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Despite major advances in HIV testing, early detection of infection at the point of care
(PoC) remains a key challenge. Although rapid antibody PoC and laboratory-based
nucleic acid amplification tests dominate the diagnostics market, the viral capsid
protein p24 is recognized as an alternative early virological biomarker of infection.
However, the detection of ultra-low levels of p24 at the PoC has proven challenging.
Here we review the landscape of p24 diagnostics to identify knowledge gaps and
barriers and help shape future research agendas. Five hundred and seventy-four
research articles to May 2018 that propose or evaluate diagnostic assays for p24 were
identified and reviewed. We give a brief history of diagnostic development, and the
utility of p24 as a biomarker in different populations such as infants, the newly infected,
those on preexposure prophylaxis and self-testers. We review the performance of
commercial p24 assays and consider elements such as immune complex disruption,
resource-poor settings, prevalence, and assay antibodies. Emerging and ultrasensitive
assays are reviewed and show a number of promising approaches but further translation
has been limited. We summarize studies on the health economic benefits of using
antigen testing. Finally, we speculate on the future uses of high-performance p24 assays,
particularly, if available in self-test format.
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Introduction

With adoption by the United Nations General Assembly
of the political declaration On the Fast Track to Accelerating
the Fight against HIV and to Ending the AIDS Epidemic by
2030 there has been a major shift in the field of HIV
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medicine from optimization of palliative control, to
eradication [1,2]. UNAIDS has set ambitious targets
towards this end, which include goals that 90% of people
living with HIV know their status by 2020, and 95% by
2030 [2,3]. Improved testing methods including detec-
tion earlier in infection, better test accuracy, increased
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self-testing, and robust linkage to care have all been
highlighted as key areas for improvement [4–6].

Currently, only an estimated 46% of people living with
HIV know their status [7]. Early detection has been
proven to allow for better patient outcomes and lower
rates of transmission [8,9]. Extending the window of
detection facilitates prompt linkage to pathways of clinical
care, and would also allow for accurate diagnosis of infant
HIV; currently around half of HIV-exposed infants are
appropriately tested with a virological assay and one-third
of those who require antiretroviral therapy receive it [10–
13]. Current alternative solutions include the use of dry
blood spots to transfer samples to distant high-throughput
laboratories, and the need for a more accessible and
affordable pathogen-based point-of-care (PoC) assay for
early infant diagnosis (EID), especially in resource-limited
settings, remains [11,14,15].

In this review, we present outcomes of research pertaining
to use of p24 as a biomarker including a short history of
p24 diagnostics, use of antigen assays for early detection,
characteristics of commercial antigen assays, and we discuss
reasons why detection of p24 is challenging and complex.
We briefly review research laboratory-stage techniques and
health-economic evaluations of antigen-detection assays
and present the outlook for these in the light of emerging
trends in HIV research and care. This review is focussed on
assays for p24 antigen as other reviews of current and
emerging molecular diagnostics for HIV are existent,
including articles that specifically address their suitability
for resource-limited settings [16–19].
Diagnostics for HIV: a brief history

The first Food and Drug Administration (FDA)-licensed
HIV test was an ELISA in 1985 [20], followed by the
rapid development of immunofluorescence assays [21],
agglutination and dot blot tests [22,23]. Some early tests
(e.g. the HIVCHEK; Du Pont de Nemours, USA; [24])
and the Single Use Diagnostic System (Murex, Norcross,
Georgia, USA [25]) could be performed in 5–20 min,
though results required trained interpretation. In
November 2002, the OraQuick Rapid HIV-1/2 Anti-
body Test was FDA-approved and was CLIA-waived
shortly after in January 2003, permitting diagnosis of HIV
in a nonclinical setting [26]. Detection of anti-HIV
antibodies by rapid PoC test remains the mainstay of
testing algorithms across many settings, with high levels of
the target molecules (up to mg/ml) and generally good
specificity [27,28]. Algorithms that use multiple PoC tests
have been shown to be accurate, reliable and cost-
effective when compared with laboratory-based tests
[29,30]. These tests are unable, however, to accurately
diagnose infection in infants prior to clearance of
maternal antibody (transmitted prenatally and in breast
milk), in those who have not yet seroconverted [31,32]
and sporadic cases where no or an atypical antibody
response is mounted [33–37].

