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Abstract

In the following text we investigate the properties of moduli spaces of so-called

“nicely embedded” curves in Liouville symplectic cobordisms. We exhibit a topo-

logical obstruction which occurs in contact manifolds cobordant to the tight 3-

sphere, namely the presence of an unknotted Reeb orbit, with self-linking num-

ber −1. The same result is shown to apply in overtwisted manifolds. A similar

proof establishes the result in reducible contact manifolds. Along the way we recall

several classical results, and prove a series of auxiliary lemmas. Throughout most

of the work we limit ourselves to the context of 4-dimensional cobordisms, where

intersection theory for pseudoholomorphic curves is an indispensable tool.
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Chapter 1

Introductory Material

1.1 Introduction
The following sections loosely describe the structure of the main text and set up the

context of our results. Unless otherwise indicated, the treatment coincides with that

of [CW].

1.1.1 Statement of the main results

Contact structures arise in the context of Hamiltonian dynamics via the notion of

convexity: a convex hypersurface in a symplectic manifold naturally inherits a con-

tact structure, and the orbits of its Reeb vector field then match the Hamiltonian

orbits defined by any Hamiltonian function that has the hypersurface as a regular

level set. In this text, we consider contact structures that are induced on convex

and concave boundaries of symplectic manifolds, i.e. symplectic cobordisms. Our

main theorem relates the existence of exact symplectic cobordisms between given

contact manifolds to a dynamical condition on their Reeb vector fields. In particu-

lar, we will restrict attention to dimension three and discuss the existence of closed

Reeb orbits γ : S1→M that are not only contractible but also unknotted, meaning

γ = f |∂D2 for some embedding f : D2 ↪→M,

where D2 ⊂C denotes the closed unit disk. All definitions relevant to the following

statements may be found in §2.1.1).
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Theorem 1.1.1. Assume (M,ξ ) is a closed contact 3-manifold that admits a Liou-

ville cobordism to the standard contact 3-sphere (S3,ξstd). Then for every nonde-

generate contact form α on (M,ξ ), the Reeb vector field Rα admits a simple closed

orbit γ whose image is the boundary of an embedded disk D ⊂ M. Moreover, the

Conley-Zehnder index and self-linking number of γ with respect to D satisfy

µCZ(γ;D) ∈ {2,3} and sl(γ;D) =−1.

A minor variation on the same techniques in the spirit of [Hof93] will also

imply the following:

Theorem 1.1.2. Assume (M,ξ ) is a closed contact 3-manifold and that either of

the following is true:

1. M is reducible, i.e. it contains an embedded 2-sphere that does not bound an

embedded ball;

2. (M,ξ ) admits a Liouville cobordism to an overtwisted contact manifold.

Then for every nondegenerate contact form α on (M,ξ ), the Reeb vector field Rα

admits a simple closed orbit γ whose image is the boundary of an embedded disk

D ⊂M such that

µCZ(γ;D) = 2 and sl(γ;D) =−1.

Recall that an oriented 3-manifold is reducible if and only if it is either S1×S2

or M1#M2 for a pair of closed oriented 3-manifolds that are not spheres. This con-

dition is now known to be equivalent to the hypothesis π2(M) 6= 0 used in [Hof93]:

in one direction this follows from the sphere theorem for 3-manifolds, and in the

other, from [Hat, Prop. 3.10] and the Poincaré conjecture. Note that both of the

above theorems require nondegeneracy of the contact form α , but it is possible for

the sake of applications to weaken this condition; see Theorem 1.1.12 below.
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1.1.2 Context

The prototype for Theorems 1.1.1 and 1.1.2 is a 20-year-old result of Hofer-

Wysocki-Zehnder [HWZ96c], which amounts to the case (M,ξ ) = (S3,ξstd) of The-

orem 1.1.1. The result in [HWZ96c] was in some sense far ahead of its time, as it re-

quired ideas from both the compactness theory [BEH+03] and the intersection the-

ory [Sie11] of punctured holomorphic curves, but it appeared several years before

either of those theories were developed in earnest. In the mean time the available

techniques have improved, and our proofs will make use of those improvements.

A weaker version of Theorem 1.1.1 can be shown to hold in all dimensions,

namely:

Theorem 1.1.3. If (M,ξ ) is a closed (2n− 1)-dimensional contact manifold ad-

mitting a Liouville cobordism to a standard contact sphere (S2n−1,ξstd), then every

contact form for (M,ξ ) admits a contractible closed Reeb orbit.

This result can largely be attributed to Hofer, as most of the ideas needed for

its proof are present in [Hof93]. An alternative proof using symplectic homology

has recently been announced by Albers, Cieliebak and Oancea (cf. [CO]), and a de-

tailed proof of the 3-dimensional case has also been given by Geiges and Zehmisch

[GZ13a, GZ13b]. We will sketch a proof for the general case in §1.1.4. Analogous

results that may be viewed as higher-dimensional versions of Theorem 1.1.2 have

appeared in [AH09, NR11, GZ16, GNW16]. The conclusions of our main results

however are stronger and uniquely low dimensional: for instance in §1.1.3 below,

we will see examples of contact 3-manifolds that always admit contractible but not

necessarily unknotted Reeb orbits. Theorem 1.1.1 thus gives a new means of prov-

ing that these examples cannot be exactly cobordant to the standard 3-sphere.

We are aware of three general classes of contact 3-manifolds that satisfy the

hypothesis of Theorem 1.1.1.

Example 1.1.4. If ξ is overtwisted, then a theorem of Etnyre and Honda [EH02]

provides Stein cobordisms from (M,ξ ) to any other contact 3-manifold, so in par-

ticular to (S3,ξstd). Of course, in this case Theorem 1.1.2 also applies and gives a

slightly stronger result.
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Example 1.1.5. Suppose (M,ξ ) is subcritically Stein fillable, or equivalently, that

it can be obtained by performing contact connected sums on copies of the tight S3

and S1× S2. In this case, (M,ξ ) is the convex boundary of a Weinstein domain

W constructed by attaching 1-handles to a ball, and these 1-handles can then be

cancelled by attaching suitable Weinstein 2-handles. This procedure embeds W

into the standard 4-ball as a Weinstein subdomain and thus produces a Weinstein

cobordism from (M,ξ ) to (S3,ξstd). Note that Theorem 1.1.2 also applies in this

case unless M = S3.

The third class of examples was brought to our attention by Emmy Murphy.

Example 1.1.6. Suppose L⊂ [1,∞)×S3 is an exact Lagrangian cap for some Leg-

endrian knot Λ in (S3,ξstd), i.e. L is a compact Lagrangian submanifold properly

embedded in the top half of the symplectization R× S3, such that ∂L = {1}×Λ,

L is tangent near its boundary to a globally defined Liouville vector field pointing

transversely inward at {1}× S3, and the restriction of the corresponding Liouville

form to L is exact. A result of Francesco Lin [Lin] guarantees that such caps al-

ways exist after stabilizing Λ sufficiently many times. Now suppose UL is an open

neighbourhood of L in [1,∞)× S3, where the latter is viewed as sitting on top of

the standard Weinstein filling B4 of (S3,ξstd). This neighbourhood can be choosen

such that, after smoothing corners, B4∪U L is a Weinstein filling of some contact

3-manifold (M,ξ ), and
(
[1,T ]×S3) \UL for suitable T > 1 defines a Liouville

cobordism W+ from (M,ξ ) to (S3,ξstd), see Figure 1.1. Using a Morse function on

L that has one index 2 critical point and an inward gradient at ∂L, one can find a

Weinstein handle decomposition of B4∪U L having exactly one 2-handle (see Re-

mark A.0.2), thus B4 ∪U L is not subcritical, and it follows from the uniqueness

of Stein fillings in the subcritical case [CE12, Theorem 16.9(c)] that (M,ξ ) is not

subcritically fillable. For more details on this construction, see Appendix A.

One can now use a well-known result of Eliashberg [Eli90, CE12] to extract

from this example contact 3-manifolds other than (S3,ξstd) to which Theorem 1.1.1

applies but Theorem 1.1.2 does not. Indeed, while (M,ξ ) = ∂ (B4∪U L) could be

reducible, it is Stein fillable and therefore tight, so Colin [Col97] (see also [Gei08,
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§4.12]) provides a prime decomposition

(M,ξ ) = (M1,ξ1)# . . .#(Mk,ξk),

and Eliashberg’s theorem implies that B4 ∪U L must be Weinstein deformation

equivalent to a domain obtained by attaching Weinstein 1-handles to Weinstein

fillings of the summands. But the summands cannot all be S1× S2 since (M,ξ )

is not subcritically fillable, so at least one of them is an irreducible tight contact

3-manifold admitting a Liouville cobordism to (S3,ξstd).

UL

L

Lambda

W+

[0,1]xS3

B4

Figure 1.1: An exact Lagrangian cap for a Legendrian in (S3,ξstd) produces a Liouville
cobordism W+ from (M,ξ ) to (S3,ξstd), where (M,ξ ) := ∂ (B4 ∪U L) is not
subcritically fillable.

Corollary 1.1.7. The contact 3-manifolds (M,ξ ) described in Example 1.1.6 and

their prime summands all admit unknotted Reeb orbits with Conley-Zehnder index
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2 or 3 and self-linking number −1 for every choice of nondegenerate contact form.

The construction outlined in Example 1.1.6 also works in higher dimensions

using the exact Lagrangian caps of Eliashberg-Murphy [EM13], cf. Appendix A. In

this case it produces Weinstein subdomains of the standard ball which are presum-

ably flexible in the sense of [CE12]. Recently, Murphy and Siegel [MS] have also

found examples of nonflexible Weinstein subdomains in the standard ball, whose

boundaries therefore also satisfy the hypothesis of Theorem 1.1.3.

Remark 1.1.8. It is not known whether any contact 3-manifolds satisfy the hypoth-

esis of Theorem 1.1.2(2) without being overtwisted, though Andy Wand [Wan] has

proved that the answer is no under the stronger condition that the cobordism is Stein.

Theorem 1.1.2(2) may thus be interpreted as a small measure of support for the

conjecture that Wand’s theorem extends to Liouville cobordisms (cf. [Wena, Ques-

tion 5]).

We remark that the word “Liouville” definitely cannot be dropped from the

statements of any of the above theorems: for instance, any Lagrangian torus in

the standard symplectic R2n gives rise to a strong symplectic cobordism from the

unit cotangent bundle of the torus to (S2n−1,ξstd), but one can easily find contact

forms on the former that have no contractible Reeb orbits, corresponding to metrics

on the torus with no contractible geodesics. The cobordism of course cannot be

Liouville because, by a well-known theorem of Gromov [Gro85], the Lagrangian

torus cannot be exact. Similarly, [Gay06] and [Wen13b] show that every contact

3-manifold with positive Giroux torsion is symplectically cobordant to something

overtwisted, including e.g. the nonfillable tight 3-tori, which admit contact forms

without contractible orbits.

1.1.3 Applications

Here is a specific situation in which Theorem 1.1.1 can be used to rule out the

existence of exact symplectic cobordisms. Good candidates for manifolds that fail

to satisfy the conclusion of the theorem are furnished by the universally tight lens
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spaces L(p,q) for p 6= 1. Recall that L(p,q) is defined as the quotient

L(p,q) = S3/Gp,q,

where Gp,q ⊂ U(2) denotes the cyclic group of matrices

e2πik/p 0

0 e2πikq/p

 for

k ∈ Zp, acting on the unit sphere S3 ⊂ C2 by unitary transformations. This action

preserves the standard contact form αstd = 1
2 ∑

2
j=1(x j dy j − y j dx j) on S3, written

here in coordinates (z1,z2) = (x1 + iy1,x2 + iy2), so the standard contact structure

ξstd on L(p,q) is defined via this quotient.

Proposition 1.1.9. For every relatively prime pair of integers p > q ≥ 1, L(p,q)

admits a nondegenerate contact form with only two simple closed Reeb orbits, both

of them nondegenerate and noncontractible.

Proof. We present (L(p,q),ξstd) as a quotient of the so-called irrational ellipsoid.

Let αH := 1
H αstd on S3, where H is the restriction to the unit sphere S3 ⊂ C2 of the

function

H(z1,z2) =
|z1|2

a2 +
|z2|2

b2

for some a,b > 0. The closed orbits for the Reeb flow on S3 determined by αH are

then in bijective correspondence with the closed orbits on the ellipsoid H−1(1)⊂C2

for the Hamiltonian flow of H on the standard symplectic C2. In particular, if a/b is

irrational, then the only simple closed orbits of this flow are (up to parametrization)

the embedded loops γ1,γ2 : S1→ S3 ⊂ C2 defined by

γ1(t) = (e2πit ,0), γ2(t) = (0,e2πit)

for t ∈ S1 = R/Z, and moreover, these orbits and their multiple covers are all

nondegenerate. Now since αstd and H are both invariant under the action of

U(1)×U(1) ⊂ U(2), which contains Gp,q, αH descends to a well-defined contact

form on L(p,q), and this contact form is nondegenerate. But the orbits γ1 and γ2

project to orbits in L(p,q) that are p-fold covered, so their underlying simple orbits
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lift to the universal cover S3→ L(p,q) as non-closed paths since p > 1, hence they

are noncontractible.

Corollary 1.1.10. For every pair of relatively prime integers p > q ≥ 1,

(L(p,q),ξstd) admits no exact cobordism to (S3,ξstd).

Remark 1.1.11. The Reeb flow on any universally tight L(p,q) admits a contractible

Reeb orbit since π1(L(p,q)) is torsion, so previously known criteria for excluding

such cobordisms do not apply. For the stronger case of Stein cobordisms, the same

result was obtained by Plamenevskaya in [Pla12]

While the lens space example is relatively easy to work with, the nondegen-

eracy of a contact form is usually a rather difficult condition to check, and for this

reason one might sometimes want to have the following technical enhancement of

Theorems 1.1.1 and 1.1.2. It will be an immediate consequence of our proofs, re-

quiring only that one pay closer attention to the relationship between periods of

orbits and energies of holomorphic curves.

Theorem 1.1.12. Assume (M,ξ ) satisfies the hypotheses of either Theorem 1.1.1 or

Theorem 1.1.2, and fix a contact form α0 for (M,ξ ). There exists a constant T > 0,

dependent on α0, such that the following holds: suppose α = f α0 is a contact form

on (M,ξ ) such that

1. f : M→ (0,∞) satisfies f < T , and

2. All closed Reeb orbits for α with period less than T are nondegenerate.

Then the Reeb flow of α satisfies the conclusions of Theorems 1.1.1 or 1.1.2 respec-

tively, and the unknotted orbit can be assumed to have period less than T .

One could apply this in practice if e.g. α0 is Morse-Bott and admits no unknot-

ted Reeb orbits, as then one can define perturbations of α0 as in [Bou02] whose

orbits up to some arbitrarily large period are nondegenerate and still knotted—

the topology of orbits with large period may be harder to control, but for Theo-

rem 1.1.12 this does not matter.
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Remark 1.1.13. We have chosen to adopt a mainly contact topological perspective

on the main theorems of this thesis, but for other purposes (e.g. quantitative Reeb

dynamics, cf. [GZ13a, §3.23]), one could also state more quantitatively precise

versions of Theorem 1.1.12.

Note that no such enhancement is necessary for Theorem 1.1.3, which does not

require nondegeneracy, see Remark 1.1.15.

1.1.4 Outline of proofs, part 1: seed curves and compactness

All proofs of theorems in this thesis follow a similar scheme, which in the case of

Theorems 1.1.1 and 1.1.3 can be described as follows. Suppose (W,dλ ) is a Li-

ouville cobordism from (M,ξ ) to a standard contact sphere (S2n−1,ξstd), and let

(W ,dλ ) denote the completion obtained by attaching cylindrical ends in the stan-

dard way (see §2.1.3). Then the positive end of W can be assumed to match the top

half of the symplectization

(
R×S2n−1,d(er

αstd)
)
,

where αstd is the standard contact form, defined by restricting the Liouville form

λstd := ∑
n
j=1(x j dy j− y j dx j) to the unit sphere. We will assume also that the neg-

ative end matches ((−∞,0]×M,d(erα)) where α is (after a positive rescaling) an

arbitrary nondegenerate contact form for (M,ξ ). (The nondegeneracy assumption

was not included in Theorem 1.1.3, but this assumption will be easy to remove in

the final step, see Remark 1.1.15 below.)

The first step in the proof is then to choose a suitable almost complex structure

J on this symplectization that admits a foliation by a (2n− 2)-dimensional family

of J-holomorphic planes, so-called “seed curves,” which are asymptotic to a fixed

Reeb orbit γ for αstd that has the smallest possible period. We will be able to ver-

ify explicitly that these planes are Fredholm regular for the moduli problem with

fixed asymptotic orbit, hence the moduli space is cut out transversely, and moreover,

there exist no other curves in R× S2n−1 with a single positive end approaching γ .

