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Abstract

Retail analytics has been transformed by big data, which has led to many retailers using detailed

analytics to improve performance at a range of operational levels. This is the case with the

collaborator of this research, dunnhumby, who have large amounts of retailer data derived from

the numerous activities that retailers operate at. This thesis focuses on two challenges retailers

face; the analysis of products through their price elasticity coefficients and demand forecasting

of products known as slow-moving inventory.

The analysis of products in terms of their price elasticity coefficients is well studied. Existing

approaches are hampered by the challenging nature of cross-elasticity data, as cross-elasticity

coefficients typically vary in dimension and exhibit an inherent censoring. We address these

problems by developing a systematic model-based approach by reinterpreting the cross-elasticity

coefficients as realisations of variable length order statistics sequences, and develop a nonpara-

metric Bayesian methodology to cluster these sequences. Our approach uses the Dirichlet

process mixture model that allows data to dictate the appropriate number of clusters and

provides interpretable parameters characterising the decay of the leading entries.

Slow-moving inventory are characterised by having intermittent demand, in that the demand

is populated with an abundance of zero sales and that, when a sale does a occur, it is often

followed by a quick succession of sales. This demand intermittency inhibits the use of traditional

analytics which crucially affects optimal inventory management. To combat this, we represent

intermittent demand as a structured multivariate point process which allows for auto- and cross-

correlation frequently observed in sparse sales data. Our approach uses a hurdle component

to cope with zero sales inflation, the Hawkes process to capture the temporal clustering and a

hierarchal structure to pool information across products.

We illustrate our methods on real retailer data, from access granted by dunnhumby.



Impact statement

The UK retail sector is a significant one; during 2017, consumers in the UK spent around £406

billion on retail purchases, with 39p of every £1 being spent in food stores [Rhodes and Brien,

2018]. This scale, along with the proliferation of data sources derived from the services and

products that retailers offer to consumers, has meant responsible data science is increasingly

being used to identify inefficiencies and opportunities, as well as helping to provide a higher de-

gree of personalisation to consumers than ever before. A company at the forefront of consumer

data science is the collaborator of this research, dunnhumby.

This research, supported by the EPSRC, dunnhumby and the Alan Turing Institute, looks

to explore the applications that Bayesian nonparametric mixture modelling, excitation pro-

cesses and hierarchical modelling have to retail analytics. We focused on two specific problems

that retailers face: product clustering and intermittent demand forecasting. The first output

of this research was a product clustering methodology that used a Dirichlet process mixture

model to capture the nuanced structure exhibited by the elasticity coefficients outputted from

demand models traditionally used by retailers. The second output was a forecasting method-

ology, where we demonstrated the effectiveness that information pooling, a discretised Hawkes

process and regression covariates had on the issue of time series forecasting of intermittent

demand. These methodologies provide refreshing reference points from which other product

clustering and intermittent demand forecasting models could be benchmarked. In addition, each

of these approaches may have fruitful applications to fields beyond retail analytics that strive

to cluster strictly decreasing or increasing censored data, or to time series forecasting where

intermittency inhibits the use of traditional methodologies. These investigations led to two

paper submissions to leading statistics journals: the Annals of Applied Statistics and Journal

of the Royal Statistical Society: Series C.

The insights of this research provide important implications to professional analysts within

the retail analytics industry. Our product clustering methodology casts light over the structural
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differences among products’ sales sensitivities as exhibited through their cross-elasticity coef-

ficients, and how these sales sensitivity differences are split across brands and food categories.

These findings are valuable to retailers, as information on product differences can be used to

improve promotional activities and help retailers to differentiate themselves from competitors,

by using such features to improve customer loyalty campaigns. The forecasting methodology

developed during this research afforded greater transparency into the challenging dynamics

exhibited by intermittent demand. Our approach allows retailers to more clearly understand

the predictive benefits that hierarchical modelling, seasonality, price and temporal excitation

have in intermittent demand. This benefits retailers by allowing them to manage their supply

of inventory more optimally by improving the short-term demand forecasts of products, which

in turn enables retailers to reduce operational costs associated with stockpiling. Furthermore,

it gives retailers the ability to make accurate assessments of the effects that promotions, price

changes and marketing campaigns would have on aspects such as profit and revenue, that

inaccurate forecasting methodologies are unable to do.
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Chapter 1

Introduction

The key aim of this work is to develop a range of novel statistical methodologies that have appli-

cations to problems arising in retail analytics. The retail sector, as defined by the UK Office of

National statistics, is an industry where ‘sales of products by retailers are made directly to end

consumers, including spending on goods (in store and online) and spending on services’. The

British retail industrial sector is a significant one; during 2016 the retail sector contributed £192

billion to UK economic output (11.4% of the total) as measured by Gross Value Added [Rhodes,

2017] and the value of retail sales at current prices (non-seasonally adjusted) on predominantly

food stores grew from 151 billion to 154 billion (1.5% increase) [ONS]. Within 2016, for every

pound spent in the retail industry, 40 pence was spent in food stores.

Many companies comprise the British retail industry as a whole, but especially in the food

sector, a large percentage of the supply of food to British households is through a small number

of companies who operate numerous supermarket chains throughout multiple regions in the

United Kingdom. To illustrate this point, 69% of the market share of grocery stores in the

UK between January 2015 to March 2017 was composed of the ‘big four’: Tesco, Sainsbury’s,

Asda and Morrisons [Statista, 2017]. To put this scale into context: Tesco during the 2015-2016

financial year reported approximately 79 million shopping trips per week across their over 6700

stores globally [Tesco PLC, 2017]. Unsurprisingly, as a consequence of operating at such a

transactional and regional scale, the volume of data these companies now collect is large, and

increasing. Whether from the increase of retail purchases done online in the UK [Rhodes,

2017], or the fact that globally 66% of shoppers report to be a member of one or more loyalty

programs [Nielsen Company, 2016], it generally illustrates the vast resource of information to

which retailers now have access.

In recent years, this growth of data that British retailers now collect is part of a larger
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trend known as ‘big data’. For retailers, the value and insights that data can provide is well es-

tablished, as retailers are increasingly deploying teams of analysts and modelling specialists who

devote themselves to better understanding how data can be used to find solutions and insights

that previously were unobtainable without such a mass of available information. On the cutting

edge of this development of retail analytics is the collaborator of this work, dunnhumby, who

have used analytics to save £16 million in one year by optimally managing their supply chain

during seasonal periods and to improve repeat business by building effective loyalty schemes

[Swabey, 2013, Turner and Wilson, 2006]. In the increasingly competitive landscape of retail,

innovative companies are now using ‘big data’ to identify inefficiencies and create a distinct

advantage that otherwise would be difficult to achieve.

During this work, we focus on the supermarket sector of the retail industry and explore

how clustering and forecasting methodologies can be used to create a competitive advantage.

Although it should be noted, that all data this work is based on has been fully anonymised for

general research purposes so that no individual shoppers, or any other sensitive data could be

identified.

1.1 Clustering methodologies

The scale and complexity of data that retailers now manage has, in instances, led to many con-

ventional methodologies of processing, analysing and interpreting data needing to adapt. One

such class of approach used to better understand and interpret data is clustering methodologies,

which have now been widely applied to the field of retail analytics. Clustering approaches have

been extensively used to improve retailer processes; for example, boost revenue by improving

product recommendations [Lawrence, Almasi, Kotlyar, Viveros, and Duri, 2001], improve the

stock replenishment of inventory systems [Stefanovic, Stefanovic, and Radenkovic, 2008, Bala,

2012], reduce computational runtime [Sarwar, Karypis, Konstan, and Riedl, 2002], target mar-

keting efforts more effectively [Kashwan and Velu, 2013] and represent a neat and automated

approach of classifying large and complex retailer data that allows for clear, interpretable and

actionable results [Ghosh and Strehl, 2005]. In short, clustering approaches are widely applied

in retail, where they demonstrate utility in terms of predictive performance and allowing data

to be more easily interpreted, both of which create an advantage to retailers who have the data

to support such initiatives.

1.1.1 Clustering cross-elasticity coefficients

One such area in which retail analytics could benefit from a clustering methodology is the

analysis of cross-elasticity coefficients. Retailers frequently implement demand modelling
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methodologies for a range of purposes, one reason being to better understand how the underly-

ing phenomena at play in the environment, such as a product’s price, its competitors’ prices and

seasonal dynamics, impact a product’s demand. One set of phenomena retailers are particularly

interested in is how a product’s demand is affected by changes of its own price as well as changes

of its competitors’ prices. This relationship between change in demand and price changes is

often expressed through direct and cross-elasticity coefficients. These coefficients link the rate

of change in the demand of a product to a change of its own price, and the rate of change in

the demand of a product to changes of its competitor’s price, respectively. Broadly speaking,

the motivation of analysing products in terms of their direct and cross-elasticity coefficients is

two-fold. Firstly, these coefficients are analysed to derive possible insights aimed at aiding public

policy with findings often striving to improve dietary trends. Secondly, they are analysed from

the retailers’ perspective, where these coefficients are used to form a strategic understanding

of how their products demand is affected by competitors’ prices, measure the responsiveness to

marketing efforts or generally inform profit maximisation strategies. However, in spite of the

analysis of cross-elasticity coefficients being widespread in the literature, there is surprisingly

no formal methodology that automates the comparison of the cross-elasticity coefficients in a

systematic way. Instead, economists and retail analytics professionals manually analyse the

cross-elasticity output in an ad-hoc fashion, where they assess similarity between products by

studying the absolute differences between cross-elasticity coefficients, and ignore much of the

structurally interesting aspects that cross-elasticity coefficients can exhibit.

The first motivation of this work is the following: we look to develop a methodology that

aims to non-parametrically cluster products in terms of their cross-elasticity coefficients in an

automated fashion, requiring minimal experimenter intervention as possible. In particular,

we use novel Bayesian nonparametric methods that are able to accommodate the complex

heterogeneity and inherent structure exhibited in cross elasticity data.

1.2 Demand forecasting

Forecasting the demand of products that retailers offer to their market is well established. The

aim of demand forecasting is rooted in retailers trying to balance supply and demand. By being

able to anticipate demand inflows, organisations are able to appropriately manage their sup-

ply of a product, which allows retailers to avoid opportunity costs of understocking products

(loss of potential revenue and customer dissatisfaction), or overstocking products (incurring in-

ventory costs, stock depreciation and the likelihood of making sharp price reductions to shift

stock). Consequently, accurate demand forecasting is closely related to effective supply chain
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and inventory management and consequently, retailers often make concerted efforts to develop

methodological approaches that reduce the downsides of inaccurate demand forecasts. Finally,

retailers’ interest in demand forecasting stems from a desire to understand the effect that nu-

merous drivers have on the demand of their products. By understanding what drives a product’s

demand, retailers can better ascertain the motivations behind consumer choices, marketing ef-

fects and seasonal aspects which crucially allows them to make confident and assured decisions

in light of the available information, and invest resources accordingly [Steenburgh, 2007, Rudin,

Letham, and Madigan, 2013, Ferreira, Lee, and Simchi-Levi, 2015]. Unsurprisingly, demand

forecasting is especially important for large retailers who operate many large regional outlets,

as the impact of incremental improvements of efficiencies translates to significant gains or losses

in revenue. Thus, retailers that use their data to anticipate demand place themselves at distinct

advantage compared to retailers who do not.

1.2.1 Forecasting intermittent demand of slow-moving-inventory

Many demand forecasting approaches are successful at achieving their objectives of profit max-

imisation, improving inventory management or gaining a clearer understanding of the factors

impacting a product’s demand. However, forecasting the demand of some products is more dif-

ficult than it is for others. One such class of products that are traditionally difficult to forecast

the demand for are known as slow-moving-inventory.

The demand patterns of slow-moving-inventory products are generally characterised by being

very intermittent, in that there is typically an inflation of zero sales and that, when a sale does

occur, it is often followed by a quick succession of sales. The inflation of zeros and burstiness

in the intermittent demand of slow-moving inventory make demand forecasting challenging, as

it can obfuscate an understanding how the environment, and more specifically the covariate

information, impacts the demand signal. Consequently, forecasting models not fully incorpo-

rating the nuanced covariate and temporal dynamics of intermittent demand of slow-moving

inventory frequently lead to inaccurate forecasts, which in turn inhibits a retailer’s ability to

balance supply with demand. Methodologies from fields such as machine learning and statistics

have sought to handle the issues arising from intermittent demand forecasting. However, there

does not seem to be a unified forecasting methodology that handles the zero-inflation, temporal

burstiness and provides an explanation of the underlying phenomena existing in the intermittent

demand of slow-moving inventory in a simultaneous fashion.

The second motivation of this work is the following: we strive to develop a forecasting method-

ology for the intermittent demand of slow-moving inventory that unifies the structural artefacts
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of hierarchy, auto-correlation, cross-correlation and temporal clustering across multiple inter-

mittent demand series whilst still offering explanatory power. We do this by representing the

intermittent demand as a structured multivariate point process which includes a hurdle com-

ponent for the abundance of zero demand, a Hawkes process to cope with temporal clustering

within and across products, and a hierarchal structure to pool information across a large number

of products.

The rest of this work is structured as follows: Chapter 2 provides a background of the Bayesian

method and outlines the inferential procedures relevant to this work. Chapter 3 presents the

work of Bayesian nonparametric (BNP) models, focusing on Dirichlet process mixture models.

Chapter 4 describes in deeper detail retailers’ interest in the analysis of cross-elasticity coef-

ficients and outlines existing work in cross-elasticity analysis. Chapter 5 presents a clustering

methodology for the coefficients of cross-elasticity demand models which allows retail analysts

to characterise supermarket products in terms of their sales sensitivity. Chapter 6 introduces

the challenges related to forecasting the intermittent demand of slow-moving inventory. This

chapter goes on to outline the existing work in intermittent demand forecasting, and further

describes hurdle regression models and a class of point process known as the Hawkes process.

Chapter 7 presents a novel regression model able to forecast the intermittent demand for

slow-moving-inventory that uses a Bayesian hierarchical hurdle model with excitation compo-

nents described by a Hawkes process that captures the temporal dynamics exhibited in the

intermittent demand of slow-moving-inventory data. Chapter 8 concludes by reiterating the

contribution of this work and further describes the scope for future applications of the Bayesian

approach to retail analytics.
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Bayesian inference

This Chapter gives a brief overview of the statistical modelling paradigm known as Bayesian

statistics. Section 2.1 describes a general statistical framework relevant to this work along

with descriptions and benefits of the Bayesian method. Section 2.2 provides a background

on Markov chain Monte Carlo (MCMC) methods as the primary route to statistical inference

under the Bayesian framework. The objective of this chapter is to give the reader a practical

understanding of the framework underpinning Bayesian statistics and MCMC theory as well as

providing a description of the relevant MCMC algorithms employed in this work.

2.1 The statistical model paradigm

The broad aim of statistical inference is to describe a set of observations from some process

as draws from some probability model that is itself a representation of the original process.

More concretely, suppose we observe a sequence y1, y2, ..., yn of instances which are assumed

to be drawn randomly from a sequence of random variables Y1, Y2, ..., Yn with respect to the

sample set Ω. We then introduce the notion of probability models, Pθ (i.e. processes of iden-

tical distributional form with respect to some θ), indexed by θ ∈ Θ - where θ are parameters

with respect to some parameter space Θ. Assuming that these y1, y2, ..., yn observations were

generated independently and identically from the models Pθ, we can then write the following:

Yi
iid∼ Pθ, for i = 1, ..., n (2.1)

for some θ ∈ Θ [Cai, 2014]. The key objective to statistical modelling is making inferences based

on the observed data D = {y1, y2, ..., yn} with the constraints of the probability models specified

by Pθ. There are two main approaches to statistical inference; the classical and Bayesian

approaches. Broadly speaking, the classical approach treats all parameter values θ as unobserved

fixed constants, whereas the Bayesian approach treats θ as another random variable. During

this work, we operate under the Bayesian approach.
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2.1.1 The Bayesian method

Under the Bayesian paradigm, the model of (2.1) can be re-expressed as the following:

yi
iid∼ F (y | θ), for i = 1, ..., n

θ ∼ π
(2.2)

where F (y | θ) is the distributional form of Pθ and π is the prior distribution of θ. The key to

the Bayesian approach is the specification of the prior π over parameter space of Θ. The prior π

is aimed to represent all prior knowledge of the θ values, and supposed to reflect expertise before

the outset of an experiment. Consequently, Bayesian statistics is interested in characterising

the entire distribution of p(θ | D), referred to as the posterior distribution, and then deriving

relevant statistics from this distribution. The derivation of relevant statistics from p(θ | D) is

known as posterior inference.

Bayesian methodologies have been widely applied to a range of disciplines from spatial weather

modelling to the temporal modelling of coal mining disasters [Reich and Fuentes, 2007, Taddy,

Kottas, et al., 2012], and are perceived to have useful properties when used to model data.

However, for the purposes of this work, the benefits of the Bayesian method are the following:

• Expressing prior beliefs: Through the specification of prior distribution π, experi-

menters are able to express their prior beliefs of the likely values of θ. This allows ex-

perimenters to penalise the complexity of fitted statistical models and therefore, can be

used as a mechanism to reduce overfitting data [Simpson, Rue, Riebler, Martins, Sørbye,

et al., 2017, Murray and Ghahramani, 2005, MacKay, 1992]. The process of overfitting is

the situation where a statistical model too closely fits a limited set of data. In addition to

penalising complexity, priors can be used to handle issues related to parameter estimation

in instances of small sample sizes [Sahu and Smith, 2006].

• Hierarchical borrowing: In the situation of hierarchical or multilevel modelling, the

Bayesian framework naturally allows information pooling between parameters across the

various levels of the model hierarchy. Under the i.i.d assumption, a Bayesian hierarchical

model can be expressed as:

yi
iid∼ F (y | θ), for i = 1, ..., n

θ ∼ π(ω)

ω ∼ Π

(2.3)
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where Π is the prior of the hyper-parameters ω that parametrise π. In this instance, the

hyper-parameters ω of the prior distribution π are themselves random quantities. This

information pooling across parameters has been found to offer improvements to model

fit and predictive performance in instances where a hierarchical structure exists [Gelman,

2006, Jensen, Shirley, and Wyner, 2009].

• Expressing uncertainty of experimental quantities: As quantities in the Bayesian

framework are themselves random processes, expressing the uncertainty around parameter

inferences is automatically inherited from the Bayesian approach [Kass and Raftery, 1995,

Berger and Pericchi, 1996]. Consequently, the posterior predictive distribution p(y∗ | D),

where y∗ is new predictive data point, is naturally accompanied with uncertainty which

crucially allows prediction intervals to be constructed around quantities of interest. This

is particularly valuable in contexts such as ours, where experimenters are interested in

the likely distribution of outcomes. In these situations, the Bayesian approach has been

shown to offer particular utility [Tu and Zhou, 2010, Kalyanam, 1996, Lee, Boatwright,

and Kamakura, 2003].

Although these points are by no means exhaustive, they are a stylised list of benefits relevant

to this work. However, analytical expressions and direct sampling from P (θ | D) is often in-

tractable, which therefore presents challenges. A class of sampling algorithms known as Markov

chain Monte Carlo (MCMC) have been developed that can accommodate posterior inference.

2.2 MCMC algorithms

The key idea behind MCMC is to simulate a sequence of random variables {θ0, θ1, θ2, . . .} such

that these samples are samples drawn from P (θ | D). One route to generating a sequence of

random variables {θ0, θ1, θ2, . . .} equivalent to samples drawn from P (θ | D) is by constructing

a Markov chain whose stationary distribution π is precisely the target distribution P (θ | D).

We now denote the distribution P (θ | D) as φ(·), and refer to this as the target distribution.

Before constructing the appropriate Markov chain whose stationary distribution π is φ(·), we

outline the sufficient conditions that such a Markov chain T needs to satisfy. These conditions

are as follows:

Definition 1. T is irreducible

A Markov chain Tij is irreducible if for every i, j there exists a finite integer mij such that

p(Tmij = j | T0 = i) > 0.

Definition 2. T is aperiodic
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A Markov chain Tij is aperiodic if for every i, gcd{n > 0 : p(Tn = i | T0 = i) > 0} = 1 is

satisfied.

Definition 3. T is positive recurrent

Let ti = min{n ≥ 0 | Tn = i}, then a Markov chain Tij is positive recurrent if for every i,

E(ti | T0 = i) <∞.

Given such a Markov chain T , it will have a unique stationary distribution π(·), and is such

that for every i, j ∈ S

lim
n→∞

Tni,j = πj

where Tni,j = p(Tn = j | T0 = i), and πj is the density of state j under the distribution π

[Gilks, Richardson, and Spiegelhalter, 1995]. Importantly, the right hand side of this limit is

independent of the initial state i, which therefore indicates the unique stationary distribution

is independent of the starting state of the Markov chain.

Having generated {θ0, θ1, θ2, . . .} samples from the target distribution φ(·), quantities of interest

such as posterior mean and variance associated with φ(·) can be estimated using Monte Carlo

integration. Monte Carlo integration evaluates integrals of the form E [f (θ)] =
∫
f(θ)φ(θ)dθ by

drawing samples {θt, t = 1, . . . , n} from φ, and approximating E [f (θ)] as:

E [f (θ)] ≈ 1
n

n∑
t=1

f (θt) .

We now present a few MCMC methodologies that allows one to generate samples from the target

distribution φ.

2.2.1 Metropolis Hastings

The Metropolis-Hastings (MH) algorithm [Metropolis et al., 1953] is a method used to generate

samples from some target distribution φ(·), and does so by constructing a Markov chain whose

stationary distribution π(·) is exactly φ(·). The algorithm is as follows:

Metropolis-Hastings algorithm:

Given a current state θt at iteration t, the next state θt+1 is selected by first sampling a candi-

date point θ∗ ∼ q(· | θt), where q(· | θt) is some proposal distribution. The candidate point θ∗

is accepted as the new state θt+1 with probability α(θt, θ∗) which is given by:

α(θt, θ∗) = min
(

1, φ(θ∗)q(θt | θ∗)
φ(θt)q(θ∗ | θt)

)
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If the candidate point θ∗ is accepted, then θt+1 = θ∗ and otherwise θt+1 = θt. The MH

algorithm is guaranteed to converge to the stationary distribution π(·) subject to conditions

on q(· | ·) [Roberts and Smith, 1994]. This algorithm produces a sequence of {θ0, θ1, θ2, . . .}

samples such that, once the first instance θt is sampled from π(·), then all subsequent samples

θk for k > t will also be from π(·), as guaranteed by the positive recurrent condition [Gilks,

Richardson, and Spiegelhalter, 1995].

The MH algorithm is equivalent to constructing a Markov chain with transition matrix

Tt,t+1 = p(θt+1 | θt) given by:

Tt,t+1 = q(θt+1 | θt)α(θt, θt+1) + 1(θt+1=θt)

[
1−

∫
q(θ | θt)α(θt, θ)dθ

]
.

This Markov transition matrix satisfies the conditions of irreducibility, aperiodicity and posi-

tive recurrence and has stationary distribution φ(·). In other words, the Metropolis Hasting

algorithm converges to our target distribution φ(·).

2.2.2 Gibbs sampling

An alternative route to posterior inference used in instances when the target distribution φ(·) is

multivariate and has closed-form conditional posterior distributions is Gibbs sampling [Geman

and Geman, 1984]. Gibbs sampling generates θt samples by sampling each component-wise

element of the vector of θt from its conditional distribution, subject to keeping the other com-

ponents of the vector θt fixed to their current values. The algorithm is as follows:

Gibbs sampling algorithm:

Take θit to be the ith coordinate of vector θt (of dimension D) and θ−it be the vector of all

coordinates of θt excluding the ith component, i.e. θ−it =
(
θ1
t , . . . , θ

i−1
t , θi+1

t , . . . , θDt
)
. At the tth

iteration, the following sequence of samples are taken:

θ1
t+1 ∼ φ(θ1

t | θ2
t , θ

3
t , . . . , θ

D
t )

θ2
t+1 ∼ φ(θ2

t | θ1
t , θ

3
t , . . . , θ

D
t )

...

θDt+1 ∼ φ(θDt | θ1
t , θ

2
t , . . . , θ

D−1
t ).

This produces a sequence of {θ0, θ1, θ2, . . .} samples that converges to the stationary distribution

φ(·). Gibbs sampling is a popular approach to posterior inference in instances when sampling

from the conditional φ(θ1
t | θ2

t , θ
3
t , . . . , θ

D
t ) is manageable. The Gibbs sampler is a special case
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of the MH algorithm with a proposal distribution q(θt+1 | θt) = φ(θit | θ−it ) [Geyer, 1998], and

thus guarantees algorithm convergence by satisfying the necessary Markov chain conditions of

irreducibility, aperiodicity and positive recurrence.

2.2.3 Hamiltonian Monte Carlo

Another MCMC methodology aiming to efficiently sample φ(·) is the Hamiltonian Monte Carlo

algorithm (HMC) [Duane, Kennedy, Pendleton, and Roweth, 1987]. HMC uses the principles of

Hamiltonian dynamics to describe the evolution of a physical system as a function of its state

pair (q, p), where q is the position and p is the momentum of the system. The system is then

defined by:
dp

dt
= −∂H

∂q
,

dq

dt
= −∂H

∂p
(2.4)

where H(q, p) is the Hamiltonian function. Frequently, H(q, p) coincides with the total energy of

the system and assumed to take the form H(q, p) = U(q)+K(p), where U(q) = potential energy

and K(q) = kinetic energy. Crucially, (2.4) fully describes the trajectory of motion such that, for

time t′, the H(q, p) defines a mapping from any state (q, p) at time t to state (q′, p′) at time t′+t.

The key to connecting Hamiltonian dynamics with MCMC is to construct a Hamiltonian

function H(q, p) in terms of the target distribution φ(·). In particular, HMC assumes H(q, p)

takes the form U(θt) = − log(φ(θt)), and typically assumes K(p) = −pTM−1p/2 where M is a

symmetric, positive-definite matrix. There are many functional forms that K(p) can take, for

further discussion refer to [Betancourt, 2017]. This produces the following dynamics:

dp

dt
= −∂U

∂θ
,

dθ

dt
= M−1p.

To simulate the evolution of this system it is necessary to discretise time. The dynamics can

be approximated with arbitrary precision by solving these differential equations using Euler’s

or Leapfrog methods. The HMC algorithm is as follows:

Hamiltonian Monte Carlo algorithm:

At the tth iteration, sample a momentum variable p′ ∼ N(0,M). Then with p′ and qt, simulate

Hamiltonian dynamics from:
dp

dt
= −∂U

∂θ
,

dθ

dt
= M−1p

with the leapfrog method or some equivalent method to solve a set of differential equations to

produce a final state (θ′, p′), and take (θ∗, p∗) = (θ′,−p′). With the proposed state (θ∗, p∗), a
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MH step is performed with acceptance probability:

α(θ, θ∗) = min (1, exp (−H(θ∗, p∗) +H(θt, pt))) = min (1,−U(θ∗) + U(θt)−K(p∗) +K(pt)) .

If the candidate point is accepted, set θt+1 = θ∗ otherwise θt+1 = θt. This produces a Markov

chain that converges to φ(·). For further HMC details and review, refer to [Neal et al., 2011].

2.3 Implementation details

The algorithms covered in subsections 2.2.1, 2.2.2 and 2.2.3 all produce sequences of random

samples {θ0, θ1, θ2, . . .} eventually converging to the target distribution φ(·). We now discuss

approaches used to assess convergence and factors affecting the rate of convergence. There are

many diagnostic measures used to indicate MCMC convergence, such as the Geweke diagnostic,

Heidelberger and Welch statistic and Augmented Dicker-Fuller [Geweke et al., 1991, Heidel-

berger and Welch, 1981, Godfrey, 1978] to mention a few. It is important to note however,

that MCMC diagnostic tools are only indicators of MCMC convergence, rather than ‘proving’

convergence. For a deeper review of these MCMC convergence assessments, refer to [Cowles and

Carlin, 1996]. During this work, we use the following diagnostic approaches to assess MCMC

convergence:

MCMC diagnostics:

The core interest is in establishing whether the samples {θ0, θ1, θ2, . . .} have converged to the

stationary distribution φ(·), and thus, originate from a single distribution. Throughout this

work, we use the following criteria to assess MCMC convergence:

• Trace plots: These plot the sequence of sampled θt values against t (MCMC iteration

index). Once an MCMC algorithm has converged to the stationary distribution, samples

should look like they originate from a single distribution. Furthermore, multiple MCMC

chains from differing starting values of θ0 should eventually converge to the same stationary

distribution φ(·).

• Heidelberger and Welch statistic: This test is used to determine whether MCMC

samples come from a stationary distribution (the null hypothesis). There are two phases

to this test:

1) Phase one: the MCMC samples are iteratively tested for stationarity, i.e. we initially

test the whole chain for stationarity, if it passes, then we infer the chain has converged

(and move on to the second phase). Otherwise, we successively omit the first 10%, 20%, . . .
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of the samples and test for stationarity until there are less than 50% of the original samples

remaining or the chain has at some point passed one of the stationarity tests. If the chain

does not pass any of these iterative stationarity tests, we infer non-convergence and do

not progress on to the second phase.

2) Phase two: Using the proportion of the chain which passed the previous phase,

we calculate a 95% credible interval around the mean using the half-width test.

MCMC tuning:

Producing chains that efficiently converge often requires tuning of the parameters associated

with the chosen MCMC methodology. In terms of the previously outlined algorithms, this

relates to the chosen proposal distribution used in the MH algorithm, burn-in and chain length.

In particular, we focus on the following:

• MH q(· | θt) proposal: The choice of q(· | θt) in the MH algorithm significantly impacts

convergence efficiency. Much work has been done in investigating the link between q(· | θt)

and convergence performance [Neal et al., 2006, Rosenthal et al., 2011, Sherlock et al.,

2010], but generally speaking, optimal performance is achieved when the transition kernel

is similar to the target distribution φ(·) [Pasarica and Gelman, 2010, Sun, 2008]. Work

has further looked at how incorporating information about the distribution of φ(·) into

q(· | θt) can be used to help produce accelerated convergence and reduce correlation

between MCMC samples [Roberts and Stramer, 2002, Cai et al., 2008, Turner et al.,

2013].

• Burn-in: As discussed earlier, once the first instance θt is sampled from the stationary

distribution π(·), all subsequent samples are also from the stationary distribution. It is

however, not always straight-forward to know when this first sample from the stationary

distribution is obtained. In theory, depending on the desired level of similarity between

Tnt,t+1 and φ(·), the first sample can be analytically calculated [Gilks et al., 1995, Roberts,

1996], but this in practice is computationally infeasible. To circumvent this, a burn-in

period is taken, i.e. the initial t = 1, . . . ,m samples are discarded and the remaining

samples are assumed to originate from the stationary distribution.

