Λ increases; this follows from the universality
of the most critical value of Wtp that we saw in figure 15a. For very large values
of Λ/Wtp the flow tends to be stable; this is a limit where thixotropy dominates
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and we reach the high-shear limit across almost all of the channel: the Maxwell
limit again. However, if Λ is small (weak thixotropy) we need exceedingly high
values of Λ/Wtp to attain this limit.

Figure 15 makes it clear that we cannot define stability in terms of material
parameters alone: for fixed values of k, W and Φ the unstable region is best
characterised by Wtp =

√
ΓΛ(1− Φ), which for our parameter choices gives

instability in the range 0.0005 < Wtp < 0.15.

We can characterise the unstable region and the most dangerous situation in
terms of the thixoplastic number Wtp. For our parameters W = 2, Φ = 0.0001
and k = 0.1 this most dangerous value is Wtp = 0.002695. This value determines
the critical stress value (τc ≈ 370), and its location in the channel (located at
y ≈ 0.9823) which is also the edge of the yielded region. The base-state velocity
profile and the flow curve for simple shear are illustrated in figures 6c and 6d
for this case.
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Figure 16: Log-log plot of growth rate plotted against the timescale ratio Λ/Wtp.
Fixed values W = 2, Φ = 0.001, k = 0.1, and the most dangerous thixoplastic
number Wtp = 0.002695. The points are fit with the line 370.92(λ/λtp)−1.

However, the growth rate of the instability clearly depends on Λ even at
fixed Wtp. In figure 16 we use the value above, Wtp = 0.002695, and plot
the growth rate against the material parameter Λ/Wtp = λ/λtp, the ratio of
the structural and thixoplastic relaxation times. The curve can be fitted to a
power-law equation: =(ω) = 370.92(λ/λtp)−1 with R2 = 0.9999. Thus we can
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characterise the growth rate at fixed Wtp (or fixed ΓΛ) by

=(ω) ∝ 1

Λ
∝ Γ. (72)

Recall that the base flow is defined by the parameters W , ΓΛ and Φ and does
not depend on Λ separately from the combination ΓΛ. Thus for a given unstable
base flow, the rate Λ−1 will determine the growth rate of the instability.

Fluids having Λ/Wtp � 1, i.e. slow structural recovery, will exhibit much
weaker instability than those for which structural recovery is fast given the
same base flow; however, to obtain the same base flow in a fluid having fast
structural recovery requires higher flow rates. Though the overall picture is
difficult to express briefly in terms of pure material parameters, it is clear that
the thixoviscous number Λ is a key player in the strength of the instability.

4.5.5 Elastoplastic number

We have seen that the instability is most dangerous when λ� λtp (section 4.5.4)
and λ � λve (section 4.5.2). In this section we assess the behaviour of the in-
stability as viscoelastic effects are reduced. We will use the elastoplastic number
λve/λtp = W/Wtp to compare the viscoelastic and plastic effects of our fluid.
The elastoplastic number is a ratio of two time scales: the relaxation time as-
sociated with the elastic recoil of the material chains λve over the time scale
associated with destruction, λtp.

The results are shown in figure 17. We see that the instability is present
only if the viscoelastic timescale λve is much longer than the plastic timescale
λtp, i.e. the elastic recoil process is slow compared to structural destruction,
W/Wtp � 1. Decreasing the elastoplastic number makes the flow less unstable,
until it stabilises at W/Wtp ≈ 8, below which the viscoelastic effects are no
longer strong enough to cause flow instability.

4.6 Streamfunctions and x-velocity

In this final results section, we show the shape of the streamfunction ψ (propor-
tional to cross-channel velocity) and x-velocity Dψ for both sinuous and varicose
perturbations at the most dangerous thixoplastic number.

We choose the values used in figure 16 (k = 0.1, W = 2, Φ = 0.001) for
which the most dangerous thixoplastic number is Wtp = 0.002695. Choosing
Λ = 1 then fixes Γ = 7.5× 10−6. The resulting streamfunctions can be seen in
figure 18.