Once these curves are understood, we can regard them as living in the cylindrical
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end [0,∞)×S2n−1 ⊂W , so after extending J to a compatible almost complex struc-

ture on the rest of (W ,dλ ), they generate a nonempty moduli space M (J) of un-

parametrized J-holomorphic planes in W , all asymptotic to the same simply covered

Reeb orbit in the sphere, and this moduli space is a smooth (2n− 2)-dimensional

manifold for generic extensions of J since all curves in M (J) are somewhere in-

jective. Our main task is then to understand the natural compactification M (J)

of M (J), that is to say, the closure of M (J) in the space of J-holomorphic build-

ings in the sense of [BEH+03]. The uniqueness of the seed curves in the positive

end implies the following:

Lemma 1.1.14. If u ∈M (J) is a holomorphic building with a nontrivial upper

level, then it has exactly one upper level, which consists of one of the seed curves in

R×S2n−1, and all its other levels are empty.

The lemma means that the only way for a sequence of planes in M (J) to “de-

generate” with something nontrivial happening at the positive end is if the planes

simply escape into the positive end and become seed curves; in particular, this can-

not happen to any sequence of planes that have points falling into the negative end.

Theorem 1.1.3 can now be proved as follows. Let M1(J) denote the smooth 2n-

dimensional moduli space consisting of curves in M (J) with the additional data of

an interior marked point, hence there is a well-defined evaluation map

ev : M1(J)→W .

Choose a smooth properly embedded 1-dimensional submanifold ` ⊂W with one

end in [0,∞)×S2n−1 and the other in (−∞,0]×M, and perturb it to be transverse to

the evaluation map. Then

M`(J) := ev−1(`)

is a smooth 1-dimensional manifold, and it has a unique connected component

M 0
` (J) ⊂M`(J) that contains seed curves in the positive end. This component

has a noncompact end consisting of a family of seed curves that escape to +∞, thus

it is manifestly noncompact and therefore diffeomorphic to R. We claim now that
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What
What

M

S2n−1

RtimesM

RtimesM

ellelluk uinfty

Figure 1.2: When holomorphic planes in an exact cobordism converge to a holomorphic
building with nontrivial lower levels, at least one of them must include a plane.

M 0
` (J) must also contain curves with points that descend arbitrarily far into the neg-

ative end. Indeed, the SFT compactness theorem would otherwise imply that every

sequence in M 0
` (J) has a subsequence convergent to either an element of M 0

` (J) or

a holomorphic building of the type described in Lemma 1.1.14. But the latter can

only happen if the sequence escapes through the neighbourhood of +∞ in which

all curves are seed curves. In particular, we obtain a contradiction by considering

a noncompact sequence escaping to the opposite end of M 0
` (J)

∼= R from the one

consisting of seed curves, and this proves the claim. It follows that one can find a

sequence uk ∈M`(J) of curves converging to a holomorphic building u∞ ∈M (J)

with a nontrivial lower level (see Figure 1.2). Since the cobordism is exact, every

component curve in u∞ must have exactly one positive end, and it follows that at

least one of the curves in a lower level of u∞ is a plane, whose asymptotic orbit is

the contractible Reeb orbit promised by Theorem 1.1.3.

Remark 1.1.15. To remove the nondegeneracy assumption from Theorem 1.1.3, one

can take advantage of the fact that due to the exactness of the cobordism, the con-

tractible orbit found in the above argument comes with an a priori bound on its

period. Then if α is a degenerate contact form on (M,ξ ) approximated by a se-
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quence αk of nondegenerate contact forms, the above argument gives a sequence γk

of contractible Reeb orbits with respect to αk whose periods are uniformly bounded,

so by Arzelà-Ascoli, these have a subsequence convergent to a contractible Reeb or-

bit with respect to α . Note that if the orbits γk are also unknotted, it is not so clear

whether the limiting orbit will also be unknotted, hence the need for the more tech-

nical Theorem 1.1.12.

1.1.5 Outline of proofs, part 2: intersections

The argument described thus far is quite standard and, as mentioned earlier, is

largely attributable to Hofer [Hof93] (though the use of the path ` ⊂W to define

a 1-dimensional submanifold of the moduli space is borrowed from Niederkrüger

[Nie06]). The arguments required for finding an orbit that is not only contractible

but also unknotted are significantly subtler, and here we must make liberal use of

Siefring’s intersection theory [Sie11] in the low-dimensional setting.

To explain the idea, we briefly recall the notion of nicely embedded holomor-

phic curves, introduced by Chris Wendl in [Wen10a, Wen10b]. The precise defini-

tion will be reviewed in §2.1.4.5, but in essence, a holomorphic curve u : Σ̇→W in a

completed 4-dimensional symplectic cobordism W is nicely embedded if it has the

necessary intersection-theoretic properties to guarantee that it does not intersect its

neighbors in the moduli space. This condition implies that the moduli space near u

can be at most 2-dimensional, and in the 2-dimensional case the curves near u form

the leaves of a foliation on a neighbourhood of u(Σ̇) in W . If W is a symplectization

R×M or the image of u is confined to a cylindrical end, then being nicely embed-

ded has the additional implication that u projects to an embedding into M, i.e. u can

be written as

u = (uR,uM) : Σ̇→ R×M,

where the map uM : Σ̇→M is also an embedding. It is easy to show that the seed

curves we find in the symplectization of (S3,ξstd) are nicely embedded, and the

homotopy invariance of the intersection theory then implies that the same is true for

all curves in M (J).
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The fundamental principle behind the proof of Theorems 1.1.1 and 1.1.2 is

then the notion that “nice curves degenerate nicely,” i.e. if a sequence uk ∈M (J)

converges to a holomorphic building u∞ ∈M (J), then we should expect the com-

ponent curves in levels of u∞ to be nicely embedded. This statement as such is false

in full generality (see [Wen10b, Example 4.22 and Remark 4.23] for counterexam-

ples), but we will show that it is true in the present situation. As a consequence,

the plane we find in a lower level of u∞ has the form (uR,uM) : C→ R×M, where

uM : C→M is an embedding asymptotic to a contractible Reeb orbit.

There remains one complication: the fact that u : C→ R×M is nicely em-

bedded does not guarantee that its asymptotic orbit must be simply covered, i.e. the

image of uM : C→ M might look like an immersed disk that is embedded on the

interior but multiply covered on its boundary. We will show in fact that this can hap-

pen, but only in very specific ways, and to prove it, we develop a “local adjunction

formula” for holomorphic annuli breaking along a Reeb orbit.

1.1.6 Local adjunction

We now briefly interrupt the outline of the proof to describe a tool of more general

applicability. To set the stage, suppose that αk→ α∞ is a C ∞-convergent sequence

of contact forms on a 3-manifold M, and Jk→ J∞ is a corresponding sequence with

each Jk belonging to the usual space (see §2.1.1) of admissible translation-invariant

almost complex structures on the symplectization (R×M,d(erαk)). Assume then

that

uk : ([−k,k]×S1, i)→ (R×M,Jk)

is a sequence of pseudoholomorphic annuli which are converging in the sense of

SFT compactness to a broken curve

uk→ (u+∞ |u−∞),
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where

u+∞ : ((−∞,0]×S1, i)→ (R×M,J∞),

u−∞ : ([0,∞)×S1, i)→ (R×M,J∞)

are J∞-holomorphic half-cylinders each asymptotic to a nondegenerate Reeb orbit γ

with covering multiplicity m(γ); see Figure 1.3. This is intended as a local picture

of the neighbourhood of a breaking orbit as a sequence of smooth finite energy

curves converges to a holomorphic building as in [BEH+03]. Recall from [Sie08]

that for any finite energy punctured holomorphic curve that is not a multiple cover,

sufficiently small neighbourhoods of each puncture are always embedded, hence

if u+∞ and u−∞ are not multiply covered then we are free to assume without loss of

generality that both are embedded. This implies that each uk is also embedded near

the boundary of [−k,k]×S1 for sufficiently large k, but if m(γ)> 1, then uk can have

finitely many double points and critical points that “disappear into the breaking

orbit” in the limit. See §2.1.4.5 for precise definitions of each of the quantities

discussed below. We let

δ (uk)≥ 0

denote the algebraic count of double points and critical points of uk: this is a non-

negative integer that equals zero if and only if uk is embedded. The half-cylinders

u±∞ are embedded by assumption, but if m(γ)> 1, then they may have “hidden dou-

ble points at infinity” in the sense of [Sie11], i.e. double points that must emerge

from infinity under generic perturbations of the curves. We denote the algebraic

counts of these hidden double points by

δ∞(u±∞)≥ 0;

they are nonnegative integers that vanish if and only if generic perturbations of u±∞

remain embedded. We denote by

σ̄±(γ)≥ 1
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the so-called spectral covering numbers of γ as in [Sie11]: these are covering mul-

tiplicities of certain asymptotic eigenfunctions of γ , and are thus positive integers

that equal 1 if and only if those eigenfunctions are simply covered (which is always

the case e.g. if m(γ) = 1). For one last piece of notation, we let

p(γ) ∈ {0,1}

denote the parity of γ , i.e. its Conley-Zehnder index modulo 2. The result we will

prove in §3.1 can now be stated as follows.

gamma

uinfty−

uinfty+

uk

gamma

Figure 1.3: A sequence of pseudoholomorphic annuli uk converging to a broken annu-
lus consisting of embedded half-cylinders u±∞ asymptotic to a doubly covered
breaking orbit γ . In this case, uk can have double points that disappear in the
limit.

Theorem 1.1.16 (local adjunction). In the setting described above, assume uk →

(u+∞ |u−∞) is a sequence of holomorphic annuli in R×M converging to a broken pair

of half-cylinders, where u+∞ and u−∞ are both embedded and asymptotic to a non-

degenerate Reeb orbit γ with covering multiplicity m(γ), parity p(γ) and spectral
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covering numbers σ̄±(γ). Then for all k sufficiently large,

2δ (uk) = 2[δ∞(u+∞)+δ∞(u−∞)]+ [σ̄+(γ)−1]

+ [σ̄−(γ)−1]+ [m(γ)−1] p(γ).

The usefulness of this theorem lies in the fact that every bracketed term on the

right hand side of the formula is known a priori to be nonnegative, so if we also

know that the annuli uk are embedded, then all these terms must vanish. In that

case, we will easily be able to deduce the following consequence:

Corollary 1.1.17. In the setting of Theorem 1.1.16, if uk is embedded for every k,

then one of the following is true:

• γ is a simply covered orbit;

• γ is a double cover of a simply covered orbit γ ′ such that p(γ ′) = 1 and

p(γ) = 0, and both of the half-cylinders u±∞ have no hidden double points

at infinity.

1.1.7 Outline of proofs, conclusion

In the situation at hand, our degenerating curves are all embedded, so Corol-

lary 1.1.17 applies and we conclude that the breaking orbit is always either sim-

ply covered or a double cover of a negative hyperbolic orbit, what is known in the

SFT literature (cf. [EGH00]) as a bad orbit. In the first case we are done, and in

the second, we will show that degenerations of this form can always be glued back

together so that they are interpreted as interior points of the compactified moduli

space, and the moduli space must therefore have additional degenerations besides

this. In other words, breaking along bad orbits can happen, but it cannot be the

only type of breaking that happens, so there is still guaranteed to be some breaking

along a simple orbit somewhere, producing a nicely embedded curve asymptotic

to an unknotted orbit. The resulting constraints on the Conley-Zehnder index and

self-linking number of the orbit then follow by a straightforward and essentially

standard topological computation.
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The major differences between the above summary and the proof of Theo-

rem 1.1.2 are as follows. For the first statement in the theorem, the symplectic

cobordism W is taken to be symplectically trivial, i.e. its completion has the form

(R×M,dλ ), where λ is a Liouville form matching erα± near {±∞}×M, and α±

are two nondegenerate contact forms for (M,ξ ), of which α− is given but α+ is

carefully chosen. The assumptions of the theorem then allow us to choose α+ and

a compatible almost complex structure J+ near +∞ so that we find a smooth 1-

dimensional moduli space of seed curves. Since this moduli space is only 1- and

not 2-dimensional, it does not form a foliation, but the curves are still nicely em-

bedded and the same principles therefore apply: a variation on the same argument

described above leads to a nicely embedded plane asymptotic to a simple Reeb orbit

for α−.

Here is an outline of the remainder of the text. In §2.1, we clarify the essential

definitions and review the necessary facts about punctured holomorphic curves and

their intersection theory in dimension four. The purpose of §2.2 is then to specify

the data at the positive ends of our symplectic cobordisms, construct the seed curves

and prove that they are Fredholm regular and nicely embedded. Theorem 1.1.16 and

Corollary 1.1.17 on local adjunction for breaking holomorphic annuli are proved in

§3.1. Finally, §3.2 carries out the main compactness arguments, and §3.3 completes

the proofs of the main theorems.



Chapter 2

Preliminary Results

2.1 Preparation
The purpose of this section is to fix definitions and review some known results that

will be needed in the rest of the text.

2.1.1 Contact manifolds and symplectic cobordisms

We begin by reviewing some basic definitions from contact geometry and the pre-

cise way in which contact manifolds arise as hypersurfaces or boundary components

of symplectic manifolds.

Suppose (W,ω) is a 2n-dimensional symplectic manifold, and M ⊂W is a

smooth oriented hypersurface. We say that M is convex if there exists a Liouville

vector field near M that is positively transverse to M: here a vector field V is called

Liouville if its flow dilates the symplectic form, meaning LV ω = ω . This is equiv-

alent to the condition that the dual 1-form λ := ω(V, ·) satisfies dλ = ω , and being

positively transverse to M then means that the restriction α := λ |T M satisfies

α ∧ (dα)n−1 > 0.

This makes α a (positive) contact form on M, and the induced (positive and co-

oriented) contact structure is the co-oriented hyperplane field ξ := kerα ⊂ T M. It

follows from Gray’s stability theorem that if V is replaced with any other Liouville

vector field positively transverse to M, then the induced contact structure is isotopic
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to ξ , hence the contact form can be regarded as an auxiliary choice, but the contact

structure is canonical up to isotopy.

Remark 2.1.1. In this text, every contact structure is assumed to be co-oriented and

positive (with respect to a given orientation of the manifold), and contact forms are

always assumed compatible with the given co-orientation.

Example 2.1.2. We denote by ξstd ⊂ T S2n−1 the standard contact structure

on the sphere, which arises as the convex boundary of the standard symplec-

tic unit ball with a Liouville vector field pointing radially outward. In coordi-

nates (x1,y1, . . . ,xn,yn) ∈ R2n, the standard contact form αstd is the restriction

to S2n−1 ⊂ R2n of the Liouville form 1
2 ∑

n
j=1(x j dy j− y j dx j).

Any choice of contact form α determines a Reeb vector field Rα on M via the

conditions

dα(Rα , ·)≡ 0, α(Rα)≡ 1.

If M is a convex hypersurface in a symplectic manifold (W,ω), then the orbits

of Rα are precisely the orbits on M of any Hamiltonian vector field defined by a

Hamiltonian function on (W,ω) with M as a regular level set; moreover, convexity

implies that a neighbourhood of M is foliated by other convex hypersurfaces that

have the same Reeb obits. See [Gei08] for more on contact structures, and [HZ94]

for more on the convexity condition in Hamiltonian dynamics.

Given two closed contact manifolds (M−,ξ−) and (M+,ξ+), a strong sym-

plectic cobordism from (M−,ξ−) to (M+,ξ+) is a compact symplectic manifold

(W,ω) whose boundary can be identified with −M− tM+ such that M− and M+

are both convex hypersurfaces and the contact structures they inherit are isotopic

to ξ− and ξ+ respectively. Note that the orientation reversal for M− means that

the Liouville vector field points inward at M− (for this reason we sometimes call

M− the concave boundary component), whereas it points outward at M+. Addition-

ally, (W,ω) is called a Liouville (or exact symplectic) cobordism from (M−,ξ−) to

(M+,ξ+) if the transverse Liouville vector field defined near ∂W can be assumed to

extend to a global Liouville vector field. This is equivalent to requiring ω = dλ for
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some 1-form λ that restricts to the boundary as contact forms α± := λ |T M± for ξ±.

The symplectization of a contact manifold (M,ξ = kerα) is the open sym-

plectic manifold (R×M,d(erα)), where r denotes the coordinate on R. Its sym-

plectic structure is independent of the choice of α up to isotopy, but α determines

a special class of compatible almost complex structures J (α) on (R×M,d(erα))

such that J ∈J (α) if and only if:

• J is R-invariant (i.e. invariant under the flow of ∂r);

• J∂r = Rα ;

• J(ξ ) = ξ ;

• dα(·,J·)|ξ is a bundle metric on ξ .

Given a symplectic cobordism (W,ω) from (M−,ξ−) to (M+,ξ+) with induced

contact forms α± at M±, the corresponding Liouville vector fields defined near M+

and M− determine collar neighbourhoods (−ε,0]×M+ and [0,ε)×M− respectively

in which ω = d(erα±). One then defines the symplectic completion

W = ((−∞,0]×M−)M− ∪W ∪M+ ([0,∞)×M+)

by extending ω over the cylindrical ends as d(erα±). We shall denote by

J (W,ω,α+,α−)

the (nonempty and contractible) space of almost complex structures on W that are

ω-compatible on W and restrict to the cylindrical ends as elements of J (α±).