• Chain length: Once a chain has converged to its stationary distribution, a decision on

how many samples are needed for adequate precision is required. Often, Monte Carlo

variance or calculations of the effective sample size based on MCMC chains are performed

to assess whether the appropriate number of samples have been obtained.
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Throughout this work, Bayesian inference is performed by implementations of 2.2.1, 2.2.2 and

2.2.3. Although the focus of this research is not the inferential procedures used during this work’s

retail analytics modelling, particular attention is paid to tuning and MCMC chain convergence,

which is assessed in line with the previously discussed points.



Chapter 3

Bayesian Nonparametrics

This Chapter gives an overview of the Bayesian nonparametric mixture modelling paradigm.

We provide definitions of parametric and nonparametric models, with particular reference to

the Dirichlet process, and discuss the motivations of using nonparametric models when handling

complex and non-linear datasets. We further provide various relevant expositions of the Dirichlet

process, and briefly mention approaches used for posterior inference for the Dirichlet process.

3.1 Bayesian Nonparametric mixture models

During section 2.1, we introduced the notion of probability models and the broad framework

that statisticians interpret data through. To refresh the reader, the model (2.2) specified the

Bayesian paradigm of statistical modelling which supposed a sequence y1, y2, ..., yn of instances

drawn independently and identically from the probability models Pθ (with distribution F (· | θ)),

indexed by parameters θ ∈ Θ (with parameter space Θ), can be expressed as the following:

yi
iid∼ F (y | θ), for i = 1, ..., n

θ ∼ π
(3.1)

where π is the distribution over parameter space Θ.

We now introduce the notions of parametric and nonparametric models in relation to the

model (3.1). We say the model has a parametric prior if Θ ⊂ L, where L is a finite linear

spanning set. A set L is a finite linear spanning set if there exists a k ∈ N and elements l1, . . . , lk

of L, such that, all elements of L can be expressed as a linear combination of elements l1, . . . , lk

[Vallejos, 2008]. Consequently, parametric models bound the dimension of the solution space,

irrespective of the number of samples being modelled. This can lead to model misfit when data

is characterised by heterogeneity beyond probability models with a finite parameter space.
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Motivated by the shortcomings of parametric models at handling complex data, nonparametric

models can be devised to circumvent these aforementioned issues. We define a nonparametric

model as one with an infinite dimensional parameter space [Orbanz and Teh, 2011, Müller et al.,

2004], and for such a parameter space Θ, there exists no k and corresponding elements of Θ such

that these elements span Θ. Thus, in order for model (2.2) to be Bayesian nonparametric, it is

necessary to specify an infinite dimensional prior over the space Θ. One of the main strengths of

nonparametric models over parametric models is their capability of capturing any distribution

of the data. The caveat of this flexibility is the computational cost of requiring more data to

adequately infer the correct model structure. This can be intuited from the following example;

suppose one fits a simple linear regression to data. In this situation, inference for such a model

requires less data as one borrows strength from the assumption the data lies on a straight line.

In the case of a nonparametric model, no such linearity assumption is made and consequently,

linearity is inferred from the data. This results in nonparametric methods requiring more data.

A popular branch of Bayesian nonparametrics (BNP) models are Bayesian nonparametric

priors. Bayesian nonparametric priors can be thought of as the prior over probability measures,

i.e. the distribution over distributions. Such nonparametric priors have useful applications to

mixture modelling. Extending (2.2) to a mixture model can be expressed hierarchically as:

yi|θi
ind.∼ F (y|θi), for i = 1, ..., n

θi|G
i.i.d.∼ G

G ∼ G0

(3.2)

where G0 is some nonparametric prior over countable measures, and G is an instance of such

a measure. The Dirichlet process is an example of such a nonparametric prior over countable

measures, and is widely used in fields such as finance, medicine and survival analysis [Kottas,

2013, De Iorio et al., 2009, Wade et al., 2014].

The forthcoming sections of this chapter introduce the Dirichlet distribution along with its

basic properties. The Dirichlet distribution can be considered a semi-parametric prior, and

will provide the reader with the prerequisite material to understand subsequent content. Lat-

ter sections will move on to defining the Dirichlet distribution’s nonparametric extension, the

Dirichlet process, along with its properties and applications relevant to this work.
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3.2 Notation & mathematical background

We introduce some prerequisite terminology and mathematical definitions needed to formally de-

fine the Dirichlet Process. In particular, we define the key concepts of a σ-algebra, a measurable

space, a probability measure and the measurable function known as the Dirac measure.

Definition 4. σ-algebra

We say B is a σ-algebra on the set X if it satisfies the following:

1. X ∈ B.

2. If S is in B, then Sc ∈ B .

3. For all countable collections {Ei}i∈N ∈ B, then ∪i∈NEi ∈ B.

Definition 5. Measurable space

We say the pair (X ,B) is a measurable space if B defines a σ-algebra on the set X .

Definition 6. Probability measure

Let (X ,B) be a measurable space. We say a function µ : B → [0, 1] is a probability measure if

the following are satisfied:

1. ∀E ∈ B, µ(E) ≥ 0.

2. µ(∅) = 0.

3. µ(B) = 1.

4. For all countable collections {Ei}i∈N of pairwise disjoint sets in B, we have µ(
⋃∞
i=1Ei) =∑∞

k=1 µ(Ei).

Definition 7. Dirac measure δx

The Dirac measure δx on a measurable space (X ,B) is defined such that, for any measurable

set A ⊂ B and x ∈ X :

δx(A) =

 0, x /∈ A

1, x ∈ A

Crucially, a probability distribution function can be thought of as a probability measure, and

a σ-algebra can be informally thought of as the sensible, non-paradoxical sets upon which

traditional probability distributions are defined.
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3.3 Dirichlet distribution

The Dirichlet distribution is a popular distribution under the Bayesian formulation, and is

frequently used as a semi-parametric prior π over a parameter space Θ. Informally, the Dirichlet

distribution can be thought of as a prior over finite probability mass functions, and is defined

as follows:

Definition 8. Dirichlet distribution

Let P = (P1, ..., Pk) be the random components of a probability mass function, i.e. Pi ≥ 0

for i = 1, ..., k and
∑k
i Pi = 1. We say P is distributed according to a Dirichlet distribution

with parameters α = (α1, ..., αk) where αi ≥ 0 for i = 1, ..., k, denoted as P ∼ Dir(α), if its

probability mass function f(P1, . . . , Pk | α) satisfies:

f(P1, . . . , Pk | α) =
Γ (
∑
i αi)∏

i Γ(αi)

k∏
i=1

Pαi−1
i (3.3)

where Γ(t) =
∫∞

0 xt−1exdx. For k = 2, the Dirichlet distribution reduces to the Beta(α1, α2)

distribution.

An important observation of the Dirichlet distribution is its domain space; since P =

(P1, . . . , Pk) ∼ Dir(α) where
∑k
i Pi = 1 such that Pi ≥ 0 for each i, it follows that P is

a probability mass function. Thus, the Dirichlet distribution can be thought of as a prior

distribution over the space of finite probability mass functions. The Dirichlet distribution has

the following properties:

Dir(α) moments:

The mean and covariance of Dir(α) are given by:

E(Pi) = αi∑k
i=1 αi

(3.4)

Cov[Pi, Pj ] = αiαj
α2

0(α0 + 1) (i 6= j) (3.5)

respectively, where α0 =
∑k
i=1 αk. These expressions provide insight into how the parameters

α contribute to samples generated from Dir(α) in that, the αi control the relative likelihood of

the ith component and further contribute to the correlation between components.
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Multinomial conjugacy:

A key property of the Dirichlet distribution is its conjugacy with the multinomial distribution.

The multinomial distribution is defined as follows; suppose we take n independent samples

of k mutually exclusive categories with the ith category having success probability Pi (i =

1, . . . , k), then the multinomial distribution is the distribution over the number of occurrences

xi of category i for i = 1, . . . , k, and has probability mass function given by:

f(x1, . . . , xk|n, P1, . . . , Pk) = n!
x1!x2! . . . xk!

k∏
i=1

P xii . (3.6)

We denote this distribution as Multinomial(k, n, P ). Importantly, suppose P ∼ Dir(α) and

X | P ∼ Multinomial(k, n, P ) where X = (x1, . . . , xk), then the posterior distribution is given

by P |X ∼ Dir(α+X). This is a significant result, as it means the Dirichlet distribution is the

conjugate distribution over the space of finite probability mass functions.

Aggregation property of the Dirichlet distribution:

Our final Dirichlet distribution property is the aggregation property. This property can be

informally thought of as the effect of clumping together different parts of probability space,

i.e. if one combines non-intersecting sectors of the space, then one has a Dirichlet distribution

over the new augmented space. More concretely, if one has a partition {A1, ..., Ar} of the set

{1, ..., k}, then:

(∑
i∈A1

Qi,
∑
i∈A2

Qi, . . . ,
∑
i∈Ar

Qi

)
∼ Dir

(∑
i∈A1

αi,
∑
i∈A2

αi, . . . ,
∑
i∈Ar

αi

)
.

This property offers an intuition into the formulation of the Dirichlet distribution, and also

provides utility with respect to inferential methods which we will allude to in latter sections.
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3.4 Dirichlet process

Ferguson [1973], motivated by the difficulty of specifying nonparametric priors in the Bayesian

framework, introduced the Dirichlet process as a class of nonparametric prior distributions. The

Dirichlet process can be thought of as the prior distribution over countable measures, or the

distribution over distributions. Ferguson argued that any Bayesian nonparametric prior should

exhibit the following two appealing characteristics:

1. The support for the prior is large.

2. The posterior distributions given a sample of observations from the true probability dis-

tribution should be analytically manageable.

Definition 9. Dirichlet process

We say G is distributed according to a Dirichlet process with parameters G0 (base distribution)

and ν (scale), denoted as G ∼ DP(νG0), if for any σ-algebra B of the space Θ, and given any

finite partition A1, ..., Ak ⊂ B, we have the following property:

(G(A1), . . . , G(Ak)) ∼ Dir(νG0(A1), . . . , νG0(Ak))

for any k ∈ N.

Ferguson [1973] proved the existence of such a stochastic process sharing these DP criteria

by verifying the Kolmogorov consistency theorem [Kolmogorov, 1933]. The Dirichlet process

has the following key properties:

Discreteness:

Samples of DP(νG0) are discrete random measures. Ferguson [1973] proved their discreteness by

using an involved analysis of Gamma processes. Crucially, this discreteness allows for mixture

modelling, as the probability of two samples coinciding from a G measure is non-zero, thus

allowing a cluster interpretation.

Realisations of G ∼ DP(νG0) are random probability measures:

This is verified by an alternative definition provided by Ferguson [1973], which expresses a

Dirichlet process G as:

G =
∞∑
i=1

piδθi

with pi = ji/
∑∞
l=1 jl, where jl are random variables constructed from the distribution func-
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tions P (j1 ≤ x1) = eN(x1), N(x) = −α
∫∞
x
e−yy−1dy where α > 0, and P (jk ≤ xj |jk−1 =

xk−1, . . . , j1 = x1) = eN(xk)−N(xk−1) for 0 < xk < xk−1 and j ≥ 2. They showed that this

construction is a random probability measure and is in fact, a Dirichlet process. Ferguson fur-

ther showed that for DP(νG0) defined over measurable space (Θ,B), and Q a fixed probability

measure on (Θ,B) with Q� νG0, then for any m and measurable sets A1, . . . , Am, and ε > 0:

P (|G (Aj)−Q (Aj) | < ε for j = 1, . . . , k) > 0.

These two results have the following important implications; firstly, it verifies that G is a prob-

ability measure on the measurable space (Θ,B) and secondly, it demonstrates the fulfilment of

the objective that the nonparametric prior support is sufficiently large. However, it is important

to note that this alternative definition is not constructive, i.e. we are unable to generate samples

from this definition due to the normalisation constant
∑∞
l=1 jl.

Moments of DP(νG0):

The mean and variance of DP(νG0) are given by:

E(G(A)) = G0(A)

Var(G(A)) = G0(A)(1−G0(A))
1 + ν

respectively. These moments give us a sense of how the parameters of DP(νG0) contribute to

G ∼ DP(νG0) realisations; i.e. G0 controls where realisations are centred, and ν controls the

degree to which realisations are close to G0.

DP conjugacy:

A key property of the DP is its conjugacy with the multinomial. Since G is a random measure,

we can sample θi
iid∼ G for i = 1, . . . , n. The posterior of G given observed values θ1, ..., θn is

then given by:

G|θ1, . . . , θn ∼ DP
(
ν + n,

ν

ν + n
G0 + n

ν + n

∑n
i=1 δθi
n

)
.

This means the DP is the conjugate prior over distributions that are closed under posterior up-

dates given observations [Teh, 2011]. This has a theoretical significance, since it meets Ferguson’s

second criterion, that posterior distributions given a sample from the true random measure from

the DP should be tractable. This has practical significance, as it gives one routes into developing

straight-forward procedures for posterior inference.
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3.4.1 Blackwell-MacQueen urn scheme

Blackwell and MacQueen [1973] used a Polya urn scheme to provide an alternative definition

of the Dirichlet process. This provided a generative model for producing random measure

instances as specified by Ferguson’s Dirichlet process. More concretely, the DP is re-expressed

as the following; given samples θ1, . . . , θn of G where G ∼ DP(νG0), G is integrated out of the

joint distribution of θ1, . . . , θn+1. The posterior predictive distribution then becomes:

θ1 ∼ G0

θn+1|θ1, . . . , θn ∼
ν

ν + n
G0(θn+1) + 1

ν + n

n∑
i=1

δθi(θn+1).
(3.7)

Crucially, Blackwell and MacQueen [1973] establish two key properties of the limiting dis-

tribution of G. Firstly, that as n → ∞, the urn scheme converges with probability 1 to a

discrete random measure G, and secondly, that this G is identical to a sample from DP(νG0).

From the joint distribution induced from p(θ1, . . . , θn+1), and along with the definition of

exchangeability and De Finetti’s theorem, Blackwell and MacQueen [1973] establish critically

that θ1, . . . , θn|G ∼ G is equivalent to the DP and that these θ1, . . . , θn+1 are i.i.d draws from G.

There is a clustering property implied from (3.7). By denoting θ∗1 , . . . , θ
∗
n∗ as the set of

unique values of θ1, . . . , θn, we then can rewrite (3.7) as:

θ1 ∼ G

θn+1|θ1, . . . , θn ∼
ν

ν + n
G(θn+1) + 1

ν + n

n∗∑
i=1

niδθ∗
i
(θn+1)

(3.8)

where ni is the number occurrences of θ∗i , and n∗ is the number of unique atoms of θ1, . . . , θn.

(3.8) demonstrates the clustering structure and preferential attachment process at play, as the

probability of the sample θn+1 being assigned to the atom θ∗i is ni
ν+n . This illustrates that

there is a non-zero probability of being assigned to an existing cluster, as well as an increased

probability for atoms to be added to larger clusters.

Antoniak [1974] investigated the expected number of unique mixture components that a sample

θ1, . . . , θn ∼ G induces. They derived:

E(n∗|ν) =
n∑
i=1

ν

ν + i− 1

≈ν log(ν + n

ν
).

(3.9)
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This shows the number of unique clusters n∗ grows logarithmically in n, which indicates the

clustering is well defined, and allows straightforward inference to be developed around the ν

parameter. The DP shares connections with the Chinese Restaurant Process (CRP) [Aldous,

1985]. The CRP is a stochastic process which defines a distribution over partitions of the integers

{1, . . . , n}. The CRP can be intuited by the process of customers attending a restaurant and

selecting tables to sit at. This is as follows; the first customer sits at the first table, and nth

customer chooses table cn, where probability of selecting the kth table is probability nk
ν+n−1 , with

nk being the number of customers at the kth table, and selects a new table with probability
ν

ν+n−1 , i.e.:

p(cn table choice | K partitions ) =

 kth table with probability nk
ν+n−1 ,

new table with probability ν
ν+n−1 ,

This is exchangeable with respect to the customer labels and the tables they sit at. This

possesses a close resemblance with (3.8), which becomes clearer from the relabelled expression

(3.7):

p(cn+1|c1, . . . , cn) = ν

ν + n
δ(cn+1 = K + 1) +

K∑
k=1

nk
ν + n

δ(cn+1 = k). (3.10)

As with the DP, the CRP exhibits a preferential attachment process, as well as the distribution

over the table partitions being the same as the distribution over the cluster sizes [Teh, 2011].

3.4.2 Sethuraman stick-breaking construction

Sethuraman [1994] provided an alternative constructive definition of the DP, known as the

stick-breaking construction. This is as follows; given G satisfying:

G =
∞∑
i=1

πiδθi ,

βi
i.i.d.∼ Beta(1, ν),

πi =βi
i−1∏
l=1

(1− βl),

(3.11)

where θi
i.i.d.∼ G, then G ∼ DP(νG0). This construction has connections with (3.7), as it provides

an intuitive distribution over the cluster partitions. More precisely, Sethuraman [1994] verified

that the probability of the draw θ1 of (3.7)’s urn scheme as the same probability of the partition

denoted by π1 in (3.11). This construction has useful applications to density estimation and

mixture modelling.
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3.5 Dirichlet process applications

Having formally introduced the DP, its various expositions and theoretical properties, we now

describe the applications of the DP. In-particular, we discuss DP’s applications to mixture

modelling and density estimation.

3.5.1 Dirichlet process mixture model

The Dirichlet process mixture model (DPMM) was proposed by Antoniak [1974] as a mixture

model with a DP prior over the random mixing distribution. The DPMM can be hierarchically

expressed as:

yi|θi ∼F (θi)

θi|G ∼G

G ∼DP(νG0).

(3.12)

As discussed in section 3.4.1, the samples G ∼ DP(νG0) induce a clustering structure over the

θ1, ..., θn ∼ G, which in turn induce a partition over the responses y1, ..., yn. An example of

(3.12) is given by (3.13), with N(·, σ1) as the kernel, and base distribution G0 = N(0, σ2):

yi|θi ∼ N(θi, σ2
1)

θi|G ∼ G

G ∼ DP(νG0)

(3.13)

where σ1, σ2 are fixed constants. The DPMM of (3.12) can be further re-expressed using allo-

cation variables as:

yi|θi ∼ F (yi|θZi)

Zi|G0 ∼
∞∑
j=1

πjδj(.)

G0 =
∞∑
i=1

πiδθi

βi
i.i.d.∼ Beta(1, ν)

πi = βi

i−1∏
l=1

(1− βl)

θi ∼ G0

where Zi denotes the index that the ith data point has been allocated to. Though the observa-

tions yi, ..., yn are continuous, by discreteness of G, we interpret two observations yi, yj being
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clustered together if they share the same allocation variable, i.e. Zi = Zj , and therefore the

same atom θi = θj . Furthermore, if Zi 6= Zj for i 6= j, it follows almost surely that θi 6= θj ,

since the θi realisations are unique for continuous G0. This guarantees different allocations have

different atoms. We derive the probability of the responses yi, yj for i 6= j, belonging to the

same cluster as follows; from the exchangeability of labels of i, j, we can therefore relabel them

as i = 1, j = 2. Thus, from (3.7) we obtain:

θ2|θ1 ∼
ν

ν + 1G(θ1) + 1
ν + 1δθ1 .

Hence, the probability of responses y1, y2 belonging to the same cluster as 1
ν+1 .

The parameters G0, ν of DP play a significant role in mixture modelling. For fixed G0, in-

creasing ν decreases the variance of G ∼ DP(νG0) samples. Consequently, ν ought to reflect the

strength of an experimenter’s belief around which samples G are centred around the measure

G0.

3.5.2 Density estimation

The DP has further applications to density estimation [Lo et al., 1984, Neal, 1992, Escobar

and West, 1995, Rasmussen, 1999]. Density estimation essentially estimates some unknown

distribution F , such that:

xi ∼ F (·) for i = 1, . . . , n

given the samples x1, . . . , xn. The Bayesian framework requires placing a prior distribution

over the functional space of F . Parametric methods traditionally restrict the functional space

by assuming the space can be expressed as a finite combination of mixing densities (of a known

family). Bayesian nonparametric approaches however, assume an infinite dimensional prior over

this functional space, examples of which include Polya trees, Berstein polynomials and other

variants of the Dirichlet process. For the purposes of this work, we will focus on the DP’s utility

to density estimation.

The DP’s approach to estimating a density p(x) involves convolving a family of kernels f(x|θ)

(parametrised by θ) with a DP prior over the mixing proportions to produce a countably infinite

mixture of smooth kernel functions. More concretely, suppose we aim to estimate a density

p(x) as a DP mixture of densities f(x|θ), we then write p(x) as:

p(x) =
∫
f(x|θ)dG0(θ) (3.14)
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where G ∼ DP(νG0). An alternative way of expressing (3.14) is by using the stick-breaking

construction of (3.11) where given G ∼ DP(νG0), (3.14) can be rewritten as:

p(x) =
∫
f(x|θ)dG0(θ)

=
∫
f(x|θ)d(

∞∑
i

πiδθi))

=
∞∑
i=1

πif(x|θi).

(3.15)

Thus, we can smoothly estimate the density of p(x) as countably infinite mixture of f(x|θi)

densities, where ν contributes to the degree of smoothness; with small ν producing smoother

estimates and lumpier estimates otherwise. Figure 3.1 provides examples of measures generated

from urn process of (3.7), along with the corresponding densities produced from a mixtures

of normal kernels f(· | θ, 0.5) when these measures are priors over θ. Here we use the base

distribution G0 = N(0, 3.0). We notice increasing ν in turn increases the number of unique

atoms produced from the DP, as well as increasing the multi-modal behaviour of the mixtures.

The R code producing these simulations are included in appendix A.1.
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(d) ν = 40

Figure 3.1: Simulated DP measures produced from the urn process of (3.7) for 50 iterations,
along with the corresponding densities produced from a mixtures of normal kernels f(· | θ, 0.5)
when these measures are used as priors over θ. These measures and mixture of densities are
produced over various ν values. The R code producing these plots is included in A.1.
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3.6 Posterior inference

Broadly speaking, there are two routes for posterior inference used in DPMMs, marginal and

conditional approaches, each relying on the differing representations of a DP. Marginal ap-

proaches involve integrating out the infinite dimensional measure of G, and then by utilising

the property of (3.7) and the exchangeability of atoms θi, then takes Gibbs samples from the

distributions of θi | θ−i (where θ−i is the vector of locations excluding the ith atom) for each i.

This inferential procedure was made possible by the initial work of Escobar and West [1995],

and thus, represents the first step made towards enabling DPs to be an applicable methodology.

Neal [2000] provides an excellent summary of marginal approaches. Conditional samplers, first

proposed by Ishwaran and Zarepour [2000], do not marginalise out the infinite random measure

of G, but instead involve imputing G, then sampling the cluster assignments for each of the

location atoms θi from their posteriors. One of the initial challenges conditional approaches

had was handling the infinite dimensional nature of G. Initial approaches relied on making

finite approximations of a DP [Ishwaran and James, 2001, 2003], but extensions of conditional

samplers have included innovations around slice and retrospective samplers, which have offered

marked improvements in many more challenging DP inferential contexts [Walker, 2007, Pa-

paspiliopoulos and Roberts, 2008, Kalli et al., 2011, Hastie et al., 2015]. Although marginal and

conditional methodologies are amongst the more popular approaches to DP inference, other

methodological procedures exist, including sequential greedy search algorithms and variational

approaches to name a few [Blei, Jordan, et al., 2006, Wang and Dunson, 2011].

For the purposes of this work, we will focus on marginal approaches for posterior inference

of DPMMs. Our motivations for orienting our inferential procedure around a marginal method,

over other conditional approaches, are the following two closely related reasons. Firstly, marginal

approaches circumvent the issues of the infinite dimensional nature the DP by marginalising

over the random measure G. By exploiting this property of (3.7), and thus maintaining the

infinite dimensional nature of the DP, we maintain a particularly favourable feature of the DP

that is worth keeping. This is especially valuable in cases when the number of unique clusters

characterising the data is uncertain, such as is with our retail analytics context where we

devising a DPMM around unfamiliar and novel data. Our second, closely related reason, is the

computational straightforwardness of the implementation of marginal inferential procedures,

whilst still maintaining the trait of possessing the infinite dimensional nature of the DP. An

important caveat of this is that, although more advanced conditional samplers exist that make it

possible to maintain the infinite dimensional property of the DP, for example, Papaspiliopoulos
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and Roberts [2008]’s retrospective sampler approach or Walker [2007]’s slice sampler (and other

related methods), they often involve nuanced and complicated updating strategies that make

these procedures non-trivial to implement. Thus, although these approaches, and other related

methods, are demonstrated to work effectively in complex modelling scenario’s, such as profile

regression and large data contexts, there implementational complexity for the scale of data we

plan to model (at most 1500 data-points) may be unnecessary.

Our particular marginal method our inferential procedure will be largely based on Neal [2000]’s

algorithm 8, where G0 is a non-conjugate prior with respect to the likelihood function of f(· | θ).

Their approach uses the DP exposition of (3.8), which then iteratively takes Gibbs samples of

the θi conditionals, and then updates each of the unique θi atoms using a Metropolis-Hasting

step. We then use Escobar and West [1995] methodology of updating the scale ν of the DP.

More concretely, the algorithm is as follows:

1. Neal [2000]’s approach iteratively samples the locations for each data-point by sampling

the multinomial distribution of order n∗+c (where c is the chosen number of auxiliary com-

ponents). More concretely, the resultant sample of θi equates to sampling a multinomial

with probabilities:

P
(
θi = θ∗k | θ−i, yi, θ∗1 , . . . , θ∗n∗+c

)
∝


n∗
k

n−1+ν f (yi | θ∗k) for 1 ≤ k ≤ n∗

ν/k
n−1+ν f (yi | θ∗k) n∗ < k ≤ n∗ + c

where:

θ∗k
iid∼ G0 for k = n∗ + 1, . . . , n∗ + c

2. The θk atoms are then updated for each of the unique clusters k = 1, . . . , n∗. This avoids

inefficiencies associated with having to pass through extremely low probability states to

get to a higher probability states. This can be done by Metropolis Hastings updates.

3. Finally, by specifying ν ∼ G (τ1, τ2) and introducing an auxiliary variable γ, enables ν to

be Gibbs sampled. Specifically, we take the following samples:

(γ | ν, n∗) ∼ Beta (ν + 1, n)

(ν | γ, n∗) ∼ πγGamma (τ1 + n∗, τ2 − log (γ))+(1− πγ)Gamma (τ1 + n∗ − 1, τ2 − log (γ))

where the weights πγ are defined by πγ/ (1− πγ) = (θ + n∗ − 1) / (n (τ2 − log (γ))). The

detailed steps of this facet of the DP inferential procedure will be elaborated on during
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section 5.3.3.

This DPMM inference methodology is simple and intuitive, and will be the primary methodology

for posterior inference of DPMMs during this work. The implementation details of this approach

are explained in more depth in subsequent Chapters.



Chapter 4

Elasticity clustering & related

methodologies

This Chapter introduces and defines the interest around analysing cross-elasticity coefficients.

In particular we discuss the relationship between these cross-elasticity coefficients and the

sensitivity of sales of a product with respect to changes in its own price and the prices of

competing products. As referenced in section 1.1, retailers are becoming increasingly interested

in classifying and segmenting many of their processes, as it allows them to mitigate storage and

computational costs as well as providing valuable insights with which can create a competitive

advantage. One way this interest manifests itself is in retailers’ analysis of the sensitivity of

their products’ sales to the price changes across competing products.

The subsequent sections are structured as follows: section 4.1 introduces the concept of a

product’s sales sensitivity in the context of its cross-elasticity coefficients and outlines retailers’

motivation in clustering products in terms of their sales sensitivities. In particular we articulate

how a product’s sales sensitivity is exhibited through these cross-coefficients and specify a

class of regression models that such cross-elasticity coefficients can be generated from. The

section continues on to outline the data by which our sales sensitivities analysis is motivated.

Section 4.2 describes and reviews the traditional approaches used to investigate and analyse

these cross-elasticity coefficients in the fields of retail analytics and econometrics, and outlines

the methods used to interpret the differences between cross-elasticity coefficients. This section

concludes by highlighting the shortcomings of these current approaches.
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4.1 Elasticity clustering background

Characterising products by how sensitive their sales are to their competitor prices is of particular

interest to supermarkets. The price at which a product is offered to the consumer is arguably

one of the most important controls a retailer has. Unsurprisingly, retailers’ analytics teams are

constantly striving to develop models and inferential methods that provide insights into how

price fluctuations that propagate throughout stores will impact the sales of products whose

prices have not changed [Persson, 1995, Ferreira et al., 2015, McGill and Van Ryzin, 1999, Joho

et al., 2009]. Consequently, retailers are invested in understanding how these price sensitivities

are manifested, as they view it as core to their business operations. More concretely, such a

price sensitivity analysis and segmentation provides the following benefits to retailers:

1. Understanding how a product’s sales are sensitive to its competitor’s price changes allows

store planners to decide the value of a given display combination, as it provides information

on how a product’s sales are likely to react to the deviations of prices of other products.

Retailers are increasingly interested in fully understanding the triggers around consumers

purchasing decisions when faced with various display combinations and multiple product

choices [Burke and Leykin, 2014, de Wijk et al., 2016, Bezawada et al., 2009], and retailers

are aware that prices are a key factor that drives these decisions. For instance, a poor

display combination could be one that consists entirely of products characterised by their

sales being primarily driven by the prices of its competition. This would lead to margin

cannibalisation - where profit made on one product is offset by the loss of profit of another

product. A characterisation of products in terms of their sales sensitivities would allow

store planners to circumvent such pitfalls, and generally empower them to make better

pricing and display decisions.

2. The exercise of segmenting products in terms of their sales sensitivity can reveal hidden

structure and an informative narrative of data that could provide valuable insights. For

example, it is common practice of retailers to cluster consumers according to their product

preferences; this allows retailers to efficiently summarise consumers’ tastes, which can be

used to create personalised recommender systems, improve sales forecasts and consumer

loyalty [Lawrence et al., 2001, Kashwan and Velu, 2013, Shih and Liu, 2005]. Such a price

sensitivity segmentation could allow retailers to improve their personalised services by

understanding consumers’ purchasing patterns in terms of their preferences to a particular

price sensitivity segmentation. Such improvements could provide a significant advantage

in the competitive landscape of consumer retail.



48 Chapter 4. Elasticity clustering & related methodologies

3. In addition to the product display and possible consumer personalisation benefits that

a sales sensitivity segmentation would provide, a sales sensitivity segmentation would

reduce storage costs and would improve the efficiency of this analysis compared to any

manual method that compares these sale sensitivities product by product. Theoretically,

a supermarket with N products could want to understand all of the sale sensitivities

between all products, i.e. how do the sales of a given product change with respect to

price changes of every other product. Such an analysis would lead to needing to store

N × N quantities, which can be impractical for large N . Segmentation or clustering

methodologies capable of reducing the dimension of such an analysis to a more simple

generating process that neatly characterise products into groups or clustering is appealing

to retailers. Consequently, where possible, retailers are interested in developing efficient

summaries of their data, to mitigate storage and computational costs [Akcay, 2013, Intel,

2014, Sarwar et al., 2002].

