Hematological Oncology

Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smouldering Multiple Myeloma (SMM): A Practical Guide to Management

Journal:	Hematological Oncology
Manuscript ID	HON-16-0091.R1
Wiley - Manuscript type:	Original Research Article
Date Submitted by the Author:	08-Jul-2016
Complete List of Authors:	Maciocia, Nicola; University College London Hospital, Haematology Wechalekar, Ashutosh; Royal Free Hospital, National Amyloidosis Centre Yong, Kwee; University College London Hospital, Haematology
Keywords:	plasma cells, paraprotein, gammopathy, myeloma, smouldering

1		
2	1	Monoclonal Gammopathy of Undetermined Significance (MGUS) and
3		
4	2	Smouldering Myeloma (SMM): A Practical Guide to Management
5	3	
6 7		
8	4	Nicola Maciocia ¹ , Ashutosh Wechalekar ² , Kwee Yong ³
9	5	
10		
11	6	¹ Department of Haematology, University College London Hospitals, 250 Euston Road,
12 13	7	London NW1 2PG, UK
13	8	
15	9	² National Amyloidosis Centre, Royal Free Hospital, Pond Street, London NW3 2QG, UK
16	10	² Demonstrate fille services for the line interview Colline for the 72 Handler
17	11	³ Department of Haematology, Cancer Institute, University College London, 72 Huntley
18	12	Street , London WC1E 6BT, UK
19	13	
20 21	20	
22	14	
23	11	
24	15	
25	15	
26 27	16	Corresponding Author:
28	17	Kwee L Yong,
29	18	Corresponding Author: Kwee L Yong, UCL Cancer Institute 72 Huntley Street London WC1E 6BT Email: kwee.yong@ucl.ac.uk Tel: +44 207 6796139 Fax: +44 207 6796222
30	19	72 Huntley Street
31 32	20	London WC1E 6BT
32 33	21	Email: <u>kwee.yong@ucl.ac.uk</u>
34	22	Tel: +44 207 6796139
35	23	Fax: +44 207 6796222
36	23	rax. +++ 207 07 50222
37 38		
39		
40		
41		
42		
43 44		
44 45		
46		
47		
48		
49		
50 51		
52		
53		
54		
55		
56		
57 58		
58 59		
60		

24 Abstract

Monoclonal gammopathy of undetermined significance (MGUS) and smouldering multiple myeloma (SMM) are precursor conditions of symptomatic multiple myeloma (MM). Diagnostic principles are aimed at excluding MM requiring therapy, other conditions associated with paraproteins that may require different management, and risk stratifying patients for the purposes of tailored follow up and investigation. The IMWG have recently published a revised definition of MM, that singles out a small group of patients with SMM who are at very high risk of progression and organ damage; such patients are now included under the definition of MM, and recommended to start anti-myeloma treatment. Furthermore, the recently published NICE guideline recommends cross sectional imaging techniques in place of skeletal survey. These recent recommendations are discussed, and practical guidance for investigation and management presented.

37 Introduction

Monoclonal gammopathy of undetermined significance (MGUS) describes the presence of a serum monoclonal protein (paraprotein) without other evidence of multiple myeloma (MM), Waldentrom's macroglobulinaemia (WM), amyloidosis or other lymphoproliferative disorder[1]. MGUS is thought to consistently precede the development of MM[2], but not all patients with MGUS have the same risk of progression to MM. Many paraproteins are picked up incidentally and the challenge is how best to manage these patients whilst avoiding over investigation and/or incurring undue anxiety[3]. Risk models for progression can be incorporated into management algorithms for these patients.

Smouldering myeloma (SMM) is an intermediate stage between MGUS and symptomatic
MM[4]. Patients with SMM have a higher initial risk of progression compared to MGUS
patients but risk reverts to MGUS levels after 10 years. Median time to progression is
around 4.8 years[5]. SMM patients lack evidence of end organ damage, but a small
proportion may warrant treatment on the basis of high risk biomarkers[6].

E

2 Epidemiology and pathophysiology

The overall risk of progression of MGUS is approximately 1% per year[7], and remains
unchanged over many years although many are elderly and will die from unrelated
conditions[8]. Prevalence increases with age (3.2% over 50years), is higher in males and in
Africans[9][10]. IgG is the commonest subtype (68.9%)[11]. MGUS is associated with
diverse conditions including autoimmune and inflammatory conditions, liver disease, bone