In an ideal scenario, a confirmatory test and/or viral load
test follow a reactive HIV screening test. CD4þ cell count
and sequencing can ensue to determine the individual’s
immune status and the drug-resistance phenotype of the
virus, followed by appropriate therapy [38–41]. Nucleic
acid amplification tests (NAAT; e.g. viral load tests) can be
either RNA-based or DNA-based (DNA comes from
integrated provirus) with purification and amplification
usually required. These requirements render current
NAAT unsuitable for PoC use, though emerging novel
nucleic acid amplification technologies and miniaturiza-
tion may bring this goal closer (reviewed in [42,43]).

Current guidelines recommend fourth generation anti-
body–antigen assays (which detect p24 and the antibody
response to the virus) as the preferred method of
screening for HIV [44] as they have the ‘advantage of
reducing the time between infection and testing HIV
positive to [less than] one month, which is one to two
weeks earlier than with sensitive third generation
(antibody-only detection) assays’ [40,45], as illustrated
schematically in Fig. 1. Fourth-generation HIVantibody/
antigen tests are on the list of in-vitro diagnostics that the
WHO considers essential for both primary healthcare and
higher level reference laboratories [46]. Several studies have
investigated differences in time to first positive result for
different p24-antigen assay methods including reference
tests (usually serology or NAAT). These studies are
summarized in Supplementary Table 1, http://links.lww.
com/QAD/B345. Although Meier et al. found evidence
for a second diagnostic window, a period when there is
insufficient uncomplexed p24 yet too little antibody for
detection, such a phenomenon has not been observed in
more recent systems that can detect IgM [35,47–50].

Although antibody tests have dominated the rapid PoC
diagnostics market, p24 has long been recognized as an
alternative virological biomarker, especially in early
attempts to close the window period of detection of
HIV, and for unequivocal EID [59,60]. Polymerized
capsid protein forms a protective shell around the viral
RNA and its structure has been elucidated (Fig. 2) [61]. It
is a �24–25 kDa protein encoded by the gag gene [62],
present at high copy number in HIV-1 virions; like RNA,
it can be detected before seroconversion.

Beyond the standard, currently available options, there is an
arrayof biomarkers that couldpotentially beused as surrogate
markers for HIV diagnosis in the future, for example, micro-
RNA, mRNA, and novel protein targets such as cytokines
and other immune markers [66–70]. To date, we are not
aware of any approaches that have progressed beyond early
stage proof of concept to commercial products, or proven
themselves suitable for PoC settings.

http://links.lww.com/QAD/B345
http://links.lww.com/QAD/B345
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Fig. 1. Kinetics of HIV markers during acute infection to seroconversion and time-frames of detection by generations of tests.
Adapted from [31,51–57]. Refer to [58] for further information about disease staging. EIA, enzyme immunoassay; NAAT, nucleic
acid amplification test.
The promise of early detection at point of
care and self-testing

Acute HIV infection is defined as the period when HIV is
present, but an antibody response has not yet been
mounted; recent infection covers the time when the
immune response is immature, and only highly sensitive
Fig. 2. Schematic of HIV and p24 structures. (a) Entire virion, (b) c
pentamers, and (c) monomer unit. Data from [63–65].
diagnostic assays can be used [71,72]. Early detection,
therefore, covers both acute and early infection, and up
until a stable viral set point and immunological response is
reached. In neonates or those up to 18 months old who
are born to HIV-infected mothers, this period will last up
until maternal antibodies have cleared [73,74]. In adults,
early infection is generally between two to six months,
apsid fullerene cone superstructure made of hexamers and 12
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Table 1. Summary of potential benefits of p24 testing across different population groups.

Target population
or application Current needs

Limitations of current
antibody tests

Potential benefits of
p24 antigen tests

Infants under 18 months
old

�1.5 million births to women with HIV
[80]. Half of infected neonates die
before 2 if untreated [81]

Confounding maternal antibodies up to
�18 months of age [82,83]; early
initiation of ART leads to
undetectable antibody response [84]

Accurate EID, targeted care
and treatment from birth
[85,86]

Adults with acute
infection
(preseroconversion)

Increased infectiousness during acute
infection [87–89]

Diagnostic window where HIV
undetectable; early initiation of ART
can lead to seroreversion or
undetectable antibody response
[31,90–92]

Earlier detection prior to
seroconversion [40,89]

Adults in high-risk
groups (including
those on preexposure
prophylaxis)

Recommendation of yearly testing may
be insufficient for high-risk practices,
and is not followed [93–95]