Although these aforementioned benefits are by no means exhaustive, it provides the reader an

overview of the motivations behind why retailers are interested in product segmentation.

4.1.0.1 Cross-elasticity demand models

Having discussed the desire to categorise products in terms of their sales sensitivities, we now

introduce one approach of quantitatively deriving a product’s sensitivity in sales with respect

to changes to its competitors prices. We do this by introducing the notion of a product’s price

elasticity of demand, which we define as the rate of change of the quantity demanded of a

product with respect to changes in its own price. More formally, by defining P as the price of

the product and S(P,x) as the sales of the product as some function of its price P and other

variables x = (x1, . . . , xk), we then define ψ, the price elasticity of demand, as:

ψ = ∂S(P,x)
∂P

. (4.1)

This describes the nature in which a product’s sales changes with respect to changes in its own

price. The majority of products that retailers offer to their markets have elasticity of demands

such that ψ ≤ 0, i.e. increases in prices lead to decreases in sales. Importantly, more negative

ψ implies that small increases in the price leads to large reductions in sales, hence indicating a

product that is highly price sensitive.

We can extend this definition to the concept of a product’s sensitivity in sales with respect to

changes in price of another product. We define a product i’s cross elasticity of demand with
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respect to product j, as the rate of change between the quantity demanded of product i with

respect to a change in the price of product j. More concretely, by defining Pi as the price of

product i, Pj as the price of product j, Si(Pj ,x) as the sales of product i as some function of

Pj and other variables x, we then define the χij , the product i’s cross elasticity of demand with

respect to product j, as:

χij = ∂Si(Pj ,x)
∂Pj

. (4.2)

Similarly as before, this encapsulates the effect that changes in a product’s prices affects an-

other product’s sales. The majority of products that retailers offer to their markets have

cross-elasticity of demands such that increases/decreases in another product’s prices lead to

increase/decreases in sales of another product. As before, the larger χij is, the more sensitive

product i’s sales are to changes in product j’s price.

Having defined (4.1) and (4.2) as a concept of a sales sensitivity measures, we now intro-

duce a method of calculating these quantities. Importantly, we need to assume a functional

form for Si(Pj ,x). There are many approaches that link the relationship between price elastic-

ity of demand with sales, such as market share models, attraction models, structural equation

and consumer utility modelling [Walters and MacKenzie, 1988, Kim et al., 1999, Leeflang and

Parreño-Selva, 2012, Chidmi and Lopez, 2007, Erdem et al., 2008]. Market share and attraction

models generally interpret consumers’ demand for particular products as having a multiplicative

structure with normally distributed errors. The proportion of demand exhibited for each of these

products relative to other competitor products is then described as a function of the original

attraction of the products [Fok et al., 2002, Cooper and Nakanishi, 1989]. Structural equation

modelling approaches involves using factor analysis and multivariate regression techniques to

analyse the graphical structure that describes the relationships between the variables of interest

[Walters and MacKenzie, 1988, Kim, Srinivasan, and Wilcox, 1999]. Random utility modelling

assumes that consumer preferences between two or more options are discrete decisions that

are made with respect to random utility functions that describes an individual’s underlying

objective in which they strive to maximise [Manski, 1977, Kim, Blattberg, and Rossi, 1995,

Richards, Hamilton, Yonezawa, et al., 2015, Rossi, 2014]. All of these models have been suc-

cessful at describing how the direct and cross-elasticity quantities impact demand at numerous

levels of aggregation. However, for the purposes of our analysis, we focus on the functional

form known as the Working-Leser equations. The Working-Leser regression models are para-

metric models that predict the demand of a product given covariate data. More precisely, for a

category of N different products (also referred to as items), we estimate the set of coefficients
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{ci, χij , ψi |1 ≤ j ≤ mj , 1 ≤ i ≤ N} derived from the system of N regression models:

yit = log(Sit) = ci + ψi log(Pit)−
mi∑
j=1

χij log(Pijt) + εit, (4.3)

where:

Sit = sales of item i at time t, ψi = item i’s direct elasticity,

Pit = item i’s price at time t, χij = item j’s cross elasticity with item i,

Pijt = price of item i’s jth cross item at time t, ci = item i’s additive constant,

mi = number of cross competitors of item i, εit ∼ N(0, σ2
i .)

These and similar models are widely used in a range of econometrics and retail analytics settings

[Andreyeva et al., 2010], but in practice companies often use much more sophisticated versions

of this model, taking into account a larger range of covariates and that include autoregressive

terms, time-dependencies via smoothing and seasonality modelling. Crucially, this model as-

sumes that the log of sales of each product are conditionally independent, conditioned on the

aforementioned covariates. The popularity of these models is that the output of fitted models is

highly transparent as the coefficients are straight-forward to interpret and are computationally

efficient to implement. This is of key importance, as companies can use models not only to

predict demand but also gain a greater insight into the underlying phenomena at play.

Importantly, the cross-elasticity output of models such as (4.3) allows us to quantify the

sales sensitivities of products with respect to the price changes of its relevant competition. In

particular, the vector of a product’s direct- and cross-elasticity coefficients, (ψi, χi1, . . . , χimi),

are the quantities conveying a product’s sale sensitivities with respect to changes in a product’s

own and competitor prices. Our aim is to cluster products as a function of their direct- and

cross-elasticity coefficients vectors (ψi, χi1, . . . , χimi).
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4.1.1 PriceStrat and cross-elasticity output

We now describe the dataset our sales sensitivities analysis and elasticity clustering is motivated

by. Access to this dataset was permitted by dunnhumby ltd, and comprises the relative cross-

elasticity vectors for a set of products from a large UK supermarket retailer. These relative

cross-elasticity vectors have been generated from a cross-elasticity regression model known as

PriceStrat, which is closely related to (4.3). Although the precise mechanics of how these

estimates are obtained are highly engineered, the general form of the model is given by the

following regression:

log (Si,t) = ci − ϕi log (Qi,t) +
ni∑
j=1

ϕiηij log (Pi,j,t) + f (Qi,1:T , Pi,1:ni,1:T ) + εi,t, (4.4)

where, for each product i and time t, Sit denotes its sales, Qit its price, Pijt the price of its

jth competitor product, ϕi its direct elasticity and ηij product j’s relative cross-elasticity with

product i (as a multiple of the direct elasticity) and ci is some additive constant. We use the

notation 1 : n to denote the set 1, . . . , n. The map f(·) involves nuanced data aggregation and

smoothing, seasonality patterns relevant to retail sales, as well as additional information on dis-

play combinations and promotions specifically engineered to induce εi,t ∼ N(0, σ2
i ). Here ni is

the number of competitor products of product i, which are pre-selected using expert knowledge.

The regression coefficients are estimated using shrinkage methods, so that only li of the ηij ’s

are non-zero, with the remaining exactly equal to 0. To ease notation and terminology in latter

sections, we assume that competitor products are labelled such that product i’s relative cross-

elasticity coefficients ηij are decreasing in magnitude with increasing j and that all products

have the same potential number of competitors, i.e. ni := n i = 1, . . . N , and from now onwards

refer to these relative cross-elasticity coefficients as the cross-elasticity coefficients. Table 4.1

provides some toy examples of the cross-elasticity vectors typically observed from dunnhumby’s

implementation of (4.4). These examples are provided to allow the reader to intuit and visualise

the data in question. Although a clustering approach of the regression coefficients can be per-

formed alongside the regression, this is often computationally prohibitive in any context where

the original predictive sales model is highly tailored and engineered, such as with model (4.4).

Consequently, any clustering methodology that clusters the cross-elasticity vectors separately

from the regression analysis is often the preferred route to any sales sensitivity analysis.
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The cross-elasticity data is such that, for each product i, we observe a decreasing set of entries

of a larger vector, censored to only the top few entries with the remaining values set to 0. Thus,

the data are in the form:

X = {ηi,1:n : ηi,n−li+1 ≤ ηi,n−li+2 ≤ . . . ≤ ηi,n,with ηi,j censored to 0 for 1 ≤ j ≤ n− li}

(4.5)

where ηi is the cross-elasticity vector of dimension n for product i, which has li uncensored

ordered entries, with the remaining being censored.

4.1.1.1 Challenges

We now describe some of the pertinent artefacts typical of the data (4.5) and the associated

challenges.

1. Preselection of significant cross competitors: Although companies could store the

entire data of (4.5) as a matrix containing all the cross-elasticities for each pair of products,

this in practice would be computationally prohibitive. Consequently, companies induce

sparsity through expert preselection of competitor products and shrinkage. They often

do this by the use of highly tailored black-box sparse regression sales models [Liu, Ren,

Choi, Hui, and Ng, 2013, Beheshti-Kashi, Karimi, Thoben, Lütjen, and Teucke, 2015] and

only measure the cross-elasticities for a small number of competitors for each product,

with the remaining entries being treated as missing or negligible. This resultant cross-

elasticity coefficient data implicitly reflects only the top competitors within the market

and thus induces an inherent informative missingness that means a global interpretation

of the behaviour of the entire market may not be directly available. Thus, any proposed

clustering strategy ought to reflect that the data of (4.5) is indeed pre-selected using

expert knowledge to represent the top competitor products across a market (and therefore

subject to error), with omitted entries being treated as zero or missing minor competitors

and furthermore, should accommodate instances where relevant competitors have been

omitted from the original regression that should have been included.

2. Varying dimensions: Due to the shrinkage previously, many of the remaining ηij ’s

are exactly equal to 0. This effectively leads to the ηi,1:n having different dimensions

for differing i as some products may have more or less zero shrinkage than others due the

amount of competition with the market that they encounter. Consequently, any clustering

methodology has to support this variation in dimensions exhibited in the cross-elasticities

coefficients. Figure 4.2(a) shows the histograms of the varying dimensions (li) of cross-

elasticity vectors ηi,1:n.
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Table 4.1: Ordered elasticity output ϕ and η for two fictional products, Bobby’s puffs and
Lucan’s Salted crisps. For each product we have columns of order elasticity coefficients ϕi, ϕiηij
along with the respective sequences of ηij , which demonstrates the decreasing nature of data
from model (4.4). The number of potential cross competitors is set to ni = 6, although the
number of terms censored to 0 differs. Importantly, the set of competitors can differ for each
of the products and in instances where there is a shared competitor (as with Supermarket puffs
in this case), the value of ϕiηij , as well as its position in the ordering, need not be consistent
across products.

Bobby’s Cheesy puffs Lucan’s Salted crisps
Relevant competitors ϕ1, ϕ1η1j η1j ϕ2, ϕ2η2j η2j Relevant competitors

ϕi Bobby’s puffs -1.41 -1.86 Lucan’s Salted crisps
ϕiηi6 Supermarket puffs -1.12 0.79 -0.8 0.43 Sussex’s Chives crisps
ϕiηi5 Harry’s puffs -1.10 0.78 -0.44 0.23 Chef’s Paprika crisps
ϕiηi4 Supermarket Nuts -0.80 0.57 -0.10 0.05 Supermarket puffs
ϕiηi3 Bobby’s Tortillas -0.48 0.34 -0.04 0.02 Lucan’s nuts
ϕiηi2 Tommy’s chips -0.35 0.25 0 0 Harry’s Popcorn
ϕiηi1 Tommy’s puffs -0.05 0.04 0 0 Chef’s BBQ crisps

3. Strictly decreasing sequences: As a consequence of the ηij reordering, the indi-

vidual entries of cross-elasticity vectors ηi,1:n are strictly decreasing in magnitude, i.e.

ηi,j ≤ ηi,j+1. One of the key aspects in the analysis of cross-elasticity coefficients is the

relative decay between successive values of the cross-elasticity coefficients, as this conveys

the degree of competition a product encounters with the market. Figure 4.1 plots the

histograms of the marginal elasticity entries (ηij) of xi,1:n which demonstrates the varying

decay rates across the cross-elasticity vectors. Figure 4.2(b) plots some real data examples

of decreasing cross-elasticity coefficients. We observe the entries of the cross-elasticity vec-

tors xi,1:n are decaying at differing rates and further notice ηi,1:n have differing number

of entries (and thus differing dimensions).

Our goal is to summarise products’ sensitivity in sales by clustering them by their cross-

elasticities coefficient vectors. We however want to do this in way that handles the three afore-

mentioned challenges. Namely, we want to cluster these cross-elasticity vectors according to the

distribution of their competition in the market that accommodates not only clustering products

with similar decay rates and cross-elasticity dimension, but also reflects that these entries are

assumed to represent a product’s most significant competitors (and further deals with possible

omitted competitors).

4.2 Analysis of cross-elasticity coefficients

We now introduce the existing work done in the analysis of direct- and cross-elasticity coeffi-

cients generated from models closely related to (4.3). This section aims to give the reader an

understanding of the current methodologies employed to investigate the differences in magni-

tudes between the direct- and cross-elasticity coefficients of differing products. We then explore
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Figure 4.1: Various plots of ηi data

the narrative of what these differences convey. The section then moves on to highlight some of

the shortcomings of the current analytical approaches.

4.2.1 Current approaches

We now outline the main contributions and describe the broad pattern employed among re-

search into the analysis of direct and cross-elasticity coefficients generated from cross-elasticity

regression models. Generally speaking, the body of research into direct- and cross-elasticity

coefficients can be largely split into two fields. The first body of work is from the public

health perspective which strives to understand how the public’s consumption of specific food

categories are sensitive to competing prices of other relevant categories. These papers are

ultimately interested in finding insights aimed to aid public policy [Leeflang and Parreño-Selva,

2012, Guerrero-López et al., 2017, Andreyeva et al., 2010, Mhurchu et al., 2013]. In such

studies, researchers broadly investigate how factors such as ethnicity and income are related to

the sales sensitivities of food groups, with findings being used help reduce obesity and other

diet related disorders. The second body of work into the analyses of direct- and cross-elasticity

coefficients is from a retailers’ perspective, in which they try to better understand and improve

their business operations. These motivations are varied, but examples range from investigating

the differing store-wise pricing policies and quantifying the effect of promotional strategies to
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profit maximisation across product categories [Walters, 1991, Mulhern and Leone, 1991, Zellner,

1962]. Retailers ultimately aim to understand the substitutional relationship between products

that these cross-elasticity coefficients convey, whether in terms of measuring brand loyalty or

supermarket preference, and use this substitutional knowledge to help improve business prac-

tices.

Both bodies of work generally employ very similar post-processing methodologies when in-

terpreting the direct- and cross-elasticity output exhibited from cross-elasticity demand models.

As stated earlier, cross-elasticity regressions models for product i are generally of the form:

f (Si) = c+ ψig (Pi) +
n∑
j=1

ψiηijg (Pij) + h(x) + εi

where c is some additive constant, x are some relevant covariate information and f(·), g(·) and

h(·) are functional forms depending on the context and εi is additive noise. Very often the

functional forms of f(·) and g(·) are such that f(x) = x or f(x) = log(x) and similarly for g(·).

Variations of this generalised model are frequently used to generate direct- and cross-elasticity

coefficients, examples of which include Almost-Ideal-Demand models [Deaton and Muellbauer,

1980] or for the Working-Leser demand system [Working, 1943]. However, independent of the

original regression details, the direct- and cross-elasticity output is essentially the same as it

ultimately gives rise to data of the form (4.5), i.e.:

X = {ηi,1:n : ηi,n−li+1 ≤ ηi,n−li+2 ≤ . . . ≤ ηi,n,with ηi,j censored to 0 for 1 ≤ j ≤ n− li}

where ηi is the cross-elasticity vector of dimension n for product i, which has li uncensored

ordered entries, with the remaining being censored. The regression output from various im-
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plements of cross-elasticity models is of this form as long as there is a single coefficient that

summarises the relationship between the change of demand with respect to the change of a

product’s price, which is the case in our cross-elasticity analysis. There are then systematic

trends in the post-processing analysis of data (4.5), which are as follows.

Firstly, the majority of work focuses on direct-elasticities, and in instances where cross-elasticity

effects are considered, the possible competitors are usually constrained to a preselected group of

products (either through expert pre-selection or a set of products determined by some variable

selection technique) that are chosen to assess the substitutability of some product category

of interest [Oliveira, Foxall, and Schrezenmaier, 2007, Guerrero-López, Unar-Munguía, and

Colchero, 2017, Andreyeva, Long, and Brownell, 2010, Walters, 1991]. In such studies, the rela-

tive substitutability of products and general sensitivity to sales are assessed by raw comparisons

of the direct- and cross-elasticities across the products. However, the relative sizes between the

direct- and cross-elasticity coefficients are not assessed, rather the cross elasticity effects are

simply compared to one another when they exist.

Secondly, the decision about how many competitors are selected in the cross-elasticity re-

gression is generally considered secondary in such analyses. The relative importance and

relevance of the inclusion (or omission) of cross competitors is determined from consideration of

statistical significance, by either looking at p-values or some other equivalent variable selection

method. The potential values of the omitted competitors is then ignored in the corresponding

direct- and cross-elasticity analysis.

Often, much research is interested in understanding how an entire category or set of brands

are affected by the price deviations of their competition or other relevant group of prod-

ucts [Leeflang and Parreño-Selva, 2012]. In such analyses, the method of segmenting and

categorising the direct- and cross-elasticity coefficients is done a priori before the analysis

begins. In particular, the models are implemented across the relevant products and the

direct- and cross-elasticity coefficients are aggregated across the chosen categories. The corre-

sponding category-wise analysis of this output is generally done by studying summary statis-

tics across these predefined segments. More concretely, given category-wise coefficient data

X = {(ψ(k)
i , η

(k)
i1 , . . . , η

(k)
imi

) | where (ψ(k)
i , η

(k)
i1 , . . . , η

(k)
imi

) are coefficients from category k}, sum-

maries for the direct- and cross-elasticities are often taken to be 1
Nk

∑Nk
i=1 ψ

(k)
i and 1

Nk

∑Nk
i=1 η

(k)
ij

for some cross effect product j and where Nk is the number products in the category k. These

summaries are often calculated as the mechanism of conveying the aggregate price elastic-
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ity across some predefined set of products. These category-wise summary statistics are then

compared relative to one another and heterogeneity, where it exists, is discussed along with

the relevant implications within the given modelling context [Hoch, Kim, Montgomery, and

Rossi, 1995, Gordon, Goldfarb, and Li, 2013]. Existing approaches generally demonstrate that

differences between these elasticity summary statistics across different categories of Xk do exist,

which supports the hypothesis that products exhibit fundamentally different sales sensitivities.

4.2.2 Shortcomings of existing analyses

As the previous subsection illustrates, there has been much research in investigating the differ-

ences in sales sensitivities between differing products and the implications such heterogeneity

has at strategic pricing and policy decision making levels. However, there are arguably some

systematic weaknesses of how these direct- and cross-elasticities are analysed. Here are some of

the pertinent shortcomings that we see in the current approaches of analysing these direct- and

cross-elasticity coefficients that could be improved upon:

1. Direct elasticities: Much of the research in the price sensitivity analysis of products looks

only as far as a product’s direct elasticities, i.e. a product’s sales sensitivity is summarised

in terms of its own price changes. Although the primary driver of a product’s sales is

its own price, there may be additional information in how a product’s sales changes with

respect to changes in its relevant competitor’s price changes. Typically, these effects are

frequently overlooked and it is our hypothesis that product’s may not only be characterised

by their direct-elasticities, but also by the nature of their cross-elasticities.

2. Relative cross elasticity magnitudes: In the cases when cross-elasticities are con-

sidered, information about the magnitudes of leading cross-elasticity coefficients relative

to the direct elasticity is not considered. Information on this decay between the direct-

elasticity and leading cross-elasticity coefficients could be another way of segmenting and

interpreting the differences between these sales sensitivities.

3. Top competitor assumption: In the majority of direct- and cross-elasticity coefficient

analysis, the decision of which products qualify as significant in implementations of models

such as (4.3) is often fixed a priori. Thus, any interpretation of cross-elasticity coefficients

with respect to one another ought to reflect that the number and particular competitors

are selected to represent the most significant competitors a product has across the entire

market. This is crucially important, as the relative decay of the cross-elasticity coefficients

may convey information about the values of possibly omitted regression coefficients had

they been included in the original regression. This is an additional aspect that we be-
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lieve products could differentiate themselves from one another with respect to their sales

sensitivities.

4. Summary statistics: The current approaches only consider summary statistics of the

elasticity coefficients. Although high-level summary statistics capture headline information

on the cross-elasticity coefficients, characterising the entire distribution of these elasticity

coefficients would allow experimenters to compare the similarity or dissimilarity between

elasticity coefficients in a mixture modelling framework. Currently however, elasticity co-

efficients are simply eye-balled and little thought is given to a possible generating process

describing the structure of the observed elasticity coefficients. The lack of such a distri-

butional characterisation of elasticity coefficients makes it difficult to cluster and segment

the sales sensitivities of products in systematic way.



Chapter 5

Elasticity clustering using Dirichlet

process mixtures

This Chapter is largely based on a paper due to be published in JRSSC titled “Dirichlet Process

Mixtures of Order Statistics with Applications to Retail Analytics”. arXiv:1805.05671

This Chapter presents a novel methodology that clusters products in terms of their cross-

elasticity coefficients, and thus allows us to segment the universe of supermarket products

in terms of their relative sales sensitivities. We achieve this by developing a Bayesian non-

parametric modelling framework and interpreting our observed data of (4.5) as realisations of

variable length order statistics sequences. Crucially, by reframing the data of (4.5) as variable

length order statistics sequences, it allows us to specify a distributional form that characterises

the cross-elasticity coefficient data. This in turn, allows us to define a mixing kernel that

quantifies the degree of similarity between different cross-elasticity coefficients and therefore

accommodates a mixture modelling setting. We will show this succinctly handles the partial

censoring and allows for computationally straight-forward inference on the unobserved entries

of the cross-elasticity matrix. Our approach uses tools from survival analysis to address in-

herent censoring mechanisms, together with a Dirichlet Process mixture model that allows

products to be clustered into distinct groups. By using the Exponentiated Weibull distribution

as a mixture kernel [Mudholkar and Srivastava, 1993], we are able to account for both light

and heavy tail behaviour apparent in the data. As we will discuss later, the Exponentiated

Weibull distribution has several unique properties which makes it ideal for modelling order

statistics. We develop efficient sampling mechanisms by using Neal [2000]’s algorithm 8 and

provide interpretations and visualisations of the fitted output. Our approach fully characterises

the entire cross-elasticity vector, offering two distinct benefits. Firstly, by interpreting these

elasticity vectors as order statistic sequences, we can directly cluster products by all of their
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cross-elasticity coefficients and conveniently handle their varying dimensions. Secondly, it pro-

vides a framework for predicting censored entries which can shed light on potentially important

competitors which have been omitted from the original regression. Hence, our approach neatly

handles the challenges outlined in 4.1.1.1. We implement our proposed methodology on three

datasets, two simulated examples and one from real cross-elasticity data generated from a large

UK supermarket retailer’s regression model output which we were given access to through

dunnhumby’s secured servers. We show that our proposal successfully partitions the space of

products in terms of their sales sensitivities.

The rest of the Chapter is organised as follows: Section 5.1 introduces the concept of variable

length order statistic sequences as a reinterpretation of data (4.5), and provides a background

of the pertinent characteristics of the Exponentiated Weibull distribution and its relevance as

a kernel to variable length order statistic sequences. Section 5.2 introduces our proposal of a

Dirichlet process mixture model of variable length order statistic sequences along with specifi-

cations of the prior distributions used during this analysis. Section 5.3 outlines the algorithm

used for posterior inference of our proposed mixture model. Section 5.4 illustrates the results

of our methods on three datasets: two simulated examples and one real dataset. Section 5.5

finally summaries our contribution and further discusses some potential extensions our model

and applications of our approach to other fields.

5.1 Relevant distributions

As discussed in the previous Chapter, the cross-elasticity data at hand is such that, for each

product i, we observe a decreasing set of entries (i.e. observed order statistics) of a larger vector,

that have been censored for sparsity purposes to only the top few entries. Mathematically

speaking, the data are in the form:

X = {xi,1:n : xi,n−li+1 ≤ xi,n−li+2 ≤ . . . ≤ xi,n,with xi,j censored to 0 for 1 ≤ j ≤ n− li},

where xi is the cross-elasticity vector of dimension n for product i, which has li uncensored

ordered entries, with the remaining being censored. We recast these decreasing sequences of

varying length as variable length order statistics sequences, which we will go onto define along

with a distribution known as Exponentiated Weibull which we propose as a suitable mixing

kernel for such sequences.
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5.1.1 Order statistics of continuous distributions

The order statistics of a random sample are the reordered observations in terms of increasing

size. More concretely, given a continuous distrbution variable X and observations x1:n
i.i.d.∼ X,

the order statistics x(1), . . . , x(n) are given by:

x(1) < x(2) < . . . < x(n). (5.1)

The jth order statistic of (5.1) is denoted as x(j) and thus, x(1) and x(n) are the smallest and

largest observations respectively. Given a density function f (x) of a continuous random variable

X, the density of the jth order statistic x(j), denoted by f(j) (x) is given by [Arnold et al., 1992]:

f(j) (x) = nf (x)
(
n− 1
j − 1

)
F (x)j−1 (1− F (x))n−j . (5.2)

An implicit assumption of the cross-elasticity coefficient data is that the elasticities represent the

top competitors a product encounters throughout the entire market, i.e. these cross-elasticity

coefficients are the largest in magnitude a product will encounter across all of its competitors.

Hence, we then make the following assumption that the partially observed cross-elasticity vector

xi,1:n, of length n with li non-zero entries in fact corresponds to the top li order statistics of a

random sample of size n. We term each of these vectors of the top li order statistics as variable

length order statistics sequences, and denote them as xi,1:n =
(
xi,(n), . . . , xi,(n−(li−1))

)
. We also

denote the jth order statistic of sequence xi,1:n by xi,(j). For notational ease, we drop the i

index for the remaining of this section. The density of x | l denoted as f(n):(n−l+1) is given by:

f(n):(n−l+1) (x | l) =f(n):(n−l+1)
(
x(n), . . . , x(n−l+1) | l

)
= n!

(n− l)!F
(
x(n−(l−1))

)n−l l∏
j=1

f
(
x(n+j−l)

)
.

(5.3)

By the independence of x(n−j) | x(n−j+1) ⊥⊥ x(n), x(n−1), . . . , x(n−j+2) and by (5.3), the density

of the conditional distribution of x(n−j) | x(n−j+1), l for j < l (denoted as f(n−j)|(n−j+1)) is

given by:

f(n−j)|(n−j+1)
(
x(n−j) | x(n−j+1), l

)
= (n− j) f

(
x(n−j)

) F (x(n−j)
)n−(j+1)

F
(
x(n−j+1)

)n−j (5.4)

and thus the density of the joint sample x | l can also be expressed in hierarchical format:

f(n):(n−l+1) (x | l) = f
(
x(n)

) l−1∏
j=1

f(n−j)|(n−j+1)
(
x(n−j) | x(n−j+1), l

)
(5.5)
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Finally, the joint density of a variable length order statistics sequence x, denoted as fvloss, can

therefore be expressed as:

fvloss (x, l) =fvloss (l)× fvloss (x | l)

=p(l)× f(n):(n−l+1) (x | l)
(5.6)

since fvloss (x | l) (the density of an observed vector of order statistics x | l) is precisely

f(n):(n−l+1) (x | l), and where fvloss (l) is simply the probability mass function over the length

of the sequence, which we denote as p(l). Here we assume that l and the non-zero entries of x

are independent.

Much work has been done in the study of the theoretical properties of order statistics [Beutner

and Kamps, 2009], from which they have been applied to areas such as modelling the reliability

of software and to the modelling of recommender systems [Wilson and Samaniego, 2007, Caron

and Teh, 2012]. A relevant field of order statistics which bears resemblance to our problem

set-up lies in the field of reliability analysis, known as k-out-of-n systems. A k-out-of-n system

models the failure of k out of n components within a finite time horizon. The set of k ordered

values of the time until failure (censored or not) can then be modelled as the observed order

statistics of a base distribution. Much of the relevant non-parametric work has focused on

flexibly learning the underlying base distributions [Wilson and Samaniego, 2007, Barghout

et al., 1998] and building hierarchical versions of these models [Ghosh and Tiwari, 2007].

In the current context, we observe the top few order statistics of the cross-elasticity vec-

tor, with the remaining entries treated as missing. This type of data is akin to the format

of models in survival analysis, where the probability of survival decreases over time and may

be right-censored. One aspect important to the success of Bayesian non-parametric models

in survival analysis is the choice of kernel, as it impacts whether the relevant statistics and

survival functions are recoverable. As a consequence, much attention is paid to the choice

of kernel. Notably, a hierarchical structure in the base measure was introduced by De Iorio

et al. [2004], whereas Hanson et al. [2006] and Kottas [2006] used Gamma and Weibull kernels

within a Dirichlet process mixture model framework respectively. The Exponentiated Weibull

distribution was shown to be a distribution that could model non-monotone hazards [Mudholkar

and Srivastava, 1993], which in our context correspond to order statistics terms whose modes

exist but are not necessarily light-tailed.
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5.1.2 Exponentiated Weibull distribution

Following the formulation of our observations as order statistics of random samples, the choice

of the underlying distribution of X will determine the behaviour of the corresponding order

statistics. Here we are interested in a distribution which can allow for a range of light and

heavy tail behaviour and provide interpretable analytical expressions for the distribution of

its order statistics. We thus assume that these random samples are distributed according to

the Exponentiated Weibull distribution. A random variable X is distributed according to the

Exponentiated Weibull (EW) distribution, denoted as X ∼ EW (α, β, λ), if its probability

density and distribution function are given by

f (x) = αβλβxβ−1
(

1− e−(λx)β
)α−1

e−(λx)β (5.7)

and

F (x) =
(

1− e−(λx)β
)α

(5.8)

respectively, where x > 0, λ > 0, β > 0, α > 0. The Exponentiated Weibull is an extension to the

standard Weibull distribution through the inclusion of the additional parameter α, which allows

the distribution to have a wide range of tail behaviours. Similarly to the Weibull distribution,

λ is a scale parameter whereas β controls the tail behaviour of the distribution; distributions

are heavy tailed for β < 1 and light-tailed otherwise. Furthermore, decreasing β monotonically

increases the mean and variance, kurtosis and skew of the EW distribution. The impact of α

depends on both the value αβ and whether α < 1; increasing α increases symmetry around

the mean and mode. These different modal, asymptotic and tail behaviours [Nassar and Eissa,

2003] are summarised in Table 5.1. Figure 5.1 demonstrates various density plots for differing

combinations of (α, β, λ), various asymptotic, modal and tail behaviours are observed.