Page 3 of 19

Hematological Oncology

	3
58	marrow and organ transplantation[12][13]. The aetiology is unclear, suggested
59	predisposing factors include family history of haematological malignancy,
60	immunosuppression, radiation exposure and pesticides[14, 15]. SMM has a similar age of
61	presentation as MGUS and symptomatic MM (60-70years), and is most commonly IgG
62	(74%) or IgA (22.5%) [5][16].
63	
64	Founder genetic events in MM such as chromosomal translocation into the IgH gene loci
65	and hyperdiploidy are present in MGUS. Secondary genetic lesions occurring in sub-clones
66	that compete for dominance may lead ultimately to clonal progression and expansion of
67	certain "fitter" sub clones. Common secondary events that are associated with the
68	progression to symptomatic MM include point mutations in oncogenes (eg. N-RAS, K-RAS,
69	TRAF3, p53), MYC up regulation by a variety of mechanisms, and chromosome 1 imbalance
70	(1q gain or 1p loss). A progressive increase in the incidence of copy number abnormalities
71	and epigenetic modifications may occur [17] [18].
72	Definition of MGUS
73	All criteria must be met:
74	1. Serum monoclonal protein <30 g/L
75	 Clonal bone marrow (BM) plasma cells (PC) <10%,
76	 Absence of end-organ damage (hypercalcemia, renal insufficiency, anaemia, and
77	bone lesions) [19].
78	MGUS Related Disorders and associated risks
79	MGUS can be associated with other clinically significant conditions, listed in Table 1 [20],
80	including AL amyloidosis, MGUS of renal significance (MGRS), type I and II
81	cryoglobulinaemia, cold agglutinin disease and autoimmune neuropathies, the latter
82	usually caused by autoantibody activity of an IgM paraprotein. Other rare diseases
83	associated with monoclonal gammopathy include POEMS syndrome, scleromyxoedema,
84	acquired Fanconi syndrome and Schnitzler syndrome [21, 22]. Individuals with MGUS have
85	an increased risk of osteoporosis, venous/arterial thrombosis, infections, as well as an
86	increased risk of developing myeloid and non-haematological malignancies [23] [24] [25].
87	Definition of Smouldering MM including recent revisions
88	In 2003 IMWG developed the first international consensus guidelines that classified SMM
89	as BMPCs $\geq 10\%$ and/or paraprotein (PP) ≥ 30 g/L) and critically the absence of CRAB

90 features (high calcium, haemoglobin 2g/dL below normal or <10 g/dL, lytic bone lesions or

91 osteoporosis with compression fractures, symptomatic hyperviscosity, amyloidosis, or >2
92 bacterial infections/12 months) [16]. As there was no evidence that treatment of
93 asymptomatic SMM patients altered the natural disease history or improved long term

94 outcomes, treatment was withheld unless progression occurred as defined by end organ
95 damage.

Revised criteria

97 It became clear that some SMM patients are at very high risk of progression to symptomatic
98 MM[18], moreover, progression was associated with marked morbidity. Hence, work was
99 done to identify patients at ultra high risk (approximately 80%) of progression within 2
100 years. Three markers identify patients at ultra high risk of progression (80% over 2 years)
101 [6]:

102 Additional new criteria for diagnosis of myeloma (Table 2)

- Bone marrow plasmacytosis
- BMPCs of ≥60% (present in <5% of patients) carries a very high risk of progression to MM
 (>80% within 2 years)[26, 27], and is thus now considered a MM defining criterion.

107 • Serum Free Light Chains

High serum free light chains are a risk factor for progression in SMM [28], and SFLC ratio of
>100 carries a 2-year progression risk of 72%[29], and is now a MM defining criterion.

• Focal lesion/s on MRI

MRI is now recommended for screening in SMM (see below). Patients with >1 focal lesion
on MRI had a 70% risk of progression at 2 years)[30], findings subsequently confirmed [31,
32]. Thus >1 focal lesion on MRI is now a MM defining criterion. For patients with solitary
bone lesions, data are less clear and regular (3-6 monthly) follow up by MRI is
recommended.

 Table 2 summarises these new MM defining features, for which anti-MM treatment is recommended. Alongside these recommendations, revised definitions of organ damage have also been produced (Table 3). The term symptomatic MM should now be dropped, in favour of MM, to include asymptomatic patients who require treatment on the basis of one Page 5 of 19