Diagnostic window where HIV
undetectable [31]; a significant
minority of attendees for testing in
clinics with a high proportion of
high-risk groups are acutely infected
[96]

Earlier detection prior to
seroconversion, no
confusion over concept of
diagnostic window [93]

Adult self-testers Recent legalization of self-testing, full
effects on epidemiology unknown
[94,97,98]

Approved commercial self-tests rely on
antibody detection
(postseroconversion) [99]

Earlier detection prior to
seroconversion, no
confusion over concept of
diagnostic window [93]

Adults and children
treated during acute/
early infection

Accurate identification of HIV-
positivity using antibody tests,
uncertainty over true status if
confirmatory assays are antibody-
based tests

Early initiation of antiretroviral therapy
can lead to seroreversion, or failure
to develop positive serological
response [90,100]

Earlier detection without
need for seroconversion
[40,89]

Adults and children in
HIV vaccine trials

Discrimination between host response
to true infection and vaccine-
induced sero-reactivity; high social
impact of false-positive HIV status
[101]

Antibody-only tests are unable to
differentiate between vaccine-
induced and virally induced
antibodies

Detection of virological
components will
unequivocally confirm
infection
and fourth generation assays that can detect either antigen
or antibody are recommended [27,31,40,58]. During
Fiebig stage I, the earliest stage of acute infection, HIV
RNA is the sole viral biomarker detectable, and therefore
only NAAT can be used for virological detection [58].
Though NAAT have been extensively used in resource-
rich settings to measure viral load during patient
monitoring, they are generally not approved for use as
qualitative diagnostic tools in most countries [40,75].
NAAT suitable for detection of HIV in acute infection are
existent and reviewed in [43,76–79]; as such, NAATwill
not be considered further here.

Key potential advantages of p24 antigen-based testing in
specific populations are listed in Table 1, including early
detection for specific target groups and EID.

EID and those in acute stages of infection have repeatedly
been identified as key demographics who would benefit
enormously from virological tests suitable for PoC use in
resource-limited settings. The confounding effect of
maternal antibodies means that a positive result from an
antibody-based test administered to neonates cannot be
accurately interpreted, and these antibodies can persist
until 12–18 months [74]. If no virological-based
alternative is available at an earlier stage, the child must
be recalled for testing after weaning and many do not
return. Without treatment, around half of infected
children will die by two years old [102]. Current options
include testing via dry blood spots for RNA, DNA or p24
antigen; here, sensitivity is limited because of small sample
volume, cross-reactions because of release of intracellular
contents and high cross-contamination rates [103–106].
Sending samples away for testing in centralized laborato-
ries additionally entails a longer turnaround time with the
potential for samples or results to get lost, and extra effort
and cost required to transmit results and recall patients for
repeat testing or to begin therapy [12].

In the last few years, two molecular technologies
described as PoC have progressed through WHO
prequalification stages (the Alere Q HIV-1/2 Detect
and the Cepheid Xpert HIV-1 Qual) and have been tested
in a limited number of field trials, which reflect routine
clinical workflows to varying degrees [107–110].
Although game-changers in terms of turn-around time
and with fewer infants lost to follow-up and a higher
proportion begun on antiretroviral medication [14,109],
these technologies are intended for ‘trained health or
laboratory professionals’ and come at a cost that remains
prohibitive for scale-up [11].

For adults, low-cost and PoC p24 testing would be
transformative in high-risk populations to detect those
acutely infected, before antibody-based tests can be used,
and to initiate treatment as early as possible. Those acutely
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infected are key drivers of the epidemic, with the highest
rates of transmission during this time [88]. Adult HIV
incidence has remained stubbornly high, largely because
of failure to routinely test for and detect acute infection at
scale [89]. As the number of people taking preexposure
prophylaxis steadily rises, the need to test for acute
infections also increases to reduce the risk of drug-
resistant strains emerging during monotherapy [111,112],
and self-testing with rapid PoC tests alongside pre-
exposure prophylaxis for high-risk groups are being
discussed [113,114].