Both sinuous and varicose modes are unstable for these parameters, but the
shape of the two streamfunctions is completely different, as one would expect.
Most surprising, though, is the peak in the x-velocity Dψ for both modes near
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Figure 17: Plot of growth rate =(ω) against elastoplastic number W/Wtp with
fixed values of Φ = 0.001, Γ = 0.010175, Λ = 7.143× 10−4 and k = 0.1.

the channel wall (figures 18c and 18d). This peak occurs roughly where the
base state is at the critical stress level τc (for this fluid at y ≈ 0.983). At this
point, where the gradient dσ12/dγ̇ of the constitutive curve (figure 6d) is low,
the effective viscosity seen by perturbations is also low, so a perturbation can
generate large local flows while incurring minimal dissipation of energy.

5 Comparison with experiments

In this section, we will briefly compare our results with experiments reported
by Bodiguel et al. [2], who observed a supercritical instability in microchannel
flow of shear-thinning viscoelastic fluids. We begin by finding the BMP model
parameters that roughly match the simple shear flow data for their fluid, which
was an aqueous solution of polyacrylamide, HPAM (concentration of 4000 ppm
and molecular weight of 18× 106 g/mol).

The experimental steady shear flow curve η(γ̇) allows us to fit our parameters
ϕ0, ϕ∞ and the combination K0λ. We then use our shear modulus G0 to match
the experimental first normal stress difference coefficient N1/γ̇

2. As only steady
rheometry is reported by [2], we have no way to determine λ separately from K0;
but all the remaining parameters may be derived from combinations of these four
parameters determined from the rheology, and simple physical measurements
such as the centreline velocity U0 and the channel half-width L. The resulting
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(a) ψ vs y: sinuous mode
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(b) ψ vs y: varicose mode
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(c) Dψ vs y: sinuous mode
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(d) Dψ vs y: varicose mode

Figure 18: Form of the unstable complex streamfunction ψ for sinuous and
varicose perturbations with k = 0.1, W = 2, Γ = 7.5 × 10−6, Λ = 1 and Φ =
0.001. The thixoplastic number is Wtp = 0.002695. The curves are normalised
so that the maximum value of |ψ| is 1. For each graph, the solid line is the real
part and the dashed line, the imaginary part. Insets show the behaviour near
the wall, except in (b) where it shows the shape of the imaginary part of the
streamfunction.

parameters are given in table 1.

Similar experiments have been carried out by Poole [16]. The fluid used
in those experiments does exhibit a central power-law like behaviour of both
viscosity and normal stress for moderate shear rates; however, we cannot fit it
with the BMP model. In our model, the first normal stress difference coefficient
is 2η2G−10 , but Poole’s fluid has very different power laws for the viscosity and
the first normal stress difference coefficient (or, equivalently, a strongly varying
stress modulus). For that reason, we do not attempt a quantitative comparison
with Poole’s experiments here.

Indeed, even the fit with Bodiguel’s fluid is not perfect, as the experimental
value of the elastic modulus is not quite constant; however, the parameters given
in table 1 give a reasonable match over the range 0.1 < γ̇ < 100.
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Parameter Value
ϕ0 0.046 Pa−1 s−1

ϕ∞ 10.17 Pa−1 s−1

K0λ 3.2× 10−3 Pa−1 s
G0 0.455 Pa
L 7.6× 10−5 m
λve 0.21 s
λtp 0.017 s
Φ 0.0045
ΓΛ 5.45× 104 U2

0

W 2844U0

Table 1: Physical and dimensionless parameters used to fit our analysis to the
experiments of Bodiguel [2], with centreline velocity U0 in m/s.

From the parameters values shown above, we immediately observe that the
thixotropic ratio for the fluid is Φ = 0.0045, within the range of values of Φ
where our theory predicts an instability.

Using the model parameters derived above and for a small set of likely dan-
gerous values of the wavenumber k = {0.1, 0.46, 1}, we look for the stability
boundary ; this is the pressure gradient P (or the wall shear stress σw = PL)
above which the flow becomes unstable. Knowing the value of the pressure gra-
dient, we can calculate the dimensional centreline velocity (as in appendix A)
and therefore the Weissenberg number and the product ΓΛ. As we observed in
section 4.5.4, at a fixed value of ΓΛ, changing Λ does not affect the stability
boundary but rather modifies the growth rate of unstable modes; so we are not
affected by our inability to separate K0 and λ using the fluid rheometry.

We have found that for k = 0.1, the critical shear stress at the wall σw
is 5.4609 Pa, meanwhile for k = 0.46 (the most dangerous wavenumber for
Φ = 0.0045) it is σw = 4.3593 Pa and for k = 1 it is σw = 4.2938 Pa. These
results are consistent with the values reported by Bodiguel [2], who found that
the critical wall shear stress ranged between 3.5 and 4.7 Pa.