Table 5.1: EW density behaviours for various combinations of (α, β, λ)
Ranges of α, β x→ 0 Mode Order statistic marginal tails

α > 1, β > 1, αβ > 1 f (x)→ 0 ≈ 1
λ

[
2(αβ−1)
β(α+1)

]1/β
Light

α > 1, β < 1, αβ > 1 f (x)→ 0 ≈ 1
λ

[
2(αβ−1)
β(α+1)

]1/β
Heavy

α > 1, β < 1, αβ < 1 f (x)→∞ none Heavy
α < 1, β > 1, αβ < 1 f (x)→∞ none Light
α < 1, β > 1, αβ = 1 f (x)→ λ 0 Light

5.1.3 EW distribution application to order statistics

There are some key properties of the EW distribution that lead to useful applications to order

statistics and variable length order statistics sequences. The joint density of (5.3) under the EW
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Figure 5.1: EW density for (α, β, λ) = (1.2, 0.8, 1.0) [black solid], (1.55, 0.8, 1.0) [blue dashed],
(0.24, 5.0, 1.0) [red dotted] and (1.8, 1.4, 0.5) [green dashed-dotted lines] respectively.

distribution for fixed order sequences of lengths l is given by:

f(n):(n−l+1) (x | l) = n!
(n− l)!

(
1− e−(λx(n−(l−1)))β

)α(n−l) l∏
j=1

f
(
x(n+j−l)

)
(5.9)

where f is the EW density function of (5.7). The EW distribution handles censoring naturally,

since the censored, joint and conditional densities under the EW distribution belong to the

same family, i.e. x(n−j) | x(n−j+1) ∼ EWx(n−j)<x(n−j+1) ((n− j)α, β, λ) , 1 ≤ j ≤ n − 1 are also

readily available. This means that the properties and interpretability of the EW distribution

transparently carry over to its order statistics. Finally, the EW can account for both light and

heavy tails, allowing us to capture different types of decay behaviours of the elasticity vectors.

Figure 5.2 provides some examples of order statistics sequences, which demonstrate various

decay behaviours and tail behaviours that can be produced under the EW kernel.
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Figure 5.2: Left panel: realisations of order statistics sequences with EW (α, β, λ) kernel for
combinations (α, β, λ) = (0.2, 0.6, 0.7) [black solid], (0.5, 1.5, 1.5) [blue dashed], (4, 5, 1.5) [red
dotted] respectively. Right panel: Density plots of f(k) (x) with EW(0.5, 1.5, 1.5) kernel for
orders k=10 [dotted], 9 [dashed] and 8 [solid].
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5.2 Model

Our ultimate goal is to characterise the behaviour of different products in terms of their cross-

elasticity coefficients. To this end, we use the EW distribution as a representation of cross-

elasticity decay behaviour. However, in order to account for different behaviour across products,

we additionally cluster products that potentially correspond to the same EW distribution. We

thus model the entire set of cross-elasticity vectors non-parametrically as a Dirichlet Process

Mixture Model [Antoniak, 1974] as outlined in the section 3.5.1.

5.2.1 Nonparametric mixture model of variable length order statistic sequences

We now propose a DPMM of variable length order statistics sequences on mixtures of distribu-

tions satisfying (5.9). Placing a DP(νG0) on the distributions of (5.9) is an attractive approach

to handling the complex multi-modalities, decay rates and variable lengths that order statistics

sequences can exhibit as discussed in Section 5.1.2. Thus, the DPMM of variable length order

statistics sequences expressed in hierarchical format of (5.5) by:

ν ∼ Gamma (τ1, τ2) ,

G | ν ∼ DP(νG0) ,

(αi, βi, λi, wi) | G ∼ G,

li ∼ 1 +Binomial (n− 1, wi) ,

xi,j ∼ EW (αi, βi, λi) , j = 1, . . . , n,

(5.10)

where i = 1, 2, . . . , N are the number of observations and for each observation vector i, with all

but the top li entries being censored. The final line of (5.10) can also be expressed through the

iterative formulation:

xi,(n−j) | xi,(n−j+1) ∼ EWxi,(n−j)<xi,(n−j+1) ((n− j)αi, βi, λi) , 1 ≤ j ≤ li − 1

xi,(n) ∼ EW (nαi, βi, λi) .
(5.11)

which follows from equation (5.5). We treat the lengths l and observations xi,(j) of x as

independent to allow detection of competitor omissions and to ease computation. Since cross-

elasticity coefficients are identically distributed a priori, each individual coefficient has the same

probability of being censored, leading to a Binomial prior on li; to avoid the degenerate case

of empty cross-elasticity vectors, we force one of the Bernoulli trials to be 1. It important to

note, that w plays an important role in (5.10) that is particularly relevant to our modelling

setup. The inclusion of w as a cluster level parameter, rather than being a global parameter,

is especially important for the following two reasons. Firstly, a characterising feature of cross-
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elasticity coefficient vectors are their lengths, not just the relative decay between entries (which

is captured by α, β, λ parameters). These lengths of the cross-elasticity coefficient vectors have

an important retail analytics interpretation, in that they convey the number of significant

competitors a product has throughout the market - which is typically seen as one of the defining

features of a product (and group of products). Secondly, w conveys the level of truncation, and

thus implicitly the number of censored observations. For clusters with few censored coefficients,

we expect larger values of cluster-wise w values. Consequently, the cluster-wise variable w

has important ramifications in section of 5.4.4.1 (and subsequent sections), where we define

two statistics relevant to our retail analytics analysis; namely the omitted competitors (OC)

and aggregate competition (AC) statistics. These statistics strive to respectively describe the

relative magnitude of possible omitted cross-elasticity coefficients and the total effect of com-

petition a product receives throughout the market (detailed definitions of these are provided in

section 5.4.4.1). Both definitions crucially rely on an accurate summarisation of the number of

non-censored coefficients a cluster typically observes. Consequently, a cluster-wise variable of

w is key for this accurate summarisation, with possible misfit being likely if w were a global

parameter.

The base distribution G0 is a key aspect of the DP(νG0) as it specifies the prior over (α, β, λ, ω)

atoms which defines the cluster structure of the model; here we specify G0 as:

G0 (α, β, λ, w) = Gamma
(
α | α1, α2)×Gamma (β | β1, β2)×

×Gamma
(
λ | λ1, λ2)×Beta (w | a, b) . (5.12)

The hyperparameters
(
a, b, α1, α2, β1, β2, λ1, λ2) are treated as fixed, chosen depending on

the modelling context and reflecting prior expertise. The prior for ν is assumed to be

Gamma (τ1, τ2), allowing the relation E [N∗ | ν] = ν log
(
ν+N
ν

)
[Escobar and West, 1995] (where

N∗ is the number of occupied clusters) to inform our prior expectation of the number of clus-

ters. As discussed during section 3.5.2, and illustrated by the simulation study of figure 3.1, the

ν parameter of DP(νG0) acts as smoothing parameter controlling the degree of ‘smoothness’

of density estimates, and equivalently, the number of unique mixture components induced by

the DP(νG0) prior. Consequently, it is important to place uncertainty over the ν parameter,

especially in the context of variable length order statistic sequences where it is not clear how

to fix ν, as it not obvious how many unique clusters will exist in the retail analytics dataset.

Although it should be noted, in some modelling contexts, the number of unique clusters is often

driven by the data.
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5.3 Posterior inference

We now present an efficient Markov Chain Monte Carlo (MCMC) procedure for obtaining sam-

ples from the posterior of p (α, β, λ, w, ν | X) according to the model proposed by (5.10) with:

X = {xi,1:n : xi,n−li+1 ≤ xi,n−li+2 ≤ . . . ≤ xi,n,with xi,j censored to 0 for 1 ≤ j ≤ n− li},

where xi includes the variable length order statistics sequence of length li (uncensored ordered

entries), with the remaining (n− li) being censored. Our posterior inference methodology as

outlined in section 3.6, consists of three steps to obtaining samples from p (α, β, λ, w, ν | X)

for each MCMC iteration: sampling the atoms (α, β, λ, w) of the DP (νG0) for each order

statistics sequence; sampling the cluster-wise atoms for each of the unique clusters (as induced

by DP (νG0)), and finally, sampling the ν scale parameter. As discussed during section 3.6, this

DPMM inference methodology is simple, intuitive and circumvents issues relating to the infinite

dimensional nature of the DP by marginalising over the random measure G, and then updating

the cluster allocations of the data-points. These three steps are manifest as follows:

5.3.1 Sample from p (θi | θ−i, ν, xi)

We initiate by using the Polya urn exposition of a DP [Blackwell and MacQueen, 1973] by taking

a Gibbs sample of θi = (αi, βi, λi, wi) atoms associated to observation xi using:

p (θi | θ−i, ν,X) = q∗0Hi +
N∗∑
k=1

q∗kδθ∗
k

(5.13)

where q∗0 ∝ ν
∫
f (xi | θ)G0 (dθ) and q∗k ∝ N∗kf (xi | θ∗k, ν) subject to

∑N∗

k=0 q
∗
k = 1. Here

f (xi | θ) = f(n):(n−li+1) (xi | li, α, β, λ) p (li | w), where f(n):(n−li+1) is specified in (5.9) and the

conditional distribution p (li | w) =
(
n−1
li−1

)
w(li−1) (1− w)(n−li). Hi is the posterior distribution

for θ based on the prior distribution G0 of (5.12) with likelihood f (xi | θ, ν). Here θ−i denotes

the vectorised atoms of θ excluding the ith atom θi, {θ∗1 , . . . ,θ∗N∗} denotes the unique values of

θi, N∗ the number of unique clusters induced by the DP and N∗k the number of points assigned

to atom θ∗k.

As calculating the integral q∗0 is intractable, we use algorithm 8 [Neal, 2000] to approximate q∗0

by a weighted mixture of likelihoods by taking c auxiliary components sampled from the prior

distribution G0. Concretely, we sample θi = (αi, βi, λi, wi) by sampling from the multinomial
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distribution of degrees of freedom of order N∗ + c with entries

θ∗k
iid∼ G0 for k = N∗ + 1, . . . , N∗ + c

G0 = Beta (w | a, b)×Gamma
(
α | α1, α2)×Gamma (β | β1, β2)×Gamma (λ | λ1, λ2)

with probabilities

P
(
θi = θ∗k | θ−i,xi,θ∗1 , . . . ,θ∗N∗+c

)
∝


N∗
k

N−1+ν f (xi | θ∗k) for 1 ≤ k ≤ N∗

ν/k
N−1+ν f (xi | θ∗k) N∗ < k ≤ N∗ + c

where

f (xi | θ∗k) =
(
n− 1
li − 1

)
(w∗k)(li−1) (1− w∗k)(n−li) ×

×F
(
xi,(n−(li−1)) | α∗k, β∗k , λ∗k

)n−li li∏
j=1

f
(
xi,(n+j−li) | α

∗
k, β
∗
k , λ
∗
k

)
(5.14)

where F (x | α, β, λ) =
(

1− e−(λx)β
)α

and f (x | α, β, λ) = αβλβxβ−1
(

1− e−(λx)βi
)α−1

e−(λx)β .

The number auxiliary components c chosen determines the level q∗0 is approximated to.

5.3.2 Sample from p
(
α∗, β∗, λ∗, w∗ | ν, x{i:Ci=k}

)
The θk atoms are then updated for each of the unique clusters k = 1, . . . , N∗ to avoid inef-

ficiencies associated with having to pass through extremely low probability states to get to a

higher probability states. This is achieved by updating θk to be a single sample generated

from the posterior p
(
θk | ν,x{i:Ci=k}

)
, for each k = 1, . . . , N∗. As taking exact samples

from p
(
θk | ν,x{i:Ci=k}

)
is intractable for our choice of kernel (5.9) and prior G0 (5.12), the

Metropolis Hastings algorithm is used to sample from p
(
θk | ν,x{i:Ci=k}

)
, for k = 1, . . . , N∗.

This involves following tMH iterations of the Metropolis Hasting procedure, and saving the final

tthMH sample as θk, for each k = 1, . . . , N∗. The primary motivation of these Metropolis Hast-

ings updates is to perturb the unique locations of {θ∗1 , . . . ,θ∗N∗}, for k = 1, . . . , N∗, and thus

avoiding the Polya Urn sweeps getting stuck, rather than obtaining a complete representation

of the entire posterior distribution specified by p
(
θk | ν,x{i:Ci=k}

)
.

The precise Metropolis Hasting procedure is as follows: to ease notation, we suppress the

asterisks from the exponents in this subsection. For tMH = 1, . . . , TMH iterations, we draw

new parameters using a Normal proposal for (α′k, β′k, λ′k, w′k) centred at the current points
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αtMHk , βtMHk , λtMHk , wtMHk

)
with standard deviations σα, σβ , σλ, σw respectively:

(α′k, β′k, λ′k, w′k) ∼ N
(
αtMHk , σ2

α

)
×N

(
βtMHk , σ2

β

)
×N

(
λtMHk , σ2

λ

)
×N

(
wtMHk , σ2

w

)
(5.15)

Then, with probability

a = min

(
1,

π
(
αk
′, βk

′, λ′k, w
′
k | x{i:Ci=k}

)
π
(
αtMHk , βtMHk , λtMHk , ptMHk | x{i:Ci=k}

)) ,
set

(
αtMH+1
k , βtMH+1

k , λtMH+1
k , wtMH+1

k

)
= (α′k, β′k, λ′k, w′k)

otherwise
(
αtMH+1
k , βtMH+1

k , λtMH+1
k , wtMH+1

k

)
=
(
αtMHk , βtMHk , λtMHk , wtMHk

)
.

Here

π
(
αk, βk, λk, wk | x{i:Ci=k}

)
∝ αα

1−1
k e−α

2αk × ββ
1−1

k e−β
2βk × λλ

1−1
k e−λ

2λk × wa−1
k (1− wk)b−1

×
∏
xi:Ci=k

[
w

(li−1)
k (1− wk)(n−li) F

(
xi,(n−(li−1)) | αk, βk, λk

)n−li
×
∏l
j=1 f

(
xi,(n+j−li) | αk, βk, λk

) ]
.

This is performed for each of the unique clusters k = 1, . . . , N∗, and initiated after tinit iterations

of step 5.3.1. This is to allow the θi = (αi, βi, λi, wi) atoms produced from the Polya urn

sampling to settle into the appropriate number of unique clusters. If the Metropolis Hastings

iterations are initiated immediately after the first sweep of step 5.3.1 (i.e. tinit = 0), then

the sampler can spend unnecessary time updating the unique locations of many {θ∗1 , . . . ,θ∗N∗}

induced by the DP, which is typically large inN∗ during the initial phases of the Polya urn sweeps

of 5.3.1. This is ultimately unnecessary, as typically these unique locations of {θ∗1 , . . . ,θ∗N∗}

eventually get merged into larger grouping of locations during the latter phases of completed

cycles of step 5.3.1. The scales of the proposal normal distributions (σw, σα, σβ , σλ) should be

tuned depending on the dataset. The details of this tuning will likely involve paying attention to

the acceptance rate during the iterations of the Metropolis Hasting algorithm across each of the

unique clusters k = 1, . . . , N∗. The primary mechanism at optimising this acceptance rate during

this research is via (σw, σα, σβ , σλ) tuning parameters, as these parameters control the jump size

proposed during the random walk outlined in (5.15). If these standard deviations (σw, σα, σβ , σλ)

are too small, then the acceptance rate will be to high and thus likely will result in highly

autocorrelated samples. Alternatively, if these standard deviations (σw, σα, σβ , σλ) are to large,

then the acceptance will be to low as the sampler will be ‘stuck’ at its current position. Much

work has been done into the performance of the Metropolis Hasting algorithm around effective
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proposal distributions and parameter tuning, but a good guide for an optimal acceptance rate

was proposed by Neal et al. [2006], Rosenthal et al. [2011], Sherlock et al. [2010], and this

was the approach adopted during this research. Other more sophisticated Metropolis Hasting

approaches can be adopted over the (5.15) proposals, for example, an adaptive Metropolis

Hastings algorithm that adapts the standard deviations of (σw, σα, σβ , σλ) during the iterations

according to the acceptance rate as proposed by Haario et al. [2001] could be beneficial depending

on the modelling circumstances.

5.3.3 Sample from p (ν | θ1, . . . , θN , N
∗,X)

As discussed during section 3.5.2, and illustrated by the simulation study of figure 3.1, the ν

parameter is key in contributing to the extent of smoothness of density estimates as well as

the number of unique clusters induced from G ∼ DP(νG0) samples. Consequently, we place

uncertainty over the ν parameter, and specify ν ∼ G (τ1, τ2). This prior specification, when

augmented with an additional auxiliary variable γ (the definition of which will be detailed in

the preceding discussion), induces a convenient conjugacy property that allows straight-forward

Gibbs sampling for ν.

Assuming a continuous prior on ν, Escobar and West [1995] showed:

p (ν | θ1, . . . , θN , N
∗,X) = p(ν | N∗)

∝ p(ν)p(N∗ | ν)
(5.16)

since the data X is conditionally independent of ν, given N∗ and locations θ1, . . . , θN (and

thus partition proportions), and furthermore, since the locations θ1, . . . , θN are conditionally

independent of ν, given N∗ and data X. From (5.16), we notice a simple Gibbs procedure can

be derived, i.e. given ν, we resample the θ1, . . . , θN parameters (according the procedural steps

outlined as in sections 5.3.1 and 5.3.2) and hence N∗. Then at each iteration, we sample from the

condition posterior of p(ν | N∗). Escobar and West [1995] further showed when ν ∼ G (τ1, τ2),

(5.16) can be re-expressed as:

p (ν | N∗,X, θ1, . . . , θN ) ∝ p(ν)p(N∗ | ν)

∝ p(ν)νN
∗
(ν +N)

∫ 1

0
xν(1− ν)N−1dx.

(5.17)

The key observation about (5.17) is that the distribution of p (ν | N∗) is in fact the marginal

distribution of a joint distribution for ν and another continuous variable γ (the auxiliary variable)

such that p (ν, γ | N∗) ∝ p(ν)νN∗−1(ν +N)γν(1− γ)N−1 for ν > 0 and γ ∈ (0, 1). Escobar and
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West [1995] finally showed the conditional distributions of p (ν | γ,N∗) and p (γ | ν,N∗) were

given by:

p (γ | ν,N∗) ∝ γν(1− γ)N−1

p (ν | γ,N∗) ∝ ντ1+N∗−1eν(τ2−log(γ))+N

+ ντ1+N∗−2eν(τ2−log(γ))+N

(5.18)

which can easily be recognised as a beta density and a mixture of gamma densities respectively.

Thus, to sample ν at each Gibbs iteration with current values of N∗ and ν, we initially sample

the auxiliary variable γ from the beta distribution specified in (5.18), then conditioned on this

γ and N∗, we sample a new ν from the mixture of Gamma distributions specified in (5.18).

More concretely, by specifying ν ∼ G (τ1, τ2), and introducing the auxiliary variable γ, we

then take the following samples:

(γ | ν,N∗) ∼ Beta (ν + 1, N)

(ν | γ,N∗) ∼ πγG (τ1 +N∗, τ2 − log (γ)) + (1− πγ)G (τ1 +N∗ − 1, τ2 − log (γ))

where the weights πγ is defined by πγ/ (1− πγ) = (θ +N∗ − 1) / (N (τ2 − log (γ))) after each

of the steps outlined in sections 5.3.1 and 5.3.2. This concludes one complete iteration of our

posterior inference procedure.

This three step procedure of 5.3.1, 5.3.2 and 5.3.3 is followed for both the real analytics and sim-

ulated studies presented in the subsequent sections. It should be noted, that the tuning of the

MCMC parameters (tinit, c, σw, σα, σβ , σλ, TMH) - the iterations waited till the Metropolis Hast-

ings procedure is initiated, the number auxiliary components used in during Neal’s algorithm of

step 5.3.1, the standard deviations of the proposal distributions and the number samples taken

during the Metropolis Hasting algorithm of step 5.3.2 - should ultimately be tuned to produce

good mixing amongst the final sampled atoms of
(

(α∗k)t , (β∗k)t , (λ∗k)t , (w∗k)t
)
, across the index of

the MCMC sampler t = 1, . . . , T (T being the total number of MCMC samples) as well as across

the unique atoms k = 1, . . . , N∗t , where N∗t is the number of unique clusters at iteration t. Dur-

ing the retail analytics and simulation studies described in this research, these MCMC tuning

parameters are selected as (tinit, c, σw, σα, σβ , σλ, T ) = (200, 150, 0.009, 0.05, 0.02, 0.05, 5) for the

retail analytics dataset, and (tinit, c, σw, σα, σβ , σλ, T ) = (100, 100, 0.018, 0.010, 0.015, 0.015, 100)

for the simulation studies.
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5.4 Results

We now illustrate how our methodology works in practice by performing two simulation studies,

before proceeding to a real retail analytics dataset. The first example (subsection 5.4.1) generates

data from our model. The second example (subsection 5.4.2) generates data using a Gamma

distribution as a kernel (rather than EW). We fit our model to both datasets using vague priors.

5.4.1 Simulated data 1

We generate data using parameters for the mixtures of (5.19) which demonstrate the various

behaviours that variable length order statistics sequences from an EW kernel can exhibit, namely

a mixture of light and heavy tails with varying rates of order statistics terms xi,(20) convergence

to 0, lengths, different decay rates and varying modal behaviours. Specifically, we draw 1500

samples from the following DPMM of variable length order statistics sequences of (5.10):

G = 0.4δθ1 + 0.35δθ2 + 0.25δθ3

(αi, βi, λi, wi) | G ∼ G, i = 1, . . . , 1500,

li ∼ 1 +Binomial (19, wi) , i = 1, . . . , 1500,

xi,j ∼ EW (αi, βi, λi) , j = 1, . . . , 20,

(5.19)

where θ = (α, β, λ, w), with θ∗1 = (0.15, 0.8, 0.91, 0.65), θ∗2 = (2.5, 3.3, 0.35, 0.75), θ∗3 =

(0.64, 1.7, 0.4, 0.9). Thus, for each variable length order statistics sequences observation vec-

tor i, the first li entries (i.e. variability in truncation between observations) correspond to the

top li order statistics of the random sample xi,j , j = 1, . . . , 20, with the remaining entries being

censored.

5.4.2 Simulated data 2

This simulated example differs from the former simulation study in that the data is simulated

from a mixture of gamma distributions rather than a mixture EW distributions. The purpose of

fitting our model to a mixture of Gamma distributions instead of a mixture of EW distributions

is to test the inference in a less optimistic setting and establish whether the EW kernel is

sufficiently flexible to capture the decay of order statistics sequences from a set of mixtures

that are not a mixture of EW distributions. The mixture components θ∗1 ,θ∗2 ,θ∗3 are selected to

produce simulated mixtures that imitate the mixtures of (5.19).

We generate 1500 samples from the following DPMM of variable length order statistics se-
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quences from the following mixture model

G = 0.4δθ1 + 0.35δθ2 + 0.25δθ3

(αi, βi, wi) | G ∼ G, i = 1, . . . , 1500,

li ∼ 1 +Binomial (19, wi) , i = 1, . . . , 1500,

xi,j ∼ Gamma (αi, βi) , j = 1, . . . , 20,

(5.20)

where θ = (α, β, w), with θ∗1 = (0.15, 0.5, 0.65), θ∗2 = (1.7, 1.0, 0.75), θ∗3 = (32, 10, 0.9), similarly

as before.

5.4.3 Prior distributions and posterior sampling

We fit our EW mixture model using the following vague priors for (α, β, λ, w) and ν (DP scale

parameter):

(α, β, λ, w) ∼ Gamma (1, 0.1)×Gamma (1, 0.1)×Gamma (1, 0.1)×Beta (1, 1)

ν ∼ Gamma (1, 1)

respectively.

The priors for α, β and λ imply a mean of 10 and variance 100, a rather vague choice

centred away from the true values. The Beta prior for w corresponds to a uniform distribution,

assuming no prior information about the number of non-censored entries. The motivation of

these priors is to establish the effectiveness of inferential procedure, and we do this by specifying

vague priors relative to the known true values of the mixture components. We use the steps

outlined in Section 5.3 for parameter inference and perform 9000 MCMC iterations with 1000

burn-in, and thin every 9 samples. We present the MCMC output based on the inference

methodology of Section 5.3 on the simulated data of (5.4.1) and (5.4.2).

Since individual clusters are not identifiable (up to permutations), an additional identifia-

bility criterion is required in order to perform cluster-wise inference. Binder [1978] proposed an

approach of estimating the optimal co-memberships partitions based on a Bayesian clustering

regime that involved the posterior coincidence probability matrix ρij = P (Ci = Cj) (computed

as ρij = 1
S

∑S
s=1 I

[
θsi = θsj

]
where S is the number of MCMC samples and θsi is the location

of ith data point at the sth sample). They in-particular proposed minimising the linear loss

function of the posterior expected loss of the posterior marginal coincidence probabilities, which
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is equivalent to maximising:

l (C∗,K) =
∑

(i,j)∈M

I
[
C∗i = C∗j

]
(ρij −K) (5.21)

where M = {(i, j) : i < j; i, j ∈ {1, . . . , N}}, K = b
a+b ∈ [0, 1] where b is the penalty of

misclassifying two points into different clusters (when they should be) and a the penalty of mis-

classifying two points being the same cluster (when they shouldn’t be), C is a given clustering

of the observations (up to permutation). With such a partition C∗, we are able to define cluster

assignments C∗i for each observation xi. Represented as an integer programming optimisation,

solving (5.21) exactly is an NP hard problem, which makes it challenging to solve directly. A

variety of methodologies have been devised to deal with this computational intensiveness, and

during this work, we focus on using two approaches, namely, the Lau and Green [2007]’s integer

programming approach and Medvedovic et al. [2004]’s agglomerative hierarchical clustering

with average linkage approach, using (1− ρij) as the metric representing the distance between

observations i, j. We denote these respective methodologies as C∗LG and C∗HC . The Lau and

Green [2007] can be considered a more principled estimate of the optimal partitioning solution

to (5.21) [Fritsch, Ickstadt, et al., 2009], as it devises a novel heuristic item-swapping algorithm

guaranteed to approximate the true optimal partitioning, whereas the Medvedovic et al. [2004]’s

approach only considers the subset of partitions induced from the hierarchical clustering cutting

procedure, which are not guaranteed to be optimal. It should be noted however, that this more

principled solution of C∗LG comes with the computational caveat of being more challenging to

compute compared to the C∗HC partition. Where feasible, we opt for computing C∗LG partition.

Implementations calculating the partitions of C∗LG and C∗HC is performed using the minbinder()

function from the mcclust R library [Fritsch, 2012].

Figures 5.3 and 5.4 present fitted MCMC output which includes the histogram of the number

of occupied clusters N∗, heatmap of the posterior marginal coincidence probabilities (cluster

co-membership) and density estimates of the order statistics sequences xi for the each of the

simulated studies (5.4.1) and (5.4.2) respectively. We observe that in both of simulation stud-

ies (5.4.1) and (5.4.2) that the marginal density estimates closely match the corresponding

histograms of the data. This importantly demonstrates that even in the case when mixtures

of variable order statistic sequences are generated from mixtures other than EW (α, β, λ), our

model specified in (5.10) can successfully produce sound density estimates and correctly allocate

the relative data-point partitioning induced by the mixture models in these examples.

During the simulated studies outlined in sections 5.4.1 and 5.4.2, we use the partition induced
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Figure 5.3: Posterior probability cluster co-membership probability heatmap, histograms and
density estimates for N∗, l and a few order statistics of simulated data (5.19).

by C∗HC to compute cluster-wise point estimates of various quantities of interest, and table

5.2 summarises our MCMC output for the simulated study (5.4.1) using the clusters defined

by C∗HC . The motivation for using C∗HC over C∗LG on the simulated datasets is based on the

scaling issues related to computing C∗LG for increasing N . The runtime of calculating C∗HC over

the simulated datasets of 5.4.1 and 5.4.2 was satisfactorily fast, taking less than 1 minute to

execute. We opted for C∗HC over C∗LG in the simulation studies due to the runtime of calculating

C∗LG being computationally infeasible for N = 1500 (taking at least in the order of days rather

minutes). Table 5.2 provides the estimates yielded from the inferential procedure outlined in

Section 5.3 based on the simulated data of (5.19), grouped according to the partitions induced

by C∗HC . This simulation study was the case where the data was generated from a mixture of

EW(α, β, λ) distributions. We observe the estimates from table 5.2 are very close to the true

parameter values, which are also contained within the 95% credibility intervals indicating the

inference is working effectively.
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Table 5.2: Posterior means and (2.5%,97.5%) credible intervals for the parameters (α, β, λ, w)
of each cluster partitions induced by C∗HC from simulated data (5.19). The top and bottom
rows show the true parameters and number of observations assigned to each cluster respectively.

Cluster 1 Cluster 2 Cluster 3
(α, β, λ, w) = (0.15,0.80,0.91,0.65) (2.5,3.3,0.35,0.75) (0.64,1.7,0.40,0.90)

α 0.15 (0.14, 0.17) 2.5 (2.2, 2.9) 0.67 (0.59, 0.75)
β 0.78 (0.72, 0.84) 3.3 (3.1, 3.5) 1.7 (1.5, 1.8)
λ 0.90 (0.79, 1.0) 0.35 (0.34, 0.36) 0.41 (0.38, 0.44)
w 0.64 (0.64, 0.65) 0.75 (0.75, 0.76) 0.90 (0.89, 0.91)
N 609 546 345

Table 5.3 provides the estimates yielded from the inferential procedure outlined in Section 5.3

based on the simulated data of (5.20), grouped according to the partitions induced byC∗HC . This

simulation study was the study where the data was generated from a mixture of Gamma(α, β)

distributions. The motivation of this simulation study was to challenge our inferential procedure

with mixture distributions not generated under our initial EW(α, β, λ) assumptions. We observe

the estimates from table 5.3 are not close to the true Gamma(α, β) parameter values, which is

expected, as the parameters are unlikely to agree with the inferred EW parameters as assumed

by our by inferential procedure. Though our inferential procedure does, as indicated by the

partitions C∗HC , establish that the data was produced from a three mixture distributions and

the density estimates indicated by figure 5.4 are effective at describing the decay of the order

statistic sequences despite the data being generated from a mixture of Gamma distributions.

Table 5.3: Posterior means and (2.5%,97.5%) credible intervals for the parameters (α, β, w) of
each cluster partitions induced by C∗HC from simulated data (5.20). The top and bottom rows
show the true parameters and the number of observations assigned to each cluster respectively

Cluster 1 Cluster 2 Cluster 3
(α, β, w) = (0.15,0.5,0.65) (1.7,1.0,0.75) (32,10,0.9 )

α 0.18 (0.16, 0.20) 1.4 (1.2, 1.7) 6.1 (5.1, 7.4)
β 0.87 (0.81, 0.94) 1.1 (1.07, 1.2) 2.7 (2.5, 2.9)
λ 0.89 (0.79, 1.0) 0.69 (0.62, 0.77) 0.42 (0.40, 0.45)
w 0.66 (0.65, 0.67) 0.75 (0.74, 0.76) 0.90 (0.89, 0.91)
N 535 591 374

5.4.4 Retail analytics dataset

We apply our method of order statistics clustering to a retail analytics dataset based on the

aggregated demand from a large UK supermarket retailer. The dataset consists of the cross-

elasticities for a category of supermarket products of the format described in Section 4.1.1.