60

Hematological Oncology

1 2	122	or more MM defining criteria. Hence SMM, previously used to refer to "symptomatic MM"
3 4	123	should now be used exclusively to refer to smouldering MM, or asymptomatic MM.
5 6	124	Risk factors for Progression in MGUS
7 8	125	Presenting features and dynamics of the clone during follow up are helpful predictors of
9	126	progression. Recognised risk factors include:
10 11	127	a. Level of the monoclonal protein [33].
12 13	128	b. Level of BMPCs ($>5\%$)[34].
14 15	129	c. Rise in paraprotein over time [35].
16	130	d. Abnormal SFLC ratio [36].
17 18	131	e. Biological characteristic of the MGUS clone, higher for IgA/IgM than for IgG. [11,
19 20	132	33].
21	133	Fluorescent-in-situ-hybridisation (FISH) defined abnormalities including recurrent
22 23	134	primary IgH translocations and hyperdploidy are found in MGUS [37], but it is unclear if
24 25	135	specific abnormalities eg. del(17p) are predictive of progression to MM.
26 27 28	136	Risk models in MGUS
28 29	137	Patients are risk stratified using clinical variables identified in epidemiological studies, and
30 31	138	two main prognostic models are the Mayo clinic model, and the PETHEMA group or
32 33	139	Spanish model (Table 4). [36] [38].
34 35	140	Risk Stratification Models in SMM
36 37	141	The main risk models for SMM reflect those in MGUS (Table 4). The Mayo clinic model
38	142	included abnormal SFLC ratio, paraprotein level and BM plasmacytosis, while the Spanish
39 40	143	group used a flow cytometry based model with two independent variables [39].
41 42 43	144	Need for new risk models in SMM
44	145	Revision of diagnostic criteria for MM that remove the ultra high risk SMM patients
45 46	146	requires a re-evaluation of our risk models for SMM. Genetic abnormalities [deletion 17p,
47 48	147	t(4;14)] or gene expression signature may be important [31, 40, 41], as may PET-CT
49	148	findings [42]. The presence of Bence Jones proteinuria (especially >500mg/24 hours) or
50 51	149	rising paraprotein (evolving SMM) may also impart greater risk of progression [43].
52 53	150	Immunophenotype, circulating plasma cells, a high PC proliferative rate have also been
54	151	implicated [31]. All these need to be studied in larger patient cohorts to assess their wider
55 56	152	applicability.
57 58 59		

153	Diagnosis of MGUS
154	The major aim of investigating these patients is to distinguish between MGUS, SMM and
155	MM requiring treatment. The commonest reason for assigning a diagnosis of SMM (rather
156	than MGUS) is the presence of $\geq 10\%$ plasma cells in the bone marrow. For IgM and light
157	chain only conditions, the equivalent is called smouldering WM, and idiopathic Bence Jones
158	proteinuria, respectively. It is also important to differentiate MGUS of truly no clinical
159	significance from MGUS associated with amyloidosis, Waldenstrom's macroglobulinaemia
160	(WM) and other lymphoid neoplasms. Symptoms should also be sought for the rarer
161	disorders associated with a paraprotein e.g. POEMS syndrome. (Table 1)
162	
163	All patients require history and examination, full blood count, renal function, total protein,
164	serum calcium, serum and urine protein electrophoresis with immunofixation and serum
165	free light chains. A bone marrow aspirate and trephine biopsy (BMAT) should be
166	performed when serum PP \geq 15g/L, if non IgG MGUS, abnormal SFLC ratio (> 10 or < 0.10),
167	or if diagnosis of MGUS is in doubt. All patients with suspected myeloma (paraprotein >
168	30g/l or bone marrow plasma cells >10%) need cross-sectional imaging as per recent NICE
169	guidelines: whole body MRI as first line or whole body low dose CT. [50]
170	
171	For high risk MGUS patients (Mayo clinic model), a skeletal survey should be carried out (or
172	a CT chest abdomen and pelvis in IgM MGUS). MRI or PET-CT imaging is not recommended
173	outside the context of a clinical trial [44].
174	Management of MGUS
175	Clinical trial results show no benefit for early intervention, and the risk of progression to
176	MM is low, thus current management is 'watch and wait' [45]. As risk of progression does
177	not change over time lifelong follow up is recommended, with monitoring tailored to
178	patient's risk of progression, co-morbidities and life expectancy.
179	
180	Risk stratification of patients (Mayo clinic model) into low, intermediate and high risk
181	MGUS aids counselling and follow up [46]. Current practice will vary from centre to centre.
182	Based on currently available evidence and guidelines a reasonable approach is:
183	Low risk: SS and BM not required, monitor every 6 months for 2 years then 1-2yrly if
184	stable. Monitoring can be done in primary care and should include patient review, blood
185	count, renal function, calcium, and paraprotein level.

Hematological Oncology

1	186	Intermediate or high risk: SS and BM are mandatory, review and monitor as above every 6
2 3	187	months for 2 years then annually for life. Follow up should include history and
4 5	188	examination, full blood count, renal function, calcium and paraprotein. Monitoring should
6 7	189	be initially in secondary care, but after 5 years, primary care monitoring is reasonable.
8	190	Although the risk of progression in patients with light chain only MGUS is relatively low
9 10	190 191	
11 12		(0.3% per year), there is a considerable risk of developing renal disease, hence 6-monthly
13	192	follow up is recommended [11]. Finally, MGUS patients with elevated SFLC should be
14 15	193	monitored for development of amyloidosis or MGRS, hence measurement of NT-proBNP
16 17	194	and urine albumin at follow up is recommended [19].
18	195	
19 20	196	A BMAT +/- skeletal survey is always indicated if features suggestive of end organ damage
21 22	197	develop or if >25% increase in PP levels occurs over a three month period (minimum
23	198	5g/L). Diagnostic work up and management plan should be altered according on age and
24 25	199	co-morbidities (Figure 1). For example in a person of advanced age with limited life
26 27	200	expectancy it may be reasonable to omit SS and BMAT from the work up or not to
28	201	undertake regular monitoring of the paraprotein level. Whichever risk group a patient falls
29 30	202	into, it is important to provide information and counselling as the diagnosis may lead to
31 32	203	anxiety and fears for the future. MyelomaUK provide written information and telephone
33	204	advice:
34 35	205	http://www.myeloma.org.uk/information/myeloma-uk-publications-list/other-related-
36 37	206	conditions/mgus-infosheet/
38	207	Diagnostic Investigations for SMM
39 40	208	Investigations are aimed at differentiating SMM from symptomatic MM requiring
41 42	209	treatment. All patients need baseline blood counts, renal function, serum calcium and total
43 44	210	protein, serum and urine protein electrophoresis with immunofixation and serum free light
45	211	chains. Risk stratification of SMM may be useful, eg. the Mayo clinic model. All patients
46 47	212	with a paraprotein >30g/L and/or SFLC ratio >8 should be considered for further testing
48 49	213	with BM and imaging. As per NICE guidance, skeletal survey is no longer sufficient and
50	214	cross-sectional imaging is recommended, with the choice of MRI, low-dose whole-body CT
51 52	215	or PET-CT being made according to local practice [47].
53 54	016	
55	216	Treatment for SMM
56 57	217	Historical studies have shown no advantage to initiating treatment for patients with SMM,
58	218	largely due to lack of efficacy and high toxicity of regimens used.[48] [49][50]. Recently, a