The maximum benefit of p24-based testing will only be
realized when the diagnostic is available in rapid, PoC
format compatible with the ASSURED criteria and
suitable for use in resource-limited settings and self-
testing [115]. The key challenge of detection by rapid
PoC tests is the clinical range of p24 in the blood, which
spans at least four orders of magnitude from under 0.1–
103 pg/ml; though levels above 10 pg/ml are only briefly
reached during acute infection [116–134]. In particular,
differences in population groups that present for testing
mean that rapid antibody tests are less sensitive in high-
income settings, as a higher proportion of infections in
those presenting for testing are at the acute stage [135].
The ratio of detected infections to true infections is
therefore lower.
Sensitivity and specificity of commercial
p24 assays

As p24 detection is challenging, while there are a number
of laboratory-based automated systems on the market,
currently only one PoC assay in rapid-test format exists
(Supplementary Table 2, http://links.lww.com/QAD/
B345). The laboratory tests are complex, automated
equipment-intensive ELISA-type assays. The Alere Deter-
mine HIV-1/2Ag/Ab until recently was the sole fourth
generation lateral flow PoC assay and has now been
replaced by the Alere HIV Combo. All the current
laboratory-based assays listed show sensitivity and specific-
ity levels approaching 100%. The performance of the Alere
Determine HIV-1/2Ag/Ab has been much more variable
depending on the trial and population groups tested
(Supplementary Tables 2 and 3, http://links.lww.com/
QAD/B345). The range of sensitivities of 0–99.8%
obscures the mostly low results from the antigen-detection
portion of the test in acute infection, with sensitivity at 0%
in six of 11 primary studies and under 52% in 10 of 11 of
these. Specificity is insufficiently high for this test to be
useful for screening with too many false positives
generated, particularly in low-prevalence settings (Sup-
plementary Tables 2 and 3, [136–147], summarized in
[148], http://links.lww.com/QAD/B345). Follow-up
studies of the Alere HIV Combo in the literature are
currently insufficient in number to assess whether perfor-
mance has significantly improved [149,150].
Lessons learnt

In addition to low viral loads, research has suggested that
failure to detect p24 may be associated with:
1. I
nsufficient immune complex disruption (ICD). Seques-

tering of p24 by host anti-p24 antibody may lower the

sensitivity of assays by several orders of magnitude. ICD

dissociates host antibodies, allowing the assay antibodies

to bind p24, and sensitivity levels may be considerably

enhanced. Dissociation is conventionally via heat or acid-

based techniques. Publications on these methods peaked

in the early 1990s, later petering out as efforts to

mainstream and consolidate advances in nucleic acid

testing gained traction. A summary of methods from

studies using ICD is presented in Supplementary Table 4,

http://links.lww.com/QAD/B345.
2. E
arly infant diagnosis. Studies have reported widely

variable sensitivities of p24 antigen tests for EID

(summarized in [151]). For example, Quinn et al.

[152] found good sensitivity for infants older than one

month, but all nine specimens under one month were

negative; Lewis et al. [153] found very poor performance

in all infants under three months; Parpia et al. [154] found

very high sensitivity and specificity in infants despite

using a test with a limit of detection of 20 pg/ml. In part,

this variability may relate to lack of stratification between

infants infected in utero, during birth or breast-feeding,

which significantly alter the timing of the window

period. False negatives may also result if neonates

received antiretrovirals as part of ‘prevention of mother-

to-child transmission’ programs [155]. As a neonate born

to an infected mother will have high levels of anti-HIV

antibodies, use of ICD techniques have been highlighted

[156,157]. Supplementary Table 3, http://links.lww.

com/QAD/B345 contains details of studies for which

ICD was used or compared, including for EID.
3. V
iral subtypes (Fig. 3). In assessments of non-B subtypes,

Spacek et al. found poor and variable performance

especially for RNA loads below 400 and above

500 000 copies/mL in Uganda [131]. Variable sensitivity

depending on genotype has been found using combined

assays in a French study that concluded: ‘many HIVAg/Ab

assays could fail to detect HIV primary infection due to

HIV-1 non-B, non-M and HIV-2 strains’ [158]. Beelaert

et al. [145] found p24 assays could not detect HIV-2, and

some failed to detect outlier subtypes (one group O, one

subtype F and two subtype H out of 50 tested). However,

others found good performance with multiple subtypes.

For example, Pascual et al. [125] found performance of a

modified ELISA to be good compared with NAAT (the

Roche Monitor RNA) including for subtypes A to F.