X = {ηi,1:n : ηi,(n−li+1) ≤ . . . ≤ ηi,(n),with ηi,(j) = censored to 0 for 1 ≤ j ≤ n− li},
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Figure 5.4: Posterior probability cluster co-membership probability heatmap, histograms and
density estimates forN∗, l and a few order statistics of simulated data (5.20). These density plots
demonstrate the EW kernel successfully describing the mixture of decay sequences. Although
subfigure 5.4(b) indicates that the sampling procedure is often producing four occupied clusters,
seemingly counter to subfigure 5.4(a)’s three clusters, we note that DP inference can produce
partitions consisting of a few singleton clusters consisting of one datapoint. This is the case here,
on the simulated mixture of Gamma distributions (the challenging study), where the inferential
procedure largely achieves its task of good density estimates and overall partitions, but spends
some time producing singleton clusters.

where we have observed only the top li order statistics of each cross-elasticity vector ηi. To allow

for straightforward interpretation we focus on the snacks category which consists of N = 275

products, consequently our data consists of N = 275 vectors of cross-elasticity coefficients.

For this study, a maximum of n = 10 competitors is considered a priori to reflect a product’s

most significant competitors. The snack category consists of the following product line break-

down: 22.5% traditional flavoured crisps (salted, cheese and salt and vinegar), 33.1% exotic

flavoured crisps (crisps excluding traditional flavours), 8.73% tortillas, 8.00% popcorn, 7.64%

nuts, 4.73% dips, 2.18% pretzels and 13.1% other peripheral quick snack products. Figure

5.5 shows summary plots for the snacks category in this study. The plots provide histograms

of the lengths li of ηi as well as the top two terms of the sequences and along with smooth

density estimates produced from the DP model fit. The histogram of the top order statistics

demonstrates spikes centred around 0.0 and 1.0, suggesting possible multi-modality.
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Figure 5.5: Histograms of the number of observed entries in each cross-elasticity vector, as well
as the top two entries of the cross-elasticity vectors, with corresponding density estimates from
our model. The censored entries (corresponding to 0 elasticities) have been omitted from the
histograms.

5.4.4.1 Omitted competitors & aggregate competition

We introduce two statistics relevant to the retail analytics setting; omitted competitors and mean

aggregate competition. These notions have key interpretations in the retails analytics context

and will allow us to assess model fit.

Definition 1: Omitted competitors

Since cross-elasticity vectors arise as the outcome of penalised regression, it is natural to assume

that coefficients are shrunk to zero as the result of a penalisation threshold. However under this

regime, it is possible for potentially important competitor products to have been inadvertently

omitted from the regression equation, meaning that the cross-elasticity vector should have in-

cluded additional uncensored entries. The objective of the omitted competitors (OC) statistic is

to assess whether the truncation has occurred prematurely by predicting the subsequent term of

the observed order statistics sequence (i.e. ηi,(n−li) of ηi), and assessing whether this predicted

value is sufficiently large. Concretely, we say an elasticity vector contains omitted competitors

if its variable length order statistics sequence satisfies:

OC = El̃,η̃(n−l̃)

[
η̃(n−l̃) | α, β, λ, w

]
≥ ε,

for some truncation constant ε > 0 and where η̃(n−l̃) represents the random quantity of the

(n − l̃)th order statistic of n i.i.d. EW (α, β, λ) samples with l̃ ∼ 1 + Binomial (n− 1, w). In

other words, η̃ has the same distribution as η, but without any censoring. Thus the OC statistic

represents the expected value of the 1st censored term of a cross-elasticity vector η̃, were we

to have observed it. The value of ε should be chosen to represent a ‘small value’ within the

modelling context. We set ε = 0.05 as a sensible value to deem truncation (and will be fixed

for our subsequent analysis) as it implies that if log price deviations of the next competitor is
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expected to account for more than 5% of equivalent log prices changes of the product’s own

cross-elasticity coefficient ϕi, we conclude this as a significant omission in the sales model. One

of the benefits of interpreting the cross-elasticities as variable length order statistic sequences is

the utility it provides with respect to defining OC statistic by casting censored observations into

a missing data framework. The OC statistic crucially relies on being able to make a prediction

of the subsequent value of a cross-elasticity vector were it to be observed. The variable length

order statistic sequence model, by capturing the sequential decay of these decreasing sequences,

allows inferences on subsequent entries of these cross elasticity vectors that flexibly incorporates

the rates of decay across the previous entries.

Definition 2: Aggregate Competition

One of the primary interests of the analysis is characterising products in terms of their sales

sensitivities with respect to their competitors’ prices. We introduce the notion of aggregate

competition (AC) to summarise the total effect of competition on a product’s sales through its

competitors’ prices changes. We achieve this by defining the aggregate competition of product

i as the sum of the top l cross-elasticity coefficients. Concretely, the AC of a cross elasticity

vector distribution is given by:

AC = 1
N

N∑
i=1

n∑
j=n−li+1

ηi,(j).

The AC can be thought of as the total percentage effect that log price deviations of the top

l elasticity terms (where l is the expected number of competitors terms) has with respect to

the equivalent prices changes of the product’s own log price. For example, if a product’s AC

is 0.25, it means that if the log price decrease across each of its competitors was 1 unit, then

the product’s log price would need to decrease by 0.25 to offset the loss of sales its competitors

prices changes would have had on the product’s sales. Thus a large AC indicates a product’s

sales are significantly impacted by its competitors’ prices.

5.4.4.2 MCMC output

We present the MCMC output of the real retail cross-elasticity dataset and using the following

priors for (α, β, λ, w) and ν (DP scale parameter):

(α, β, λ, w) ∼ Gamma (7, 7/10)×Gamma (0.5, 1)×Gamma (1, 1)×Beta (2, 3)

ν ∼ Gamma (5, 1)
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respectively. These priors are selected to reflect a prior expectation of the decay and typical

length of the cross-elasticity vectors in the retail analytics context. The prior w ∼ Beta (2, 3) is

selected to prefer cross elasticities of length 5, and λ, ν are uninformatively chosen. The priors

over (α, β) are selected to reflect prior knowledge of the modal nature of the coefficients and the

expected heavy tail nature of the cross elasticity coefficients. Figure 5.5 shows density estimates

of the number of observed entries of the cross-elasticity vector, as well as the top two observed

values in each vector, showing that our model is capturing these observed quantities very well.

In particular, in Figure 5.5 we observe a spike of very small values for the top order statistics

η(10) and η(9), which the model is able to accommodate through a small value of αβ. Figure

5.6 provides heatmaps of pairwise posterior distributions of the parameters which demonstrate

a neat separation between pairwise atoms. Interestingly, we observe that larger values of λ

(corresponding to a smaller mean) are associated with larger values of w; instead, β values are in-

versely associated to values of w, suggesting that the censoring in this case is largely driven by β.

Figure 5.7 presents a histogram of the number of unique clusters N∗ and a heatmap of the pos-

terior marginal coincidence probabilities (cluster co-membership). We see that the Maximum

A Posteriori number of clusters is 3, with two large and one small cluster. Table 5.4 provides

the category breakdown of each cluster, together with the number of observations in each as

well as OC and AC values. It also includes the posterior mean and 2.5% and 97.5% posterior

credible intervals of (α, β, λ, w) for each of optimal clusters.

For retail analytics dataset outlined in 5.4.4, we use the partition induced by C∗LG to compute

cluster-wise point estimates of various quantities of interest. The runtime of calculating the C∗LG

partitions over the retail analytics dataset was computationally feasible for N = 275 (executing

in within one to two hours). To assess model fit, we calculate the posterior predictive p-values

[Meng, 1994] of AC for each of the clusters defined by C∗LG. Posterior predictive p-values

involves generating repetitions Xrep from the predictive distribution p (Xrep | α, β, λ, w) for

each MCMC sample and calculating p-value = 2 (1− p (T (Xrep) > T (X) | X)) for some test

statistic T (X), in this case the aggregate competition. Figure 5.8 provides predictive posterior

p-values plots on the observed aggregate competition AC over each cluster, compared against

histograms of generated AC statistics over predictive replicates of X. These all comfortably fall

within the 95% prediction intervals.
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Figure 5.6: Heatmaps of pairwise posterior distributions of the parameters. The scales have
been specifically selected here to produce interpretable heatmaps. It should be noted, that
although three distinct clusters have been produced as a result of our inferential procedure, the
smallest cluster (≈ 6% of snacks category) is only vaguely noticeable at this current scale. Even
at scales where the smallest cluster could in theory be visible, it is difficult by-eye to pickup on
a ≈ 6% cluster through a heatmap due to its low density nature.

3 4
N* count

D
en

si
ty

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 5.7: Left panel: histogram of N∗. Right panel: heatmap of cluster co-membership
probabilities (re-grouped with respect to C∗LG).
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Figure 5.8: Histograms of AC samples with the 2.5%, 97.5% quantiles (red-dashed lines) and
AC (solid black line) for each cluster induced by C∗LG.

5.4.4.3 MCMC trace plots

Here we discuss convergence of our inferential procedure on the retail analytics dataset. One

of issue in diagnosing MCMC convergence of a DPMM is the ‘label switching’ problem. The

label switching problem relates to the non-identifiability of mixture components under sym-

metric priors, this makes it challenging to understand MCMC convergence of a DPMM since

mixture components can merge, appear or disappear through MCMC sweeps which creates dif-

ficulties in diagnosing the convergence of clusterwise locations hard. We deal with this issue

by providing trace plots of the atoms across all the unique clusters (demonstrating the conver-

gence of the atom’s locations) and the trace plot of the unique clusters N∗ (demonstrating the

convergence of DP (νG0) measure). Figure 5.9 provides traces of the atoms across all unique

clusters
(

(α∗k)t , (β∗k)t , (λ∗k)t , (w∗k)t
)
of DP (νG0) samples for the iterations t = 1, . . . , T across

the unique atoms k = 1, . . . , N∗t , where N∗t is the number of unique clusters at iteration t and the

trace of N∗t . We plot the
√
· traces of (α, β, λ) to induce similar scales for graphical convenience.

All plots indicate satisfactory convergence.

5.4.4.4 Retail analytics discussion

Considering the clusters given by C∗LG and linking them to the corresponding categories, we

see interesting breakdowns. Firstly, the first cluster has a high concentration of traditional

flavoured crisps and no nut products, whereas the second cluster has a lower representation

of traditional crisps. Finally, the third cluster comprises nuts, pretzels and the other product

categories.

The first and second clusters appear not to have competitor products omitted from their

regression models since OC1 = 0.038,OC2 = 0.031 < ε and thus indicate that we do not expect

any of the unobserved cross-elasticities to be of any significance. However, the third cluster
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Figure 5.9: Trace plots of MCMC samples for unique atoms of
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√
λ,w

)
parameters and

N∗ on dunnhumby’s cross elasticity data of the snack category. As discussed in section 5.3.2,
for good overall mixing across all unique clusters induced by the DP(νG0), it is important to
have good mixing during the Metropolis Hastings phase for each of unique location updates of
(α∗k, β∗k , λ∗k, w∗k) for k = 1, . . . , N∗ (the second step of the inferential procedure outlined in 5.3).
As a consequence, special attention should be paid to the Metropolis Hastings acceptance rate
from sampling p

(
α∗, β∗, λ∗, w∗ | ν, x{i:Ci=k}

)
across each of the unique clusters k = 1, . . . , N∗.

Depending on the modelling context, more sophisticated MCMC methodologies, such as adap-
tive Metropolis Hastings may be appropriate to produce optimal mixing rates across each of the
unique clusters k = 1, . . . , N∗.

exhibits competitor omission since OC3 = 0.96 > ε. This implies that, according to the model,

we expect to find at least one more competitor with a non-negligible cross-elasticity.

The posterior mean values of parameters of the first cluster are α1 = 0.16, β1 = 1.51 with

w1 = 0.34 and an aggregate competition of AC1 = 0.55, which indicates that the marginal

distributions of the cross-elasticities are of a light-tailed nature. This is in line with the fact

that this cluster largely consists of traditional crisps, which are a fiercely competitive prod-

uct line, where products have multiple substitutes and thus a high degree of sales sensitivity

is expected. The second cluster exhibits similar behaviour, with posterior mean parameters

α2 = 0.06, β2 = 1.71, w2 = 0.24 and an aggregate competition of AC2 = 0.42, also implying

a light-tailed distribution. The third cluster is rather different; its posterior mean parameters

α3 = 5.73, β3 = 10.88 suggest a very light-tailed distribution. This cluster largely consists



84 Chapter 5. Elasticity clustering using Dirichlet process mixtures

of vectors with only a single cross-elasticity entry (through w3 = 0.016), and the model sug-

gests that an additional competitor may have been missed (or does not exist) as indicated by

OC3 = 0.96 > ε. It is important to note however, that this cluster’s attribute of having only

a single cross-elasticity entry is not its defining trait. This cluster is also characterised by the

parameters of α3 = 5.73, β3 = 10.88, since this combination of parameters produces a very

slow decay rate between respective entries of the order statistic sequences (markedly slower

than the decay of the first and second clusters). This slow decay rate leads to the aggregate

competition of the third cluster being AC3 = 1.11, i.e. price changes of the leading competitor

products account for 1.11 of equivalent prices changes of the product’s own price changes.

These parameters suggest that these products are pure substitutes, i.e. products only bought

as an alternative due to other equivalent products being unavailable or too expensive. This

third cluster neatly demonstrates the value of clustering on both the parameters of (α, β, λ) and

w, since the (α, β, λ) parameters control the decay between successive order statistic sequence

entries, and w controls the number of relevant competitors a products receives throughout the

market. If w were a global parameter, it is likely that products comprising of the third cluster

would still need there own unique cluster, separate to that of the second and third clusters,

due to the distinctive decay rate between the entries of the order statistic sequences. This is

supported by figure 5.5, where we see a small spike centred around 1.0 in the histogram of

ηii,(10). This spike corresponds to the order statistic sequences of the third cluster, that are

distinctly differentof the other entries of ηii,(10) that decay markedly quicker.

With respect to the expected values of the order statistic entries themselves, we observe

similar order statistic patterns between the first and second clusters; each of the first order

statistics entries accounts for a roughly similar amount of its leading direct elasticity (28%

and 30% respectively), however the decay rate between the subsequent order statistics of the

first cluster is significantly slower than that of the second cluster (roughly 55% − 60% of their

previous value compared with 40% − 45%). This decay rate observation between subsequent

order statistics entries supports the discrepancy between each of the first and second cluster’s

AC statistics as well as the first cluster comprising of food items which traditionally have a

high number of competitors than in the second cluster. Similarly as before, the third cluster

differs significantly from the first and the second. Its first order statistic entry accounts for 98%

of its leading direct elasticity and has a slower decay rate between successive order statistic

sequences, each of these artefacts being significantly different from that of the previous clusters.

Retailers also wish to understand the behaviour of their product range at a less granular
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level, e.g. at a category level. Clustering of cross-elasticity profiles provides a means to extract

a new summary profile for a subset of products through a principled data-driven approach.

Crucially, these can aid store planners and business specialists in the retail analytics domain

to better understand the optimal pricing and display combinations. For example, products in

the third cluster are highly sensitive to their leading cross-effect products, but otherwise are

unaffected by the bulk of products around them. On the other hand, products in the first and

second clusters are cannibalized by their competitor products, meaning that increasing the sale

of one product decreases the sale of another, but with the second cluster being more robust to

these prices changes than the first.

Table 5.4: Retail analytics cluster-wise inference. Posterior means and (2.5%,97.5%) credible
intervals for each of the four parameters (α, β, λ, w) along with other breakdown statistics for
each the clusters induced by C∗LG.

Parameter Cluster 1 Cluster 2 Cluster 3
α 0.16 (0.036, 0.28) 0.06 (0.030, 0.21) 5.73 (2.49, 10.19)
β 1.51 (1.10, 2.13) 1.71 (1.20, 2.39) 10.88 (5.88 ,17.06)
λ 3.89 (1.75, 5.81) 2.29 (1.59, 4.47) 1.17 (1.09, 1.29)
w 0.34 (0.21, 0.41) 0.24 (0.20, 0.39) 0.016 (0.0017, 0.042)
N 110 149 16
OC 0.038 0.031 0.96
AC 0.55 0.42 1.11

trad crisps (22.5 %) 30.9 % 18.1 % 6.25 %
exotic crisps (33.1 %) 33.6 % 35.6 % 6.25 %
tortillas (8.73 %) 11.81 % 7.38 % 0%
popcorn (8.00 %) 8.18 % 8.05% 6.25 %
nuts (7.64 %) 0% 8.72 % 50.0%
dip (4.73 %) 4.55% 5.37% 0 %

pretzels (2.18 %) 0.909 % 2.01 % 12.5%
other (13.1 %) 10.00% 14.8% 18.8%

E(η̃(10)) 0.287 0.304 0.984
E(η̃(9)) 0.156 0.124 0.963
E(η̃(8)) 0.092 0.053 0.937
E(η̃(7)) 0.055 0.022 0.926

5.5 Summary & future work

We have presented a Bayesian nonparametric mixture model for censored ordered data, using

the Exponentiated Weibull distribution as a kernel. Our approach allows for flexible modelling

of cross-elasticity coefficients and lends itself to meaningful interpretation. We implemented our

methods on a dataset of cross-elasticities, focusing on quantities of interest in the retail analyt-

ics context, such as the aggregate competition and potential omitted competitors. Our model

was able to capture several interesting features in the data through the corresponding clustering.

These methods can potentially be extended in several directions. Firstly, one could intro-
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duce structure between the distribution of the length of the order statistics sequences and the

kernel distribution. This may allow borrowing of information between these two sources of

information, although it will become more computationally cumbersome. Secondly, one could

relax the assumption of ordered observations to account for observations only ordered in expec-

tation. Although in the cross-elasticity context this was not appropriate, in applications such

as sports analytics it may be more reflective of the data. For example, the best athlete will not

always have the best performance at a competition; instead, the ranking corresponds to average

performance. Finally, we would like to explore combinations of different product categories to

investigate similarities in market behaviour between otherwise disparate products.



Chapter 6

Slow-moving-inventory & related

methodologies

This Chapter introduces and defines the issues of demand forecasting for a class of retail prod-

ucts known as slow-moving inventory (SMI). Demand forecasting of products is of particular

interest to retailers as it impacts their businesses on various operational levels; this Chapter

introduces SMI forecasting and the issues related to these forecasts.

The subsequent sections are structured as follows; Section 6.1 defines the notion of SMI

and describes the intermittent demand of such products along with related difficulties with

forecasting SMI. The section continues on to outline the motivation behind forecasting SMI

and articulates the opportunities that forecasting for this type of products offers. Section 6.2

outlines the existing work into intermittent demand forecasting of SMI. Section 6.3 describes a

class of regression models known as zero-inflated regression models and discusses their relevance

to the issues related to forecasting SMI. Section 6.4 describes a class of point process know as

Hawkes processes and describes its relevance to the temporal aspects of forecasting SMI.

6.1 Slow-moving inventory background

One of the main objectives of retail analytics is to build predictive models for the demand of

products that companies offer to their markets. Generally speaking, demand forecasting for

products with high volumes of sales have been extensively studied in the literature [Seeger, Sali-

nas, and Flunkert, 2016, Sahu, Baffour, Harper, Minty, and Sarran, 2014], and as a consequence,

retailers have been successful at developing these forecasting models and have well understood

the effect that traditional covariates such as price, cross-prices, seasonal indicators have on the

demand of their products. However, there are a class of products known as slow-moving inven-

tory, and for these products the sales volumes are significantly smaller than with most products,
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i.e. where a sale occurs only 5% of days. Crucially, at this level of sales volume, the data arising

from the sales process of SMI is fundamentally different to products with a high sales volume,

and this difference often makes demand forecasting harder. We will expand on why it is harder

in subsequent sections. In spite of these difficulties, retailers remain interested in forecasting

SMI for the same reasons that they are interested in forecasting demand for products with

higher sales volumes, such as:

1. Understanding how variables such as a product’s price, the promotional activity a product

has undergone and how the seasonal trends affects a product’s demand, and therefore

revenue from the product, is crucially important to retailers as it allows them to understand

the factors that drive demand. This allows retailers to make sensible decisions over how

to set the variables they have control over. For example, a forecasting model allows

experimenters to measure the effects variables have on revenue critically allows retailers

to allocate marketing resources [Luan and Sudhir, 2005, Eagle and Ambler, 2002, Bass,

Bruce, Majumdar, and Murthi, 2007], optimise prices [Ferreira, Lee, and Simchi-Levi,

2015, Caro and Gallien, 2012] and understand the affect of promotional activity [Deng,

2005, Zhang, Zhou, Ma, Chen, Zhang, and Agarwal, 2016]. Models capable of accurately

assessing the link between demand and these variables create a competitive advantage by

improving the retailers’ decision making.

2. Demand forecasting for products allows retailers to manage their inventory. Thus, be-

ing able to forecast demand can allow retailers to manage their supply chain optimally

both in terms of distribution between regional stores and to know when to reorder further

inventory from suppliers, both of which provide a measurable improvement to their busi-

ness operations [Yan and Wang, 2014, Yang, Xiao, and Kuo, 2017, Petruzzi and Dada,

1999, Oroojlooyjadid, Snyder, and Takáč, 2016, Ali and Yaman, 2013, Syntetos and Boy-

lan, 2007]. For example, a demand forecaster at a store level allows retailers to reduce

the opportunity costs associated with under/over stocking and avoid the potential loss

of stock [Ferguson and Ketzenberg, 2006, Kärkkäinen, 2003, Vasconcellos and Sampaio,

2009]. Ghobbar and Friend [2003] showed that many companies have inventories that over

stock products due to inaccurate demand forecasts.

Figure 6.1 provide plots for four SMI sales processes along with log(price) in £ over 364 trading

days. For each product, the daily count corresponds to the aggregated sales of a touchscreen

tablet across five large supermarkets within south London. These plots illustrate that the sales

volumes are ‘inflated’ with an excess of zero sales and demonstrates an unclear correlation

between demand and changes in prices and seasonal affects. We further observe a clustering
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effect in the succession of sales in a product’s own demand series.
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Figure 6.1: Sales plots (solid black line) for four tablets with their respective log prices in £
(dashed blue) over a subset of 364 days of demand data. The shaded region is the 30 days prior
to the 25th of December - a seasonal period typically associated with higher demand. The first
three panels are of low volume tablets (i.e. lower number of sales) and the final forth panel is a
high volume tablet (i.e. higher number of sales).

6.1.1 Challenges of slow-moving inventory forecasting

There are various aspects that make forecasting SMI difficult, but for the purposes of this work,

we focus on the following three issues:

1. Zero-inflation: The sparsity of the sales signal that occurs for SMI products leads to

an inflation of zeros (days with no sales), and these excess zero sales limit the degree to

which forecasting methodologies can be deployed. In particular, this inflation of zeros

has two impacts, firstly it means the implementation of traditional demand forecasting

models such as (4.3) is untenable, due to the errors having non-standard distributions.

Secondly, this zero-inflation often induces a low correlation between the covariates that

retailers’ traditionally utilise in forecasting and the sale response. This makes establishing

a compelling explanatory narrative for what drives demand difficult due to the high level

of uncertainty and low correlation between covariates and response.

2. Temporal dynamics: Another not fully understood aspect of SMI intermittent demand

data is the dependency between future demand and historical demand. This temporal
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component to SMI demand takes the form of ‘bursty’ sales across different products,

i.e. that sales of product A cause further sales of product A in the future, and contempo-

raneous structure, i.e. that sales of product B cause sales of product C in the future. Such

features have been shown to be prevalent in previous forecasting work [Seeger, Salinas,

and Flunkert, 2016, Leeflang and Parreño-Selva, 2012]. During this work, the ‘bursty’

SMI demand is often referred to as self- and cross-excitation respectively. These bursts

could be the result from some common external factor that cannot be accounted for by

available covariates. An example of a common external factor could be an unexpected

twitter campaign promoting a product whereas a strict dependency on the previous sales

history could be the positive word-of-mouth between consumers having brought the prod-

uct within a social network. This dependency of the sales processes on its recent history as

well as on the sales process history of other products possibly offers a route to improve the

performance of predictive models for the SMI demand process by extending the models to

consider and capture autocorrelation/contemporaneous nature of sales.

3. Short Sale cycles: One of the practical concerns related to forecasting SMI is that

SMI products are frequently stocked and sold for a relatively limited amount of time

(short sale cycles). This has implications on training predictive SMI demand models, as

over fitting issues can arise by little covariate and demand history and the added issue

that the collective time series may not exist over the same entire time period. This

lack of sales signal obfuscates how the traditional variables used in forecasting models

(prices, promotions, seasonality) are linked with the volume of demand. This is particular

important to retailers, as they want to understand the effect that controls have on the

underlying sales process.

6.2 Analysis of slowing-moving-inventory forecasting

Much work has been done in the field of SMI forecasting, with a wide range of different method-

ological approaches having been used to address the challenges that forecasting SMI demand

presents. Broadly speaking however, the bulk of the methodological contributions have been

from the fields of machine learning, exponential smoothing (and related methods) to more

traditional statistical approaches.

Exponential smoothing and related methods have been a popular class of methodology for

intermittent demand forecasting of SMI products. Exponential smoothing is a sequential fore-

casting methodology with attempts to forecast future observations as a weighted moving average

of past observations over time. More concretely, [Hunter et al., 1986] expressed exponential
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smoothing as:

l0 = y0

lt = αyt−1 + (1− α)li−1

(6.1)

where yt is sales observation at time t, lt is the latent ‘smoothed forecast’ used to predict yt

and α ∈ (0, 1) is the smoothing factor. Exponential smoothing and related methods have been

extensively applied to a wide range of signal processing applications [Kalekar, 2004, Ngo, Tager,

and Hadley, 1996], but a relevant variation that has been heavily applied to forecast intermittent

demand of SMI is known as Croston’s method [Croston, 1972]. Croston’s method decomposes

the demand data into a count process yt of instances of non-zero demand and lt of inter demand

intervals. Croston’s approach then makes forecasts of future observations as the ratio of these

two non-zero demand and inter demand intervals, i.e. ytlt , assuming independence between the

demand size and the inter-demand intervals. Extensions to Croston’s method [Prestwich et al.,

2014, Teunter et al., 2011] have included accommodating the possibility when there is no longer

a demand for the marketed product and Syntetos and Boylan [2005] developed an unbiased

estimator of Croston’s method, which was shown to outperform Croston’s original estimator

on theoretically generated data. For a detailed review of Croston’s method, its extensions and

related exponential smoothing methods refer to [Xu, Wang, and Shi, 2012, Gardner, 2006].

In spite of exponential smoothing approaches being widely applied to forecasting intermit-

tent demand of SMI, there have been significant methodological innovations in the literature

that offer improved forecasts accuracy and explanatory power, which make these original ex-

ponential smoothing approaches less compelling [Willemain, Smart, and Schwarz, 2004, Seeger,

Salinas, and Flunkert, 2016]. This relative underperformance in terms of forecast accuracy and

explanatory power is arguably for a range of reasons, but it may be a result of the lack of

statistical underpinning many of these methods have. Shenstone and Hyndman [2005] showed

the stochastic process of Croston’s method to be inconsistent with intermittent demand in that

Croston’s method is non-stationary and defined on a continuous space. This lack of statisti-

cal underpinning is a significant drawback to these methods as it means hypothesis testing,

forecasting distributions and a framework for regression analysis are not readily available. Con-

sequently, these approaches are often thought of as ‘ad hoc’ testing methods, and ones where

it is often not straight-forward to optimise or select parameters [Kourentzes, 2014, Syntetos,

Boylan, and Croston, 2005].
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Machine learning approaches to intermittent demand forecasting of SMI have largely used neu-

ral networks and perceptrons methodologies [Kourentzes, 2013, Pour, Tabar, and Rahimzadeh,

2008, Mishra, Yuan, Huang, and Duc, 2014], and less extensively support-vector-machines [Bao,

Zou, and Liu, 2006, Hua and Zhang, 2006]. Machine learning algorithms have a tradition as

being methodologies capable of finding the complex non-linearities that underlie data gener-

ating processes with minimal model specification [Hornik, 1991, Hornik et al., 1989], and are

appealing approaches to apply to intermittent demand forecasting. Consequently, neural net-

works and related methodologies have been widely applied to intermittent demand forecasting

[Flunkert, Salinas, and Gasthaus, 2017, Gutierrez, Solis, and Mukhopadhyay, 2008], and have

demonstrated the flexibility to accommodate for dependencies between non-zero demand and

the inter-demand intervals, temporal phenomena of bursty or lumpy sales patterns as well as

for the nuanced interactions between various intermittent demand between different time series.

One of the appealing aspects of neural networks and other related methodologies is the ability

to fit complex and non-linear datasets. However, neural networks and alike often require a

significant amount of data to train on [Kourentzes, 2013]. Markham and Rakes [1998] further

demonstrated neural nets are outperformed by conventional statistical methods on smaller

samples. This can inhibit machine learning algorithms’ application to intermittent demand

forecasting as the training signal is typically sparse and thus there can be a risk of overfitting.

Regularised versions of machine learning methodologies have been successfully applied in the

context on intermittent demand [Kourentzes, 2013], but a significant amount of data is necessary

for these approaches to be applicable. Finally, machine learning methods’ often do not have an

interpretable stochastic process underpinning them. Consequently, answering hypothesis like

questions such as the benefits of information sharing, measuring the effect variables have and

quantifying certainty are not easily assessable. Machine learning approaches struggle with this

interpretability, which is of particular interest in our SMI setting.

Finally, many statistical methodologies have been devised to handle intermittent demand fore-

casting of SMI. These approaches predominately make use of count models [Kocer, 2013], but

also include state-space models [Seeger, Rangapuram, Wang, Salinas, Gasthaus, Januschowski,

and Flunkert, 2017], modified Markov models [Kocer, 2013], or more traditional time series

models [Rahman and Sarker, 2010, Mohammadipour, 2013]. Count models are often employed

as a route to handling the zero-inflation observed in intermittent demand data, and conse-

quently models such as generalised hurdle negative binomial model, beta-binomial model and

hurdle shifted Poisson models, including others, have been successfully applied to forecasting
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intermittent demand [Hahn and Leucht, 2015, Dolgui and Pashkevich, 2008]. In addition to

handling the excess of zeros in intermittent demand, extensions to static count models have

included incorporating temporal dynamics to capture the lumpy and bursty nature that is often

observed in such demand processes. Snyder et al. [2012] implemented various count models

with damped and undamped recurrence relations on the mean of count distributions where

they demonstrate a marked improvement over static traditional models that exclude temporal

dynamics. Their approach however, does not make use of any explanatory variables or infor-

mation borrowing between the intermittent demand series. Further extensions have included

hierarchical expositions of count models that aim to pool information across related demand

series. Chapados [2014] brought together a hierarchical Bayesian approach to information pool

across the intermittent demand of different products with an AR(1) process on the mean of the

count process and further incorporated explanatory variables within the regression framework,

but do not accommodate any regression or temporal framework on the zero-process.