Hematological Oncology

randomised trial has indicated, for the first time, that treatment in SMM can improve outcomes. This Phase III trial used flow cytometry to identify high risk patients and prospectively randomised them to receive treatment with lenalidomide and dexamethasone versus observation only. With median follow-up of 40 months, treated patients had significantly longer time to progression (median not reached vs. 21 months) and overall survival (3-year survival 94% vs. 80%) [51]. Drawbacks of the study are the criteria used to risk stratify, and the unexpectedly high rate of death in the control arm. Several trials are currently evaluating new drugs and strategies in high risk SMM, and such patients should be considered for entry into clinical trials otherwise observation still remains standard of care.

229 Monitoring patients with SMM

The risk of progression in SMM is highest in the first years after diagnosis, maximal in the first two years, and reducing over the next few years. Hence, the monitoring needs to be more frequent soon after diagnosis and can become less frequent 5 years after diagnosis. There are no formal prospective studies of monitoring in SMM. As per NICE guidelines. patients should be monitored every 3 months initially [47]. Pragmatically, a reduced frequency of monitoring may be adopted after 2 years, depending on risk (Figure 2). Monitoring should include assessment of CRAB symptoms, FBC, renal function, bone profile, immunoglobulins, serum protein electrophoresis and SFLC if appropriate [47]. High risk patients, those with a rising paraprotein or new symptoms and those with a single focal lesion on MRI may need repeat imaging or bone marrow examinations.

240 Conclusion and Future Directions

MGUS is associated with a risk of progression to MM and a variety of other clinically significant conditions. Diagnostic work up of suspected MGUS patients should seek evidence of these. Risk stratification models can help with estimating risk of progression and, together with patient-specific factors, planning follow-up.

 SMM is an area where on-going research is re-defining risk boundaries with implications
for monitoring and treatment. As new factors for progression are identified, some patients
will now be reclassified as MM requiring treatment, and there is a suggestion that early
treatment of high risk SMM may be of benefit. While MM remains incurable, here is
insufficient evidence, however, to recommend routine treatment of these asymptomatic
patients, or indeed to indicate which treatment is the best. Progression to MM may not the

Page 9 of 19

Hematological Oncology

only important end point for treatment of SMM patients as pre-emptive therapy may
promote the earlier out-growth of resistant disease, making the treatment of truly
symptomatic disease more difficult. Genetics clearly define outcomes in MM, and may also
impact outcomes of therapy in SMM. All these remain important questions to be addressed
in prospective trials to refine our approach to SMM and guide treatment, meanwhile
current guidance is confined to monitoring [47].