Ribas et al. [130] demonstrated the ability of a modified

http://links.lww.com/QAD/B345
http://links.lww.com/QAD/B345
http://links.lww.com/QAD/B345
http://links.lww.com/QAD/B345
http://links.lww.com/QAD/B345
http://links.lww.com/QAD/B345
http://links.lww.com/QAD/B345
http://links.lww.com/QAD/B345
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Fig. 3. Prevalence of HIV subtypes worldwide. Source: Los Alamos HIV Sequence Database (http://www.hiv.lanl.gov/).
Proportions are calculated from total available sequence data available from each region and may reflect localized biases in
sampling.
ELISA to detect various subtypes and recombinant forms

of p24. Subtype diversity panels (e.g. https://eqapol.dhvi.

duke.edu/viral-diversity) enable researchers to ensure that

their reagents are validated against a wide range of subtypes

found worldwide (for example, [65]).

HIV-2 is relatively uncommon outside West Africa

(�one to two million infected [159]). Suppliers of

antibodies often claim cross-detection, though not all

demonstrate sufficient cross-reactivity to be useful, as

shown by a report that found no activity for many AIDS

Reagent Program antibodies against HIV-2 in a

laboratory ELISA (www.aidsreagent.org) [160].
4. L
ow prevalence settings. In low prevalence settings, false

positives necessitate uncertainty and further testing.

Currently, third generation tests have lower false-positive

rates compared with fourth generation tests, suggesting

that laboratory-based screening should instead be used

for those at high risk of infection [137]. Tamhane et al.

[161] suggested adjusting positive readout thresholds

in order to optimize a modified ELISA for a given

prevalence (using receiver-operator curves), but this

approach would be difficult to implement in simple

PoC tests.
5. U
se in resource-poor settings. A potential use of antigen

detection tests is their easy adaptation for resource-poor

settings compared with NAAT. A number of studies in

low-income countries or nonclinical, community settings

found very poor performance of the Alere Determine

rapid test, inconsistent with manufacturer evaluations, but

largely consistent with each other. For example, studies led

by Conway, Duong, Jones, Rosenberg, Chetty, and

Taegtmeyer all reported that the antigen-detection

portion of the test failed to detect any cases of acute

infection and Kilembe, Faraoni, and Brauer found limited

detection levels at one of 34, three of 17 and three of

30, respectively [137–144,146] (Supplementary Table 2,

http://links.lww.com/QAD/B345). In one study, the
specificity was sufficiently poor at 86.1% for the test to be

usable as a screening tool, but in another study, the antigen

portion successfully highlighted 32/39 antigen-positive

cases of acute infection [136,145]. Bulterys et al. [162]

further found limited sensitivity of a modified ELISA

for p24 in African children compared with reports in

developed countries, though this study could also be

affected by patient age and HIV subtype (see point 2).
6. C
hoice of antibodies. Lack of adequate antibodies may, in

part, explain poor performance observed in earlier studies,

particularly efficacy of monoclonal antibodies for binding

certain subtypes [163], and variable binding affinity

[65,164,165]. These issues can potentially be overcome by

careful selection from wide screening of antibodies, or

potentially using multiple antibodies concurrently [160,166].
7. S
tability of test components and target. For both research

studies and clinics, samples may be stored and processed

in batches. For studies, in particular, analysis can occur

years after collection. Storage at 4 8C even for brief

periods permits immune complexes to form, though

freezing does not [167]. Cold-chain transportation is

excluded from the criteria for ASSURED rapid tests

though required for reagents of many laboratory-based

assays [4,115]. Even for those that do not require

refrigeration, conditions during transport or storage in

resource-limited settings regularly exceed guidance on

maxima for temperature (usually 30 8C), sometimes by

158 or more, and humidity (65%), leading to invalid

results in some studies [168,169], but not others [170].

Emerging and ultrasensitive approaches

The limited sensitivity of most p24-detection assays has
led to the widely-held belief that p24 tests ‘are relatively
insensitive and therefore have a limited utility in clinical

https://eqapol.dhvi.duke.edu/viral-diversity
https://eqapol.dhvi.duke.edu/viral-diversity
http://www.aidsreagent.org/
http://links.lww.com/QAD/B345
http://www.hiv.lanl.gov/
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practice’ [171] or that the practical limit of detection for
p24 is of the order of 3 to 4 pg/ml [172]. Emerging, proof
of concept assays from research laboratories have
exceeded this by several orders of magnitude, but have
not progressed through the product development
pathway (see [79] for current or imminently launching
products). Figure 4 illustrates methods for achieving
sensitive detection of p24 for which quantitative limits
have been reported, with details in Supplementary
Table 5, http://links.lww.com/QAD/B345. A number
of these tests approach single molecule limits of detection;
sensitivity is, therefore, limited primarily by the volume

http://links.lww.com/QAD/B345
http://links.lww.com/QAD/B345
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of sample analyzed. Further development of these
technologies into PoC format would greatly facilitate
translation into the clinic.
Cost-effectiveness of using p24 assays for
HIV detection