Almost complex structures of this type will be referred to simply as admissible

whenever the corresponding symplectic and contact data is fixed.
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2.1.2 Reeb orbits and the Conley-Zehnder index

Given a contact form α on a contact manifold (M,ξ ) of dimension 2n−1, a closed

Reeb orbit can be regarded as a smooth map

γ : S1 := R/Z→M

satisfying γ̇ = T Rα(γ) for some T > 0, which is the orbit’s period. Indeed, setting

x(t) := γ(t/T ), such a map is equivalent to a path x : R→M that satisfies ẋ = Rα(x)

and x(t + T ) = x(t) for all t. The number T need not generally be the minimal

period, hence γ may be a multiple cover γ(t) = γ0(kt) of another closed Reeb orbit

γ0 for some integer k≥ 2; when this is not the case, we say γ is simple, and the map

γ : S1→M is then an embedding. When γ is simple and dimM = 3, it makes sense

to ask whether γ is unknotted, meaning it is the boundary of an embedded disk, or

more explicitly there exists an embedding

u : D2 ↪→M

whose restriction to the boundary coincides with the Reeb orbit:

u|∂D2 = γ.

To every closed Reeb orbit one can associate an integer-valued invariant, the

Conley-Zehnder index, which depends on a trivialization of the contact structure

along the orbit. We will recall the definition of this invariant by way of a theorem

regarding asymptotic operators.

Fix J ∈J (α) and suppose γ : S1→M is a closed orbit of Rα with period T .

Given any symmetric connection ∇ on M, define Aγ : C ∞(γ∗ξ )→ C ∞(γ∗ξ ) by

Aγη =−J(∇tη−T ∇ηRα). (2.1.1)

This operator is independent of the choice of connection ∇, and it is symmetric with
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respect to the inner product on C ∞(γ∗ξ ) defined by

〈η ,ζ 〉=
∫

S1
ωγ(t)

(
η(t),J(γ(t))ζ (t)

)
dt.

It also extends to an unbounded self-adjoint operator on L2(γ∗ξ ) with domain

W 1,2(γ∗ξ ), referred to as the asymptotic operator associated to γ . Its spectral

properties have been described in [HWZ95].

Proposition 2.1.3 ([HWZ95]). With the notation above, let σ(Aγ) ⊂ R denote the

spectrum of Aγ , and for any λ ∈σ(Aγ), denote the corresponding eigenspace by Eλ .

Then:

1. 0 ∈ σ(Aγ) if and only if γ is degenerate;

2. σ(Aγ) is a discrete subset;

3. For each λ ∈ σ(Aγ), 1≤ dimEλ ≤ 2(n−1);

4. All nontrivial eigenfunctions of Aγ are everywhere nonzero.

If dimM = 3, then any trivialization Φ of γ∗ξ defines a map Γ(γ∗ξ )→ R2, via the

natural orientation of γ along the Reeb vector field. The last statement then implies

that one can define winding numbers windΦ(η) ∈ Z of nontrivial eigenfunctions η

relative to any fixed unitary trivialization Φ of γ∗ξ . The following statements then

also hold:

5. If η ,ζ ∈ Eλ are two nontrivial elements of the same eigenspace, then

windΦ(η) = windΦ(ζ ), hence we can sensibly denote both by windΦ(λ ).

6. The map σ(Aγ)→Z : λ 7→windΦ(λ ) is 2-to-1 (counting multiplicity of eigen-

values) and increasing. Hence if two distinct eigenvalues have the same wind-

ing, they are consecutive and their eigenspaces are 1-dimensional.

It follows that one can speak of the largest negative eigenvalue and the smallest

positive eigenvalue associated to the asymptotic operator, and when dimM = 3,
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their winding numbers relative to a chosen trivialization Φ are denoted by

α
Φ
−(γ), α

Φ
+(γ) ∈ Z

respectively. Proposition 2.1.3 implies that these two numbers differ by either 0 or

1 if γ is nondegenerate, and in this case, the Conley-Zehnder index (relative to the

trivialization Φ of γ∗ξ ) can be characterized via the relation

µ
Φ
CZ(γ) = α

Φ
−(γ)+α

Φ
+(γ) ∈ Z, (2.1.2)

and its parity (which does not depend on Φ) by

p(γ) = α
Φ
+(γ)−α

Φ
−(γ) ∈ {0,1}. (2.1.3)

As these formulas indicate, µΦ
CZ(γ) depends only on the asymptotic operator and

can thus sensibly be written as

µ
Φ
CZ(Aγ) = µ

Φ
CZ(γ).

With this in mind, (2.1.2) can also be used to compute Conley-Zehnder indices in

higher dimensions, via the relation

µ
Φ1⊕...⊕Φm
CZ (A1⊕ . . .⊕Am) = µ

Φ1
CZ (A1)+ . . .+µ

Φm
CZ (Am), (2.1.4)

which holds for any collection of asymptotic operators A j with trivial kernels on

Hermitian line bundles trivialized by Φ j for j = 1, . . . ,m.

While µΦ
CZ(γ) depends generally on the choice of trivialization Φ, in certain

situations one can make natural choices to remove this ambiguity. If γ is nullho-

mologous and forms the boundary of an immersed surface D in M, we define

µCZ(γ;D) ∈ Z



2.1. Preparation 32

as µΦ
CZ(γ) with Φ required to admit an extension to a unitary trivialization of ξ

along D . The index in this case still depends on the choice of surface D , but this

ambiguity also disappears if c1(ξ ) = 0, which is true e.g. on (S3,ξstd).

We require the following standard lemma on the behaviour of the index for

multiply covered orbits in dimension three. Let

γ
k : S1→M : t 7→ γ(kt)

denote the k-fold cover of the orbit γ : S1→M for k ∈ N, and note that any trivial-

ization Φ of γ∗ξ induces a trivialization Φk of (γk)∗ξ .

Lemma 2.1.4. Suppose dimM = 3, and that γ and all its multiple covers are non-

degenerate. Then for any unitary trivialization Φ of γ∗ξ ,

µ
Φk

CZ(γ
k) =

k ·µΦ
CZ(γ) if γ is hyperbolic

2bkθc+1 if γ is elliptic
(2.1.5)

for every k ∈N, where in the elliptic case, θ ∈R is an irrational number determined

by γ and Φ.

We remind the reader at this point, in light of the above lemma the definition

of a bad orbit. A hyperbolic orbit, regardless of its parity, has even covers with

even Conley-Zehnder index. In the SFT literature, double covers of simple odd

hyperbolic orbits are called bad, and we will use the same terminology throughout

§3.2, §3.3.

We will occasionally also need to deal with Reeb orbits γ that are degenerate

but belong to Morse-Bott families, in which case the following definition will be

convenient. If γ is degenerate, then 0 ∈ σ(Aγ) but one can find ε > 0 such that

(−ε,0)∩σ(Aγ) = /0. It follows that for any ε > 0 sufficiently small, Aγ + ε is the

asymptotic operator of a perturbed nondegenerate orbit, whose index we will denote

by

µ
Φ
CZ(γ + ε) := µ

Φ
CZ(Aγ + ε). (2.1.6)
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This is independent of the choice as long as ε > 0 is sufficiently small, and this

perturbed Conley-Zehnder index gives a sharp lower bound on the indices of

possible nondegenerate perturbations of γ . The winding numbers αΦ
±(γ+ε)∈Z are

defined similarly after replacing Aγ by Aγ + ε , and they are then related to µΦ
CZ(γ +

ε) by the obvious analogue of (2.1.2). Notice that αΦ
−(γ + ε) = αΦ

−(γ), but αΦ
+(γ +

ε) and αΦ
+(γ) may differ if γ is degenerate.

Finally, here is a definition that will be needed for intersection theory when

dimM = 3. Observe that for integers k≥ 2, every eigenfunction in the λ -eigenspace

of Aγ has a k-fold cover that belongs to the kλ -eigenspace of Aγk . In the three-

dimensional case, one can use Proposition 2.1.3 to show that the covering multi-

plicity of an eigenfunction depends only on its winding number, thus all elements

of the same eigenspace have the same covering multiplicity. The (positive and neg-

ative) spectral covering numbers

σ̄±(γ) ∈ N

are defined as the covering multiplicity of the eigenspace that has winding αΦ
±(γ).

2.1.3 Holomorphic curves in completed symplectic cobordisms

In this subsection, fix a 2n-dimensional symplectic cobordism (W,ω) with comple-

tion W and admissible almost complex structure J ∈J (W,ω,α+,α−), with the

restrictions of J to the cylindrical ends denoted by J± ∈J (α±).

2.1.3.1 Asymptotics

We will consider asymptotically cylindrical pseudoholomorphic curves u : (Σ̇, j)→

(W ,J), where

Σ̇ = Σ\Γ

is the result of removing finitely many punctures Γ ⊂ Σ from a closed Riemann

surface (Σ, j). The set of punctures is partitioned into sets of positive and nega-

tive punctures Γ+ and Γ− respectively, where z ∈ Γ± means that one can find a

biholomorphic identification of a punctured neighbourhood of z with [0,∞)×S1 or
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(−∞,0]× S1 respectively such that for |s| sufficiently large, u in these coordinates

takes the form

u(s, t) = exp(T s,γ(t)) h(s, t) ∈ [0,∞)×M+ or (−∞,0]×M−

for some closed Reeb orbit γ : S1→M± with period T > 0, where the exponential

map is defined with respect to any choice of translation-invariant metric on the

cylindrical ends, and h(s, t) is a vector field along the trivial cylinder which satisfies

|h(s, t)| → 0 as s→ ±∞. We say in this case that u is (positively or negatively)

asymptotic to γ at z, and h(s, t) is called the asymptotic representative of u at z.

The asymptotic behaviour of h(s, t) is described by a formula proved in [HWZ96a,

HWZ96b, Mor03, Sie08]: namely if the orbit γ is nondegenerate or Morse-Bott,

then for |s| sufficiently large, h is either identically zero or satisfies

h(s, t) = eλ s(e1(t)+ r(s, t)), (2.1.7)

where r(s, t)→ 0 uniformly in all derivatives as s→±∞, λ ∈σ(Aγ) is an eigenvalue

of the asymptotic operator of γ with ±λ < 0, and e1 ∈ C ∞(γ∗ξ±) is a nontrivial

element of the corresponding eigenspace.

2.1.3.2 Moduli spaces and compactness

It is a standard fact that every asymptotically cylindrical J-holomorphic curve

u : (Σ̇, j)→ (W ,J) either is somewhere injective or is a multiple cover of a some-

where injective asymptotically cylindrical curve, and moreover, the set of injective

points of a somewhere injective curve is open and dense. A complete proof of this

statement may be found in [Nel15], using asymptotic results of Siefring [Sie08].

Recall that z ∈ Σ̇ is called an injective point of u if u−1(u(z)) = {z} and du(z) 6= 0,

and we call u a k-fold multiple cover of another curve v : (Σ̇′ = Σ′ \Γ′, j′)→ (W ,J)

if

u = v◦φ

for some holomorphic map φ : (Σ, j)→ (Σ′, j′) of degree k.
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Fix finite ordered tuples of Reeb orbits γ+ = (γ+1 , . . . ,γ+k+) and γ− =

(γ−1 , . . . ,γ−k−) in M+ and M− respectively (the case k± = 0 is allowed), assum-

ing that all of them are either nondegenerate or belong to Morse-Bott families. For

an integer m≥ 0, the moduli space

Mm(J,γ+,γ−)

of unparametrized J-holomorphic spheres asymptotic to γ+ and γ− with

m marked points is defined as the set of equivalence classes of tuples

(Σ, j,Γ+,Γ−,u,(ζ1, . . . ,ζm)) where (Σ, j) is a closed Riemann surface of genus

zero, Γ+,Γ− ⊂ Σ are disjoint finite sets, each equipped with an ordering, the

marked points ζ1, . . . ,ζm ∈ Σ̇ := Σ\ (Γ+∪Γ−) are all distinct, and

u : (Σ̇, j)→ (W ,J)

is an asymptotically cylindrical J-holomorphic curve with positive punctures Γ+

and negative punctures Γ−, such that u is asymptotic at the ith puncture in Γ± to γ
±
i

for i = 1, . . . ,k±. Two such tuples are considered equivalent if one can be written

as a reparametrization of the other via a biholomorphic diffeomorphism of their

domains that maps marked points to marked points and punctures to punctures, with

signs and orderings preserved. The topology of Mm(J,γ+,γ−) can be characterized

by saying that a sequence converges if it has representatives with a fixed domain Σ

and fixed sets of punctures and marked points such that the conformal structures

converge in C ∞(Σ) while the maps to W converge in C ∞
loc(Σ̇) and also in C 0 up

to infinity (with respect to translation-invariant metrics on the cylindrical ends).

We shall often abuse notation by referring to the entire equivalence class of tuples

[(Σ, j,Γ+,Γ−,u,(ζ1, . . . ,ζm))] forming an element of Mm(J,γ+,γ−) simply as u. In

this text we will only consider the cases m = 0,1, abbreviating the former by

M (J,γ+,γ−) := M0(J,γ+,γ−).
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For m > 0, the evaluation map

ev : Mm(J,γ+,γ−)→W m

[(Σ, j,Γ+,Γ−,u,(ζ1, . . . ,ζm))] 7→ (u(ζ1), . . . ,u(ζm))

is well defined and continuous by construction.

Recall that neighbourhoods in Mm(J,γ+,γ−) can be described as zero-sets of

smooth Fredholm sections in suitable Banach space bundles (see e.g. [Wen10b]).

A curve u is called Fredholm regular whenever it forms a transverse intersec-

tion of such a Fredholm section with the zero-section. The virtual dimension of

Mm(J,γ+,γ−) at u is given by the Fredholm index of the linearized section at u

minus the dimension of the group of automorphisms of the domain, and in the case

m = 0 is also called the index of u. If the orbits are all nondegenerate, it is given by

the formula

ind(u) = (n−3)χ(Σ̇)+2cΦ
1 (u

∗TW )+
k+

∑
i=1

µ
Φ
CZ(γ

+
i )−

k−

∑
i=1

µ
Φ
CZ(γ

−
i ). (2.1.8)

Here Φ is an arbitrary choice of unitary trivializations of ξ± along each of the

asymptotic orbits, which naturally induce asymptotic trivializations of the complex

vector bundle u∗TW → Σ̇, and cΦ
1 (u

∗TW )∈Z then denotes the relative first Chern

number of u∗TW with respect to these asymptotic trivializations. This term ensures

that the total expression is independent of the choice Φ. We will also need a special

case of the index formula under Morse-Bott assumptions: if all positive asymptotic

orbits are Morse-Bott (but possibly degenerate) and all negative orbits are nonde-

generate, then

ind(u) = (n−3)χ(Σ̇)+2cΦ
1 (u

∗TW )+
k+

∑
i=1

µ
Φ
CZ(γ

+
i + ε)−

k−

∑
i=1

µ
Φ
CZ(γ

−
i ), (2.1.9)

where ε > 0 is assumed sufficiently small (see (2.1.6)). Note that this is the virtual

dimension of the moduli space of curves near u with fixed asymptotic orbits, i.e. the

orbits are not allowed to move continuously in their respective Morse-Bott families.
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The index without this constraint would be larger; see [Wen10b], §3.2 for an expla-

nation of (2.1.9) and the constrained/unconstrained distinction. Adding a marked

point generally increases the virtual dimension by 2, so Mm(J,γ+,γ−) has virtual

dimension ind(u)+2m on any component that includes the curve u∈M (J,γ+,γ−).

A standard application of the implicit function theorem implies that the open

subset consisting of Fredholm regular curves in Mm(J,γ+,γ−) admits the struc-

ture of a smooth finite-dimensional orbifold whose dimension locally equals its

virtual dimension, and it is a manifold near any curve that is somewhere injective.

Moreover, a standard argument via the Sard-Smale theorem (see [MS04] or [Wenc])

shows that after perturbing J generically in J (W,ω,α+,α−) on some open subset

U ⊂W with compact closure, one can assume that all somewhere injective curves

passing through U are Fredholm regular. Similarly, Dragnev [Dra04] (see also

[Wenb]) has shown that on a symplectization (R×M,d(erα)), generic perturba-

tions within J (α±) suffice to make all somewhere injective curves regular, and

this result can also be applied to any curves in the cobordism W that are contained

in a cylindrical end.