State-space, Markov chain and time series approaches for intermittent demand forecasting

of SMI have generally focused on capturing the temporal and bursty aspect of intermittent

demand. Seeger et al. [2017] use an approximate Bayesian method with a latent state process

to describe the burstiness of demand and Takahashi et al. [2016] similarly used a mixture of

zero and Poisson distributions to demonstrate a significant improvement to Croston and related

methods. Kocer [2013] used a modified Markov chain model to estimate intermittent demand

and show that Markov chain based methods can capture the irregular nature of intermittent

demand. Finally, with respect to more traditional times series modelling, Rahman and Sarker

[2010] and Mohammadipour [2013] used conventional Bayesian times series and integer autore-

gressive moving average models for predicting intermittent demand.

However, there are open questions that the current statistical approaches do not sufficiently

answer. Firstly, many existing approaches do not fully explore the effect covariates have on

intermittent demand forecasting of SMI. Some have included a regression framework that

could accommodate covariates, but the majority of applications have not. This leads us to

ask whether the uncertainty exhibited in intermittent demand processes could be explained

away if conditioned on the appropriates variables such as a prices or seasonality. Secondly, few

approaches attempt to address the issues of hierarchical borrowing, temporal dynamics and

zero-inflation in a unified way. For the approaches that do, they have not clearly separated out

the benefits that covariates, hierarchical borrowing and temporal dynamics have in the context

of intermittent demand forecasting. One of our key objectives is to understand the benefits
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that each of these modelling contributions bring to SMI forecasting. Thirdly, in the approaches

incorporating temporal dynamics, though on the whole demonstrate significant benefits in each

of the contexts they are applied to, are typically of linear forms that could arguably not be

flexible enough in other modelling scenarios. These linear forms are typically moving averages or

AR(1) processes that only account for the most recent history. Temporal processes taking into

account more of the history and allow for more complex linearities may be beneficial. Finally,

none of approaches allow for any contemporaneous correlation across the intermittent demand

series, i.e. the lumpiness in intermittent demand series occurs independently across products.

It would be interesting to investigate whether there is an contemporaneous dependency across

the bursty demand across products and whether such a structure could provide a utility to

forecasting intermittent demand.

For the purposes of this work, we favour statistical modelling approaches. This is because

on balance, statistical approaches’ capability of neatly quantifying uncertainty, the ability to

assess the effect of covariates and information borrowing in a hierarchical fashion are directly

relevant to our objectives as outlined earlier in this Chapter.

6.3 Zero-modified distributions

The over dispersion of zero sales exhibited in intermittent demand is one of key difficulties

when attempting to develop accurate demand forecasts. Much work into over dispersed count

data has been done, and there are many contexts where common count distributions such as

the Poisson and negative binomial distributions are not sufficiently flexible to capture the over

dispersion of count data often exhibited in real-life settings [Lee, Han, Fulp, and Giuliano, 2012,

Mihaylova, Briggs, O’hagan, and Thompson, 2011].

Many statistical approaches have been developed to model zero-inflated data count data,

such as hurdle models, zero-inflated models, Neyman type A distribution, threshold models and

Birth process models [Ridout, Demétrio, and Hinde, 1998]. For the purposes of this work, we

focus on hurdle models as a route to modelling the inflation of zero sales, the reasons for which

will be made clear in the subsequent section.

6.3.1 Hurdle models

Mullahy [1986] introduced the hurdle regression model to handle the inflation of zeros in count

data that traditional count models could not adequately account for. The hurdle model defines

a distribution over {0, 1, . . .}, and assumes these counts can be split into two separate processes;

a process accounting exclusively for the 0’s (the hurdle), and a process accounting for the non-
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zero counts. More concretely, given an observation y assumed to be distributed according to a

hurdle model, the probability mass function is given by:

p(y) =

 π, for y = 0

(1− π)g(y), for y ≥ 1
(6.2)

where π ∈ [0, 1] is the probability of zero count and g(·) is some probability mass function over

the positive integers. The mean and variance of the hurdle distribution is given by E[Y ] =

(1− π)Eg[Y ] and Var[Y ] = (1− π)Varg[Y ] + πEg[Y ] respectively, where Eg[Y ] and Varg[Y ]

are the expectation and variance of the positive count distribution induced from g(·). Mullahy

[1986] originally assumed a truncated Poisson parametrised by λ over the positive integers, and

included explanatory variables wi,xi with respective regression coefficients θ,β to allow π, λ to

vary. Then, given a collection of yi’s with associated explanatory variables wi,xi, the hurdle

model was given by:

p(yi) =

 πi, for yi = 0
(1−πi)exp(−λi)λ

yi
i

(1−exp(−λi))yi! yi ≥ 0
(6.3)

with link functions:

logit(πi) = wiθ and log(λi) = xiβ.

Here xi and wi are p× 1 and q × 1 vectors of covariate data and θ and β are p× 1 and q × 1

vectors of regression coefficients.

The hurdle model has been applied to a range of contexts which include ecology modelling

[Potts and Elith, 2006], resource planning within medicine [Molas and Lesaffre, 2010] to mod-

elling insurance claims [Boucher, Denuit, and Guillén, 2008]. The hurdle model is closely

related to the zero-inflated Poisson model [Lambert, 1992], which is essentially a two state

mixture model that either mixes to a degenerate zero-distribution with probability π ∈ [0, 1],

or alternatively with probability (1 − π) takes a sample from a untruncated Poisson distri-

bution. Though similar, these models differ in the following ways: firstly, the hurdle model

assume the zero and non-zero processes are separable, as 0 observations arise exclusively from

the degenerate 0 distribution and not from the count distribution over {1, . . .}. Consequently,

the likelihood of hurdle can be separable. Hurdle models further differ from their zero-inflated

counterparts in their ability at accommodating deflated models that zero-inflated models cannot.

Extensions over the original hurdle model have been vast, but generally have included alterna-

tive specifications of link functions in both the count and zero-inflation components [Greene,
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1994], as well as to allow for mixed effects [Hu, Pavlicova, and Nunes, 2011] to mention a few.

One of the relevant developments has been the application of hierarchical Bayesian equivalents

of hurdle and zero-inflated models. As discussed in Chapter 2, a Bayesian hierarchical model

where samples are i.i.d can be expressed as in (2.3), and has appealing benefits in terms of infor-

mation borrowing. Many of these hierarchical extensions have been implemented in the context

of multivariate longitudinal data analysis. Multivariate longitudinal data comprise multiple

time series data whose observations are recorded at the same time across each of the multiple

time series. Within the context of the hurdle model of (6.3), by denoting yit as the observation

at time t for ith time series, i = 1, . . . , d, and Hurdle (πi, λi) as the hurdle distribution with

parameters πi and λi, we can then express a d-dimensional longitudinal hurdle model across

multiple longitudinal series as:

yit
iid∼ Hurdle (πi, λi) , for t = 1, . . . , n

πi, λi ∼ Υ(ω)

ω ∼ Π

(6.4)

for i = 1, . . . , d where Π is the prior of the hyper-parameters ω that parametrise Υ. Such

models are effective at information pooling across different time series whilst still capturing

between-subject heterogeneity as well as demonstrating optimal small-sample properties [Buu,

Li, Tan, and Zucker, 2012, Min and Agresti, 2005, Neelon, O’Malley, and Normand, 2010,

Scheel, Ferkingstad, Frigessi, Haug, Hinnerichsen, and Meze-Hausken, 2013, Neelon, Ghosh,

and Loebs, 2013]. This is particularly relevant to our intermittent demand setup, as the ability

to pool parameter information between the intermittent demand series could allow a route to

handling the issues related to the sparsity of the demand signal. Though it should be noted, to

model the bustiness of demand, we disregard the i.i.d assumption of (6.4) to accommodate the

more interest temporal dynamics typically exhibited in intermittent demand.

During this work, we opt for hurdle models over zero-inflated equivalents for the following

reasons. Firstly, one of the appealing traits of hurdle models is the scope for the likelihood

being separable. This decoupling of the count and zero processes can allow inference to be

simplified. Furthermore, there are known issues associated with zero-inflated models in terms of

estimation and identifiability as well as having poorer fit when compared to their hurdle model

equivalents [Hall and Shen, 2010, Rose, Martin, Wannemuehler, and Plikaytis, 2006].
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6.4 Temporal point processes

One of key aspects of intermittent demand is the bursty and lumpy nature of sales across time.

As mentioned in section 6.2, the inclusion of temporal dynamics in SMI forecasting indicates

significant benefits when compared to static models without such dynamics. There have been a

range of approaches that incorporate temporal dynamics into demand forecasting. In the inter-

mittent demand context, these have included state-space modelling, ARIMA process, modified

Markov chain models as well as other approaches. For a detailed review of various forecasting

approaches, refer to [De Gooijer and Hyndman, 2006].

For the purposes of this work however, we consider a relevant class of stochastic processes

known as temporal point processes, that could have utility at describing the bursty and intermit-

tent nature of sales of SMI products. Informally speaking, a temporal point process consists of

an ordered sequence of arrival times of some particular events. Temporal point processes have

been widely applied to a range of contexts from forecasting earthquake activity [Ogata, 1998],

modelling market events data [Bowsher, 2007] to predicting Twitter tweet popularity [Zhao,

Erdogdu, He, Rajaraman, and Leskovec, 2015]. Temporal point processes have proved to be a

good class of model for predicting the arrival times of future events.

6.4.1 Point processes background

We now introduce some prerequisite terminology and mathematical definitions before covering

the relevant temporal point processes that are relevant to this work. Namely, we define the

concepts of a counting process, a point process and a conditional intensity function.

Definition 10. Counting process

A counting process is a stochastic process {N(t), for t ≥ 0} that satisfies the following:

1. N(t) is defined over the positive integers N+.

2. N(j) ≤ N(t) for j ≤ t.

3. N(0) = 0.

Definition 11. Point process

A point process is a collection of random variables {t1, t2, . . .} that satisfies the following:

1. t1 ∈ [0,∞] for t ≥ 0.

2. P (t1 ≤ t2 ≤ . . .) = 1 almost surely.

3. The number of points in some bounded region of R is almost surely finite.
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We introduce H(t) to denote the history of a point process instances prior to time t, i.e. H(t) =

(tj : for all tj < t). Having now defined a point process, it is now necessary to specify a distri-

butional form over a finite collection of {t1, t2, . . . , tJ}, i.e.:

f(t1, t2, . . . , tJ) =
J∏
j=1

f(tj | H(tj)). (6.5)

Instead of specifying the conditional arrival distribution f(tj | H(tj)) directly, we can instead

characterise a temporal process by a conditional intensity function.

Definition 12. Conditional intensity function

A conditional intensity function λ(t) of an associated counting process N(t) (or equivalently

point process {t1, t2, . . . , tJ}) is given as:

λ(t) = lim
h+→0

E(N(t+ h)−N(t) | H(t))
h

.

given the righthand limit exists. Crucially, the conditional intensity function, if it exists,

uniquely defines distributions over a point process given in (6.5) (in the finite dimensional case).

The conditional intensity function λ(t) is a useful route to intuiting a temporal point pro-

cess. More concretely, given a conditional intensity function λ(t) and a sufficiently small

interval of time [t, t + δt), the probability of a new occurrence happening within this interval

given H(t) is:

P (event ∈ [t, t+ δt) | H(t)) = λ(t)dt

This allows an understanding of the count and point processes induced from the functional form

of λ(t). The greater λ(t) is during the time interval [t, t+δt), the more probable of observing an

event occurring during this interval is. Consequently, λ(t) should reflect a point processes dy-

namics observed in the data [Aalen, Borgan, and Gjessing, 2008]. Two popular point processes

are the homogeneous the non-homogenous Poisson process (HPP) and non-homogenous Poisson

process (NHPP). A counting process N(t) defines a HPP if its conditional intensity function

is given by λ(t) = λ0. Similarly, a counting process N(t) defines a NHPP if its conditional

intensity function λ(t) = ϕ(t), where ϕ(t) is a function independent of its past history and

depends only variables defined at current time t.

Homogeneous and non-homogeneous Poisson processes have been widely applied to a range

of temporal settings [DasGupta, 2011, Saldanha, De Simone, and e Melo, 2001, Al Ajarmeh,
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Yu, and Amezziane, 2010]. However, in spite of these simpler models, in situations where conta-

gion effects are observed, the assumption that the conditional intensity function is independent

of its history can be violated. To accommodate this dependency on history, exciting processes

have been introduced. Exciting processes are processes that are inclined to ‘cluster’ over the

domain they occur over. One such process known to accommodate event arrival clustering is

the Hawkes process.

6.4.2 Hawkes process

The Hawkes process was introduced as a self-exciting point process to capture the temporal

clustering of events within a counting process [Hawkes, 1971]. More concretely, given a count

process N(t) and associated point process {t1, t2, . . .}, a Hawkes process can be defined by its

conditional intensity function λ(t) given by:

λ(t) = ϕ(t) +
∫ t

0
κg(t− u)dN(u)

= ϕ(t) +
∑
tj<t

κg(t− tj)
(6.6)

where ϕ(t) is the background intensity rate, g(·) ≥ 0 some continuous excitation kernel that

controls the extent counts/events cluster together and κ > 0 is a trigger constant. A Hawkes

process induces a clustering among the count process N(t), where increases in κ in turn increases

the probability of an event occurring in the future.

The Hawkes process can be thought of as a generalisation of a non-homogeneous Poisson

process. The non-homogeneous Poisson processes assumes λ(t) = ϕ(t), i.e. its conditional

intensity is purely a function of its current time and independent of the history of previous

events. This corresponds to a Hawkes process with κ = 0 and ϕ(t) 6= constant.

This demonstrates the differences between the Hawkes process and the closely related non-

homogeneous Poisson process, in that a Hawkes process accounts for the history of event

occurrences that allows for excitation dynamics. Figures 6.2 and 6.3 give an example of a

counting process N(t) induced from a homogeneous Poisson process and a Hawkes process

respectively for 200 units of time. Interestingly, both have the same background rate, but the

addition of
∑
tj<t

e−(t−tj) in the conditional intensity function of the Hawkes process induces

a strong clustering amongst the N(t). This is indicated by the quick succession of blue dotted

lines compared to the more evenly spaced counts generated under the HPP case.
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Figure 6.2: Plots of the count process N(t) (as indicated by the solid blacks dots) and temporal
point process {t1, t2, . . .} (as indicated by the sequence of vertical blue dotted lines) induced
from the homogeneous Poisson process with conditional intensity function λ(t) = λ0 = 0.05.
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Figure 6.3: Plots of the count process N(t) (as indicated by the solid blacks dots) and temporal
point process {t1, t2, . . .} (as indicated by the sequence of vertical blue dotted lines) induced
from the Hawkes process with conditional intensity function λ(t) = 0.05 + 0.3

∑
tj<t

e−(t−tj).

The incorporation of a point process’s history in the conditional intensity function of the Hawkes

process allows for excitation and contagion dynamics to be captured that a HPP and NHPP

can not. Consequently, in situations where self-excitation phenomena exist, the Hawkes process

has demonstrated to be a good temporal point process that accommodates for such dynamics

[Da Fonseca and Zaatour, 2014, Yang and Zha, 2013].
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6.4.3 Multivariate Hawkes Process

A Hawkes process can be generalised to a multivariate setting. The corresponding multivari-

ate Hawkes Process can be thought of as a multivariate point process whose individual point

process entries are defined by a conditional intensity function given by a Hawkes process that

incorporates excitation from the other point process entries. Before defining the multivariate

Hawkes process more formally, we introduce the concept of a multivariate counting process.

Definition 13. Multivariate counting process

A stochastic process {N(t), for t ≥ 0} is a multivariate counting process of d dimensions if it

satisfies:

1. N i(t) defines a counting process for every i ∈ {1, . . . , d}, where N i(t) is the ith entry of

N(t).

2. The sum of the coordinates of N(t),
∑d
i=1N

i(t), also defines a counting process.

We then denote {tij}{i=1,...,d} as the associated d-dimensional multivariate point process induced

from the multivariate count process N(t) [Zocher, 2005]. The multivariate Hawkes process is

then defined through its conditional intensities λi(t), i = 1, . . . , d, given by:

λi(t) = ϕi(t) +
d∑
k=1

∫ t

0
κkigki(t− u)dNk(u)

= ϕi(t) +
d∑
k=1

∑
tk
j
<t

κkigki(t− tkj )
(6.7)

where ϕi(t) is the background intensity of the counting process N i(t), gki(·) and κki > 0

are the excitation kernel and constant corresponding to the counting process Nk(t)’s effect

on counting process N i(t). By the inclusion of gki(·) with k 6= i in the intensity function

of λi(t) allows for mutual excitation across the multivariate counting processes. Multivariate

Hawkes processes have been successfully applied to a wide range of disciplines. Lai et al. [2014]

proposed a scheme allowing for inter-excitation and inhibition across different social media

events and themes and use a triggering kernel exponential in time and Gaussian in space to

capture cross excitation and inhibition in tweets in different topics and geographies. Zhou et al.

[2013] use a multivariate Hawkes process to model information spread across sparse low-rank

social networks. A multivariate Hawkes process is a possible methodology that could capture

the suspected dependency between the ‘lumpy’ sales of intermittent demand series.
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6.4.4 Discretised Hawkes process

As outlined earlier, the Hawkes process has useful applications in modelling the clustering

phenomena often exhibited in point process data. However, it is important to note that the

Hawkes process is defined over the continuous space. Consequently, it is necessary to create

a discretised equivalent to the Hawkes process that is applicable in the intermittent demand

forecasting setting where forecasts are made on a daily level.

One relevant discretisation of excitation processes in modelling zero-inflated count data was

that of Porter and White [2012], who interpreted a Hawkes process within the discrete setting.

In particular, they let Et be the indicator for an event day where Et = 1 if on day t, there was

at least one non-zero count observed, and Et = 0 if on day t, there was only a 0 count observed.

They then assumed Et ∼ Bernoulli(πt) where πt is the probability of observing non-zero count

on day t with link function:

η(πt) = − log(1− πt) = ϕ(t) + κ
∑
j<t

Ejg(t− j) (6.8)

where ϕ(t) is mean intensity function on day t (which takes no account of the history), g(·) is

a discrete excitation function and κ is the real valued excitation or inhibition constant. This

essentially achieves the self-excitation dynamics that a traditional Hawkes process captures in

the temporal point process setting. We observe from (6.8), that η(πt) elicits a behaviour such

that for κ > 0, increases in ϕ(t) + κ
∑
j<tEjg(t − j) lead to increases the probability (πt) of

further such events occurring in the near future.

Porter and White [2012] demonstrated that this adequately captures the self-excitation ex-

hibited in their count dataset when compared to other benchmark models. Such an approach is

closely related to intermittent demand forecasting. Figure 6.4 plots two series of samples from

a Bernoulli distribution with a Hawkes process term. It illustrates the variation in Bernoulli

samples according to the differing parameters of the excitation kernel and trigger constant.

We observe from this plot, that the maroon curve, by having a higher excitation constant κ,

experienced much more excitation as exhibited by the densely packed maroon events dots, as

opposed to the blue which are mostly isolated events.
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Figure 6.4: Simulated example. Two series of samples are generated from Et ∼ Bernoulli(pt),
with logit(pt) = θ + κ

∑
j<tEjg(t − j | µ, τ) for t = 1, . . . , 364 where g(· | µ, τ) is the negative

binomial density on the positive integers with mean and scale µ, τ . The blue dots are Et samples
generated from (θ, κ, µ, τ) = (−3.2, 3.1, 1.0, 5.0) and the solid blue line is the corresponding pt.
The maroon dots are Et samples generated from (θ, κ, µ, τ) = (−2.5, 5, 5, 60) and the solid
maroon line is the corresponding pt. We observe how the differing (θ, κ, µ, τ) lead to different
clustering patterns and the underlying shape of the probability of seeing events.



Chapter 7

Slow-moving inventory prediction model

This Chapter is largely from a paper due to be submitted to The Annals of Applied Statistics titled

“Bayesian hierarchical modelling of sparse count processes in retail analytics”. arXiv:1805.05657

This Chapter presents a novel forecasting methodology for the intermittent demand of slow-

moving inventory. Our approach accommodates the structural features exhibited in slow-moving

inventory sales data, namely; zero-inflation of sales, the temporal clustering within and across

intermittent demand series and the inherent information sparsity within each series. We achieve

this by developing a modelling, inferential and predictive method able to learn the dynamics

of sparse count processes for SMI products with few to no sales. In particular, we flexibly

introduce covariates into the self-exciting model for sparse processes through the link function

of the hurdle model of (6.3) similarly to that of Porter and White [2012], introduce pricing

covariates into the discretised background intensity of (6.6), and further extend the model to

include a cross-excitation contribution allowing for differing intermittent demand series to excite

one another. Similarly to the work of Chapados [2014], we integrate individual products into

a Bayesian hierarchical model that accommodates shrinkage and information passing across

differing sparse count process, but further allows for excitation, seasonality and information

pooling across intermittent demand series to exist in the zero-process component of the hurdle

model.

The rest of this Chapter is organised as follows; section 7.1 describes the SMI demand data used

in this work. Section 7.2 outlines our hierarchical Bayesian hurdle model with self- and cross-

excitation components to model the multiple sparse count processes simultaneously. Section

7.3 presents the results of our sparse count process on the demand data of touchscreen tablets

across five South London supermarkets. We conduct a detailed investigation to compare our

model to its non-hierarchical equivalent and models without the self- and cross-excitation terms
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to highlight the benefits the information borrowing and excitation components and discuss the

implications of these results within the context of retail analytics. Section 7.4 concludes with a

summary of our contributions and a discussion of possible future developments.

7.1 Data

Our data consist of 17 longitudinal SMI sales processes over 464 days of trading between the

dates 1st October 2013 to 7th January 2015. For each product, the daily count corresponds to

the aggregated sales of a touchscreen tablet across five large south London supermarkets of a

leading UK supermarket retailer. Daily prices as well as seasonality characteristics are available

as covariates during the 464 trading days, during which all of the 17 tablets were stocked and

in circulation. We split the data into training and test sets, the first 364 trading days between

1st October 2013 to 29th September 2014 (a full trading year excluding Christmas), and the

remaining 100 trading days between 30th September 2014 to 7th January 2015 kept as hold

out test set. These training and test split gives a balance between providing sufficient training

periods where we observe one full year to allow the learning of seasonal trends, whilst having test

sets of a reasonable size to allow meaningful forecasts to be made on. This dataset is challenging

since we only have one year to learn seasonality from and thus makes a hierarchical model

formulation particularly applicable. It should be noted that this data was fully anonymised for

general research purposes such that no individual shoppers, or any other sensitive data could

be identified.

Table 7.1 provides summary statistics over the training set of the sale counts across the 17 tablet

products. The demand across the category is primarily driven by one product, as it accounts

for 75% of sales. However, the remaining products are extremely slow moving as indicated by

the majority of them only having 0.5-5% non-zero sales days.
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Table 7.1: Summary statistics of SMI demand within tablet category on the training set. The
brands have been anonymised with fictitious names for privacy purposes.

Product Brand total sales % non-zero sale days
1 SPARK 1 0.27
2 TECHY 409 53.57
3 TECHY 36 4.12
4 GADGET 9 1.92
5 TECHY 5 1.37
6 TECHY 13 3.57
7 TECHY 13 3.57
8 GADGET 13 3.30
9 GADGET 2 0.27
10 GADGET 5 1.37
11 TECHY 1 0.27
12 TECHY 12 1.92
13 TECHY 2 0.55
14 TECHY 3 0.82
15 TECHY 9 0.82
16 TECHY 6 1.10
17 TECHY 3 0.82
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Figure 7.1: Plots of demand series (solid black) for two tablets with their respective log(prices)
in £ (dashed blue) over 364 days of training data. The left and right panel demand is a high
volume and low volume tablet respectively. The shaded region is the month prior to Christmas.

These data demonstrate many of the pertinent features of SMI sales processes. Figure 7.1

contrasts the sales and respective prices of a faster-selling tablet against a slower one. The

plots illustrate the zero-inflation and that the sales do not show a straightforward dependence

on either the prices or the seasonal effects, as indicated by the little movement in demand with

respect to changes in prices and season. A clustering effect in the succession of sales within their

own demand series is also evident. For example, sales of the right-hand plot in Figure 7.1 fall

during the month prior to the festive period, typically thought of as driving demand, but a quick

succession of sales follows shortly after this month. This suggests that an excitation process not

accounted for by covariate information, as sales bursts occur outside the effects explained by

covariate data. Figure 7.2 provides plots suggesting the existence of possible cross-excitation of
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tablet sales within a particular brand. We see that successive sales of a tablet in a given brand

is often followed by a subsequent sale of another tablet of the same brand.
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Figure 7.2: Plots of tablet sales across two brands over proportions of the training set. The
left plot corresponds to the GADGET brand and the right plot to the TECHY brand. For
each plot, the differing colours correspond to the sales of a particular product within the given
brand. The model proposed in subsequent sections (in-particular section 7.2.2), will incorporate
the cross-excitation dynamic that the sales of products within the GADGET brand can trigger
further sales of differing products within the same GADGET brand (and likewise for the TECHY
brand).

The model proposed in the latter section will have various boolean variables that indicate

whether a sale has been triggered within a product’s own recent sales history, but also whether

a recent sale has been triggered of a different product within the same brand category.

7.2 Model

We model the daily sales of SMI by explicitly modelling the absence of a sale, termed the

‘zero-process’, and the number of sales by the ‘count-process’. Our model uses a Bayesian

hierarchical version of the hurdle model of (6.3), with self- and cross-excitation terms in the

zero components and self-excitation terms in the count components. More concretely, given yit

sales of some product i on day t (where yit ∈ {0, 1, . . .}), the probability density function of yit

given covariates xit,wit is specified as:

p(yit | xit,wit, Hit, H̃it,θi,βi) =

 p(wit, Hit, H̃it,θi), for yit = 0(
1− p(wit, Hit, H̃it,θi)

)
f(yit | λ (xit, Hit,βi)), yit ∈ N+

with link functions:

logit
(
p
(
wit, Hit, H̃it,θi

))
= ϕzi (t,wit,θi) + Szit(Hit,θi) + S̃zit(H̃it,θi), (7.1)

log(λ(xit, Hit,βi)) = ϕci (t,xit,βi) + Scit(Hit,βi). (7.2)
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Here

xit and wit are the p× 1 and q × 1 vectors of covariate data at time t,

θi,βi are the collection of coefficients of the zero and count processes respectively,

Hit & H̃it are the history self and cross events until t,

ϕzi (t,wit,θi) is the background intensity function of t,wit,θi for the zero process,

ϕci (t,xit,βi) is the background intensity function of t,xit,βi for the count process,

Szit(Hit,θi) is the self-excitation function of the zero process (as a function of Hit,θi),

all indexed by product i, and with S̃zit(H̃it,θi) and Scit(Hit,βi) defined similarly. Here p(wit,θi)

is the probability of observing a zero sale at time t, and f(· | λ (xit, Hit,βi)) is a probability

mass function defined on the positive integers parametrised by λ (xit, Hit,βi) (as function

of xit, Hit,βi). It is important to note that θi is the a vector coefficients that represent

the collection of coefficients parametrising the ϕzi (t,wit,θi), Szit(Hit,θi) and S̃zit(H̃it,θi) pro-

cesses. βi is defined similarly. For notational purposes, we express ϕzi (t,wit,θi) = ϕzi (t),

ϕci (t,xit,βi) = ϕci (t), Szit(Hit,θi) = Szit, S̃zit(H̃it,θi) = S̃zit and Scit(Hit,βi) = Scit in subsequent

sections. We let Eit be the indicator for an event day such that Eit = 1 if yit ≥ 1 (a day t

where at least one sales instance is observed) and Eit = 0 if yit = 0 (a day t with no sales for

product i). The functional forms of the distributions, covariates, parameters, intensity, link and

excitation functions for each of the zero and count processes will be specified in more detail in

subsequent sections.

Our proposed model makes the following three extensions to existing approaches. Firstly,

we use covariates beyond seasonal information, in particular, we use price to assist in forecast-

ing the demand of products along boolean seasonal variables. Secondly, we extend the zero

process of hurdle models to include covariates in the background intensity, along with self- and

cross-excitation terms that aims to capture the auto-correlative and contemporaneous nature of

demand bursts across the SMI category. Thirdly, we build a Bayesian hierarchical model across

the sales yit (the sales of product i at time t) of a SMI category to allow information borrowing.

7.2.1 Covariate data

We introduce covariate data into the model through the background intensity functions ϕzi (t)

and ϕci (t) of (7.1) and (7.2). In the supermarket sales context, this corresponds to a product’s

own price along with seasonal effects (which are common for all products). In particular, these

covariates for a product i at time t are logarithm of its price, along with the indicator functions
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of week day, month and Christmas period (where we define the Christmas period being the 30

trading days prior to the 25th of December). We summarise these covariates as:

log(pit) = log(priceit) = logarithm price of SMI product i at time t,

st =
(
1(t∈Christmas),1(t∈Mon), . . . ,1(t∈Sat),1(t∈Jan), . . . ,1(t∈Nov)

)
.

We use December and Sunday as reference values when all indicators are equal to zero. Using

boolean indicators allows for a natural interpretation in an information borrowing scheme, and

further avoids any explicit aggregation across the SMI product data, allowing us to easily handle

any issues relating to products coming in and out of circulation. As mentioned in section 7.1,

all of the 17 tablets during this analysis were stocked and in circulation, but it is important to

note, that the use of boolean seasonal indicator variables is the primary mechanism by which

our model handles the issue of non-overlapping sale periods.

We specify the background intensities ϕzi (t), ϕci (t) of the zero and count processes of (6.3)

for product i, as:

ϕzi (t) = θi1 + θi2 log(pit) +
18∑
k=1

θi(k+2)skt (7.3)

ϕci (t) = βi1 + βi2 log(pit) (7.4)

where {θi1, . . . , θi20} and {βi1, βi2} are the parameters associated with the zero and count pro-

cesses respectively for product i. The j index of θij ranges from 1− 20 to include the 1 additive

constant, 1 log price variable, 6 week day, 11 month and 1 Christmas indicators. These drift

functions (7.3) and (7.4) describe the background intensities of the processes absent of excitation.