6 Conclusions

We have studied the stability in pressure-driven channel flow of materials that
exhibit viscoelasto-thixo-plasticity. We used the BMP model, which has been
extensively used to describe this kind of complex rheological behaviour using
only a modest number of parameters.

We derived an analytic equation for the steady-state velocity profile in chan-
nel flow, which depends on physically measurable quantities (such as low and
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high shear rate viscosities, structural relaxation time and a structure breakdown
parameter).

We obtained a set of dimensionless groups (Φ, Λ, Γ) from which we could
construct the key dimensionless quantities for analysis of the results in terms
of the phenomena of viscoelasticity, thixotropy and plasticity present in our
material.

We have made a thorough exploration of the conditions for instability/stability
and its growth rate, depending on our model parameters. We have found that
viscoelastic effects are the main cause of instability, and that sinuous modes
are always more unstable than varicose modes (though sometimes the growth
rates of instability are very similar between the modes). We found that a low
thixotropic ratio Φ (strong shear thinning) is needed to trigger the instability,
and identified that the most dangerous wavenumber is located in a range of
values of 0.35 < k < 0.6, though the instability persists even at large values
of k, which we validated using short wave calculations. It was not possible to
study a fluid with a true yield stress, but the short wave results suggest that
the limiting case Φ = 0 might possibly be stable. Flow stability is seen if either
k → 0 or W → 0 for any value of Φ, Λ and Γ.

We can characterise the instability in terms of the thixoplastic number; in
doing so, we found that the instability is strongest if the base-state critical stress
τc is located near the channel-wall (at y ≈ 0.98).

Under these conditions, the instability grows fastest when the viscoelastic
relaxation time λve is much longer than both the structural destruction timescale
λtp and the thixotropic timescale λ, and also when the structural destruction
occurs over a longer timescale than the thixotropic recovery λtp � λ:

λ� λtp � λve. (73)

Fluids that satisfy this ordering of timescales exhibit complex non-linear vis-
coelasticity with shear-thinning characteristics rather than thixotropy, as stated
by Larson [7].

Extremes of many parameters cause linearly stable flow: in particular, very
large or very small values of the thixoviscous number or the thixoplastic num-
ber. Instability is enhanced by large values of the elastoplastic number or the
thixoelastic number, which drive the scalings in equation (73) above.

This work leaves some questions open to future work. One is to consider
the phenomenon of shear-banding, and compare the interfacial instabilities be-
tween shear bands with the bulk instabilities calculated here. More challenging
problems are to address the true yield stress case, and to create a model which
allows a non-constant shear modulus (to allow both viscosity and normal stress
to be fit to experimental measurements) without resorting to ad hoc empirical
parameters. Finally, a fully comprehensive mechanism for this instability is still
elusive, though we have gained valuable insight through the current work.
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A Dimensional velocity profile

The steady velocity gradient profile for a BMP model fluid flowing in a two-
dimensional channel of infinite extent in the x-direction and with −L ≤ y ≤ L
under pressure gradient dP/dx = −P is given by

γ̇0 = |U ′| = 1

2
ϕ∞Py − 1

2K0λPy
±
√
b0y4 − c0y2 + 1

2K0λPy
, (74)

where the coefficients b0 and c0 are:

b0 = K2
0λ

2ϕ2
∞P4 c0 = 2K0λP2(ϕ∞ − 2ϕ0). (75)

Integrating equation (74) and applying non-slip boundary conditions at the
channel-wall (y = ±L), we obtain the velocity profile:

U =
1

4
ϕ∞P(L2 − y2)− 1

4K0λP
(U01 + U02 + U03), (76)

where:
U01 =

√
b0y4 − c0y2 + 1−

√
b0L4 − c0L2 + 1 (77)

U02 =
1

2

c0√
b0

ln

[
2
√
b0
√
b0L4 − c0L2 + 1 + 2b0L

2 − c0
2
√
b0
√
b0y4 − c0y2 + 1 + 2b0y2 − c0

]
(78)

U03 = ln

[
2− c0L2 + 2

√
b0L4 − c0L2 + 1

2− c0y2 + 2
√
b0y4 − c0y2 + 1

]
. (79)
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