If the Reeb flows on M+ and M− are both globally nondegenerate or Morse-

Bott, then Mm(J,γ+,γ−) has a natural compactification

M m(J,γ+,γ−)

defined in [BEH+03], consisting of stable holomorphic buildings of arithmetic

genus zero with m marked points. An example of a holomorphic building (with

higher arithmetic genus) is shown in Figure 2.1. We shall write holomorphic build-

ings using the notation

(v+N+
| . . . |v+1 |v0|v−1 | . . . |v

−
N−),

where N+,N− ≥ 0 are integers, v±1 , . . . ,v
±
N± are each (possibly disconnected and/or

nodal) J±-holomorphic curves in the symplectizations R×M±, forming the upper

and lower levels respectively, and v0 is a (possibly disconnected and/or nodal) J-
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holomorphic curve in W , the main level. Note that by convention, the main level is

allowed to be empty (i.e. v0 is a curve with domain the empty set) if N+ or N− is

nonzero. Each upper or level is defined only up to R-translation, and the same is true

of all levels when W is a symplectization, in which case there is no distinguished

“main” level or distinction between “upper” and “lower” levels. The evaluation

map extends continuously over M m(J,γ+,γ−) if we also compactify W by adding

{±∞}×M± to the top and bottom of the cylindrical ends, i.e. marked points in

upper or lower levels are mapped to {∞}×M+ or {−∞}×M− respectively.

Our notation for buildings is convenient but suppresses an additional detail that

will sometimes be quite important: the data also includes a one-to-one correson-

dence between the positive punctures of each level (other than the topmost) and the

negative punctures of the level above it, such that corresponding punctures have

matching asymptotic orbits, the so-called breaking orbits. Additionally, each pair

of corresponding punctures is equipped with a choice of a rotation angle for gluing

the corresponding positive and negative ends along the breaking orbit—this choice

is unique if the orbit is simple, but in general there are m ∈ N distinct choices if the

orbit has covering multiplicity m. All of this data together is called a decoration

of the building. Different choices of decoration often produce buildings that are

biholomorphically inequivalent to each other and thus represent distinct elements

of M m(J,γ+,γ−).

Whenever (W,ω) is a Liouville cobordism (and in particular if W is a symplec-

tization), Stokes’ theorem prevents the existence of curves with no positive ends,

sometimes referred to as holomorphic caps. The following standard result is then

immediate from the definition of convergence in [BEH+03].

Proposition 2.1.5. Suppose W is either a symplectization or the completion of a

Liouville cobordism, and uk ∈Mm(J,γ, /0) is a sequence of J-holomorphic planes

converging to a holomorphic building. Then the limiting building has the following

properties:

• Each connected component of each level is a punctured sphere with precisely

one positive puncture.
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What What

RtimesM−

RtimesM−

RtimesM−

M+ RtimesM+

M−

v2−

v1−

v0

v1+

uk

g1− g2−

g2−g1−

g1+

g1+

v3−

Figure 2.1: The picture shows the degeneration of a sequence of punctured curves of genus
2 into a building with a main level, one upper level and three lower levels. We
label the building as (v+1 |v0|v−1 |v

−
2 |v
−
3 ), where each v±i is in general a discon-

nected nodal curve in a single level. The arithmetic genus of the building is still
2, and the levels match along their respective asymptotic orbits.

• The lowest level has no negative punctures (so it is a disjoint union of planes).

• The top level is connected.

• There are no nodes.

We shall refer to the components without negative ends in the above lemma as

capping planes; they are not to be confused with “holomorphic caps,” which have

only negative ends.

The converse of compactness is gluing, as discussed e.g. in [Nel13, Chapter 7].

We will only need the following special case.

Proposition 2.1.6. Assume γ∞ is a Morse-Bott Reeb orbit in M+, γ is a nondegen-

erate orbit in M−, m≥ 0 is an integer, and (v0|v−1 ) ∈M m(J,γ∞, /0) is a (decorated)
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stable J-holomorphic building such that v0 ∈Mm(J,γ∞,γ) and v−1 ∈M (J−,γ, /0)/R

are both somewhere injective and Fredholm regular. Then there exist neighborhoods

v0 ∈U0 ⊂Mm(J,γ∞,γ)

v−1 ∈U− ⊂M (J−,γ, /0)/R

and a smooth embedding

Ψ : [0,∞)×U0×U− ↪→Mm(J,γ∞, /0)

such that for any sequences [0,∞) 3 rk→+∞, uk→ u∞ ∈U0 and u−k → u−∞ ∈U−,

Ψ(rk,uk,u−k )→ (u∞|u−∞) ∈M m(J,γ∞, /0)

in the SFT topology. Moreover, every smooth curve in Mm(J,γ∞, /0) sufficiently

close to (v0|v−1 ) in the SFT topology is in the image of Ψ.

Remark 2.1.7. The notation for buildings used in Proposition 2.1.6 implicitly as-

sumes that if multiple buildings can be constructed out of u∞ and u−∞ via different

choices of decoration, then (u∞|u−∞) is the unique choice that is close to (v0|v−1 ) in

the SFT topology.

2.1.4 The low-dimensional case

We now specialize to the case where the cobordism (W,ω) is 4-dimensional, so all

contact manifolds under consideration will be 3-dimensional.

2.1.4.1 Indices of covers

We begin with a pair of convenient numerical observations. The first is borrowed

(along with its proof) from [Hut02].

Proposition 2.1.8. Suppose J ∈J (α) for a contact 3-manifold (M,ξ = kerα),

and u : (Σ̇, j)→ (R×M,J) is a J-holomorphic branched cover of a trivial cylin-

der over a Reeb orbit whose covers are all nondegenerate. Then ind(u) ≥ 0, and

equality can hold only when the cover is unbranched or the orbit is elliptic.
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Proof. If the underlying orbit γ is hyperbolic, then the index formula gives ind(u) =

−χ(Σ̇)≥ 0 due to Lemma 2.1.4, which is an equality if and only if Σ̇ is the cylinder,

in which case the Riemann-Hurwitz formula implies that the cover is unbranched. If

the orbit is instead elliptic, we can make our lives slightly easier with the observation

that u has the same index as that of some holomorphic building whose connected

components are all thrice-punctured spheres that are also branched covers of the

same trivial cylinder. It therefore suffices to prove that the inequality holds for

thrice-punctured spheres. If for instance u has two positive punctures at γk and γ`

and a negative puncture at γk+`, then Lemma 2.1.4 gives

ind(u) =−χ(Σ̇)+(2bkθc+1)+(2b`θc+1)− (2b(k+ `)θc+1) ,

where χ(Σ̇) = −1, and the index is thus nonnegative due to the relation ba+ bc ≤

bac+ bbc+1. In the inverse case with one positive puncture and two negative, we

get the same result using bac+ bbc ≤ ba+bc.

Proposition 2.1.9. Suppose dimW = 4 and u = v ◦ φ : (Σ̇, j)→ (W ,J) is a k-fold

cover of a somewhere injective J-holomorphic curve v : (Σ̇′, j′)→ (W ,J) whose

asymptotic orbits are all nondegenerate and hyperbolic. Then

ind(u)≥ k ind(v),

with equality if and only if the cover φ : (Σ̇, j)→ (Σ̇′, j′) has no branch points in the

punctured surface Σ̇.

Proof. This is a direct consequence of the index formula (2.1.8) together with

Lemma 2.1.4 and the Riemann-Hurwitz formula Z(dφ) = −χ(Σ̇)+ kχ(Σ̇′), where

Z(dφ) ≥ 0 denotes the algebraic count of zeroes of the holomorphic section dφ ∈

Γ(HomC(T Σ̇,φ∗T Σ̇′)), and thus vanishes if and only if the cover is unbranched.

2.1.4.2 Asymptotic defect

Suppose u : Σ̇→W is asymptotic at z∈Γ± to a T -periodic orbit γ : S1→M± and has

an asymptotic representative h(s, t) at this puncture that is not identically zero. Then
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the asymptotic formula (2.1.7) provides a nonzero eigenfunction e1 ∈ C ∞(γ∗ξ±),

and given a trivialization Φ of γ∗ξ±, one can define

windΦ
∞(u;z) := windΦ(e1) ∈ Z.

If z ∈ Γ+, then αΦ
−(γ) is the winding of the greatest negative eigenvalue of Aγ , thus

windΦ
∞(u;z)≤ αΦ

−(γ), and similarly, windΦ
∞(u;z)≥ αΦ

+(γ) if z ∈ Γ−. The difference

αΦ
−(γ)−windΦ

∞(u;z) or windΦ
∞(u;z)− αΦ

+(γ) for a positive or negative puncture

respectively is denoted d0(u;z)≥ 0 and called the asymptotic defect of u at z ∈ Γ.

Notice that it does not depend on the trivialization. The total asymptotic defect of u

is then a nonnegative integer

d0(u) = ∑
z∈Γ

d0(u;z).

This is well defined for any curve u that is not identical to a trivial cylinder in

some neighbourhood of any of its punctures; in particular, if W is a symplectization

(R×M,d(erα)) with J ∈J (α), then d0(u) is well defined for every curve other

than covers of trivial cylinders.

2.1.4.3 The normal Chern number and windπ(u)

The normal Chern number of a curve u∈M (J,γ+,γ−) with all asymptotic orbits

nondegenerate is defined by

cN(u) = cΦ
1 (u

∗TW )−χ(Σ̇)+
k+

∑
i=1

α
Φ
−(γ

+
i )−

k−

∑
i=1

α
Φ
+(γ

−
i ),

where Φ is again an arbitrary choice of unitary trivializations of ξ± along the asymp-

totic orbits, and the sum does not depend on this choice. The index formula and

relations between Conley-Zehnder indices and winding numbers imply

2cN(u) = ind(u)−2+2g+#Γ0, (2.1.10)
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where g≥ 0 is the genus of the domain (zero in our case) and Γ0 ⊂ Γ denotes the set

of punctures of u that have even parity. In the Morse-Bott setting of (2.1.9), the defi-

nition of cN(u) given above remains valid, and so does (2.1.10) after interpreting Γ0

as the set of punctures for which the perturbed Conley-Zehnder index (see (2.1.6))

is even. One can interpret cN(u) as “c1 of the normal bundle” when u is immersed;

in particular, cN(u) then predicts the number of zeroes for a generic section in the

kernel of the linearized normal deformation operator at u, see e.g. [Wen10b].

For curves in the symplectization R×M of a contact manifold (M,ξ = kerα),

there is a further invariant related to cN(u) and the asymptotic defect. Let

π : T M → ξ denote the fibrewise linear projection along the Reeb vector field.

Then the nonlinear Cauchy-Riemann equation for u : Σ̇ → R×M implies that

π ◦du∈C ∞(HomC(T Σ̇,u∗ξ )) locally satisfies a linear Cauchy-Riemann type equa-

tion, so zeroes of π ◦du are isolated and positive by the similarity principle unless

π ◦du≡ 0. The latter is the case if and only if u is a cover of a trivial cylinder, and

otherwise, we define

windπ(u)≥ 0

to be the algebraic count of zeroes of π ◦du. The asymptotic formula (2.1.7) implies

that zeroes of π ◦ du cannot accumulate near infinity, so windπ(u) is always finite.

It equals 0 if and only if u = (uR,uM) : Σ̇→R×M has the property that uM : Σ̇→M

is an immersion transverse to the Reeb vector field. From [HWZ95, Prop. 5.6], we

have

cN(u) = windπ(u)+d0(u). (2.1.11)

In particular, this implies

cN(u)≥ d0(u)≥ 0 and cN(u)≥ windπ(u)≥ 0 (2.1.12)

for any curve that is not a cover of a trivial cylinder, so cN(u) = 0 gives a homotopy-

invariant sufficient condition for both the asymptotic defect and windπ(u) to vanish.

In 3.2 we will need an extra result concerning the additive behaviour of the
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normal Chern number as a sequence degenerates to its asymptotic limit. Suppose

uk : (Σ, j)→ (W,J)

is a sequence of J-holomorphic curves which converges in the sense of 2.1.3.2 to a

building

u∞ = (v+N+
| . . . |v+1 |v0|v−1 | . . . |v

−
N−).

Since cN(uk) is eventually constant, the following formula holds.

Lemma 2.1.10. Denote by Γ(u∞) the union of the sets of breaking orbits of all levels

of u∞.

cN(uk) = cN(v0)+
N+

∑
j=1

cN(v+j )+
N−

∑
j=1

cN(v−j )+ ∑
γ∈Γ(u∞)

p(γ),

Proof. This follows from the definition of the normal Chern number, together with

the additivity of the relative Chern numbers under a consistent choice of trivial-

ization across all levels, as well as the additivity of the Euler characteristics. The

sum of parities across breaking orbits comes from the fact that each breaking or-

bit appears exactly twice, once as the positive orbit of some level, and once as the

negative orbit of another.

2.1.4.4 Self-linking numbers

Let γ be a nullhomologous transverse knot in a closed contact 3-manifold (M,ξ ),

let Σ ⊂ M be a Seifert surface and X a framing of γ , i.e. a non-zero section of

γ∗ξ . The self-linking number of γ with respect to X is then the algebraic count of

intersections between Σ and a generic push-off of γ in the direction of X :

sl(γ,X) = (expγ X) ·Σ ∈ Z.

Note that this depends on X up to homotopy, but not on Σ, as a different choice of

Seifert surface changes sl(γ,X) by the homological intersection number of γ with
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a closed 2-cycle, which vanishes since γ is nullhomologous. Replacing X with

another framing changes sl(γ,X) by the relative winding of the two framings,

sl(γ,X1)− sl(γ,X2) = wind(X1,X2), (2.1.13)

where wind(X1,X2) ∈ Z denotes the winding number of the section X1 along γ in

the trivialization induced by X2. Note that the Seifert surface determines a canon-

ical homotopy class of framings XΣ via the condition that XΣ should extend to a

trivialization of ξ along Σ, so with this choice we shall denote

sl(γ;Σ) := sl(γ,XΣ).

This depends on Σ since XΣ does, but the dependence vanishes if c1(ξ ) = 0.

With this definition in mind, suppose γ is an unknotted Reeb orbit and u =

(uR,uM) : C→ R×M is a J-holomorphic plane asymptotic to γ for which uM :

C→M is embedded. The closure of uM(C) is then a Seifert disk D ⊂M for γ , and

we claim

sl(γ;D) = wind(XD ,e1(u)), (2.1.14)

where XD is the canonical framing determined by D as discussed above, and e1(u)

is the nonzero eigenfunction appearing in the asymptotic formula (2.1.7) for the

approach of u to γ . Indeed, e1(u) gives the direction of the approach of u to γ and

is thus homotopic to the Seifert framing of γ , implying sl(γ,e1(u)) = 0, so

sl(γ;D) = sl(γ,XD) = sl(γ,e1(u))+wind(XD ,e1(u)) = wind(XD ,e1(u)).

2.1.4.5 Siefring intersection theory

Let (W,J) be a symplectic cobordism from (M+,ξ+) to (M−,ξ−) with and admis-

sible almost complex structure as in 2.1.1. Let u1 : Σ̇1 →W and u2 : Σ̇2 →W be

J-holomorphic maps such that both their asymptotic orbits are nondegenerate or

Morse-Bott. The non-compactness of their domains implies their algebraic inter-

section number, denoted by u1 · u2, is not a homotopy invariant (indeed it is not
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even a priori well defined). u1 · u2 is however, well defined if one can guarantee

their intersections lie in a compact subset. Often we will use this algebraic count

after one of the two curves has been perturbed along a fixed trivilization Φ in its

cylindrical ends; in such a case the algebraic count is independent of arbitrary com-

pact perturbations and is well defined. We will denote it by

int(u1,u2)

However, in [Sie11], Siefring associates to any pair of (not necessarily J-

holomorphic) asymptotically cylindrical maps an integer

u1 ∗u2 ∈ Z,

which matches the homological intersection number [u1] · [u2] if both curves have

no punctures, and in general has the following properties. First, the pairing is sym-

metric

u1 ∗u2 = u2 ∗u1,

and it is invariant under homotopies of asymptotically cylindrical maps with fixed

asymptotic orbits; in fact, u1 ∗ u2 depends only on the asymptotic orbits of u1 and

u2 and their relative homology classes. If both maps are J-holomorphic and their

images are non-identical, then the relative asymptotic results of [Sie08] imply that

all intersections between u1 and u2 are isolated and contained in a compact subset,

so by positivity of intersections, the algebraic count of intersections u1 ·u2 is finite

and satisfies

u1 ·u2 ≥
∣∣∣{(z1,z2) ∈ Σ̇1× Σ̇2

∣∣∣ u1(z1) = u2(z2)
}∣∣∣ ,

with equality if and only if all intersections are transverse. This is then related to

u1 ∗u2 by

u1 ∗u2 ≥ u1 ·u2,
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so the condition u1 ∗ u2 = 0 gives a homotopy-invariant sufficient condition for u1

and u2 to be disjoint.

We briefly recall the construction of the pairing, as some of the terms involved

reappear in subsequent computations in other sections.

First, for the collection of complex line bundles γ∗ξ±→ S1 for every asymp-

totic orbit γ : S1→M± choose a collection of trivializations which we indiscrimi-

nately refer to as Φ which are compatible with the pullbacks of all covering maps

γm→ γ . Once such as choice is made, we can define the relative intersection num-

ber

u1 ∗Φ u2

as the count of algebraic intersections between u1 and a perturbation of u2 along

Φ at ±∞ such that this count is finite. Such a perturbation is constructed first in

neighbourhoods of each asymptotic end as follows. For z ∈ Γ(u2) one can express

the cylindrical end model of u2 asymptotic to an orbit which we call γm
z after a

coordinate transformation, ψ(s, t)

u2(ψ(s, t)) = (mT s,expγm
z (t) h(s, t)) ∈ [0,∞)×M+ or (−∞,0]×M−.