Thus, in the zero process, we expect the background intensity to depend on a linear combination

of log(price), seasonal effects and some additive constant through a given link function, whereas

in the count process, we expect the background intensity to depend on a linear combination of

log(price) and some additive constant through a given link function. We restrict the background

intensity of the count process to exclude seasonal effects to reduce model complexity and the

possibility of over-fitting. It is important to note, that for a given product i the count process

only exists for t with Eit = 1. This reduces the count process data has to train on compared to

the zero process. We now denote these covariates as wit = (pit, st) and xit = (pit) for the zero

and count processes respectively in line with notation of (7.7).
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7.2.2 Self- and cross-excitation

SMI demand of different but comparable products may occur in auto-correlative and contempo-

raneous ‘bursts’, in that, sales of a particular product may be followed by sales of a comparable

product in the immediate future. These bursts can be a result of external advertising campaigns

or viral dynamics, but importantly the apparent excitation not only happens auto-correlatively,

but also contemporaneously across products. In the SMI context, cross-excitation is suspected

to occur within brand, i.e. an instance of demand for a product leads to a higher probability

of demand of a product from the same brand over the subsequent days. Concretely, we define

Ẽit as the indicator for a cross event day of product i of some brand such that Ẽit = 1 if∑
k∈B\{i} ykt ≥ 1, where B is the set of indices corresponding to products of the brand, and

Ẽit = 0 if
∑
k∈B\{i} ykt = 0. Thus the indicator Ẽit is 1 if there is at least one sale within the

brand at time t and 0 otherwise. We denote the history of cross-events up to but not including

t as H̃i(t−1) =
(
Ẽi1, . . . , Ẽi(t−1)

)
.

The corresponding shot noise process with the self and cross-excitation of product i then

becomes:

Sit =
∑
j<t

κiEitg(t− j | ζi) (7.5)

S̃it =
∑
j<t

κ̃iẼitg(t− j | ζ̃i) (7.6)

where κi, κ̃i are the trigger constants for the self- and cross-excitation respectively and g is

some probability mass function parametrised by ζi and ζ̃i controlling the shape of future self

and cross-excitation respectively. Our cross-excitation formulation of (7.6) is closely related

to the multivariate Hawkes process [Hawkes, 1971], where we fix all cross-excitation kernels of

a given product to 0 that correspond to a different brand, and have shared cross-excitation

kernels with shared parameters for products corresponding to the same brand. We denote these

collections of self- and cross-excitation parameters as γi = (κi, ζi) and γ̃i =
(
κ̃i, ζ̃i

)
respectively.
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7.2.3 Self and cross exciting hurdle model

Our SMI model uses the hurdle model specification of (7.7). In particular, for the zero process,

we use the background intensity ϕzi (t) of (7.3) along with self- and cross-excitation components

specified in (7.5) and (7.6). For the count process, we use background intensity ϕci (t) of (7.4)

with self-excitation term of (7.5). Our model is indexed by 17 longitudinal demand series from

the tablets category over 464 (training+test) days of trading between the dates 1st October

2013 to 7th January 2015. The probability mass function of the hurdle model is specified as:

p(yit | xit,wit, Hit, H̃it,θi,βi) =

 p(wit, Hit, H̃it,θi), for yit = 0(
1− p(wit, Hit, H̃it,θi)

)
f(yit | λ (xit, Hit,βi) , φ), yit ∈ N+

(7.7)

with f(yit|λ, φ) =
(
yik−2+φ
yik−1

) (
λ−1

λ−1+φ

)yik−1 (
φ

λ−1+φ

)φ
and φ = 1 which is the probability mass

function of the shifted negative binomial distribution (NB) and Hit, H̃it, wit and xit are as

defined in sections 7.2.2 and 7.2.1 respectively. We opt for a shifted NB distribution over

a shifted Poisson distribution on the positive counts due to the known shortcomings of the

Poisson distribution at not accommodating over-dispersion adequately [Weaver, Ravani, Oliver,

Austin, and Quinn, 2015]. We specify the link functions as:

logit
(
p
(
wit, Hit, H̃it,θi

))
= ϕzi (t) + Szit + S̃zit (7.8)

log(λ(xit, Hit,βi)) = ϕci (t) + Scit (7.9)

ϕzi (t) and ϕci (t) are as defined from (7.3) and (7.4) respectively. We define Szit =∑
s<t κ

z
iEitg(t − s | µzi , τzi ) and S̃zit =

∑
s<t κ̃

z
i Ẽitg(t − s | µ̃zi , τ̃zi ) similarly to (7.5) and

(7.6) respectively with g(t | µ, τ) =
(
t−2+τ
t−1

) (
µ−1

µ−1+τ

)t−1 (
τ

µ−1+τ

)τ
as the shifted NB distribu-

tion. We similarly define Scit =
∑
s<t κ

c
iEitg(t − s | µci , τ ci ). We denote the collection of shot

parameters as γ̃zi = (κ̃zi , µ̃zi , τ̃zi ), γzi = (κzi , µzi , τzi ) and γci = (κci , µci , τ ci ) and collectively denote

θi = (θi1, . . . , θi20,γ
z
i , γ̃

z
i ) and βi = (βi1, βi2,γci ).

Special attention is paid to the specification of hierarchical priors over the collection θi and

βi, as they are the mechanism through which we penalise complexity and pool information. In

particular, we specify θij ∼ N(ρzj , (σzj )2) and ρzj ∼ N(ϑzj , (ζzj )2) and fix (σzj )2 for j = 1, . . . , 20

and similarly specify βij ∼ N(ρcj , (σcj)2) and ρcj ∼ N(ϑcj , (ζcj )2) and fix (σcj)2 for each j = 1, 2. For

parameters of the shot function Szit, we specify γzij ∼ Gamma(ηzj , νzj ) with ηzj ∼ Gamma(αzj , δzj )

and fix νzj for each j = 1, 2, 3. We specify priors on γ̃zij and γcij similarly. The full details of

hierarchical prior specification are contained in appendix B.1.3 and B.1.5. Thus, by denoting:
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Y =
(
y(1)(1), . . . , y(1)(364), y(2)(1), . . . , y(2)(364), . . . , y(17)(1), . . . y(17)(364)

)
X =

(
x(1)(1), . . . ,x(1)(364),x(2)(1), . . . ,x(2)(364), . . . ,x(17)(1), . . .x(17)(364)

)
W =

(
w(1)(1), . . . ,w(1)(364),w(2)(1), . . . ,w(2)(364), . . . ,w(17)(1), . . .w(17)(364)

)
H =

(
H(1)(1), . . . ,H(1)(364), H(2)(1), . . . ,H(2)(364), . . . ,H(17)(1), . . . H(17)(364)

)
H̃ =

(
H̃(1)(1), . . . , H̃(1)(364), H̃(2)(1), . . . , H̃(2)(364), . . . , H̃(17)(1), . . . H̃(17)(364)

)
we can write the full posterior ppost

(
θ1, . . . ,θ17,β1, . . . ,β17 | Y ,X,W ,H, H̃

)
as:

pzpost

(
θ1, . . . ,θ17,β1, . . . ,β17 | Y ,X,W ,H, H̃

)
=

pzpost

(
θ1, . . . ,θ17 | Y ,W ,H, H̃

)
× pcpost (β1, . . . ,β17 | Y ,X,H)

since the posteriors over the zero and count processes are separable, each denoted as

pzpost

(
θ1, . . . ,θ17 | Y ,W ,H, H̃

)
and pcpost (β1, . . . ,β17 | Y ,X,H) respectively, where:

pzpost

(
θ1, . . . ,θ17 | Y ,W ,H, H̃

)
=

17∏
i=1

364∏
t=1

p(wit, Hit, H̃it,θi)Et
(
1− p(wit, Hit, H̃it,θi)

)(1−Et)
×

20∏
j=1

fnorm(θi | ρzj , (σzj )2)fnorm(ρzj | ϑzj , (ζzj )2)

×
3∏
j=1

fgamma(γzij | ηzj , νzj )fgamma(ηzj | αzj , δzj )

×
3∏
j=1

fgamma(γ̃zij | η̃zj , ν̃zj )fgamma(η̃zj | α̃zj , δ̃zj )

pcpost (β1, . . . ,β17 | Y ,X,H) =
17∏
i=1

∏
t∈Ti

f(yit | λ (xit, Hit,βi) , φ)

×
20∏
j=1

fnorm(βi | ρcj , (σcj)2)fnorm(ρcj | ϑcj , (ζcj )2)

×
3∏
j=1

fgamma(γcij | ηcj , νcj )fgamma(ηcj | αcj , δcj)

where Ti = {t|yit > 0}, i.e. Ti are the set time indices corresponding to sale days for product i

over some interval of time, Eit defined as in section 7.2.2 and fgamma(x | α, β) = βα

Γ(α)x
α−1e−xβ

and fnorm(x | µ, σ2) = 1√
2πσ2 e

− (x−µ)2

2σ2 .
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7.3 Results

We fit variations of the model (7.7) to the 17 longitudinal SMI sales processes over 364 days of

trading between the dates 1st October 2013 to 29th September 2014. We denote time interval

over which we train our models as T train. A hold out test set over 100 trading days between

30th September 2014 to 7th January 2015 is used to evaluate the predictive performance of the

model variations for both the zero and count processes. We denote this test interval as T test. As

the zero and count processes are completely separable, we perform model inference and analysis

separately.

7.3.1 Zero process variations

To assess the predictive benefits of the additions of self-excitation, cross-excitation and hierar-

chical components to the zero process of the hurdle model of (7.7), we implement cumulative

variations of both the link functions as well as the hierarchical layering used in the modelling.

These model variations are the following:

Z.1 Baseline model (Basez1): We learn the zero process of the hurdle model (7.7) with link

function:

logit
(
p
(
wit, Hit, H̃it,θi

))
= ϕzi

for each i = 1, . . . 17, i.e. a constant probability per product. This is the Bayesian

baseline model as it estimates the zero-process independent of covariate information. The

ϕzi is estimated using non-informative priors. The performance of this model is used to

verify the relative benefits that covariate information brings to SMI zero-process modelling.

Z.2 Hierarchical Bayesian (HBz): We learn the zero process of the hurdle model (7.7) with

link function:

logit
(
p
(
wit, Hit, H̃it,θi

))
= ϕzi (t)

for each i = 1, . . . 17 with the hierarchical prior formulation discussed in section 7.2.3.

This model is implemented to establish a benchmark of the simplest regression model, i.e.

a model that excludes information of previous events and is used to verify the relative

benefits of self excitation and cross-excitation.

Z.3 Bayesian with self-excitation (BEz): We learn the zero process of the hurdle model
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(7.7) with link function:

logit
(
p
(
wit, Hit, H̃it,θi

))
= ϕzi (t) + Szit

for each i = 1, . . . 17 but exclude the hierarchical layer of the priors articulated in section

7.2.3. More concretely, we fix the parameters
(
ρzj , (σzj )2) and (ηzj , νzj ) as constants rather

for each j. This model is implemented to establish a benchmark of a model with excitation

but without information borrowing between products and is used to verify the relative

benefits of information borrowing between products.

Z.4 Hierarchical Bayesian with self-excitation (HBEz): We learn the zero process of

the hurdle model (7.7) with link function:

logit
(
p
(
wit, Hit, H̃it,θi

))
= ϕzi (t) + Szit

for each i = 1, . . . 17 with the hierarchical prior formulation discussed in section 7.2.3.

This model is implemented to demonstrate the possible benefits of self-excitation in the

standard zero inflated regression model. We use HBz as reference as to what self-excitation

provides over the model that exclusively uses the regression covariates.

Z.5 Fixed Bayesian with self-excitation (FBEz): We learn the zero process of the hurdle

model (7.7) with link function:

logit
(
p
(
wit, Hit, H̃it,θi

))
= ϕz(t) + Szt

for each i = 1, . . . 17. In this implementation the parameters across the products are

shared, i.e. the parameters of ϕzi (t) and Szit are identical across all 17 products, and

hence θi = (θi1, . . . , θi20,γ
z
i ) = (θ1, . . . , θ20,γ

z). This is the maximal information sharing

regime where the borrowing is to the extent that the parameters are identical across all

products. We fix the parameters
(
ρzj , (σzj )2) and (ηzj , νzj ) as constants. This is compared

with models BEz and HBEz to assess the benefits of information borrowing.

Z.6 Bayesian with self and cross-excitation (BECz): We learn the zero process of the
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hurdle model (7.7) with link function:

logit
(
p
(
wit, Hit, H̃it,θi

))
= ϕzi (t) + Szit + S̃zit

for each i = 1, . . . 17 but exclude the hierarchical layer of the priors articulated in section

7.2.3. Prior specification is similar to that of BEz but extended to include γ̃zi . This is a

benchmark of a model with self and cross-excitation but without an information borrowing

scheme.

Z.7 Hierarchical Bayesian with self and cross-excitation (HBECz): This model is the

full model discussed in the section 7.7. We learn the zero process of the hurdle model (7.7)

with link function:

logit
(
p
(
wit, Hit, H̃it,θi

))
= ϕzi (t) + Szit + S̃zit

for each i = 1, . . . 17 with the hierarchical prior formulation discussed in section 7.2.3. The

hyper-priors are selected to balance borrowing across products and penalising complexity.

This hierarchical model will be cross referenced with model BECz.

Z.8 Fixed Bayesian with self and cross-excitation (FBECz): We learn the zero process

of the hurdle model (7.7) with link function:

logit
(
p
(
wit, Hit, H̃it,θi

))
= ϕz(t) + Szt + S̃zt

for each i = 1, . . . 17. In this implementation the parameters across the products are

shared, i.e. the parameters of ϕzi (t), Szit, S̃zit are identical across all of the 17 products, and

hence θi = (θi1, . . . , θi20,γ
z
i , γ̃

z
i ) = (θ1, . . . , θ20,γ

z, γ̃z). This is the maximal information

sharing regime to the extent that the parameters are identical across all products. We fix

the parameters
(
ρzj , (σzj )2), (η̃zj , ν̃zj ) and

(
ηzj , ν

z
j

)
as constants for each j. This model is

compared with models BECz and HBECz to assess the benefits of information borrowing.

Parameter inference of models Basez1, HBz, BEz, HBEz, FBEz, BECz, HBECz and FBECz

is performed by Hamiltonian Monte Carlo algorithm as outlined during section 2.2.3, and is

implemented by the rstan library [Stan Development Team, 2016]. Inference is performed by

the Hamiltonian Monte Carlo algorithm (via the rstan library) due to its ease at implementing

Bayesian hierarchical models and because of its success at efficiently producing uncorrelated
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MCMC samples. The RStan code for the model HBECz is included in appendix B.1.2. All other

RStan models are simplifications of the HBECz implementation. Convergence was confirmed by

Heidelberger Welch statistic across all models and parameters [Heidelberger and Welch, 1981].

The specification of hyper-priors is included in appendix B.1.3. Further MCMC implementation

details are included in B.1.6.

7.3.2 Zero process fits

The predictive performance of models Basez1, HBz, BEz, HBEz, FBEz, BECz, HBECz and

FBECz is assessed by calculating how capable each model is at predicting the probability of a sale

occurring on a given day over the test interval T test (30th September 2014 to 7th January 2015)

for each i = 1, . . . , 17 given the history of self and cross events Hit, H̃it, covariate information

wit and posterior samples. We denote the sth posterior sample of θi of the ith product as

θsi . The sales occurrence probabilities are based on the posterior samples θsi inferred from the

training interval T train (between 1st October 2013 to 29th September 2014). More precisely, we

apply the following methodology over the test interval:

1. On given day t on the test interval and sth posterior sample, we compute the full pre-

dictive posterior distribution of the probability of a sale occurring based conditioned on

wit, Hit, H̃it,θ
s
i for each product i = 1, . . . , 17.

2. We observe yi(t+1) (the number of sales of product i on day t + 1) for each i = 1, . . . , 17

and update the self and cross event histories Hi(t+1), H̃i(t+1) for i = 1, . . . , 17.

3. Repeat steps for each t, for each sample s and i over the test period of 30th September

2014 to 7th January 2015.

This builds up a set of daily predictive posterior probabilities pits for each s = 1, . . . , S for the

probability of a sale on a given day over T test for each i = 1, . . . , 17 based on posterior samples

inferred from T train conditioned on wit, Hit, H̃it,θi. Parameter inference is performed only

once (over the training interval), with the predictive posterior probabilities being computed

from the inferred posterior values from the fixed training interval (i.e. parameter inference is

not rerun over the additional days observed during the test interval).

To evaluate the predictive performance of the models we use the log pointwise predictive

density [Gelman, Hwang, and Vehtari, 2014] for each of the products i = 1, . . . , 17. The log

pointwise predictive density is a score that indicates the predictive accuracy of a model over a

dataset - the larger the log pointwise predictive density score, the better predictive accuracy of
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a model. The log pointwise predictive density lppdz for the zero process is given by:

lppdzi =
∑
t∈T

log
(

1
S

S∑
s=1

pEitits (1− pits)(1−Eit)

)

where pits is the prediction probability of a sale occurring for product i from posterior sample

s for some model of interest. Table 7.2 provides the lppdz scores across products and models

Basez1, HBz, BEz, HBEz, FBEz, BECz, HBECz and FBECz.The subscript of lppd denotes the

log pointwise predictive density for a given fitted model and product (e.g. lppdzHBEC,i is the

log pointwise predictive density for model HBECz and product i). We compute the lppdzi over

both the test and training intervals T test and T train which we denote as lppdz,test
i and lppdz,train

i

respectively.
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Table 7.2: lppdz,testi and lppdz,traini scores of the zero process fits for the models Basez1, HBz, BEz, HBEz, FBEz,BECz, HBECz and FBECz and each product.

Product i lppdz,testBase1,i
lppdz,testHB,i lppdz,testBE,i lppdz,testHBE,i lppdz,testFBE,i lppdz,testBEC,i lppdz,testHBEC,i lppdz,testFBEC,i

1 -0.37 -3.16 -0.32 -2.04 -2.38 -0.32 -1.97 -2.30
2 -73.47 -65.66 -60.85 -55.87 -57.70 -60.42 -55.18 -57.20
3 -7.33 -6.81 -6.18 -5.56 -5.24 -6.23 -5.59 -5.27
4 -29.44 -28.27 -29.30 -28.54 -26.47 -29.00 -28.35 -26.36
5 -14.16 -13.09 -10.46 -12.12 -15.14 -10.27 -11.81 -14.89
6 -3.67 -5.80 -2.55 -3.63 -2.77 -2.54 -3.63 -2.79
7 -6.92 -7.42 -5.91 -5.98 -5.70 -6.00 -6.07 -5.76
8 -6.74 -8.95 -6.47 -6.91 -6.38 -6.42 -6.77 -6.29
9 -5.97 -7.27 -5.68 -5.98 -6.03 -5.69 -5.93 -5.99
10 -9.91 -11.30 -10.76 -10.45 -9.74 -10.60 -10.22 -9.57
11 -17.16 -11.48 -14.01 -11.79 -13.51 -13.97 -11.80 -13.47
12 -9.80 -11.86 -10.48 -10.53 -9.66 -10.30 -10.27 -9.49
13 -15.84 -15.25 -9.75 -9.99 -12.23 -9.81 -9.91 -12.10
14 -10.34 -8.66 -11.15 -9.93 -10.09 -11.11 -9.95 -10.13
15 -10.36 -11.15 -10.78 -10.49 -10.51 -10.83 -10.52 -10.55
16 -5.61 -7.47 -6.12 -6.60 -6.27 -6.19 -6.61 -6.27
17 -15.01 -15.23 -13.60 -13.09 -14.14 -13.66 -13.07 -14.14∑17

i=1 lppd
z,test
model,i -242.10 -238.82 -214.37 -209.50 -213.98 -213.35 -207.65 -212.58∑17

i=1 lppd
z,train
model,i -708.26 -699.89 -609.45 -662.65 -675.64 -608.48 -662.84 -675.89
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Interpreting Table 7.2’s lppdz,test and lppdz,train scores reveal some interesting findings. Firstly,

we observe the model HBz, the zero process model with covariate information, provides a sig-

nificant improvement in predictive performance compared to baseline models Basez1 without

covariate information. We further see that inclusion of a self-excitation component in 7.3.1

provides a marked improvement over the model HBz without self-excitation. Figure 7.3 demon-

strates an example of the benefit of self-excitation inclusion by comparing the event day

prediction performance between models HBEz and HBz over a portion of the test set. We

observe inclusion of self-excitation produces a 95% credibility interval of model HBEz that

captures a subsequent sale that model HBz does not immediately after the first sale at t = 382.

Table 7.2 further indicates the predictive benefits that hierarchical extensions provide over

its non-hierarchical equivalents. Figure 7.4 illustrates an example of the benefit of these hi-

erarchical extensions by comparing event day prediction performance between models HBEz

and BEz over a portion of the test set. We observe that by information pooling across the

intermittent demand series produces a 95% credibility interval of model HBEz that captures

a sale at t = 446 (during the Christmas period). This is in spite of there being no sales over

the Christmas period of the previous year for this product. In this way, the hierarchical model

benefits from inferring parameter values from other intermittent demand series which have

observed sales over the previous the Christmas period.

Table 7.2 indicates that the cross-excitation expositions of models BECz, HBECz and FBECz

offer an improvement in event day prediction over the test set compared to their non cross-

excitation counterparts (i.e. HBEz, HBEz and BEz). Interesting, cross-excitation does not offer

benefits in terms of the training set; but shows significant predictive gains in the test set.
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Figure 7.3: Plots of the predictive models HBz (left plot) and HBEz (right plot) for product
i = 13 over a portion of the test set. The blue and magenta dots represent self and cross event
days respectively (i.e. Eit and Ẽit). The black line is the estimated posterior mean of an event
day observation (i.e. pit) and the shaded region is the 95% credible interval of these estimates.
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Figure 7.4: Plots of the predictive models BEz (left plot) and HBEz (right plot) for product
i = 11 over a portion of the test set. The blue and magenta dots represent self and cross event
days respectively (i.e. Eit and Ẽit). The black line is the estimated posterior mean of an event
day observation (i.e. pit) and the shaded region is the 95% credible interval of these estimates.

7.3.3 Count process variations

Similarly to section 7.3.2, the benefits of the excitation and hierarchical component to the count

process are verified by implementing cumulative variations in the link functions and hierarchical

layerings of the model. These model variations follow the same rationale as with the zero process.

In particular:

C.1 Baseline model (Basec1): We learn the count process of the hurdle model (7.7) with

link function:

log(λ(xit, Hit,βi)) = ϕci

for each i = 1, . . . 17, i.e. a constant rate per product. This is the Bayesian baseline model

as it estimates the zero-process independent of covariate information. The ϕci is estimated

using non-informative priors.

C.2 Hierarchical Bayesian (HBc): We learn the count process of the hurdle model (7.7)

with link function:

log(λ(xit, Hit,βi)) = ϕci (t)

for each i = 1, . . . 17 with the hierarchical prior formulation discussed in section 7.2.3.

C.3 Bayesian with self-excitation (BEc): We learn the count process of the hurdle model

(7.7) with link function:

log(λ(xit, Hit,βi)) = ϕci (t) + Scit
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for each i = 1, . . . 17 but exclude the hierarchical layer of the priors articulated in section

7.2.3.

C.4 Hierarchical Bayesian with self-excitation (HBEc): This is the full model discussed

in the section 7.2.3. We learn the count process of the hurdle model (7.7) with link

function:

log(λ(xit, Hit,βi)) = ϕci (t) + Scit

for each i = 1, . . . 17 with the hierarchical prior formulation discussed in section 7.2.3.

C.5 Fixed Bayesian with self-excitation (FBEc): We learn the count process of the hurdle

model (7.7) with link function:

log(λ(xit, Hit,βi)) = ϕc(t) + Sct

for each i = 1, . . . 17.

Parameter inference of models HBc, BEc, HBEc and FBEc is performed by Hamiltonian Monte

Carlo sampling algorithm and is implemented by the rstan library [Stan Development Team,

2016]. The RStan code for the model HBEc is included in appendix B.1.4. All other RStan

models are simplifications of the HBEc implementation. Convergence was confirmed by Hei-

delberger Welch statistic across all models and parameters [Heidelberger and Welch, 1981].

The specification of these hyper-priors and constant of models HBc, BEc, HBEc, and FBEc is

included in appendix B.1.5. For further MCMC implementation details refer to appendix B.1.7.

7.3.4 Count process fits

Similarly as with the zero processes outlined in section 7.3.2, we test the performance of the count

variation models Basec1, HBc, BEc, HBEc and FBEc by calculating how capable each model is

of predicting the volume of sales on event days (i.e. days when sale has been observed) over the

test interval T test (between 30th September 2014 to 7th January 2015) for each i = 1, . . . , 17

given the history of self events Hit, covariate information xit and posterior samples. We denote

the sth posterior sample of βi of the ith product as βsi . The predictive distribution is based on

the posterior samples fits inferred from the training interval T train (between 1st October 2013

to 29th September 2014). We apply the following methodology over the test interval:

1. On event day t (i.e. Et = 1) on the test interval and sth posterior sample, we compute

the full predictive posterior distribution of the volume of sales occurring conditioned on
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Hit,xit,β
s
i for each i = 1, . . . , 17.

2. We observe yi(t+1) (the volume of sales of product i on day t + 1) for each i = 1, . . . , 17

and update the self event histories Hi(t+1) for i = 1, . . . , 17.

3. Repeat steps for each t, for each sample s and i over the test period of 30th September

2014 to 7th January 2015.

This builds up a set of posterior rates λits for samples s = 1, . . . , S for the probability of the

number of sales on a given event day over T test for each i = 1, . . . , 17 based on our posterior

sample fits inferred from T train conditioned on xit, Hit,βi. As with the zero process, parameter

inference is performed only once over the training interval, and not rerun over the additional

days observed during the test interval.

Similarly as with the zero process, we evaluate the predictive performance by calculating the log

pointwise predictive density for each of the products i = 1, . . . , 17. The log pointwise predictive

density lppdc for the count process is given by:

lppdci =
∑
t∈Ti

log
(

1
S

S∑
s=1

(
yik − 2 + φ

yik − 1

)(
λits − 1

λits − 1 + φ

)yik−1(
φ

λits − 1 + φ

)φ)

where φ = 1 and λits is the prediction mean of count sales occurring for product i from the sth

posterior sample for some model of interest and Ti = {t|yit > 0}, i.e. Ti are the set time indices

corresponding to sale days for product i over some interval of time. Table 7.3 provides the

lppdc scores for across products and models Basec1, HBc, HBEc, BEc and FBEc. Interpreting

Table 7.3’s lppdcmodel,i scores reveals some interesting findings. Firstly, we observe that the

model variations of HBc, BEc, HBEc and FBEc perform significantly better than the baseline

model Basec1 with no covariates. This provides evidence in favour of the hypothesis that the

model of HBc, BEc, HBEc and FBEc are capturing the SMI count process in a meaningful way.

Similarly as with the zero process, Table 7.3 indicates the count process uniformly benefits from

the inclusion of self-excitation. We further see that the count process benefits more from the

hierarchical borrowing across the intermittent demand series.This is understandable given the

level of sparsity in the count process. As Table 7.1 indicates, the order of sales that the each

intermittent demand series has is very small (typically in the order 3-20 sales), and thus it may

be expected that information borrowing would particularly benefit the individual models. An

example of this additive strength of the hierarchical exposition of the count model variations is

illustrated by Figure 7.5. This plot shows a histogram of yit against the sum of
∑
t:yit=k yit (for

product 12) with corresponding 95% credibility intervals of posterior predictive distributions
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Table 7.3: lppdci scores of the count process fits for the models Basec1, HBc, BEc, HBEc and
FBEc for each product and fitted model.

Product i lppdc,testBase0,i
lppdc,testHB,i lppdc,testBE,i lppdc,testHBE,i lppdc,testFBE,i

1 0.00 0.00 0.00 0.00 0.00
2 -18.10 -18.78 -13.59 -14.18 -14.27
3 -0.91 -0.55 -0.62 -0.48 -0.30
4 -1.60 -1.78 -1.66 -1.77 -1.73
5 -0.08 -0.07 -0.08 -0.66 -0.82
6 0.00 0.00 0.00 0.00 0.00
7 -0.01 -0.00 -0.04 -0.22 -0.33
8 -4.99 -4.16 -7.92 -3.17 -2.89
9 -2.54 -1.40 -1.50 -1.60 -1.63
10 -3.98 -3.98 -3.80 -2.04 -2.05
11 -7.05 -7.07 -7.45 -10.95 -12.24
12 -1.02 -1.09 -1.03 -0.68 -0.62
13 -3.46 -3.47 -3.47 -2.33 -2.55
14 -6.19 6.46 -6.48 -5.23 -5.51
15 -2.04 -2.05 -1.95 -0.66 -0.51
16 -1.57 -2.64 -1.63 -1.80 -1.73
17 -0.10 -0.08 -0.09 -0.55 -0.54∑17

i=1 lppd
c,test
model,i -53.64 -53.60 -51.32 -46.33 -47.70∑17

i=1 lppd
c,train
model,i -336.81 -335.21 -308.58 -325.15 -329.90

for the models BEc and HBEc. We observe that the hierarchical model variation (even without

the excitation) produces much tighter credibility intervals around the observed data than the

model without information borrowing. However, the best performing models are ones with both

information borrowing and self-excitation. Figure 7.6 illustrates the optimal performance of

HBEc over HBc. In this plot, we see the 95% credibility intervals produced from model HBEc

for the higher count instances (7+) capture the observed aggregated count instances, whereas

the HBc credibility intervals fail to do so. We further see the aggregate log pointwise predictive

density of
∑17
i=1 lppd

c,train
model,i of table 7.3 provides more evidence that model HBEc is the best

fitting model, as this is maximised relative to the other hierarchical model variations.
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Figure 7.5: Histograms of
∑
t:yit=k yit with corresponding 95% credible intervals of the posterior

predictive distributions for models BEc (left plot) and HBEc (right plot) for product i = 12.
The lower of 2.5% credible interval (the lower bound of the whisker bars) for

∑
t:yit=1 ỹit will

at best be
∑
t:yit=1 1. This is since the count distribution is lower bounded by 1.
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Figure 7.6: Histograms of
∑
t:yit=k yit with corresponding 95% credible intervals of the log of

the posterior predictive distributions of
∑
t:yit=k ỹit (sale counts) for models HBc (left plot) and

HBEc (right plot) for product i = 2.

7.3.5 Retail analytics discussion

The output of models outlined in sections 7.3.1 and 7.3.3 provides interesting interpretations

from a retail analytics perspective. Firstly, we observe that covariate data wit,xit as specified

in 7.2.1 improves forecasting performance for the intermittent demand series of SMI products.

This is indicated in both HBc and HBz - models with regression parameters and no form of

excitation - outperforming their baseline counterparts on both the training and test sets. This

importantly sheds light into the intermittent demand of SMI, in that it demonstrates covariate

data such as prices and seasonality ought to be incorporated into training forecasting models

as it seems predictions are improved from their inclusion.