References

- ¹ Bories C, Jagannath S. Asymptomatic Monoclonal Gammopathies. *Clin. Lymphoma Myeloma Leuk* 2014;14:S78–S86.
- ² Landgren O, Kyle R, Pfeiffer RA et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. *Blood* 2009;113:5412–5417.
- ³ Bird J, Owen RO, D'Sa S et al. Guidelines for the diagnosis and management of multiple myeloma 2011. *Br J Haematol* 2011;154:32–75.
- ⁴ Kyle RA, Greipp PR. Smoldering multiple myeloma. *N Engl J Med* 1980;302:1347–1349.
- ⁵ Kyle A, Remstein ED, Therneau TM et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. *N Engl J Med* 2007;356:2582–2590.
- ⁶ Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. *Lancet Oncol* 2014:e538–548.
- ⁷ Kyle A, Therneau T, Rajkumar SV et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. *N Engl J Med* 2002;346:564–569.
- ⁸ Engelhardt M, Terpos E, Kleber M et al. European Myeloma Network recommendations on the evaluation and treatment of newly diagnosed patients with multiple myeloma. *Haematologica* 2014;99:232–242.
- ⁹ Kyle R, Therneau T, Rajkumar SV et al. Prevalence of monoclonal gammopathy of undetermined significance. *N Engl J Med* 2006; 354: 1362–1369.
- ¹⁰ Landgren O, Katzmann JA, Hsing AW, et al. Prevalence of monoclonal gammopathy of undetermined significance among men in Ghana. *Mayo Clin. Proc.* 2007;82:1468–1473.
- ¹¹ Dispenzieri A, Katzmann JA, Kyle RA, et al. Prevalence and risk of progression of lightchain monoclonal gammopathy of undetermined significance: a retrospective population-based cohort study. *Lancet* 2010;375:1721–1728.
- ¹² Bida JP, Kyle RA, Thernau TM, et al. Disease associations with monoclonal gammopathy of undetermined significance: a population-based study of 17,398 patients. *Mayo Clin Proc* 2009;84:685–693.
- ¹³ Leung N, Bridoux F, Hutchinson CA, et al. Monoclonal gammopathy of renal significance: when MGUS is no longer undetermined or insignificant. *Blood* 2012;120:4292–429.
- ¹⁴ Iwanaga M, Tagawa M, Tsukasaki K, et al. Relationship between monoclonal gammopathy of undetermined significance and radiation exposure in Nagasaki atomic bomb survivors. *Blood* 2009;113:1639–1650.
- ¹⁵ Landgren O, Kyle RA, Hoppin JA, et al. Pesticide exposure and risk of monoclonal gammopathy of undetermined significance in the Agricultural Health Study. *Blood* 2009;113:6386–6391.
- ¹⁶ International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. *Br J Haematol* 2003;121:749–757.
- ¹⁷ Chng WJ, Glebov O, Bergsagel PL, et al. Genetic events in the pathogenesis of multiple myeloma. *Best Pract. Res Clin Haematol.* 2007;20:571–596.

2	
3	
4	
5	
6	
7	
5 6 7 8 9	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
20	
21 22 23 24 25 26	
20	
20	
27 28 29	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
43	
44 45	
45 46	
-	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
111	

¹⁸ Cherry M, Korde N, Kwok M et al. Modeling pr	ogression risk for smoldering multiple
myeloma: results from a prospective clinical s 2013;54:2215–2218.	tudy. <i>Leukemia & Lymphoma</i>
¹⁹ Van de Donk NW, Palumbo A, Johnsen HE et a	l. The clinical relevance and management
of monoclonal gammopathy of undetermined	
recommendations from the European Myelon 996.	aa Network. <i>Haematologica</i> 2014;99:984–
²⁰ Merlini G, Stone, MJ. Dangerous small B-cell clo	
²¹ Merlini G, Palladini G. Differential diagnosis of significance. ASH Educ. Program Book 2012:59	
²² Korde N, Kristinsson SY, Landgren O. Monoclo	nal gammopathy of undetermined
significance (MGUS) and smoldering multiple	
and development of early treatment strategies	-
²³ Kristinsson SY, Bjorkholm M, Andersson TM, e	
death following a diagnosis of monoclonal gam population-based study. <i>Haematologica</i> 2009;	
⁴ Kristinsson SY, Tang M, Pfeiffer RM, et al. Mon	
significance and risk of skeletal fractures: a po	pulation-based study. <i>Blood</i>
2010;116:2651–2655.	
⁵ Kristinsson SY, Pfeiffer RM, Bjorkholm M, et al	
monoclonal gammopathy of undetermined sig	
population-based study. <i>Blood</i> 2010;115:4991	
⁶ Rajkumar SV, Larson D, Kyle RA. Diagnosis of s 2011;365:474–475.	moldering multiple myeloma. N Engl j Med
⁷ Kastritis E, Terpose E, Moulopoulos L, et al. Ex	tensive hone marrow infiltration and
abnormal free light chain ratio identifies patie	
risk for progression to symptomatic disease. <i>L</i>	
⁸ Dispenzieri A, Kyle RA, Katzmann JA, et al. Imm	
independent risk factor for progression of smo	-
myeloma. <i>Blood</i> 2008;111:785–789.	
⁹ Larsen JT, Kumar SK, Dispenzieri A, et al. Seru	m free light chain ratio as a biomarker for
high-risk smoldering multiple myeloma. Leuk	emia 2013;27:941–946.
⁰ Hillengass J, Fechtner K, Weber MA, et al. Prog	nostic significance of focal lesions in
whole-body magnetic resonance imaging in pa	atients with asymptomatic multiple
myeloma. J Clin Oncol 2010:28:1606-1610.	
¹ Dhodapkar MV, Sexton R, Waheed S, et al. Clin	
myeloma progression from asymptomatic mo	noclonal gammopathies (SWOG S0120).
Blood 2014;123:78–85.	
² Kastritis E, Moulopoulos LA, Terpos E, et al. Th	
more than one focal lesion in spine MRI of pat	
multiple myeloma. <i>Leukemia</i> 2014;28:2402–2	403.