Then we define the perturbed end to be

uΦ,ε
2 (ψ(s, t)) = (mT s,expγz(t)[h(s, t)+β (ψ(s, t))Φ(mt)ε])

where β is a smooth cut-off function which equals 1 in a neighbourhood of z.

If we rewrite uΦ,ε
2 to be the curve u2 with such a replacement made in a neigh-

bourhood of each end, it follows that one can find an ε0 > 0 such that for any ε < ε0

the intersection number

u1 ∗Φ u2 = u1 ·uΦ,ε
2

is well-defined, and only depends on the homotopy class of Φ.

The difference between u1 ∗Φ u2 and a true homotopy invariant turns out to
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be an asymptotic correction term which depends only on the common asymptotic

orbits of the two curves. Define for any simple orbit γ

Ω
Φ
±(γ

k,γm) = min{∓kα
Φ
∓(γ

m),∓mα
Φ
∓(γ

k)}

Then u1 ∗u2 is defined to be

u1 ∗u2 = u1 ∗Φ u2− ∑
(z,ζ )∈Γ

±
u1×Γ

±
u2

Ω
Φ
±(γ

mz
z ,γ

mζ

ζ
) (2.1.15)

where the terms of the sum are understood to be 0 if γz 6= γζ .

What the sum on the right hand side represents is a theoretical lower bound for

the intersections that arise from ∞ which we can write as

u1 ∗Φ u2 = u1 ·u2 + iφ∞(u1,u2)

whenever the u1 · u2 is well defined. The quantity iφ∞(u1,u2) has an independent

definition in terms of asymptotic winding numbers of the ends of the two curves,

see [Sie11] for full exposure.

The following computation is an easy consequence of the definition (cf. [Sie11,

Prop. 5.6]):

Proposition 2.1.11. Suppose J ∈J (α) for a contact 3-manifold (M,ξ = kerα),

and u and v are both J-holomorphic covers of the same trivial cylinder in (R×M,J)

over a nondegenerate Reeb orbit with even parity. Then u∗ v = 0.

The intersection product also has a natural extension to holomorphic buildings

such that homotopy invariance holds for all continuous deformations in the SFT

topology. We will need a particular result about this extension:

Proposition 2.1.12. If v = (v+N+
| . . . |v+1 |v0|v−1 | . . . |v

−
N−) is a holomorphic building in

a 4-dimensional completed symplectic cobordism, we have

v∗ v≥
N+

∑
j=1

v+j ∗ v+j + v0 ∗ v0 +
N−

∑
j=1

v−j ∗ v−j +∑
γ

m(γ)p(γ),
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where the last sum is over all orbits γ that occur as breaking orbits in v, with

covering multiplicities denoted by m(γ) ∈ N.

Proof. Notice first that the relative intersection numbers v±i ∗Φ v±i as defined, are

additive and as a result

v∗ v−
N+

∑
j=1

v+j ∗ v+j − v0 ∗ v0−
N−

∑
j=1

v−j ∗ v−j

is a sum of terms of the form

Ω
Φ
±(γ

mz
z ,γ

mζ

ζ
)

as in 2.1.15 over all pairs of common breaking orbits. Among all of these terms,

whenever γm is a breaking orbit, we can find

Ω
Φ
+(γ

m,γm)+Ω
Φ
−(γ

m,γm) = mα
Φ
+(γ

m)−mα
Φ
−(γ

m) = mp(γm)

It remains to see that all other terms pair up to positive quantities on the right hand

side of the equation. Namely, we consider

Ω
Φ
+(γ

m,γk)+Ω
Φ
−(γ

m,γk) (2.1.16)

If γ is an even orbit, then, αΦ
+(γ

m) = αΦ
+(γ

m) and one easily sees that the term in

2.1.16 is 0.

If γ is odd hyperbolic, then similarly to Lemma 2.1.4,

α
Φ
±(γ

m) = ma±(γ)∓
1
2
(m− p(m))

and 2.1.16 becomes, after a short computation

min{mp(γn),np(γm)} ≥ 0.
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Finally, if γ is elliptic, then there is an irrational number θ such that

α
Φ
−(γ

m) = bmθc

α
Φ
+(γ

m) = bmθc+1

Then, 2.1.16 becomes

min{−nbmθc,−mbnθc}+min{nbmθc+n,mbnθc+m} ≥−bmnθc+bnmθc= 0,

which completes the claim.

If u : Σ̇ → W is somewhere injective and J-holomorphic, then the relative

asymptotic results of [Sie08] also imply that it is embedded outside a compact sub-

set, so there is a finite singularity count δ (u) ∈ Z, defined as the algebraic count

of double points {(z1,z2) ∈ Σ̇× Σ̇ | u(z1) = u(z2) and z1 6= z2} after perturbing u in

a compact subset to make it immersed. Standard local results due to Micallef and

White [MW95] imply that δ (u)≥ 0 with equality if and only if u is embedded, but

in contrast to the closed case, δ (u) is not generally homotopy invariant. Instead, it

satisfies the generalized adjunction formula

u∗u = 2δtotal(u)+ cN(u)+ [σ̄(u)−#Γ] , (2.1.17)

where

δtotal(u) = δ (u)+δ∞(u)

includes an additional contribution δ∞(u) ≥ 0 counting double points that can

emerge from infinity under generic perturbations, and the term σ̄(u)∈N is a sum of

the spectral covering numbers (see §2.1.2) of all asymptotic orbits, hence σ̄(u)−#Γ

is also nonnegative.

We will need a couple of precise definitions when proving the local adjunction

formula in §3.1. For a curve u such as above, in the neighbourhood of a puncture,

z, for a certain parametrization, which we omit, we can write
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uz(s, t) = (mzT s,exp
γ

mz
z (t) h(s, t))

and

u(s, t)z,Φ,ε = (mzT s,exp
γ

mz
z (t)(h(s, t)+Φ(mt)ε)

as before, and then the count of zeros at infinity is defined as

iΦ∞(u,z) = int(uz,uz,Φ,ε)

For an embedded end, it is a result from [Sie11] that this count is equal to the count

of zeros of

Fj(s, t) = h(s, t + j/mz)−h(s, t)− εΦ(mt)

over each j

iΦ∞(u,z) =∓
mz−1

∑
j=1

windΦ(h(s, ·+ j/mz)−h(s, ·))

These winding numbers are bounded above (respectively, below) by the extremal

winding, that of the largest negative (smallest positive) eigenvalue. In fact, a slightly

stronger result holds, namely, since each the approach of h(s, t) is controlled by the

eigenfunction f of Aγmz ,

iΦ∞(u,z)≥∓(mz−1)windΦ( f )

and if windΦ( f ) is not extremal, we have:

iΦ∞(u,z)≥∓(mz−1)αΦ
∓(γ

mz)+mz−1

If windΦ( f ) is extremal, and hence equal to αΦ
∓(γ

mz), a better bound can be ob-

tained by considering the covering multiplicity of f , which we denote σ̄∓(γ
mz) in

the formula for iΦ∞(u,z) and expressing the winding in terms of windΦ(g) where

f = gσ̄∓(γmz). The lower bound thus obtained is denoted by

Ω
Φ
±(γ

mz) =∓(mz−1)αΦ
∓(γ

mz)+ [σ̄∓(γ
mz)−1]
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Finally, we define δ∞(u). In [Sie11] it is proved to be a non-negative integer,

and a true homotopy invariant of asymptotically cylindrical maps, independent of

the trivialization Φ.

δ∞(u) =
1
2

[
∑

z,ζ∈Γ±,z 6=ζ

iΦ∞(u,z;u,ζ )−Ω
Φ
±(γ

mz
z ,γ

mζ

ζ
)+ ∑

z∈Γ±
iΦ∞(u,z)−Ω

Φ
±(γ

mz
z )

]

Returning to the adjunction formula, 2.1.17 implies that δtotal(u) is homotopy

invariant, and since δ∞(u) ≥ 0, the condition δtotal(u) = 0 then suffices to ensure

that all somewhere injective curves homotopic to u are embedded. The converse

is false in general: a curve can still be embedded with δtotal(u) > 0 due to hid-

den intersections, which can emerge from infinity under perturbations—but this can

only happen if u has at least one multiply covered asymptotic orbit or at least two

punctures of the same sign that approach covers of the same orbit, thus giving the

following useful criterion:

Lemma 2.1.13. If u is a somewhere injective curve whose asymptotic orbits are all

distinct and simple, then δ∞(u) = σ̄(u)−#Γ = 0.

The following is a minor improvement on a definition originating in [Wen10a,

Wen10b].

Definition 2.1.14. An asymptotically cylindrical J-holomorphic curve u : Σ̇→W

is called nicely embedded if it is somewhere injective and satisfies u ∗ u ≤ 0 and

δtotal(u) = 0.

It is clear from the above discussion that if u is nicely embedded, then so is any

other somewhere injective curve u′ in the same component of the moduli space, and

moreover, u and u′ must then be disjoint. Nicely embedded curves arise naturally

in the study of finite energy foliations, initiated in [HWZ03]. Their most important

properties for our purposes are the following.

Lemma 2.1.15. If u ∈ M (J,γ+,γ−) is nicely embedded then cN(u) ≤ 0 and

ind(u)≤ 2.
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Proof. The first inequality follows directly from the definition and the adjunction

formula (2.1.17), and this implies the second via (2.1.10).

Proposition 2.1.16. If u ∈M (J,γ+,γ−) is a nicely embedded curve with ind(u) ∈

{1,2}, then u is Fredholm regular.

Proof. Since u is immersed by assumption and, by Lemma 2.1.15, satisfies cN(u)≤

0, it satisfies the criterion ind(u) > cN(u) for automatic transversality given in

[Wen10b].

Proposition 2.1.17. Suppose M nice ⊂M1(J,γ+,γ−) is a (not necessarily con-

nected) component of the space of nicely embedded index 2 curves, equipped with

the extra data of a marked point, such that all curves in M nice represent the same

relative homology class. Then M nice is a smooth 4-manifold, and the evaluation

map

ev : M nice→W

is an embedding onto an open subset of W.

Proof. This is a mild generalization of a similar result proved in [HWZ99] for

planes with simply covered asymptotic orbits. We know every u ∈M nice is Fred-

holm regular by Prop. 2.1.16, and cN(u) = 0 due to (2.1.10) and Lemma 2.1.15. It

follows that M nice is smooth and has dimension ind(u)+2 = 4, and since u∗u≤ 0

(which becomes u ∗ u = 0 when cN(u) = 0), invariance of the intersection number

implies that no two curves in M nice can intersect, hence ev : M nice→W is injec-

tive. To see that it is also an immersion, observe that for a given curve u0 : Σ̇→W

and marked point ζ0 ∈ Σ̇ with the pair (u0,ζ0) representing an element of M nice, the

tangent space T(u0,ζ0)M
nice is naturally identified with the direct sum of Tζ0

Σ̇ and

the kernel of the linearized Cauchy-Riemann operator acting on the normal bundle

of u0. The condition cN(u0) = 0 then implies via [Wen10b, Equation (2.7)] that

sections in this kernel are nowhere zero, hence the derivative of the evaluation map

ev(u,ζ ) = u(ζ ) at (u0,ζ0) is injective.
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Proposition 2.1.18. Suppose W is a symplectization (R×M,d(erα)) and J ∈

J (α). Then for any nicely embedded J-holomorphic curve u = (uR,uM) : Σ̇→

R×M that is not a trivial cylinder, the map uM : Σ̇→M is embedded.

Proof. Since cN(u) ≤ 0 by Lemma 2.1.15, windπ(u) = 0 due to (2.1.11) and uM

is therefore immersed and transverse to the Reeb vector field. To show that uM

injective, observe that any double point uM(z1) = uM(z2) can be interpreted as an

intersection of u with one of its R-translations uc :=(uR+c,uM) for some c∈R, and

c must be nonzero since δtotal(u)= 0 implies that u itself is embedded. By homotopy

invariance of the intersection product, u ∗ u = u ∗ uc ≤ 0, so such an intersection is

possible only if u and uc are the same curve up to parametrization. But this would

imply that u is also equivalent to ukc for every k ∈N, so taking k→∞, we conclude

from the asymptotically cylindrical behaviour of u that its image lies in an arbitrarily

small neighbourhood of a collection of trivial cylinders. This can only happen if u

itself is a trivial cylinder, so we have a contradiction.

Lemma 2.1.19. Under the assumptions of Prop. 2.1.18, suppose u = (uR,uM) :

C→ R×M is a nicely embedded plane asymptotic to a simply covered orbit γ and

ind(u) ∈ {1,2}. Then if D ⊂M denotes the Seifert surface with interior uM(C), we

have

µCZ(γ;D) =

2 if ind(u) = 1,

3 if ind(u) = 2,

and in both cases sl(γ;D) =−1.

Proof. If Φ is the trivialization of γ∗ξ that extends over D , then the relative c1

term in the index formula vanishes and gives the stated relation between ind(u)

and µΦ
CZ(γ). By (2.1.2) and (2.1.3), this implies αΦ

−(γ) = 1. Moreover, cN(u) ≤ 0

by Lemma 2.1.15, thus (2.1.12) implies that u has zero asymptotic defect, so the

nonzero eigenfunction e1(u) appearing in the asymptotic formula (2.1.7) satisfies

windΦ(e1(u)) = α
Φ
−(γ) = 1.
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Now by (2.1.14),

sl(γ;D) =−windΦ(e1(u)) =−1.

2.2 Seed curves in the positive end
In this section we describe the seed curves that will generate the moduli spaces

required for proving Theorems 1.1.1, 1.1.2 and 1.1.3.

2.2.1 The standard sphere

The following construction is for the proofs of Theorems 1.1.1 and 1.1.3.

Regarding S2n−1 as the unit sphere in Cn, fix the standard contact form αstd

described in Example 2.1.2, along with the unique admissible complex structure

Jstd ∈J (αstd) on R× S2n−1 that restricts to ξstd ⊂ T S2n−1 ⊂ Cn as the standard

complex structure i. Recall that the diffeomorphism

(R×S2n−1,Jstd)→ (Cn \{0}, i) : (r,x) 7→ e2rx (2.2.1)

is then biholomorphic, so we can regard holomorphic curves in Cn \ {0} as Jstd-

holomorphic curves in the symplectization of (S2n−1,ξstd). With this understood,

define for each w ∈ Cn−1 \{0} the holomorphic plane

uw : (C, i)→ (Cn \{0}, i) : z 7→ (z,w).

As a curve in R×S2n−1, each uw is asymptotic at ∞ to the same closed Reeb orbit

in (S2n−1,αstd), namely

γ∞ : S1→ S2n−1 : t 7→ (e2πit ,0, . . . ,0).

This orbit belongs to a (2n−2)-dimensional Morse-Bott family of closed embedded

Reeb orbits with period π , which foliate S2n−1; indeed, they form the fibres of the

Hopf fibration S1 ↪→ S2n−1→ CPn−1.
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Lemma 2.2.1. For each w ∈ Cn−1 \{0}, ind(uw) = 2n−2.

Proof. Abbreviate W = R× S2n−1. The fibres of the contact bundle along γ∞ are

naturally identified with {0}⊕Cn−1 ⊂ T S2n−1 ⊂ Cn, so γ∗∞ξstd has a natural triv-

ialization, which we will denote by Φ, and it extends to a natural trivialization of

the normal bundle Nuw → C of uw. The latter implies cΦ
1 (Nuw) = 0, so writing

u∗wTW = TC⊕Nuw gives

cΦ
1 (u

∗
wTW ) = χ(C)+ cΦ

1 (Nuw) = 1.

To compute µΦ
CZ(γ∞ + ε), we observe that the asymptotic operator Aγ∞

splits with

respect to the obvious decomposition

γ
∗
∞ξstd = S1×Cn−1 = L2⊕ . . .⊕Ln

into trivial complex line bundles, so we can write Aγ∞
= A2⊕ . . .⊕ Am, and the

trivialization Φ is now also a direct sum Φ2⊕ . . .⊕Φm of trivializations of these

line bundles. The kernel of Aγ∞
is a complex (n−1)-dimensional space of sections

along γ∞ that point in the directions of other Hopf fibres, and its intersection with

each of the summands L j for j = 2, . . . ,n is a complex 1-dimensional space spanned

by a section of the form

η j : S1→ L j : t 7→ (0, . . . ,0,e2πit ,0, . . . ,0).

We thus have windΦ j(η j) = 1, and A j + ε therefore has a real 2-dimensional

eigenspace with the smallest positive eigenvalue ε and winding 1. By Proposi-

tion 2.1.3, the largest negative eigenvalue A j + ε must then have winding 0, so by

(2.1.2),

µ
Φ j
CZ(A j + ε) = 1,
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and (2.1.4) then implies

µ
Φ
CZ(γ∞ + ε) =

n

∑
j=2

µ
Φ j
CZ(A j + ε) = n−1.