Health-economic analyses of using p24 assays as screening
tests for HIV include [173–179] (Table 2). Models are
dependent on a wide range of variables, such as
prevalence, source population (e.g. use in blood banks,
use in sexual health clinics, use in accident and
emergency), gross domestic product per capita, and the
current cost, sensitivity and specificity of the p24 antigen
test under consideration (including false-positive rate)
meaning that a model may only be applicable to one
country or type of clinic. Antigen tests considered were
laboratory-based fourth generation antigen/antibody
immunoassays, not PoC tests. Prevalence strongly affects
measures of cost-effectiveness; in blood banks this
depends on donor population, for example, unpaid
donor vs. paid donor vs. familial donors [178]. Other
factors that affect cost-effectiveness include rates of
linkage and retention in care, as well as improvements in
partner testing [6,180]. As cheaper p24 antigen tests
become available, particularly those in self-test format,
parameters for these studies will shift considerably
requiring cost–benefit recalculation for each target
population. Currently no target product profile exists
that could guide development towards key goals such as
sensitivity, cost or simplicity of use.
Monitoring of HIV infection using p24?

To date, most applications of p24 assays have focused on
diagnosis during acute infection and EID. Other utilities,
Table 2. Cost-effectiveness studies comparing p24 antigen testing to a ba

Conclusion Reference Study location Study popu

p24 antigen tests
are cost-effective

[174] US 3 030 303 o

[173] US 1 500 000 p
13–64 ye

[175] US 10 000 MSM
biannuall

[176] US Entire popu
(>186 00

p24 antigen tests are
not cost-effective

[177] US 16 000 000

[178] Ghana Blood bank
transfused

[179] US 2744 from

The assessment is made in comparison to third-generation antibody tests,
injecting drug user; MSM, men who have sex with men; US, United State
aCost-effectiveness was validated solely for MSM, not IDU.
however, have been investigated such as prognosis and
treatment monitoring. Established (correlated, but
independent) predictors of disease progression and
treatment failure are CD4þ cell count and HIV viral
load [182]. Regular monitoring of patients on antiretro-
viral therapy is critical to prevent drug-resistant strains
arising through treatment failure or poor adherence, and
viral load assays are universally recommended for this
purpose [183,184]. Though p24 detection for diagnosis
of HIV is standard, it is not clear that p24 quantification
can provide clinically meaningful data on treatment
monitoring. According to a review of literature between
1997 and 2010 [66], relatively few studies investigate the
relationship between p24 levels and progression of
disease; just two were identified [121,124] and stated
that: ‘In both studies higher [p24] levels were associated
with an increased risk of progression.’ Although these
might suggest that using p24 levels may add value, this
could only be used in situations where optimal
monitoring methods (i.e. quantitative NAAT) were
not routinely available, and in this era of the recommen-
dation to ‘treat all,’ it is unclear that predominantly
untreated patients, as found in these studies, would be
often encountered.

Several additional studies of correlation of p24 levels to
markers of disease progression (CD4þ lymphocyte
counts, RNA and quantitative viral load measurements)
or health outcomes were identified for this review; the
main findings from these studies are detailed in
Supplementary Table 6, http://links.lww.com/QAD/
B345. In general, the correlation of p24 levels with RNA
viral load is not strong and varies between settings for
several reasons; Erythrocytes clear immune complexes
[128] and one study found limited correlation between
the amount of erythrocyte-associated p24 antigen and
p24 antigen in plasma [185].