³³ Katzmann J, Clark R, Kyle RA, et al. Suppression of uninvolved immunoglobulins defined by heavy/light chain pair suppression is a risk factor for progression of MGUS. <i>Leukemia</i>
2013;27:208–212.
³⁴ Cesana C, Klersy C, Barbarano L, et al. Prognostic factors for malignant transformation in monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. <i>J Clin Oncol</i> 2002;20:1625–1634.
³⁵ Rosiñol L, Cibeira MT, Montoto S, et al. Monoclonal gammopathy of undetermined significance: predictors of malignant transformation and recognition of an evolving type characterized by a progressive increase in M protein size. <i>Mayo Clin Proc</i> 2007;82:428– 434
³⁶ Rajkumar SV, Kyle RA, Thernau TM, et al. Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. <i>Blood</i> 2005;106:812–817.
³⁷ Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. <i>Nat Rev Cancer</i> 2002;2:175–187.
³⁸ Pérez-Persona E, Vidriales MB, Mateo G, et al. New criteria to identify risk of progression
in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. <i>Blood</i> 2007;110:2586–2592.
³⁹ Perez-Persona E, Mateo G, Garcia-Sanz R, et al. Risk of progression in smouldering myeloma and monoclonal gammopathies of unknown significance: comparative analysis of the evolution of monoclonal component and multiparameter flow cytometry of bone marrow plasma cells: Short Report. <i>Br J Haematol</i> 2010;148:110–114.
⁴⁰ Rajkumar SV, Gupta V, Fonseca R, et al. Impact of primary molecular cytogenetic
abnormalities and risk of progression in smoldering multiple myeloma. <i>Leukemia</i> 2013;27:1738–1744.
⁴¹ Neben K, Jauch A, Hielscher T et al. Progression in Smoldering Myeloma Is Independently Determined by the Chromosomal Abnormalities del(17p), t(4;14), Gain 1q, Hyperdiploidy, and Tumor Load. <i>J Clin Oncol</i> 2012;248:4923
⁴² Zamagni E, Nanni C, Gay F, et al. 18F-FDG PET/CT focal, but not osteolytic, lesions predict
 the progression of smouldering myeloma to active disease. <i>Leukemia</i> 2016;30:417-422 ⁴³ González-Calle, V., J. Dávila, F. Escalante, A. G. de Coca, C. Aguilera, R. López, A. Bárez, et al. 'Bence Jones Proteinuria in Smoldering Multiple Myeloma as a Predictor Marker of Progression to Symptomatic Multiple Myeloma'. <i>Leukemia</i>, 27 May 2016. doi:10.1038/leu.2016.123.
⁴⁴ Dimopoulos M, Terpos E, Comenzo RL, et al. International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in
the diagnosis and monitoring of multiple Myeloma. <i>Leukemia</i> 2009;23:1545–1556.
⁴⁵ Blade J, Dimopoulos M, Rosinol L, et al. Smoldering (Asymptomatic) Multiple Myeloma:
Current Diagnostic Criteria, New Predictors of Outcome, and Follow-Up
Recommendations. J Clin Oncol 2010;28:690–697.
⁴⁶ Kyle RA, Durie BG, Rajkumar SV, et al. Monoclonal gammopathy of undetermined
significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG

3 4

5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
, 8 9 10 11 23 14 15 16 7 18 9 21 22 32 25 26 7 28 9 0 31 23 34 56 7 8 9 0 41 23 34 56 37 8 9 0 41 22 33 45 36 37 8 9 0 41 23 24 52 67 28 9 0 31 23 34 53 67 33 34 53 67 33 34 53 67 33 34 53 36 37 33 34 53 37 33 34 53 37 33 34 53 37 33 34 53 37 33 34 53 37 33 37 33 37 33 37 33 37 33 37 33 37 33 37 33 37 33 37 33 37 33 37 33 37 33 37 33 37 33 37 33 37 33 37 37	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
32	
33	
34	
35	
26	
30	
31	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
56	
57	
58	

59 60 consensus perspectives risk factors for progression and guidelines for monitoring and management. *Leukemia* 2010;24:1121–1127.

- ⁴⁷ National Institute for Health and Care Excellence (2016) Myeloma: diagnosis and management. NICE guideline [NG35]
- ⁴⁸ Hjorth M, Kellquist L, Holmberg E, et al. Initial versus deferred melphalan-prednisone therapy for asymptomatic multiple myeloma stage I--a randomized study. Myeloma Group of Western Sweden. *Eur J Haematol* 1993;50:95–102.
- ⁴⁹ Barlogie B, van Rhee F, Shaughnessy JD Jr, et al. Seven-year median time to progression with thalidomide for smoldering myeloma: partial response identifies subset requiring earlier salvage therapy for symptomatic disease. *Blood* 2008;112:3122–3125.
- ⁵⁰ Musto P, Petrucci MT, Bringhen S, et al. A multicenter, randomized clinical trial comparing zoledronic acid versus observation in patients with asymptomatic myeloma. *Cancer* 2008;113:1588–1595.
- ⁵¹ Mateos MV, Hernandez MT, Giraldo P, et al. Lenalidomide plus dexamethasone for highrisk smoldering multiple myeloma. *N Engl J Med* 2013;369:438–447.