Finally, (2.1.9) gives

ind(uw) = (n−3)χ(C)+2cΦ
1 (u

∗
wTW )+µ

Φ
CZ(γ∞ + ε)

= (n−3)+2+(n−1) = 2n−2.

Lemma 2.2.2. The Jstd-holomorphic planes uw are all Fredholm regular.

Proof. Note that the standard genericity arguments do not apply here since Jstd is

very far from being generic. But in this case we can check regularity explicitly.

Recall that by [Wen10b, Theorem 3], it suffices to check that the linearized normal

operator

DN
uw

: W 1,p,δ (Nuw)→ Lp,δ (HomC(TC,Nuw))

is surjective, where ind(DN
uw
) = ind(uw). Here p ∈ (2,∞), and δ > 0 is a small

exponential weight, meaning that if sections η : C→ Nuw in the domain of DN
uw

are

written near ∞ in cylindrical coordinates (s, t) ∈ [0,∞)× S1 corresponding to z =

e2π(s+it) ∈ C, then the section eδ sη(s, t) must be of class W 1,p on [0,∞)×S1. This

definition also assumes a translation-invariant metric on R× S2n−1 for computing

Lp-norms of sections along uw. Note that since p > 2, sections of class W 1,p are

continuous, and we can therefore assume

η(s, t)→ 0 as s→ ∞ (2.2.2)

for η ∈W 1,p,δ (Nuw).

From a different perspective, however, DN
uw

is an extremely simple operator:

sections η of the normal bundle to uw : C→ Cn \{0} can be identified canonically

with functions η̃ : C→ Cn−1 using the obvious trivialization of Nuw , and since DN
uw

is the linearization of the standard (and thus already linear) Cauchy-Riemann oper-
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ator ∂̄ , η ∈ kerDN
uw

implies that η̃ is a Cn−1-valued holomorphic function. Under

the transformation (2.2.1), the condition (2.2.2) then implies

|η̃(z)|
|z|
→ 0 as z→ ∞,

so the growth of η̃ at infinity is strictly smaller than that of an affine function.

Picard’s Theorem then implies that the singularity of η̃ at ∞ is removable, so η̃ is

constant, proving

dimC kerDN
uw

= n−1.

The real dimension of the kernel of DN
uw

is thus equal to its index according to

Lemma 2.2.1, so DN
uw

has trivial cokernel.

Remark 2.2.3. In the case n = 2, the automatic transversality results of [Wen10b]

also apply and prove that the curves uw are regular.

Lemma 2.2.4. Up to parametrization, every asymptotically cylindrical Jstd-

holomorphic curve in R× S2n−1 with a single positive puncture asymptotic to

γ∞ and arbitrary negative punctures is either the trivial cylinder over γ∞ or one of

the planes uw.

Proof. Since no Reeb orbit in (S3,αstd) has period smaller than that of γ∞, any curve

u : Σ̇→ R×S2n−1 of the specified type with a nonempty set of negative punctures

would satisfy
∫

Σ̇
u∗αstd = 0 by Stokes’ theorem, and since the positive asymptotic

orbit is simple, u in this case could only be a trivial cylinder. If u has no negative

punctures, then it defines via (2.2.1) a proper holomorphic map u = (u1, . . . ,un) :

Σ̇→ Cn such that u2, . . . ,un : Σ̇→ C are all bounded holomorphic functions that

decay to 0 at the unique puncture, so these all extend to holomorphic functions on

the compact domain Σ and are therefore constant. The remaining function u1 : Σ̇→

C has a pole of order 1 at its unique puncture, thus it extends to a nonconstant

holomorphic map Σ→ S2 of degree 1, implying that Σ = S2 and, after a suitable

reparametrization, Σ̇ = C with u1 : C→ C an affine map.
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Lemma 2.2.5. In the case dimM = 3, the planes uw satisfy cN(uw) = 0 and are

nicely embedded.

Proof. We saw in the proof of Lemma 2.2.1 that µΦ
CZ(γ∞ + ε) is odd and ind(uw) =

2, so (2.1.10) implies cN(uw) = 0. Since uw is embedded and has only a single

simple asymptotic orbit, δtotal(uw) = σ̄(uw)− 1 = 0 by Lemma 2.1.13. Thus by

Siefring’s adjunction formula,

uw ∗uw = 2δtotal(uw)+ cN(uw)+ [σ̄(uw)−1] = 0.

2.2.2 Overtwisted contact 3-manifolds

If (M,ξ ) is overtwisted, then Eliashberg’s appendix to [Yau06] uses the following

geometric picture to prove vanishing of contact homology. There is a (nondegener-

ate) contact form α+ and an almost complex structure J+ ∈J (α+) admitting an

embedded Fredholm regular J+-holomorphic plane

u∞ = (u∞
R,u

∞
M) : C→ R×M

with index 1, asymptotic to a simple Reeb orbit

γ∞ : S1→M

with even Conley-Zehnder index, such that u∞ is (up to parametrization and R-

translation) the only nontrivial J+-holomorphic curve in R×M with one positive

puncture asymptotic to γ∞ (and arbitrary negative punctures).

Proof. The construction in [Yau06] begins by considering a typical torus model

for the overtwisted contact structure given by a Lutz twist. Under the (θ ,ρ,φ)

coordinate system in the solid torus where θ ∈ R/Z, φ ∈ S1, define a contact form

as

α = f (ρ)dθ +g(ρ)dφ
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where

f (ρ) = cos(nρ) g(ρ) =
1
n

sin(nρ)

away from the origin and such that

D(ρ) = f (ρ)g′(ρ)− f ′(ρ)g(ρ)> 0

and

f (0)g′′(0)> 0.

See [Wen05], for details of the construction. A general orbit of the Reeb vector field

is given by

γ(t) =
(

θ0 +
g′(r)
D(r)

t,r,φ0−
f ′(r)
D(r)

t
)

The r = π/2n torus then admits fully horizontal orbits, which come in a 2-

dimensional Morse-Bott family. Increasing n, we can make the action of these or-

bits as small as necessary. As in [Wen10c] and [Wen13a] we define the constrained

Conley-Zehnder index for this orbit µCZ(γ ± ε) computed in the trivialization in-

duced by the coordinates (call it Φ). This is equal to the Conley-Zehnder index of

a non-degenerate orbit, under a small perturbation. Switching the sign of ε has the

effect of changing the value above by dimker(Aγ) = 1 so that we may choose values

for which the asymptotic winding numbers of the extremal eigenvalues are equal,

and equal to the winding of an eigenfunction in ker(Aγ). Now ker(Aγ) is spanned

by sections η which point in the direction of the Morse-Bott fibres on the torus,

hence their winding with respect to the trivialization Φ of γ∗ξ is 0. From our choice

of ε , we have

µ
Φ
CZ(γ + ε) = 2windΦ(η) = 0

.

Also following [Wen10c] or [Wen05], by making an a priori assumption on the

formulas of J and u, one can define an almost complex structure J on R×M and

an embedded J-holomorphic plane u asymptotic to γ . The trivialization Φ extends

to a trivialization of the normal bundle over Nu away from the boundary, and thus
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c1(Nu) = 0. This shows

ind(u) = χ(D)+ c1(Nu)+µCZ(γ + ε) = 1.

Remark 2.2.6. The original claim of Eliashberg is that a plane can be found asymp-

totic to a non-degenerate orbit, a fact which we need not use here, as in section

2.2.1. A Morse-Bott asymptotic orbit suffices for our claims in later sections. At

the end of our analysis, a perturbation can be performed to make the contact form

non-degenerate, with two Reeb orbits in our torus model, one with odd, one with

even Conley-Zehnder index, the even one supporting an embedded plane of index

1. Further in this section we adopt the notation of u∞, γ∞, for a one of the planes

above together with its asymptotic orbit and α+ and J+, for the contact form and

associated almost complex structure.

Now since u∞ is asymptotic to a simple orbit, Lemma 2.1.13 implies δ∞(u∞) =

σ̄(u∞)−1 = 0, and since it is also embedded, δtotal(u∞) = 0. Moreover, by (2.1.10),

cN(u∞) = 0, u∞ is embedded, and satisfies 1 = ind(()u∞) > cN(u∞) = 0, and thus

satisfies automatic transversality. The adjunction formula (2.1.17) now gives

u∞ ∗u∞ = 2δtotal(u∞)+ cN(u∞)+ [σ̄(u∞)−1] = 0,

implying that u∞ is nicely embedded.

It remains to justify the uniqueness statement, namely that any curve with a

single positive orbit asymptotic to γ∞ and arbitrary negative orbits is either u∞ or

R× γ . Since we work in dimension 4, we may appeal to intersection theory.

This begins with a standard argument, which we learned from Chris Wendl,

and in its current form states: if u is a plane in [0,∞)×M with a positive puncture

at a simple orbit γ and v1 and v2 are any two other curves, with a single positive

puncture at the same orbit, and arbitrary negative punctures, then u ∗ v1 = u ∗ v2.

This is due to the fact that the intersection product is homotopy invariant through

homotopies of asymptotically cylindrical maps, and hence, since u has no negative

ends, one can use the R-translation to generate such a homotopy for v1 that pushes
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it down such that its intersection with [0,∞)×M looks like R× γ . Then

u∗ v1 = u∗ (R× γ) = u∗ v2.

In our case, since u∞∗u∞ = 0, it follows that u∞∗v = 0 for any other curve as above.

Notice, first, that if v has any negative ends, it must be a trivial cylinder, since γ∞

has minimal period and by Stokes’ theorem,
∫

Σ(v) v∗α+ = 0. So v must be a plane

itself. Let λ , e1(u∞) be the eigenvalue - eigenfunction pair, and since u∞ is nicely

embedded and γ∞ is even, we have that

windΦ(e1(u∞)) = α
Φ
−(γ∞)

and

dimEλ = 1

Now, if e1(v) 6∈ Eλ , we must have windΦ(e1(v))< αΦ
−(γ∞) and there must be geo-

metric intersections between the projections of v and u∞ induce, via R-translation

v ∗ u∞ > 0. Now, if e1(u∞) = ke1(v) we may have k either positive or negative.

The family of planes homotopic to u∞ foliate a solid torus in M and and hence, if

k < 0, e1(v) points inside the torus {ρ = 2π

n } (otherwise, the projection of v and

that of a neighbouring plane in the foliation, call it w∞, would intersect, giving

0 < v∗w∞ = v∗u∞). If the projection of v never leaves {ρ ≤ 2π

n }, that would make

0= [γ∞]∈H1({ρ ≤ 2π

n }). Otherwise the projection of the plane v must intersect one

of the members of the foliation, again, call it w∞ as before, so such a plane cannot

exist. However, if k > 0, Theorem 2.5 in [Sie11], tackles this exact case and assures

us that either v∗u∞ > 0 or v = u∞ up to reparametrization and R-translation.



Chapter 3

Main results

3.1 A local adjunction formula for breaking holo-

morphic annuli

The aim of this section is to prove Theorem 1.1.16 and derive Corollary 1.1.17.

We start by recalling some of the definitions that come up in the statement of the

theorem. Throughout this section, we work with a 3-dimensional contact manifold

(M,ξM) and a sequence of contact forms αk→ α∞. Correspondingly, a sequence of

admissible almost complex structures

Jk ∈J (αk)

and for αi a nondegenerate periodic orbit γm of multiplicity m.

The setup is as follows. Let un be a sequence of somewhere injective Jn-

holomorphic compact cylinders

un : ([−Rn,R′n]×S1, i)→ (R×M,Jn)

and assume that in the limit they tend to a building consisting of two open half-

cylinders,

v± : ([±R±,∓∞)×S1, i)→ (R×M,J).
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un→

v+

v−


Suppose the common breaking orbit is denoted by γk where γ is simply covered,

and that γk is nondegenerate. Suppose furthermore that the limit half-cylinders

are simply covered. Without loss of generality, we will assume that they are both

embedded as this can always be arranged in this case, by restricting to a small

enough neighbourhood of the puncture. Then pick a trivialization φ of γ∗ξM. We

denote the induced trivialization in γk by φ as well.

Recall, that by the definition of convergence to a building in [BEH+03], there

are sequences of diffeomorphisms of the domains

Φn : [−Rn,R′n]×S1→ [−Rn,R′n]×S1

such that

un(−Rn, t)◦Φn→ v+(−R+, t)

uniformly. One may then choose simultaneous perturbations of these loops which

are transverse to the contact structure, denoted by ûn(−Rn, t) and v̂+(−R+, t). Then

one may choose trivializations of the contact structure along the perturbed loops

which are homotopic. We choose φ as a representative of such a homotopy class

of trivializations both for the sequence of curves and for the limit, both for the

upper half and the lower. With respect to this trivialization, one may compute self-

intersection numbers as follows.

Definition 3.1.1. The relative self-intersection number of un denoted by un ∗φ un is

the count of transverse intersections between un and a generic perturbation pushed

along in the direction of φ at the boundary. Thus it depends only on the homotopy

class of φ .

Definition 3.1.2. The relative self-intersection number of v± denoted by v± ∗φ v± is

the count of transverse intersections between v± and a generic perturbation pushed

in the direction of φ at the boundary and at the asymptotic limit. Thus it depends
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only on the homotopy class of φ .

Remark 3.1.3. Without loss of generality, one can assume that uk and v± are suffi-

ciently close to a trivial cylinder at their boundaries and asymptotic limits such that

the trivialization φ serves as a trivialization of the normal bundles of these curves

in neighbourhoods of the boundary and the asymptotic limits.

Given a complex vector bundle E → Σ̇ over a punctured surface (with bound-

ary), and a choice of trivialization φ over the boundary and punctures one can define

a relative first Chern number

cφ

1 (E)

as the sum of the orders of the zeros of a generic section s : Σ̇→ E which is a non-

zero constant at the boundaries with respect to φ . This number is well defined, does

not depend on s but only on the homotopy class of φ .

One observes a certain similarity in these definitions to standard ones in the

closed case. We do not recall the proof of the adjunction formula in the closed case

here, see for example [Wend]. For a surface with boundary, such as un, we have the

following version of the adjunction formula:

un ∗φ un = 2δ (un)+ cφ

1 (u
∗
nT (R×M)). (3.1.1)

Proof. Recall the definition of δ (un) as a sum of intersection indices across each

double point, plus a sum of orders of each critical point. If un is immersed, there are

no critical points and there is a well-defined normal bundle Nun . A push-off uε
n of

un along a generic section η of its normal bundle which is constant with respect to

φ at the boundaries, produces transverse intersections with un for each zero of the

section η , and two intersections corresponding to each double point, each with the

appropriate intersection index. Thus

un ∗φ un = un ∗uε
n = 2δ (un)+ cφ

1 (Nun) = 2δ (un)+ cφ

1 (u
∗
nT (R×M)), (3.1.2)

since χ(un) = 0 Now, if un is not immersed, there is an immersed perturbation ũn
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in small neighbourhoods of each critical point, which has extra double points in

each of these neighbourhoods with sum of intersection indices equal to δ (u) at each

critical point. Now ũn satisfies the previous formula, and as cφ

1 (u
∗
nT (R×M)) is

invariant under homotopies of maps which are constant on a neighbourhood of the

boundary, so does un.

Remark 3.1.4. Note that, as for the closed case, one does not require un to be im-

mersed for this formula to hold.

Now if k = 1, γ is a simple cover, and the exact same formula holds for the self

intersection numbers of v±. However, if k > 1, pushing off in the direction of φ can

produce extra intersections in a neighbourhood of the limit. This phenomenon has

been studied in [Hut02, §3.2] and [Sie11]. In the latter text it is expressed as a sum

of relative winding numbers of the eigenvalues of the asymptotic operator Aγk which

control the relative approach of the k−1 branches of the asymptotic representative.

This gives rise to an adjunction formula for asymptotic ends of the form:

v± ∗φ v± = 2δ (v±)+ cφ

1 (v
∗
±T (R×M))+ iφ∞(v±). (3.1.3)

Of course, since we are assuming the limits are embedded, δ (v±) = 0.

As a consequence of the convergence of

un→

v+

v−


we have:

Lemma 3.1.5. The following equations hold;

lim
n→∞

un ∗φ un = v+ ∗φ v++ v− ∗φ v− (3.1.4)

lim
n→∞

cφ

1 (u
∗
nT (R×M)) = cφ

1 (v
∗
+T (R×M))+ cφ

1 (v
∗
−T (R×M)) (3.1.5)

Proof. Let v+� v− be the continuous concatenation along the asymptotic orbits

determined by whatever choice of decoration is specified in the definition of cover-
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gence of uk. Then as continuous maps into [0,1]×M there exists a diffeomorphism

ψn : [−Rn,Rn]→ [−Rn,Rn] such that

un ◦ψn→ v+� v−

uniformly. This already implies the second equation. To see that the first holds

notice that if vφ

± represent generic perturbations of v± from the definition of the

relative intersection numbers, that one can form simultaneous concatenations vφ

+�

vφ

− and v+� v−. Then

int(v+� v−;vφ

+� vφ

−) = v+ ∗φ v++ v− ∗φ v−

On the other hand the intersection number on the left hand side is, again by the

definition of convergence, equal to un ∗φ un for large enough n.