Our findings further support the hypothesis that intermittent demand forecasting is improved

when excitation dynamics are incorporated into models. This supports the findings of Snyder

et al. [2012] and Chapados [2014] in which they establish that models incorporating the recent

demand history outperform temporally static models. This is important because it ultimately

allows retailers to circumvent over-stocking that typically results from inaccurate forecasting

[Ghobbar and Friend, 2003]. However, our findings reveal some aspects of intermittent demand

forecasting that go beyond the work of Snyder et al. [2012] and Snyder et al. [2012]. Namely, we

establish that the temporal excitation exists even if you condition on the seasonal trends and

pricing information of wit,xit. This suggests that temporal excitation is systematic and occurs

beyond the variables traditionally utilised in forecasting models. We furthermore find that

temporal excitation is manifested at lags greater than 1. Figure B.2 demonstrates that µzi (the

mean of excitation function of g(· | µ, τ)) is approximately 2 across the majority of products,

which implies that 2/3 of the probability mass of g(· | µ, τ) is placed on lags greater than or

equal to 2. This is crucially important, as it indicates that a simple AR(1), or equivalent model

only taking the most recent observation into account is possibly not enough compared to the
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Hawkes process that incorporates the entire history of events.

Thirdly, we also see strong support for the hypothesis that intermittent demand forecast-

ing of SMI products benefits from hierarchical modelling. This is evident when we cross

reference the parameter estimates with the posterior predictive distributions produced from

each of the models. For example, Figure B.1 shows how a non-hierarchical model can suffer

from not observing a range of sale counts on the training set which then translates to poor

predictive performance on the test set. Figure B.3 further shows how information pooling to

the extent that parameters are fixed across all the intermittent demand series can lead to misfit

when heterogeneity appears to exist in the parameter estimates when compared to their hierar-

chical model counterparts. This has significant implications in the retail analytics context, as it

suggests retailers should take into account the hierarchical structure exhibited in intermittent

demand forecasting, as prediction is significantly improved when such structure is taken into

account. Figure 7.7 are the forecasts of the intermittent demand of two slow-moving-inventory

products using the combined zero and count models.
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Figure 7.7: Plots of the combined models HBEz and HBEc for product i = 4 (left plot) and
product i = 12 (right plot) over the entire training and test sets. The solid blue lines represent
the sales of the respective touchscreen tablets and the black dashed lines are the 95% credible
interval of the predictive posterior distribution of the sales counts. The dashed-dotted vertical
black line at t = 365 represents the end and start of the training and test sets respectively.

7.4 Summary & future work

During this work we introduce a hierarchical model for the sales of the slow-moving-inventory

category of touchscreen tablets across five large supermarkets in south London. We modelled

the sales process as a Bayesian hierarchical zero-inflated hurdle regression model with self

and cross-excitation components. The model specification is interpretable and allows a deeper

understanding of the predictive role that covariates, self-excitation and cross-excitation play

in the sales process of slow-moving-inventory and further provides a fully specified predictive
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distribution over this process. We demonstrated that the hierarchical structure as well as the

self and cross-excitation additions offer a significant improvement in the predictive accuracy of

this SMI sales process.

This model has important implications to the challenging issues that retail analytics face

when developing SMI models. Firstly, it offers utility in terms of demand and profit forecasting

that will allow retailers more accurate predictions of the sales distributions to aid with the

issue of inventory management as well as price optimisation over short term horizons. It helps

to explain the sources of variation and uncertainty that is exhibited in intermittent demand

processes that previously was not well understood. The model also reveals a strong excitation

component to these sales which could warrant further investigation as to what the potential

underlying factors that could explain the observed excitation (e.g. marketing campaigns). We

further note, that though there are many other approaches of specifying the cross-excitation

relationship between pairwise products, our adopted approach of cross-excitation within brand

provides an intuitive and computationally simple method of expressing the suspected temporal

cross-correlation.

This work could be extended in many different directions. For example, a variable selec-

tion methodology could be introduced into the covariate predictors for each of the regression

models. Our approach specified a priori the cross-excitation structure by defining an excitation

event as a sale occurring within the same brand; it could be an interesting to assess whether

the excitation structure could instead be inferred from the data.
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Conclusion

The field of retail analytics is a research area characterised by having a vast range of interesting

challenges to choose from. These problems vary from the design of recommendation strategies

awarding customer loyalty, to optimal inventory management, to understanding the full effect

that marketing campaigns have on consumer demand, to name but a few. All of these problems,

as a result of the growth of available data, offer a range of interesting routes that research could

develop from.

During our work, we focused on two specific subclasses of problems within product clustering

and demand forecasting. In particular, we tackled the issues of clustering products in terms

of their cross-elasticity coefficients and forecasting the intermittent demand of SMI products.

In both of these problem subclasses, we broadly achieved our objective. With respect to clus-

tering products in terms of their sensitivities in sales, we developed a Bayesian nonparametric

methodology that flexibly clusters products in terms of their cross-elasticities coefficients in a

way that reflects the underlying structure and assumptions of the data. Similarly with forecast-

ing the intermittent demand of SMI products, we developed a Bayesian hierarchical forecasting

methodology that incorporates excitation dynamics and offers significant improvement over

other forecasting benchmarks.

The contributions of this work subtly answer deeper questions about each of the problem

areas of cross-elasticity coefficient analysis and intermittent demand forecasting. Namely, with

interpreting products via their cross-elasticities, we were able address issues around designing

a clustering strategy that accommodates the structure exhibited in cross-elasticity data and

establishes a fundamental pattern in heterogeneity among these coefficients across different

products. In terms of intermittent demand forecasting, we were able to develop a forecasting

methodology able to incorporate excitation dynamics together with price and seasonal affects.
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8.1 Future opportunities

This work helped to illustrate the possible applications that Bayesian nonparametric mixture

modelling, excitation processes and hierarchical modelling has to the field of retail analytics. In

particular, we further identify the following areas as interesting routes yet to be fully investi-

gated:

1. New product prediction: As mentioned in section 6.1.1, one of the issues that retail-

ers’ face is the problem of forecasting the demand of a product that has limited demand

history, or has no demand history as it has not yet been released for general consumption.

Consequently, making accurate demand forecasts with such little information can be chal-

lenging, and this is particularly felt with products yet to be launched, which makes optimal

inventory management hard. Such a scenario could be a fruitful application of data de-

pendent mixture of regressions, in which the sales across various products is described as a

mixture model whose mixtures are dependent on data related to various product features

(for example a product’s category, its initial selling price, brand information etc). Such a

model would be capable at making forecasts of a product’s demand prelaunch by allocat-

ing a newly launched product to an appropriate mixture of regression models depending

on the product’s relevant features.

2. Social media data & temporal excitation: One of the interesting aspects of inter-

mittent demand our work established was the existence of a temporal excitation over and

beyond what traditional covariates such as season and prices are able to explain. Such

a finding opens up the question of whether this excitation can be described by the use

of additional covariates that are typically not used in demand modelling. A possible av-

enue of investigation would be to better understand whether incorporating information of

social media activity, for example the number @mentions a particular product or brand

receives on twitter, or the amount of shares a photograph of a product around various so-

cial network sites has had, could help to explain movements of a product’s sales that was

previously thought of as excitation. Investigating a regression framework that studies the

link between publicly available data and demand models to answer questions of whether

temporal excitation still exists or whether social media data can be used to predict demand

could be worthy of future research.

3. Store-level hierarchical demand modelling: A further avenue of research would be

to investigate whether there are any temporal or spatial dependencies in demand across

different stores and products. In the work developed during Chapter 7, the demand of a
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particular touchscreen tablet was aggregated across five different south London stores. An

alternative approach could be instead to model the demand of each product at a store level

and incorporate a multivariate Hawkes process across the temporal domain that allows

demand excitation in a product to occur as a result of the same products being purchased

from a neighbouring store. Such an approach may have important implications in terms

of a retailers’ inventory management strategy, and one that lends itself to a hierarchical

exposition in which information can be shared across the different regional stores as well

as the multivariate Hawkes processes themselves.

We further believe our work has possible applications to fields other than retail analytics. Our

Bayesian nonparametric clustering methodology of order statistics sequences could be applied to

fields where data is inherently ordered and censored, such as is frequently the case in hazard rate

modelling and software reliability analysis [Navarro and Shaked, 2006, Wilson and Samaniego,

2007]. Such fields could benefit from our clustering approach by identifying possible hetero-

geneity that could offer powerful interpretations within their relevant contexts. With respect to

the proposed Bayesian hierarchical forecasting methodology, our approach could be applied to

modelling scenarios where there exists hierarchical sparse count processes where future counts

are dependent on historical counts. An example of such a setting is the case with healthcare re-

source planning, which is often characterised by an excess of zero counts, longitudinal data and

temporal dynamics [Mihaylova, Briggs, O’hagan, and Thompson, 2011]. Such problem areas

could greatly benefit from our forecasting approach by more accurately forecasting the demand

for resources and services.
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Appendix to Chapter 3

A.1 Appendix

A.1.1 Code for sampled DP measures and density mixtures of figure 3.1

The code below produces the generating process as described during section 3.5.2 along with

the figure 3.1.

N = 50 ; alpha_vec = c (1 , 5 , 15 , 4 0 ) ; base_mean = 0 ;

base_sd = 3 ; reponse_sd = 0 . 5 ;

f o r ( j in 1 : l ength ( alpha_vec ) ){

### Samples from DP( alpha , N(base_mean , base_sd ) )

theta_atoms = array (0 , 1 )

f o r ( i in 1 :N){

i f ( i ==1){

theta_atoms [ i ] = rnorm (1 , base_mean , base_sd )

}

e l s e {

probab i l i t y_vec to r = array (0 , i )

p robab i l i t y_vec to r [ 1 ] = alpha_vec [ j ] / ( i−1+alpha_vec [ j ] )

p robab i l i t y_vec to r [ 2 : i ] = 1/( i−1+alpha_vec [ j ] )

temp_allocation_vec = rmultinom (1 , 1 , p robab i l i t y_vec to r )

i f ( temp_allocation_vec [ 1 ] ) {

theta_atoms = c ( theta_atoms , rnorm (1 , base_mean , base_sd ) )

} e l s e {

temp_allocation_vec = temp_allocation_vec [ c (−1)]

theta_atoms = c ( theta_atoms , theta_atoms [ temp_allocation_vec==1])
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}

}

}

unique_atoms = unique ( theta_atoms )

no_unique_atoms = length ( unique ( theta_atoms ) )

weights = array (0 , no_unique_atoms )

f o r ( i in 1 : no_unique_atoms ){

weights [ i ] = sum( theta_atoms == unique_atoms [ i ] ) /N

}

x = seq (−10 ,10 ,0 .01)

f o r ( i in 1 : no_unique_atoms ){

i f ( i ==1){

truth = weights [ i ]∗ dnorm(x , unique_atoms [ i ] , reponse_sd )

} e l s e {

truth = truth+weights [ i ]∗ dnorm(x , unique_atoms [ i ] , reponse_sd )

}

}

par (mar= c (5 , 5 . 0 , 4 , 5 )+0 . 1 )

p l o t (x , truth , type=" l " , x lab=""

, yl im=c (0 ,max( truth , t ab l e ( theta_atoms )/N) )

, main="" , c o l="blue " , cex . ax i s =1.5 , cex =1.5 , ylab ="")

po in t s ( unique_atoms , weights )

ax i s ( s i d e = 4 , cex . ax i s = 1 . 5 )

mtext ( s i d e = 4 , l i n e = 3 , exp r e s s i on ( p i [ i ] ) , cex =1.5)

mtext ( s i d e = 1 , l i n e = 3 , ’x ’ , cex =1.5)

mtext ( s i d e = 2 , l i n e = 3 , ’ dens i ty ’ , cex =1.5)

}
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Appendix to Chapter 7

B.1 Appendix

B.1.1 Parameter analysis

We now provide an analysis of the parameters generated from model of 7.3.3 and 7.3.1.
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Figure B.1: Box plots of count process parameters β81, β82 from models BEc, HBEc and FBEc
with histograms of

∑
t:y8t=k y8t with 95% credible intervals of the posterior predictive distribu-

tions for models HBEc and BEc. These demonstrate model BEc being penalised compared to
models FBEc and HBEc that allow information pooling. The box plot of β81, β82 estimates for
model BEc are different to those of models HBEc and FBEc, which leads to poor predictions for
product i = 8 in model BEc. These discrepancies arise from sale counts of product i = 8 being
y8t < 3 over the training set. However, over the test interval a sale count 3 is observed. This
shows models HBEc and FBEc benefit from having ‘seen’ sale counts > 2 from other intermittent
demand series that non-hierarchical models cannot.
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(a) Box plots of µz
i for i = 1, . . . , 17 for model HBEz

Figure B.2: Box plots of µci across all products for model HBEz. The µci estimates being greater
than 2 indicates the temporal excitation exhibited in that data typically occurs at lags greater
than 1.
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(e) Box plots of βi,11 for i = 1, . . . , 17 for model HBEc (HBE).

Figure B.3: Box plots of various count process parameters. This figure shows that parame-
ters across the models HBEc and FBEc to be almost identical except for parameter κc11. The
root of this discrepancy derives from the significant excitation exhibited in product i = 2, as
demonstrated from the HBEc estimate of κc2 in plot B.3(e). This creates a skew in the shared
parameter of κc in model FBEc, a skew that does not exist in the κc11 of HBEc. This lack
of heterogeneity in model FBEc reduces the predictive accuracy on the test set compared to
hierarchical equivalent model of HBEc

B.1.2 Stan code for HBECz

Below is the hierarchical exposition of the HBECz as implemented by STAN.

data{

i n t <lower=0> no_models ;
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i n t <lower=0> N;

i n t <lower=0> zero_reg_dim ;

i n t <lower=0> HP_zero_dim ;

matrix [N, zero_reg_dim ] X_zero [ no_models ] ;

i n t <lower=0> events_times [ no_models , N ] ;

i n t <lower=0> no_events_lesst [ no_models , N ] ;

i n t <lower=0> y [ no_models , N ] ;

i n t <lower=0> N_test ;

matrix [ N_test , zero_reg_dim ] X_zero_test [ no_models ] ;

i n t <lower=0> events_times_test [ no_models , N_test ] ;

i n t <lower=0> no_events_lesst_test [ no_models , N_test ] ;

i n t <lower=0> y_test [ no_models , N_test ] ;

r e a l <lower=0> exc i tat ion_hyperparameters [ HP_zero_dim , 4 ] ;

r e a l regress ion_hyperparameters [ zero_reg_dim , 4 ] ;

// CROSS data

r e a l <lower=0> excitation_hyperparameters_CROSS [HP_zero_dim , 4 ] ;

i n t <lower=0> events_times_CROSS [ no_models , N ] ;

i n t <lower=0> no_events_lesst_CROSS [ no_models , N ] ;

i n t <lower=0> events_times_test_CROSS [ no_models , N_test ] ;

i n t <lower=0> no_events_lesst_test_CROSS [ no_models , N_test ] ;

}

parameters {

vec to r [ zero_reg_dim ] beta_zero [ no_models ] ;

r e a l <lower=0> kappa_zero [ no_models ] ;

r e a l <lower=1> mu_zero [ no_models ] ;

r e a l <lower=0> tau_zero [ no_models ] ;

// CROSS
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r e a l <lower=0> kappa_zero_CROSS [ no_models ] ;

r e a l <lower=1> mu_zero_CROSS [ no_models ] ;

r e a l <lower=0> tau_zero_CROSS [ no_models ] ;

r e a l beta_normal_mu_priors [ zero_reg_dim ] ;

r e a l <lower=0> exc i t a t i on_a lphap r i o r s [ HP_zero_dim ] ;

// CROSS

r e a l <lower=0> excitation_alphapriors_CROSS [ HP_zero_dim ] ;

}

model{

r e a l ps [ no_models ,N ] ;

r e a l HP_zero [ no_models ,N ] ;

r e a l HP_zero_CROSS [ no_models ,N ] ;

f o r ( k in 1 : no_models ){

beta_normal_mu_priors [ 1 ] ~ normal ( regress ion_hyperparameters [ k , 1 ]

, r egress ion_hyperparameters [ k , 2 ] ) ;

}

ex c i t a t i on_a lphap r i o r s [ 1 ] ~ gamma( exc i tat ion_hyperparameters [ 1 , 1 ]

, exc i tat ion_hyperparameters [ 1 , 2 ] ) ;

e x c i t a t i on_a lphap r i o r s [ 2 ] ~ gamma( exc i tat ion_hyperparameters [ 2 , 1 ]

, exc i tat ion_hyperparameters [ 2 , 2 ] ) ;

e x c i t a t i on_a lphap r i o r s [ 3 ] ~ gamma( exc i tat ion_hyperparameters [ 3 , 1 ]

, exc i tat ion_hyperparameters [ 3 , 2 ] ) ;

// CROSS

excitation_alphapriors_CROSS [ 1 ] ~ gamma( excitation_hyperparameters_CROSS [ 1 , 1 ]

, excitation_hyperparameters_CROSS [ 1 , 2 ] ) ;

excitation_alphapriors_CROSS [ 2 ] ~ gamma( excitation_hyperparameters_CROSS [ 2 , 1 ]

, excitation_hyperparameters_CROSS [ 2 , 2 ] ) ;

excitation_alphapriors_CROSS [ 3 ] ~ gamma( excitation_hyperparameters_CROSS [ 3 , 1 ]

, excitation_hyperparameters_CROSS [ 3 , 2 ] ) ;

f o r (m in 1 : no_models ){

f o r ( k in 1 : 20 ) {
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beta_zero [m, k ] ~ normal ( beta_normal_mu_priors [ k ] , 0 . 0 5 ) ;

}

kappa_zero [m] ~ gamma( exc i t a t i on_a lphap r i o r s [ 1 ] , 1 ) ;

(mu_zero [m]−1) ~ gamma( exc i t a t i on_a lphap r i o r s [ 2 ] , 2 ) ;

tau_zero [m] ~ gamma( exc i t a t i on_a lphap r i o r s [ 3 ] , 2 . 5 ) ;

kappa_zero_CROSS [m] ~ gamma( excitation_alphapriors_CROSS [ 1 ] , 8 ) ;

(mu_zero_CROSS [m]−1) ~ gamma( excitation_alphapriors_CROSS [ 2 ] , 2 ) ;

tau_zero_CROSS [m] ~ gamma( excitation_alphapriors_CROSS [ 3 ] , 2 . 5 ) ;

f o r ( i in 1 :N) {

HP_zero [m, i ] <− 0 ;

HP_zero_CROSS [m, i ] <− 0 ;

i f ( no_events_lesst [m, i ]>0) {

f o r ( j in 1 : no_events_lesst [m, i ] ) {

HP_zero [m, i ] <− HP_zero [m, i ]

+kappa_zero [m]∗ exp ( neg_binomial_2_lpmf ( i−events_times [m, j ]−1 |

(mu_zero [m]−1) , tau_zero [m] ) ) ; }

}

i f ( no_events_lesst_CROSS [m, i ]>0) {

f o r ( j in 1 : no_events_lesst_CROSS [m, i ] ) {

HP_zero_CROSS [m, i ] <− HP_zero_CROSS [m, i ]

+kappa_zero_CROSS [m]∗ exp ( neg_binomial_2_lpmf ( i−events_times_CROSS [m, j ]−1 |

(mu_zero_CROSS [m]−1) , tau_zero_CROSS [m] ) ) ; }

}

ps [m, i ] <− 1/(1+exp(−X_zero [m, i ]∗ beta_zero [m]

−HP_zero [m, i ]−HP_zero_CROSS [m, i ] ) ) ;

y [m, i ] ~ b e r n ou l l i ( ps [m, i ] ) ;

}}}

B.1.3 Prior formulation of zero processes

Table B.1 specifies the prior structure of models Basez1, HBz, BEz, HBEz, FBEz, BECz, HBECz

and FBECz.
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Table B.1: Prior formulation of models Basez1, HBz, BEz, HBEz, FBEz, BECz, HBECz and FBECz.
Parameter Basez1 HBz BEz HBEz FBEz BECz HBECz FBECz
ϕi ∼ N(−3, 3)
θi1 ∼ N(µz1, 0.05) N(−3, 0.75) N(µz1, 0.05) N(−3, 0.75) N(µz1, 0.05)
θi2 ∼ N(µz2, 0.05) N(0, 0.75) N(µz2, 0.05) N(0, 0.75) N(µz2, 0.05)
...

...
...

...
...

...
θi20 ∼ N(µz20, 0.05) N(0, 0.75) N(µz20, 0.05) N(0, 0.75) N(µz20, 0.05)

θi1 = θ1 ∼ N(−3, 0.75) N(−3, 0.75)
θi2 = θ2 ∼ N(0, 0.75) N(0, 0.75)

...
...

θi20 = θ20 ∼ N(0, 0.75) N(0, 0.75)

γzi1 ∼ G(5, 1) G(ηz1 , 1) G(5, 1) G(ηz1 , 1)
γzi2 ∼ 1 + G(1, 2) 1 + G(ηz2 , 2) 1 + G(1, 2) 1 + G(ηz2 , 2)
γzi3 ∼ G(10, 2.5) G(ηz3 , 2.5) G(10, 2.5) G(ηz3 , 2.5)

γzi1 = γz1 ∼ G(5, 1) G(5, 1)
γzi2 = γz2 ∼ 1 + G(1, 2) 1 + G(1, 2)
γzi3 = γz3 ∼ G(10, 2.5) G(10, 2.5)

γ̃zi1 ∼ G(2, 8) G(η̃z1 , 8)
γ̃zi2 ∼ 1 + G(1, 2) 1 + G(η̃z2 , 2)
γ̃zi3 ∼ G(10, 2.5) G(η̃z3 , 2.5)

γ̃zi1 = γ̃z1 ∼ G(2, 8)
γ̃zi2 = γ̃z2 ∼ 1 + G(1, 2)
γ̃zi3 = γ̃z3 ∼ G(10, 2.5)

ρz1 ∼ N(−3, 0.75) N(−3, 0.75) N(−3, 0.75)
ρz2 ∼ N(0, 0.75) N(0, 0.75) N(0, 0.75)
...

...
...

...
ρz20 ∼ N(0, 0.75) N(0, 0.75) N(0, 0.75)

ηz1 ∼ G(50, 10) G(50, 10)
ηz2 ∼ G(10, 10) G(10, 10)
ηz3 ∼ G(500, 50) G(500, 50)

η̃z1 ∼ G(30, 15)
η̃z2 ∼ G(10, 10)
η̃z3 ∼ G(500, 50)
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B.1.4 Stan code for HBEc

Below is the hierarchical exposition of the HBEc as implemented by STAN.

func t i on s {

r e a l neg_binomial_den ( i n t t , r e a l mu, r e a l s i z e ) {

r e a l binomial_term ;

binomial_term <− exp ( b inomia l_coe f f i c i en t_ log ( t+s i z e −1, t ) ) ;

r e turn binomial_term∗pow(mu/(mu+s i z e ) , t )∗pow( s i z e /(mu+s i z e ) , s i z e ) ;

}

r e a l poisson_den ( i n t t , r e a l lambda_par ) {

re turn pow( lambda_par , t )∗ exp(−lambda_par )/tgamma( t +1);

}

}

data{

i n t <lower=0> no_models ;

i n t <lower=0> N;

// i n t <lower=0> no_events [ no_models ] ;

i n t <lower=0> count_reg_dim ;

i n t <lower=0> HP_count_dim ;

matrix [N, count_reg_dim ] X_count [ no_models ] ;

i n t <lower=0> events_times [ no_models , N ] ; // event occur rence index

i n t <lower=0> no_events_lesst [ no_models , N ] ;

i n t <lower=0> y_count [ no_models , N ] ;

i n t <lower=0> N_test ;

matrix [ N_test , count_reg_dim ] X_count_test [ no_models ] ;

i n t <lower=0> events_times_test [ no_models , N_test ] ;

i n t <lower=0> no_events_lesst_test [ no_models , N_test ] ;

i n t <lower=0> y_count_test [ no_models , N_test ] ;

r e a l <lower=0> exc i tat ion_hyperparameters [ HP_count_dim , 4 ] ;
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r e a l regress ion_hyperparameters [ count_reg_dim , 4 ] ;

}

parameters {

vec to r [ count_reg_dim ] beta_count [ no_models ] ;

// r e a l <lower=0, upper=10> kappa_count [ no_models ] ;

r e a l <lower=0> kappa_count [ no_models ] ;

r e a l <lower=1> mu_count [ no_models ] ;

r e a l <lower=0> tau_count [ no_models ] ;

r e a l beta_mupriors ;

r e a l <lower=0> beta_sigmapr iors ;

r e a l beta_price_alpha_priors ;

r e a l <lower=0> beta_price_beta_priors ;

r e a l <lower=0> exc i t a t i on_a lphap r i o r s [ HP_count_dim ] ;

r e a l <lower=0> exc i t a t i on_be t ap r i o r s [ HP_count_dim ] ;

}

model{

r e a l HP_count [ no_models , N ] ;

r e a l lambda [ no_models , N ] ;

beta_mupriors ~ normal ( regress ion_hyperparameters [ 1 , 1 ]

, r egress ion_hyperparameters [ 1 , 2 ] ) ;

beta_sigmapr iors ~ gamma( regress ion_hyperparameters [ 1 , 3 ]

, r egress ion_hyperparameters [ 1 , 4 ] ) ;

beta_price_alpha_priors ~ normal ( regress ion_hyperparameters [ 2 , 1 ]

, r egress ion_hyperparameters [ 2 , 2 ] ) ;

beta_price_beta_priors ~ gamma( regress ion_hyperparameters [ 2 , 3 ]

, r egress ion_hyperparameters [ 2 , 4 ] ) ;

e x c i t a t i on_a lphap r i o r s [ 1 ] ~ gamma( exc i tat ion_hyperparameters [ 1 , 1 ]

, exc i tat ion_hyperparameters [ 1 , 2 ] ) ;
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ex c i t a t i on_be t ap r i o r s [ 1 ] ~ gamma( exc i tat ion_hyperparameters [ 1 , 3 ]

, exc i tat ion_hyperparameters [ 1 , 4 ] ) ;

e x c i t a t i on_a lphap r i o r s [ 2 ] ~ gamma( exc i tat ion_hyperparameters [ 2 , 1 ]

, exc i tat ion_hyperparameters [ 2 , 2 ] ) ;

e x c i t a t i on_be t ap r i o r s [ 2 ] ~ gamma( exc i tat ion_hyperparameters [ 2 , 3 ]

, exc i tat ion_hyperparameters [ 2 , 4 ] ) ;

e x c i t a t i on_a lphap r i o r s [ 3 ] ~ gamma( exc i tat ion_hyperparameters [ 3 , 1 ]

, exc i tat ion_hyperparameters [ 3 , 2 ] ) ;

e x c i t a t i on_be t ap r i o r s [ 3 ] ~ gamma( exc i tat ion_hyperparameters [ 3 , 3 ]

, exc i tat ion_hyperparameters [ 3 , 4 ] ) ;

f o r (m in 1 : no_models ){

beta_count [m, 1 ] ~ normal ( beta_mupriors

, beta_sigmapr iors ) ;

beta_count [m, 2 ] ~ normal ( beta_price_alpha_priors

, beta_price_beta_priors ) ;

kappa_count [m] ~ gamma( exc i t a t i on_a lphap r i o r s [ 1 ]

, e x c i t a t i on_be t ap r i o r s [ 1 ] ) ;

(mu_count [m]−1) ~ gamma( exc i t a t i on_a lphap r i o r s [ 2 ]

, e x c i t a t i on_be t ap r i o r s [ 2 ] ) ;

tau_count [m] ~ gamma( exc i t a t i on_a lphap r i o r s [ 3 ]

, e x c i t a t i on_be t ap r i o r s [ 3 ] ) ;

f o r ( i in 1 :N) {

HP_count [m, i ] <− 0 ;

i f ( y_count [m, i ]>0){

i f ( no_events_lesst [m, i ]>0) {

f o r ( j in 1 : no_events_lesst [m, i ] ) {

HP_count [m, i ] <− HP_count [m, i ]

+kappa_count [m]∗ neg_binomial_den ( i−1−events_times [m, j ]
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, (mu_count [m]−1) , tau_count [m] ) ;

}

}

lambda [m, i ] <− exp (X_count [m, i ]∗ beta_count [m]+HP_count [m, i ] ) ;

t a r g e t += neg_binomial_2_log ( y_count [m, i ] , lambda [m, i ] , 1)

−neg_binomial_2_ccdf_log (0 , lambda [m, i ] , 1 ) ;

}

}

}

}
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Table B.2: Prior formulation of models Basec1, HBc, BEc, HBEc and FBEc.
Parameter Basec1 HBc BEc HBEc FBEc
ϕci ∼ N(−4, 4)
βi1 ∼ N(µc1, 0.05) N(1, 0.75) N(µc1, 0.05)
βi2 ∼ N(µc2, 0.05) N(−1, 0.75) N(µc2, 0.05)

βi1 = β1 ∼ N(1, 0.75)
βi2 = β2 ∼ N(−1, 0.75)

γci1 ∼ G(1, 5) G(ηc1, 5)
γci2 ∼ 1+G(3, 1) 1+G(ηc2, 1)
γci3 ∼ G(4, 1) G(ηc3, 1)

γci1 = γc1 ∼ G(1, 5)
γci2 = γc2 ∼ 1+G(3, 1)
γci3 = γc3 ∼ G(4, 1)
ρc1 ∼ N(1, 0.75) N(1, 0.75)
ρc2 ∼ N(−1, 0.75) N(−1, 0.75)

ηc1 ∼ G(5, 5)
ηc2 ∼ G(15, 5)
ηc3 ∼ G(40, 10)

B.1.5 Prior formulation of count processes

Table B.1.5 specifies the prior structure of models Basec1, HBc, BEc, HBEc and FBEc.
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B.1.6 Zero process MCMC output

Parameter inference of zero process models are performed by HMC algorithm. For models HBz

and HBEz we take 3000 samples with 1000 burn-in respectively and 2000 samples with 1000

burn-in for models FBECz, BEz and FBEz. For model HBECz we take 2500 samples and 1500

burnin and we take 4000 samples and 6000 burn-in for BECz. For model Basez1 we take 2000

samples and 1000 burnin. Figure B.4 provides some typical trace plots of fitted models.
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Figure B.4: Trace plots of selected zero process parameters.
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B.1.7 Count process MCMC output

Parameter inference is performed by the HMC sampling algorithm. For models BEc and FBEc

we take 2000 samples with 1000 burn-in respectively. For model HBc we take 3000 samples and

2000 burnin and for model HBEc we take 5000 samples and 2000 burn-in. For model Basec1 we

take 1000 samples and 1000 burnin. Figure B.5 provides typical trace plots of fitted models.
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Figure B.5: Trace plots of selected count process parameters.
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