http://mc.manuscriptcentral.com/hon

Tables

Table 1. M-protein related disorders (other than AL amyloidosis) adapted ²¹

Disorder	Clinical features and diagnostic tests
Light chain deposition	Usually kappa light chain, presenting with albuminuria and
disease (LCDD)	nephrotic syndrome
POEMS syndrome	Majority IgG lambda
	Peripheral neuropathy
	Organomegaly (liver, spleen, lymphadenopathy)
	Skin changes (cherry angiomata, changes in texture and
	pigmentation, alterations in body hair)
	Endocrinopathy (pancreatic, adrenal, gonadal, paarhyroid, pituitary)
	Ascites, pleural effusions, peripheral oedema
	Pappiloedema
	Sclerotic bone lesions
	Thrombocytosis, polycythaemia, thrombotic diathesis
	Elevated circulating vascular endothlial growth factor
Acquired Fanconi	Tubular proteinuria, glycosuria, amino aciduria. acidosis,
syndrome	hypophosphatemia
-	Renal failure, osteomalacia
	Almost all kappa light chain
Cryglobulinaemia	Vasculitis, peripheral neuropathy, fatigue, renal failure,
	purpuric rashes, Raynaud's phenomenon, leg ulcers,
	acrocyanosis
Scleromyxoedema	Diffuse skin thickening, obstructive lung disease, pulmonary
-	hypertension
	Usually IgG lambda
Schnitzler Syndrome	Chronic neutrophilic urticarial dermatosis
	Arthralgia, bone pain, lymph nodes, liver, spleen enlarged
	Usually IgM kappa
Xanthomatosis	Cutaneous xanthoma lesions (yellow papules)
	Usually IgG
Cold agglutinin disease	Haemolysis, Raynaud's phenomenon, acrocyanosis

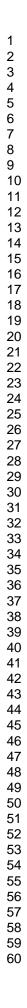
 $\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\end{array}$

	al bone marrow plasma cells ≥10% or biopsy-proven bony or extramedulla
-	smacytoma [*] and any one or more of the following myeloma defining events or a
one	or more of the following biomarkers of malignancy.
<u>Mye</u>	eloma defining events:
	lence of end organ damage that can be attributed to the underlying plasma cell iferative disorder as follows:
• Hy	percalcaemia: serum calcium >0.25 mmol/L (>1 mg/dL) higher than the upper l ormal or >2.75 mmol/L (>11 mg/dL)
• Re	nal insufficiency: creatinine clearance <40 mL/min† or serum creatinine >1
	ol/L (>2 mg/dL) aemia: haemoglobin value of >20 g/L below the lower limit of normal or a
haeı	moglobin value <100 g/L
• Bo	ne lesions: one or more osteolytic lesions on skeletal radiography, CT, or PET-C
<u>Bio</u>	markers of malignancy:
• Cl	onal bone marrow plasma cell percentage* ≥60%
	volved:uninvolved serum free light chain ratio§ ≥100
• >1	focal lesions on MRI studies¶
<u>Defi</u>	inition of smouldering multiple myeloma
Botł	n criteria must be met:
• Se	rum monoclonal protein (IgG or IgA) ≥30 g/L or urinary monoclonal protein ≥50
mg/	24h and/or clonal bone marrow plasma cells 10–60%
• Ab	sence of myeloma defining events including biomarkers of malignancy or
amy	loidosis
‡PE	T-CT=1 ⁸ F-fluorodeoxyglucose PET with CT.
*Clo	nality should be established by showing κ/λ -light-chain restriction on flow
cyto	metry, immunohistochemistry, or immunofluorescence. Bone marrow plasma c
perc	centage should preferably be estimated from a core biopsy specimen; in case of a
disp	arity between the aspirate and core biopsy, the highest value should be used.
†Me	asured or estimated by validated equations.
‡If b	oone marrow has less than 10% clonal plasma cells, more than one bone lesion is
requ	uired to distinguish from solitary plasmacytoma with minimal marrow involvem
§Th	ese values are based on the serum Freelite assay (The Binding Site Group,
Birn	ningham, UK). The involved free light chain must be ≥ 100 mg/L.
¶ Fo	ich focal lesion must be 5mm or more in size

Table 3. New Definitions of organ damage⁶

Myeloma bone disease

One of PET-CT, MRI or low-dose whole body CT (depending on local practice) to be used at diagnosis in suspected smouldering myeloma. The detection of one or more sites of osteolytic bone destruction (>5mm) on PET-CT or low-dose whole-body CT meets the criteria for multiple myeloma requiring treatment. Osteoporosis and vertebral compression fractures alone are no longer sufficient for a diagnosis of myeloma. This is to avoid over diagnosing many elderly people with MGUS and osteoporosis.