From Lemma 3.1.5 we can easily read off the proof of Theorem 1.1.16.

Theorem 3.1.6 (Local adjunction formula). For all sufficiently large k,

2δ (uk) = 2[δ∞(v+)+δ∞(v−)]+
[
σ̄+(γ

k)−1
]
+
[
σ̄−(γ

k)−1
]
+(k−1) p(γk).

Proof. As in §2.1.4.5

iφ∞(v±) = 2δ∞(v±)+Ω
φ

±(γ
k) =

= 2δ∞(v±)+(σ̄±(γ
k)−1)± (k−1)αφ

±(γ
k)
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Hence,

2δ (uk) = iφ∞(v+)+ iφ∞(v−) =

= 2δ∞(v+)+(σ̄+(γ
k)−1)+(k−1)αφ

+(γ
k)+

+2δ∞(v−)+(σ̄−(γ
k)−1)− (k−1)αφ

−(γ
k) =

= 2[δ∞(v+)+δ∞(v−)]+ [σ̄+(γ
k)−1]+ [σ̄−(γ

k)−1]+ (k−1)p(γk).

Lemma 3.1.7. Let un and v± be as above and suppose that for n large enough,

the un are restrictions of a sequence of nicely embedded curves to a subset of their

domains. Then

iφ∞(v+)+ iφ∞(v−) = 0

Proof. This is self evident from the proof of 1.1.16, since such annuli are embedded

and produce no self intersections under perturbations. Hence δ (un) = 0, and the

result follows.

We can now prove Corollary 1.1.17.

Proof. The adjunction formula implies that if δ (uk) = 0 all the nonnegative terms

on the right hand side must be 0. In particular (k− 1)p(γk) = 0 so the orbit is

either even or simply covered and [σ̄+(γ
k)−1]+ [σ̄−(γ

k)−1] = 0 so their spectral

covering numbers are equal. Let λ± be the smallest positive and the largest negative

eigenvalues of the asymptotic operator Aγk respectively. Then since they each have

the same winding, their corresponding eigenspaces must be 1-dimensional. Now the

action of the cyclic group of order k by j ·e1(t)→ e1(t + j/k) fixes the eigenspaces

so it must be true that e1(t + j/k) = Ke1(t), for a real constant K. K 6= 1 unless

k = 1 since cov(e1) = 1. However Kk = 1, and since K is real, we are left with

K = −1. Therefore there can be only one j that gives a nontrivial action on e1(t)

and we have either k = 2 or k = 1, so the orbit is either even and simply covered,

or double covers of an odd hyperbolic orbit. It cannot be a double cover of an even

simple orbit since, in this case cov(e1(v+))≥ 2.
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3.2 Compactness
The current section is devoted to the study of what particular degeneracies may

appear as limits of our family of seed curves. We use numerical constraints to reduce

the complexity of the theoretical set of possible degeneracies defined in [BEH+03].

We work with a Liouville cobordism (W,dλ ) with convex boundary (M+,ξ+) and

concave boundary, (M−,ξ−), where ξ± = kerα±, such that α+ is Morse - Bott and

α− is nondegenerate. We choose an almost complex structure J that is compatible

with this data and generic both on the level of the cobordism and at the level of the

cylindrical ends. Suppose that α+ admits a closed simple orbit γ∞.

Theorem 3.2.1. Suppose uk ∈M (J,γ∞, /0) is a sequence of nicely embedded planes

converging in the sense of [BEH+03] to a holomorphic building u∞ ∈M (J,γ∞, /0)

with no nontrivial upper levels but at least one nontrivial lower level. Then all

components of the levels of u∞ other than trivial cylinders are nicely embedded, all

breaking orbits are either simply covered or are doubly covered bad orbits, and u∞

fits one of the following descriptions (see Figure 3.1):

• Type (I): (v0|v−1 ), where v0 is an index 0 cylinder, v−1 is an index 1 plane, and

the breaking orbit has even parity.

• Type (II): (v0|v−1 ), where v0 is an index 0 cylinder, v−1 is an index 2 plane, and

the breaking orbit has odd parity.

• Type (III): (v0|v−1 ), where v0 is an index 1 cylinder, v−1 is an index 1 plane,

and the breaking orbit has even parity.

• Type (IV): (v0|v−1 ), where v0 has index 0 and two negative punctures, v−1 is

a disjoint union of two index 1 planes, and both breaking orbits have even

parity.

• Type (V): (v0|v−1 |v
−
2 ), where v0 has index 0 and two negative punctures, v−1

is the disjoint union of a trivial cylinder with an index 1 plane, and v−2 is an

additional index 1 plane, with all breaking orbits having even parity.
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• Type (VI): (v0|v−1 |v
−
2 ), where v0 is an index 0 cylinder, v−1 is an index 1 cylin-

der and v−2 is an index 1 plane, the breaking orbit between v0 and v−1 has odd

parity, and the breaking orbit between v−1 and v−2 has even parity.

Towards this aim, we recall some of the properties of pseudoholomorphic

buildings in M (J,γ∞, /0). By 2.1.5, it must have the structure of a tree, and since γ∞

is simply covered, so must be v0. Observe that if J is generic, Equation 2.1.10 and

Lemma 2.1.15 imply that the curves uk in our sequence can be assumed to satisfy

either ind(uk) ∈ {1,2} and cN(uk) = 0 or ind(uk) = 0 and cN(uk) =−1. The index

1 and 2 cases will be treated separately, in particular, curves of Type (I) only appear

in the limit of a sequence of curves of index 1. We denote the limit of a sequence

uk by

u∞ = (v0|v−1 | . . . |v
−
N )

and allow for each v−i to be a union of disjoint curves

v−i,1, . . . ,v
−
i,mi

each of which is a map from the punctured sphere with precisely one positive punc-

ture. Recall Lemma 2.1.10.

One may now consider the sum of cN(v−i, j) with the parities of its negative

orbits and denote it by ĉN . This gives

0≥ cN(uk) = ĉN(v0)+
N

∑
j=1

m j

∑
i=1

ĉN(v−j,i) (3.2.1)

Lemma 3.2.2. All the components v−j,i in lower levels have cN(v−j,i) = 0, and one of

the following holds:

1. All breaking orbits in u∞ have even parity and the main level v0 satisfies

cN(v0) = 0, or

2. The main level v0 is a cylinder with cN(v0) =−1 whose negative asymptotic

orbit has odd parity, and all other breaking orbits have even parity.
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Figure 3.1: The six types of holomorphic buildings in Theorem 3.2.1.

Proof. Since γ∞ is simply covered, so must be v0 and, for generic J it must be

Fredholm regular, thus ind(v0)≥ 0. Equality 2.1.10 now shows that

cN(v0)≥−1

with equality if and only if all its negative punctures are asymptotic to odd orbits.

Thus ĉN(v0)≥ 0.

The curves v−i, j in R×M who are not covers of trivial cylinders satisfy

cN(v−i, j) ≥ 0 by 2.1.12 hence also ĉN(v−i, j). For covers of trivial cylinders, Propo-

sition 2.1.8 applies and guarantees that ind(v−i, j)≥ 0 with equality only if the cover

is unbranched or the orbit is elliptic. Thus cN(v−i, j)≥−1 with equality only if all of

it punctures are odd, and as such, ĉN(v−i, j) ≥ 0 with with equality only if v−i, j has at

most one negative puncture. By Riemann-Hurewicz a cylinder can only be a cover

of a trivial cylinder if it is unbranched, hence a trivial cylinder itself.

Now equation 3.2.1 implies all the components satisfy ĉN = 0. Thus all com-

ponents that are not covers of trivial cylinders satisfy cN = 0 and have only even
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orbits. The component in the main level either has only even orbits or is a cylinder

of ind(v0) = 0 with a single negative orbit. All other curves are trivial cylinders,

and it remains to prove they have only even orbits. If not, take one such cylinder

that is maximal with respect to the SFT ordering of layers, say it lies in layer j.

Notice that j ≥ 2 since level 1 cannot consist of a single odd cylinder, by stability.

Then, all curves in higher levels are not trivial cylinders with odd orbits. Thus, by

the previous remark all of the negative orbits of layer j− 1 are even. Hence so is

the positive orbit of our trivial cylinder, and thus, such cylinders cannot exist and

all curves in R×M have only even negative orbits, which completes the proof.

At this stage we are ready to justify the classification of buildings into the list

presented in Theorem 3.2.1.

Notice that among the conclusions of the previous lemma is that there are no

components of the building which are genuine branched covers of trivial cylinders.

We shall appeal to this fact repeatedly in what follows.

Proof of Theorem 3.2.1. Consider the first case in which there are only even break-

ing orbits. Now curves v−i, j that are not covers of trivial cylinders, are either some-

where injective themselves or a multiple cover of some somewhere injective curve

w−i, j,

v−i, j = w−i, j ◦θ
−
i, j,

where θ
−
i, j is a covering map of Riemann surfaces of multiplicity k−i, j. Due to gener-

icity, ind(w−i, j)≥ 1 and thus, by Proposition 2.1.9 ind(v−i, j)≥ k−i, j. We have that

∑
i, j

k−i, j ≤ ind(u∞),

and since the index of the seed curves is either 2 or 1, this restricts the possible

types of buildings that can occur. In the index 1 case, it immediately implies that

ind(v0) = 0 since the negative levels contain at least one plane, which must have at

least index 1. In particular, this plane must still exist, and it can only be in the first

level in R×M due to stability, hence we recover buildings of Type (I).

In the index 2 case, more cases can arise: we know there is at least one capping



3.2. Compactness 73

plane in R×M and this means that v0 can either have index 0 or 1. If it has index

1, then there is at most one plane in R×M, it is simply covered and all other curves

in R×M have index 0. Now v−1 cannot be a trivial cylinder or a cover of one, so it

must have index at least 1, and hence it is the aforementioned plane, and we recover

buildings of Type (III).

If ind(v0) = 0, equation 2.1.10 implies that it must have precisely 2 even punc-

tures, and these occur by necessity at the negative end, call them z1 and z2. There-

fore in R×M there are two trees, each rooted at one of the orbits γz1 or γz2 , and

each of these trees must contain at least one capping plane of index at least 1, and

therefore in this case, at most 1. The same reasoning as in the previous paragraph

proves one of these trees is merely a single plane of index 1, whereas, the second

one may be either a single plane or a trivial cylinder (stability still applies for level

1, due to the plane at the other orbit), followed by a plane of index 1 in the next

level. This recovers buildings of Types (IV) and (V).

What remains to be seen in this case is that all components are nicely embedded

and to verify the claim on the breaking orbits. We can use Proposition 2.1.12 to

write

0≥ uk ∗uk ≥ v0 ∗ v0 +
N

∑
j=1

m j

∑
i,`=1

v−j,i ∗ v−j,`.

Positivity of intersections together with Prop. 2.1.11 implies that all terms on

the right hand side are nonnegative, hence all of them vanish, including each

v−j,i∗v−j,i. Since cN(v−j,i)= cN(v0)= 0, the adjunction formula then gives δtotal(v−j,i)=

δtotal(v0) = 0, hence all components are nicely embedded. The statement on the par-

ities and multiplicities of the orbits follows now from Corollary 1.1.17.

Now for the case where v0 has a single negative orbit γ1, it has ind(v0) = 0,

cN(v0) = −1 and γ1 is odd. Thus, v−1 is a connected curve, and, as before, not a

trivial cylinder, or a branched cover of one.

For curves in R×M we have v−j,i ∗ v−j,i ≥ 0 as before, since regardless of the

existence of an odd orbit, no trivial cylinders are allowed to tend to this orbit.
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For v0 the adjunction formula gives

v0 ∗ v0 ≥−1

and Proposition 2.1.12 can be applied to give:

0≥ uk ∗uk ≥−1+m(γ1),

which implies that m(γ1) = 1 and thus v−1 is a somewhere injective curve. Its index

is either 1 or 2. If its index is 2, there can be no further curves in lower levels and

v−1 is thus a capping plane. This recovers buildings of Type (II). If ind(v−1 ) = 1, it

must have a single even negative orbit, by Lemma 3.2.2 and equation 2.1.10. Level

2 thus cannot contain a trivial cylinder, and we must have at least one capping plane,

which therefore resides here and we recover buildings of Type (VI). To see they are

nicely embedded, we again apply Proposition 2.1.12 to deduce all components are

nicely embedded. v0 has negative self intersection number, but also cN(v0) = −1,

so the adjunction formula again gives δtotal(v0) = 0. Corollary 1.1.17 applies now

as before to determine the multiplicities of each orbit and this concludes the proof

of Theorem 3.2.1.

3.3 Proof of Main Theorems
In the following, whenever we establish new notation, it is implicit that its definition

expires when the context of the proof changes. We begin with the final details of

the proof of Theorem 1.1.1, where we make use of Theorem 3.2.1 in the context of

a Liouville cobordism from M to (S3,λstd).

Proof of Theorem 1.1.1. We have seen in the previous chapter what the quantitative

structure of the boundary ∂M =M (J,γ∞, /0)\M (J,γ∞, /0) looks like, by enumerat-

ing the types of buildings that arise, and classifying them according to the topology

of each level, their Fredholm indices and the Conley-Zehnder indices of the break-

ing orbits. Our aim, as stated previously is to find a simple Reeb orbit at the positive
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limit of a nicely embedded plane in the symplectization of M. To this end we ask

ourselves what the set U = {p ∈W | ∃u ∈M (J,γ∞, /0), p ∈ Im(u)} actually con-

tains. Since the moduli space of smooth curves is smooth, this set is certainly open,

every point in this set having a neighbourhood which is foliated by the simple planes

in M (J,γ∞, /0).

We will denote by Mu(J,γ∞, /0) the connected component of M (J,γ∞, /0) that

contains the curve u. We will also need to allow marked points on our curves, and

the moduli space of curves with one marked point will be denoted by M 1(J,γ∞, /0).

It has virtual dimension

2m+virdim(M (J,γ∞, /0)) = 4.

A certain subset of this space consists of the nicely embedded curves in the same

homotopy class as the seed curves uw, and it is a union of connected components of

the larger space. We denote it by M 1
nice(J,γ∞, /0) and the evaluation map

ev : M 1
nice(J,γ∞, /0)→W

is then an embedding onto an open subset of W .

The SFT compactification of M 1
nice(J,γ∞, /0) will be denoted by M

1
nice(J,γ∞, /0),

and, except for buildings fully contained in the positive end (that is to say with no

component in the main level), the components of its boundary have been classified

in Theorem 3.2.1. The seed curves can be identified with buildings of type (uw| /0).

The seed curves have index 2, and thus we need to account for degenerations of

types (II) to (VI). Note that the breaking orbit for curves of Type (II) is odd and thus

simple, with Conley-Zehnder index 3, whereas if the breaking orbit in a building of

Type (III) is simple, it has Conley-Zehnder index 2.

In what follows we assume that in the boundary of M
1
nice(J,γ∞, /0), these kinds

of buildings do not occur. In particular, if a building is of Type (III), its breaking

orbit is a double cover of an odd hyperbolic orbit.

Under these assumptions it is clear that the remaining buildings of Type (III)
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occur generically in the boundary of M
1
nice(J,γ∞, /0).

Lemma 3.3.1. Any connected component of M
1
nice(J,γ∞, /0) contains at least one

boundary component consisting of buildings of Type (III).

Proof. In the introduction, when we proved that closed orbits do in fact exist in M,

we did so by obtaining a plane in R×M. In the absence of buildings of Types (III)

and (II) it must mean that such a plane is a component in a level of a building of

Types (IV), (V) or (VI). By Theorem 3.2.1 all such buildings are nicely embedded

and satisfy a gluing theorem such as Theorem 2.1.6. But as all these buildings

inhabit codimension 2 strata of the boundary, gluing across any 2 levels produces a

codimension 1 building which is by necessity one of Types (II) or (III).

Proposition 3.3.2. U is not dense in any neighbourhood of −∞ in the negative end

of W.

Proof. We proceed by contradiction. Under the assumption that Type (II) buildings

never occur, all other types share the following property: the levels of such curves

which lie in the negative end are rigid, when factoring out the R action. This is

to say that their images lie in (at least) a codimension 1 subset of the negative

end. Now there are finitely many of these families of buildings due to the SFT

compactness theorem, and thus, overall there exists an ε-neighbourhood of each of

these curves, such that their union represents a small open subset of (−∞,0]×M,

which we denote by N(ε).

Now pick a sequence of points xn ∈ (−∞,0]×M \N(ε) such that

πRxn→−∞,

where πR is the projection onto the R coordinate. If U were dense, one would be

able to pick xk and a curve uk ∈M nice
1 (J,γ∞, /0) such that ev(uk) = xk. However,

such a sequence of curves must have a subsequence tending to a building of Types

(II) to (V). But this is impossible by our construction of xk since it would not exhibit
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the appropriate convergence in the lower levels.