On balance, p24 could be used in the future to monitor
for early infection in patients belonging to high-risk
seline.

lation Reference scenario

utpatients No testing

eople eligible for screening:
ars, no risk criteria

Third generation EIA

and 10 000 IDU; testing
y/quarterlya

Testing annually

lation aged 15–64
0 000) or sub-groups

Status quo for testing frequency
and method [181]

donor units Third generation antibody testing

donors to 193
patients

Third generation antibody testing
and no testing considered

San Diego early test program Third generation antibody testing

to the status quo, or to no testing. EIA, enzyme immunoassay; IDU,
s.

http://links.lww.com/QAD/B345
http://links.lww.com/QAD/B345
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groups and using preexposure prophylaxis, but the
evidence for monitoring therapy using p24 is not as
unequivocal as suggested by early enthusiasts [186,187].
As those involved in HIV care increasingly begin to look
towards HIV cure, assays for p24 could yet come into
focus again, especially if adequately sensitive tests can be
made sufficiently simple to be used for self-testing.
Conclusion and outlook

The future of HIV diagnostics and monitoring will
include PoC testing of an increasing number and variety
of target population subsets (outlined in Table 1), each
with specific and diverse requirements. Though testing of
large numbers of vaccine trial recipients is currently in the
pipeline, the need is immediate and ongoing for EID
when mothers are known to be HIV positive, and home
testing on a regular basis for adults at an elevated risk of
becoming infected to catch those in the window period.
With the rollout of preexposure prophylaxis in many
countries, diagnostic tests that would facilitate cheap and
routine testing for those in the window period,
potentially by self-testing, will become highly desirable.
In multiple scenarios, PoC testing for p24 antigen offers
an attractive alternative to nucleic acid detection for
diagnostics that are targeted at the pathogen, rather than
the host response, and a simple p24 test for the presence of
the virus could be transformative. In places where the
facilities and technology available do not permit
adherence to recommended methods for monitoring
treatment, a simplified quantitative or semi-quantitative
p24 test to detect resurgence of virus could permit
investigations into treatment compliance or the need to
switch from a failing therapy regimen.

These advantages will only be realized when PoC tests are
sufficiently sensitive so as to enable detection significantly
before antibody tests, and as easy to use as current PoC
rapid tests. Ideally, the test would detect p24 at fg/ml
(10�15 g/ml) to ng/ml (10�9 g/ml) levels, with a
minimum detection limit of the order of 10�10 g/ml.
Many approaches currently at the research stage of
development from the last decade can detect p24 at these
levels. However, many of these are early-stage experi-
mental studies and have not yet made a successful
transition out of the research laboratory, and through
clinical trials. The challenge to develop these into simple
low-cost diagnostics in the field is substantial.

Many of the studies that assessed the properties of p24
antigen during infection, particularly the correlation of
p24 antigen with other biomarkers, were conducted over
a decade ago. More investment into fundamental clinical
research of this kind, as well as for translating cutting-edge
technology for p24 detection out of the laboratory and
into the field is needed. Further clinical studies with the
most up-to-date technology are merited, in addition to
updated health-economic analyses for fourth generation
rapid tests in different population groups.

The requirements of HIV detection technologies for
diagnosis could shortly be radically altered by the
introduction of cure therapies and vaccination programs.
As the next generation of technologies comes through,
with many intended for use in resource-limited settings,
HIV p24 could yet see a fresh role as a virological target.
Methods

This is a scoping review, though a systematic search was
initially used to identify articles of interest. PubMed was
searched for articles from the outset of the HIVepidemic
to January 2018 using the following keywords (HIV or
AIDS or autoimmune diseases syndrome or human
immunodeficiency virus) and (p24) and (test OR
diagnostic). Identified studies were further screened.
Studies were excluded if they met any of the following
criteria:
1. N
ot in English
2. N
ot about HIV
3. N
ot about use of p24 as a clinical and/or diagnostic

marker
4. R
eports on chemical modification or inhibition of p24

(drug-type studies)
5. P
urely immunological studies
6. U
nable to obtain full-text
7. C
onference abstracts alone
Five hundred and seventy-four papers were scrutinized
further for potential inclusion in the review, and
associated citations pursued if not identified in the
original search. In addition, WHO and UNAIDS reports
were sourced as appropriate.
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122. Fackler OT, Schäfer M, Schmidt W, Zippel T, Heise W,
Schneider T, et al. HIV-1 p24 but not proviral load is increased
in the intestinal mucosa compared with the peripheral blood
in HIV-infected patients. AIDS 1998; 12:139–146.

123. Hashida S, Hashinaka K, Nishikata I, Oka S, Shimada K, Saitoh
A, et al. Measurement of human immunodeficiency virus type
1 p24 in serum by an ultrasensitive enzyme immunoassay, the
two-site immune complex transfer enzyme immunoassay.
J Clin Microbiol 1995; 33:298–303.

124. Ledergerber B, Flepp M, B€oni J, Tomasik Z, Cone RW, Lüthy R,
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