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Abstract

The relative magnetic helicity is a quantity that is often used to describe the level of entanglement of non-isolated
magnetic fields, such as the magnetic field of solar active regions. The aim of this paper is to investigate how
different kinds of photospheric boundary flows accumulate relative magnetic helicity in the corona and if and how
well magnetic-helicity-related quantities identify the onset of an eruption. We use a series of three-dimensional,
parametric magnetohydrodynamic simulations of the formation and eruption of magnetic flux ropes. All the
simulations are performed on the same grid, using the same parameters, but they are characterized by different
driving photospheric flows, i.e., shearing, convergence, stretching, and peripheral- and central- dispersion flows.
For each of the simulations, the instant of the onset of the eruption is carefully identified by using a series of
relaxation runs. We find that magnetic energy and total relative helicity are mostly injected when shearing flows are
applied at the boundary, while the magnetic energy and helicity associated with the coronal electric currents
increase regardless of the kind of photospheric flows. We also find that, at the onset of the eruptions, the ratio
between the non-potential magnetic helicity and the total relative magnetic helicity has the same value for all the
simulations, suggesting the existence of a threshold in this quantity. Such a threshold is not observed for other
quantities as, for example, those related to the magnetic energy.
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1. Introduction

Over the last few years, the study of magnetic helicity, a
quantity estimating the level of twist and entanglement of the
magnetic field lines in a magnetized plasma, has received
renewed attention in solar physics. This evolution has been
enabled thanks to the development of several new methods to
compute and represent magnetic helicity (Rudenko &Myshyakov
2011; Thalmann et al. 2011; Valori et al. 2012; Yang et al. 2013;
Yeates & Hornig 2013, 2014; Dalmasse et al. 2014; Prior &
Yeates 2014). Among these new approaches, some allow us to
properly compute magnetic helicity in non-magnetically isolated
domains, i.e., in typical conditions for natural plasma where the
magnetic field is threading the boundaries of the studied domain
(see Valori et al. 2016, for a complete review and a benchmark of
these methods). These new techniques now permit an exact and
controlled estimation of magnetic helicity in three-dimensional
(3D) data sets, and have in particular been applied to the study of
the evolution of helicity in several numerical simulations of solar
active events (Moraitis et al. 2014; Pariat et al. 2015, 2017;
Sturrock et al. 2015; Sturrock & Hood 2016) as well as in coronal
magnetic field extrapolations of observed active regions (Valori
et al. 2013; Moraitis et al. 2014; Guo et al. 2017; James et al.
2018).

Magnetic helicity has recently been used as an innovative
tool to study and better understand typical problems in solar
physics such as the magnetic reconnection mechanism (Russell
et al. 2015), the formation of filament channels (Knizhnik
et al. 2015, 2017; Zhao et al. 2015) and their large-scale
distribution over the solar cycle (Yeates & Hornig 2016), the
solar dynamo (Miesch et al. 2016; Brandenburg et al. 2017),
the formation of active regions (Liu & Schuck 2012; Liu
et al. 2014a, 2014b; Moraitis et al. 2014; Pariat et al. 2017), the

rotation of sunspots (Sturrock et al. 2015; Sturrock & Hood
2016), and the generation of solar jets (Karpen et al. 2017).
A field of research in which magnetic helicity is expected to

bring key results is the study of solar flares and eruptions. Even
though magnetic helicity is only a strict invariant in ideal
magnetohydrodynamic (MHD), Pariat et al. (2015) have
confirmed Berger (1984)’s scaling argument that helicity is
quasi-conserved in active events even when intense nonideal
processes such as magnetic reconnection are acting to transform
most of the magnetic energy. This now-demonstrated conserva-
tion of magnetic helicity is a key concept that is believed to be a
ruling principle beyond the existence and the formation of
coronal mass ejections (Rust & Kumar 1994; Low 1996; Green
et al. 2002; Mandrini et al. 2005; Priest et al. 2016).
The study of the relationship between flare/eruptions and