For the rest of the chapter, we establish some notation. Curves of Type (III)

with a doubly covered odd breaking orbit lie in a subset of the SFT compactification

whose maps lie in the space

⋃
γ bad

Mnice(J,γ∞,γ
2)×Mnice(J,γ2, /0),

with the marked versions included in the union of the two products. We will call the

union of the first components which lie in the main level, collectively, M(III)(W )

and those in the negative level by M(III)(R×M).

Now, each connected component C of M 1
nice(J,γ∞, /0) is mapped, via the eval-

uation map to an embedded open submanifold, ev(C). The closure of each of these

sets is populated generically by points in

ev(M 1
(III)(W ))

since these have index 3. By Theorem 3.2.1, this set is itself a collection of embed-

ded open 3-manifolds in W . This immediately implies:

Lemma 3.3.3. The set W \ ev(M(III)(W )) is a union of open subsets each of which

is either densely foliated by smooth curves in M 1
nice(J,γ∞, /0) or contains no such

curves at all.

Proof.

The rest of this chapter is devoted to proving that all such subsets contain at

least one smooth curve, contradicting Proposition 3.3.2.

Let X be a connected component of M
1
nice(J,γ∞, /0)\M 1

nice(J,γ∞, /0) consisting

of buildings of Type III breaking along a bad orbit and let

ΓX = (ev×ev)(X
⋂ ⋃

γ bad

Mnice(J,γ∞,γ
2)×Mnice(J,γ2, /0)).

Suppose without loss of generality that W \ ΓX is disconnected, otherwise,
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move to a new component X ′. ΓX has the structure of a singular complex, which is

smooth apart from at the breaking orbits. We shall show that, despite the fact that

ΓX disconnects, foliations from one connected component extent to the other via

the different gluings along the hyperbolic orbits.

Let p ∈ ΓX be a point in the image of the broken curve v = (v0|v1). Itself, it

belongs to an equivalence class of buildings, which we denote by ν = [S, j,v,D,Φ]

where, as before Φ is a set of decorations, orientation preserving diffeomorphisms

from the circle compactifications at the positive puncture of one component to the

negative puncture of another, if they tend to the same orbit. Now suppose without

loss of generality φ = φ1 : γ → γ is a decoration map on a double covered orbit

γ . Then define a second decoration map φ̃(t) = φ(t + 1
2). Let Φ̃ represent the

collection of decoration maps in Φ where we have changed φ to φ̃ . Let the two

equivalence classes of buildings thus obtained be denoted by ν and ν̃ . Also, we

denote by Γ3
X the 3 dimensional stratum of ΓX . Since ΓX disconnects W , Γ3

X admits

a collar neighbourhood, N (Γ3
X).

Remark 3.3.4. The above statement is of course not correct in light of the classical

Tubular Neighbourhood Theorem.

Lemma 3.3.5. Under the conditions above, a certain collar neighbourhood N (Γ3
X)

admits a dense foliation by J-holomorphic curves in M (J,γ∞, /0).

Proof. We are in the case of the family of buildings ν represented by broken curves

(v0|v1), where v0 is a cylindrical component in W of Fredholm index 1, and v1 is

a plane in R×M of Fredholm index 1. It is important to understand how gluing is

performed under the change in decoration map.

If ν and ν̃ were equivalent via a map F = ( f0, f1) then, φ̃ ◦ f1 = f0 ◦ φ and

πMv1 = πMv1 ◦ f1. However, since v1 is nicely embedded, its projection to M is

an embedding, and thus f1 = 1. f2 is now an automorphism of the sphere fixing 2

points, acting like the identity around one and like z 7→ −z around the other. This is

clearly impossible, so the two buildings are inequivalent.

The fact that ν̃ still represents an actual curve in the compactified moduli space

is a consequence of Proposition 2.1.6.
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The choices of pregluings wR and w̃R corresponding to the two choices of

decorations produce paths of actual J-holomorphic curves uR = expwR
(η(R)) and

ũR = expw̃R
(η̃(R)) for η(R)∈W 1,p(w∗RTW ). The two paths of curves are not unique

due to the possible choice of wR and w̃R. However, since any such pair of paths

tend to two different points in the moduli space, and the compactified moduli space

is Hausdorff, they must lie in non-intersecting open neighbourhoods of the space.

Since the paths of curves tending to ν foliate one half of N (Γ3
X), what remains

to see is that tTwo sequences uR and ũR as above, always have disjoint images in

W . This is a trivial matter, since they either have identical or disjoint images. If

their images coincide, since they are both embeddings, ũ−1
R ◦ uR is a biholomor-

phic automorphism of the plane, and thus the two curves are equivalent and both

represent the same point in the moduli space. But they are required to belong to

non-intersecting neighbourhoods. Thus, the curves ũR and uR lie in different com-

ponents of N (Γ3
X).

Thus, buildings of Type (III) cannot obstruct foliations from continuing past

the codimension 1 hypersurface they define unless the breaking orbit is simple.

The previous proof made crucial use of the fact that all the components of

the moduli space M (J,γ∞, /0) together with their respective SFT compactifications

map to disjoint subsets of the target space and produce tractable foliations therein.

The idea the author first acquired from Chris Wendl, which was also applied in

the introduction to prove Theorem 1.1.3, which is to pull back generic ”vertical”

paths in the cobordism through the evaluation map, could have also been used. We

shall not need it for the proof of Theorem 1.1.2(2). The ideas above apply in a far

simpler fashion here due mostly to the fact that the index of the nicely embedded

curves which appear is 1 instead of 2.

Proof of Theorem 1.1.1 (2). The setting is that of a cobordism (W,dλ ) between

(M,ξ ) at the negative end and (M+,ξ+) at the positive end where ξ+ is over-

twisted. M admits a nondegenerate contact form α and we can find a nondegen-
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erate form α+ on M+ as in §2.2.2 such that both are compatible with λ . Pick

a J ∈J (W,dλ ,α+,α) which restricts to a generic element J− ∈J (α) and to

J+ ∈J (α+) defined in §2.2.2, such that J is also generic on W . In the same sec-

tion, the construction of a nicely embedded plane u∞ ∈M (J+,γ∞, /0) of Fredholm

index 1, and by automatic transversality, regular, implies that the moduli space of

nicely embedded curves in the same homotopy class as u∞ is non-empty. Denote

it by Mnice(J) ⊂M (J,γ∞, /0). u∞ then gives rise to a 1-parameter family of nicely

embedded curves in [0,∞)×M+ which, as before, represent the limit of a sequence

of curves in the moduli space Mnice(J) tending to +∞. All other curves apart from

u∞ intersect the interior of W hence, since J is generic, they are also regular and thus

Mnice(J) is a smooth 1-manifold. The construction of u∞ also establishes the fact

that it is the only non-trivial curve (up to R translation) in R×M+ with a positive

puncture asymptotic to γ∞. Thus for any sequence of curves in M (J,γ∞, /0) which

degenerates in the limit to a building with a non-trivial level in [0,∞)×M+, this

building must be of the form (u∞| /0). Proposition 2.1.6 now characterizes a neigh-

bourhood of this building in M (J,γ∞, /0) hence also in Mnice since being nicely

embedded is an open condition.

Theorem 3.2.1 now applies and serves to characterise M nice(J) as a subset of

M (J,γ∞, /0). In particular, any non-smooth curve with a non-trivial main level must

be (v0|v−1 ) of Type (I), breaking a long an even breaking orbit, γ which is either a

doubly covered odd hyperbolic or a simple orbit. Our aim is to argue that at least

such a building breaks along a simple orbit.

The boundary points of M nice(J) are isolated in the SFT topology and once

can thus count them mod 2 (a more refined argument could take into account ori-

entations and produce an algebraic count - in either case, the result should be the

same). To justify being able to count them notice that since all curves in Mnice(J)

are in the same relative homotopy class, they satisfy a uniform energy bound, and

thus the SFT compactness theorem applies. M nice(J) is thus an actual compact

1-manifold with boundary. The count of its boundary points then has to be 0 mod

2.
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Now, by the same reasoning as in the proof of Theorem 1.1.1, buildings of

Type (I) which break along doubly covered odd hyperbolic orbits come in pairs,

distinct in the SFT topology and thus

0≡ |M nice(J)\Mnice(J)| ≡ 1+K (mod 2),

where K is the number of boundary points corresponding to buildings of Type (I)

breaking along a simple orbit.

This completes the proof.

Notice that in the above we saved some space by not repeating arguments that

were similarly given in the proof of Theorem 1.1.1. Theorem 1.1.21, also has a

proof along the same lines, which we do not include but point the reader to the

extensive treatment in [CW].



Chapter 4

Further Results and Conclusions

Here we collate, a couple of results in partial form, which arose from the study of

moduli spaces of nicely embedded curves in other settings. While the statements

below should be treated as being subject to change, given that the full scope of their

proof is not yet achieved, wherever possible we state their most accurate version.

The following problem concerns the study of exact symplectic fillings of the

universally tight lens space (L(p,q),ξstd). Several details in the proof of compact-

ness or in the appropriate construction of the holomorphic open book on this space

prevent a proof of the following result from being complete.

The crux of the proof of the main Theorem 4.0.4 resides in Theorem 4.0.3, a

technical but elementary device which attempts to recover the required family of

J-holomophic planes to produce a compactness argument.

The following definition is due to Etnyre et. al. in [BEV12]

Definition 4.0.1. Let M be an 3-manifold, L⊂M an oriented link, and π : (M\L)⇒

S1 a fibration. Let N be a tubular neighbourhood of L and ∂N be its boundary as a

union of tori. We call (L,π) a rational open book on M if

π
−1(θ)∩∂N

is not a meridian for any of its components for any θ ∈ S1. The surface π−1(θ) is

referred to as a page of the rational open book.

As explained in [BEV12] one easily obtains rational open books on from any
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fibered knot in S3 by Dehn surgery. In particular, for the unknot in S3 one obtains a

rational open book (K0,π0) on L(p,q) by Dehn surgery along a (p,q)-torus knot.

Our aim is to construct a contact form in the style of Thurston and Wilkenkem-

per, and a foliation by pseudoholomorphic disks on the symplectization R×L(p,q)

with certain properties.

Definition 4.0.2. By analogy with the classical case, given a rational open book as

above (L,π), on a manifold equipped with a contact form (M,λ ) we call λ a Giroux

form for (L,π) if:

1. λ (v)> 0 for all vectors v positively tangent to L

2. dλ is a volume form on each page.

We say that the contact structure defined by kerλ is supported by the rational open

book (L,π).

This definition may be restated in terms of the Reeb vector field of λ by requir-

ing that it is positively transverse to the pages and positively tangent to the binding.

As it turns out, rational open books are a typical setting for the emergence of

nicely embedded curves. To even begin to understand such curves in the symplec-

tization R×L(p,q) we must first build up a special contact form, for which we can

then extend the rational open book as a local holomorphic foliation. The following

aims to mirror a construction due to Thurston and Winkelnkemper.

Theorem 4.0.3. For any N ∈ N and τ > 0, L(p,q) admits a contact form λ and a

compatible almost complex structure on R×L(p,q) such that:

1. λ admits a closed elliptic Reeb orbit γ0 whose image coincides with the bind-

ing circle K0.

2. kerλ is isotopic to ξstd and λ is a Giroux form for (K0,π0).

3. All other orbits have period greater than τ p while λ has period less than τ .

4. γ0 satisfies µCZ(γ
n
0 ) = 1 for all n≤N with respect to the trivialization induced

by the pages.
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5. All pages lift to a J-holomorphic curve, which is nicely embedded, of Fred-

holm index 2, and self-intersection number 0.

A relatively simple compactness argument shows that there exists a family of

nicely embedded planes, which does not break and which projects onto the rational

open book.

Theorem 4.0.4. For any exact filling (W,dλ ) of the universally tight lens space

(L(p,q),ξstd), the moduli space Mnice(J) for generic J ∈J (dλ ) is non-empty, a

component of which consists of planes which foliate the interior of W and project

onto a rational open book on L(p,q), which supports the contact structure.



Appendix A

Liouville cobordisms from exact

Lagrangian caps

In this appendix, we provide the details behind Example 1.1.6, using a general con-

struction that was explained to us by Emmy Murphy. This construction is repro-

duced from [CW].

Proposition A.0.1. Suppose (M,ξ ) is a closed contact manifold of dimension 2n−

1 ≥ 3, Λ ⊂M is a closed Legendrian submanifold and L ⊂ [1,∞)×M is an exact

Lagrangian cap for Λ. Then L has an open neighbourhood UL ⊂ [1,∞)×M such

that, after smoothing corners,

W− := ([0,1]×M)∪U L

admits the structure of a Weinstein cobordism from (M,ξ ) to some contact manifold

(M′,ξ ′), and for suitably large constants T > 1,

W+ := ([1,T ]×M)\UL

is a Liouville cobordism from (M′,ξ ′) to (M,ξ ).

Proof. Being an exact Lagrangian cap means that for some choice of contact form

α on (M,ξ ) and some constant T > 1, the trivial Liouville cobordism

(Z,dλ ) := ([1,T ]×M,d(er
α))
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contains L as a compact and properly embedded Lagrangian submanifold with ∂L=

{1}×Λ, such that the Liouville vector field ∂t is tangent to L near ∂L and

λ |T L = dg

for some smooth function g : L→ R. Note that since Λ is Legendrian and λ an-

nihilates its dual Liouville vector field, g must be constant near ∂L; we shall as-

sume without loss of generality that it vanishes there. By a combination of the

Lagrangian and Legendrian neighbourhood theorems, L has a symplectic neigh-

bourhood (UL,dλ ) whose closure U L is symplectomorphic to the unit disk bundle

in DT ∗L ⊂ T ∗L for some choice of Riemannian metric on L. Note that this disk

bundle has boundary and corners, its boundary consisting of two smooth faces,

∂−U L := DT ∗L|∂L and ∂+U L := ST ∗L,

where ST ∗L is the unit cotangent bundle. We shall write points in T ∗L as (q, p)

for q ∈ L and p ∈ T ∗q L, and use the metric and its induced Levi-Civita connection

to identify T(q,p)(T ∗L) with TqL⊕T ∗q L = TqL⊕TqL, where the first splitting comes

from the horizontal-vertical decomposition given by the connection, and the second

uses the isomorphism TqL = T ∗q L determined by the metric. The canonical Liouville

form λ0 on T ∗L can then be written as

λ0 =−dF0 ◦ J,

where F0(q, p) = 1
2 |p|

2 and J is the compatible almost complex structure on T ∗L

that acts on T(q,p)(T ∗L) = TqL⊕TqL as

 0 1

−1 0

. In particular, F0 is a J-convex

function, and therefore so is

Fε(q, p) := ε f (q)+
1
2
|p|2

for any smooth function f : L→ R if ε > 0 is sufficiently small. Setting λε :=
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−dFε ◦ J, dλε is then a symplectic form isotopic to dλ0 on a suitable neighbour-

hood of the zero-section L, and since the antipodal map (q, p) 7→ (q,−p) is J-

antiholomorphic but preserves Fε , it also preserves the Liouville vector field Vε

dual to λε , proving that Vε is tangent to L.

Now choose f : L→ R in this construction to be a Morse function that is con-

stant with inward-pointing gradient along ∂L. After possibly shrinking the neigh-

bourhood U L ∼=DT ∗L of L, we can then assume that Vε points transversely inward

at ∂−U L and transversely outward at ∂+U L. Since the Liouville field of (Z,dλ )

is also tangent to L near ∂L and points inward at {1}×M ⊂ ∂Z (see Figure 1.1),

we can now assume after an isotopy of U L that the two Liouville fields match

near ∂−U L, meaning λ = λε on that region. We can therefore use λε to extend

λ from [0,1]×M over W− so that the dual Liouville vector field remains gradient

like, making W− a Weinstein cobordism from (M,ξ ) to the new contact manifold

(M′,ξ ′), obtained by removing a neighbourhood of Λ from {1}×M and replacing

it with ST ∗L.

It is also immediate from the above construction that W+ is a strong symplectic

cobordism from (M′,ξ ′) to (M,ξ ), and the exactness of the cobordism follows from

the fact that L is an exact Lagrangian. Indeed, let ŮL := U L \ ∂−U L ∼= DT ∗L|L̊.

Since λ and λε match near ∂−U L and are both primitives of the same symplectic

form, λ −λε represents an element of the compactly supported de Rham cohomol-

ogy H1
c (ŮL), which is isomorphic to H1

c (L̊). But under restriction to L, λε vanishes

and λ is exact, so this cohomology class is zero, implying λ = λε + dh on UL for

some smooth function h : UL→R that vanishes near ∂−U L. By multiplying h with

a suitable cutoff function, we can then find a Liouville form on W+ that matches λε

near L and matches λ outside a neighbourhood of L.

Remark A.0.2. If W is a subcritical Weinstein filling of (M,ξ ), then the Weinstein

filling of (M′,ξ ′) obtained by stacking W− on top of W is never subcritical. To see

this, note that the Morse function f : L→R in the above proof can always be chosen

to have exactly one critical point of index n, in which case Fε also has exactly one

critical point of index n. If W is subcritical, this produces a handle decomposition
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of W ∪M W− that includes exactly one critical handle, so Hn(W ∪M W−) 6= 0.
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