Definition of renal failure

The 2003 IMWG criteria used a fixed creatinine level (> 173umol/L) to define renal insufficiency. New recommendation is to use measured or estimated GFR of <40ml/min instead for CRAB criteria. Only renal failure caused by light chain cast nephropathy is regarded as a myeloma defining event. A renal biopsy may be needed to exclude other causes of renal failure.

Bone marrow plasmacytosis

Either clonal BMPC ≥10% or biopsy proven plasmacytoma required for the diagnosis of MM.

MGUS		
Model and risk factors	Number of factors	Progression risk
Aayo Clinic Model [35]		At 20 years
- non-IgG isotype	0	5%
- M-protein ≥15g/L	1	21%
- abnormal SFLC ratio	2	37%
	3	58%
PETHEMA model based on flow		At 5 years
cytometry of bone marrow		,
[338]	0	2%
- Abnormal phenotype	1	10%
(aberrant plasma cells)	2	46%
- DNA aneuploidy	_	1070
2111 and aprotaly	SMM	
Mayo Clinic Model [26]		At 5 years
- abnormal SFLC ratio		,
(<0.125 or > 8)	1	25%
- BM PCs ≥10%	2	51%
- PP ≥30g/L	3	76%
PETHEMA model based on		- , ,
flow cytometry [40]		At 5 years
- ≥95% abnormal bone	0	4%
PC/total BMPC	1	46%
- Immuneparesis	2	72%

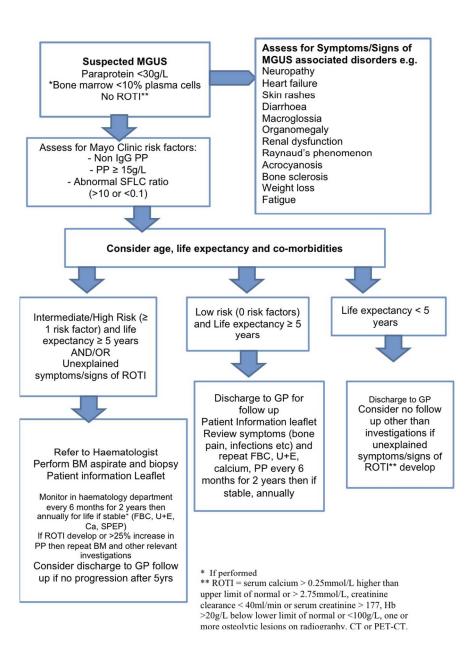
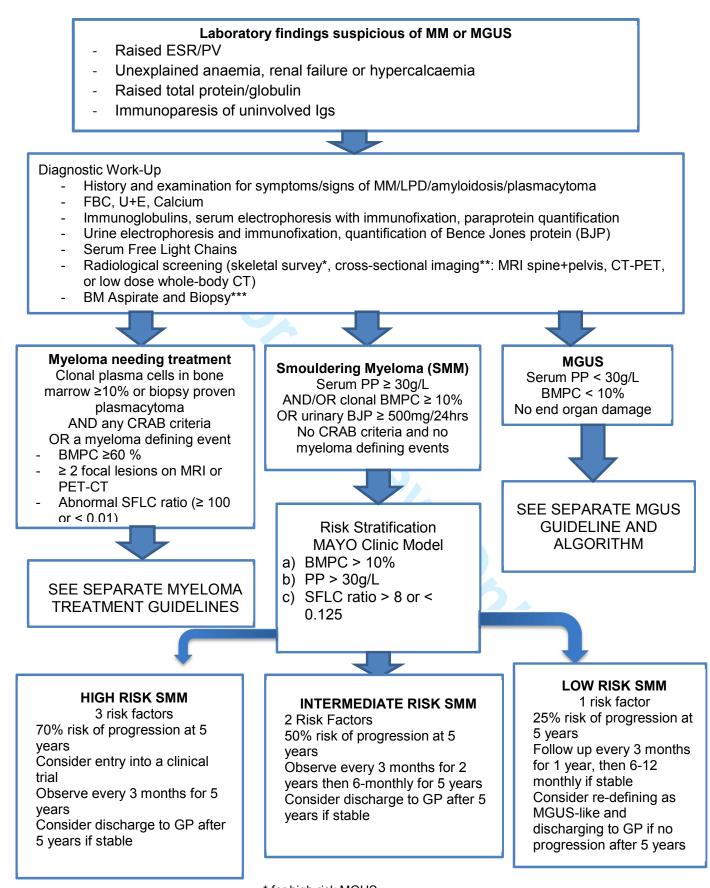



Figure 1. Algorithm for investigation and management of patients with suspected Monoclonal Gammopathy of Undetermined Significance (MGUS)

184x250mm (150 x 150 DPI)

* for high risk MGUS

** if pp>30 or LC ratio >8, choice of technique according to local practice *** Required if non-IgG MGUS, pp ≥15g/L