the magnetic evolution of active regions has been particularly
prolific (e.g., Nindos & Zhang 2002; Nindos & Andrews
2004; Park et al. 2008, 2010; Zuccarello et al. 2011; Park
et al. 2012; Tziotziou et al. 2012, 2013, 2014; Zuccarello
et al. 2014, 2017). So far, most of the work has relied
on computing magnetic helicity from observed series of
magnetograms and estimating the helicity flux following the
ground breaking method of Chae (2001), which has, however,
some inherent limitations (Démoulin & Pariat 2009). It is
nonetheless worth mentioning that several such observational
studies have concluded on a close relation between high
helicity content and enhanced eruptivity (e.g., Nindos &
Andrews 2004; LaBonte et al. 2007; Smyrli et al. 2010;
Tziotziou et al. 2012).
The new and exact methods to compute helicity in a 3D

domain are however now enabling the comprehensive study of
magnetic helicity in numerical data sets. Pariat et al. (2017)
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have recently studied parametric simulations of the formation
of solar active regions leading either to stable configurations or
to eruptions (presented in Leake et al. 2013, 2014). They found
that magnetic helicity was strongly discriminating between the
different simulations. Furthermore, they showed that by using
the helicity decomposition introduced by Berger (2003), the
ratio of the magnetic helicity of the current-carrying part of the
field to the total helicity could be used as a clear predictor of
the eruptivity in the simulations. This quantity indeed presented
high values only for the eruptive simulations and only before
the eruption. Additionally, this helicity ratio was no longer
differentiating the eruptive simulation from the non-eruptive
one after the eruption, when the system was stable in all of the
different runs.

The experimental set-up of Leake et al. (2013, 2014) does
not permit one to determine the existence of an eruptivity
threshold related to the helicity ratio. The stability of the
magnetic system was indeed likely deterministically given by
the initial condition, i.e., for the eruptive simulations, the
system was not brought from an equilibrium stage toward
instability by controlled imposed quasi-steady forcing. There-
fore, while remarkable, the results of Pariat et al. (2017) were
not conclusive on the reason why the helicity of the current-
carrying part of the field could be related to an enhanced
eruptivity. In order to determine whether their results were due
to pure hazard or were symptomatic of a deeper physical
meaning, the present study investigates the energy and helicity
content of a radically different set of parametric simulations of
eruptive events. This manuscript focuses on the analysis of the
line-tied 3D MHD simulations of Zuccarello et al. (2015). In
these simulations, eruptions are triggered by boundary-driven
motions that mimic the long-term evolution of solar active
regions, with the presence of shearing motions and large-scale
diffusion of the magnetic polarities. Unlike with the flux-
emergence simulations of Leake et al. (2013, 2014), the trigger
time and mechanism have been carefully determined by
performing numerous relaxation runs. Zuccarello et al. (2015)
have shown that the eruptions were tightly related with the
torus instability mechanism (Kliem & Török 2006; Török &
Kliem 2007; Aulanier et al. 2010; Démoulin & Aulanier 2010;
Olmedo & Zhang 2010; Kliem et al. 2014). A goal of the
present study is to determine whether a helicity-based
eruptivity predictor is also able to describe the eruptivity stage
of the simulations of Zuccarello et al. (2015) and how it relates
with the torus instability.

Additionally, the parametric simulations of Zuccarello et al.
(2015) present different types of boundary-driving motions.
Thanks to the comparison of these different simulations, it is
possible to compare and determine which boundary motions
are the most efficient at injecting total helicity in the coronal
domain, as well as in the different terms of the helicity
decomposition. Helicity accumulation is indeed a fundamental
process of the formation and evolution of active regions (Green
et al. 2002, 2003; Mandrini et al. 2005; Liu & Schuck 2012;
Liu et al. 2014a, 2014b; Romano et al. 2014; Sturrock et al.
2015; van Driel-Gesztelyi & Green 2015; Sturrock &
Hood 2016). Studying the most efficient way by which helicity
is injected in active regions can reveal information that is
particularly important for determining their eruptivity potential.

The manuscript is organized as follows. The simulation
setups and evolution of the system are discussed in Section 2.

The different magnetic energy and helicity decompositions are
presented in Section 3. Section 4 describes the evolution of the
magnetic flux as a result of the applied boundary motions.
Sections 5 and 6 present the results of our analysis, i.e., the
time evolution of the different magnetic energy and helicity
decompositions and their values at the onset of the eruptions.
Finally, in Section 7, we discuss our results and conclude.

2. The MHD Simulations

To study the evolution of magnetic energy and helicity
during the formation and eruption of magnetic flux ropes, we
solve the full three-dimensional MHD equations using the
OHM-MPI code (Aulanier et al. 2005; Zuccarello et al. 2015).
In this paper, we analyze the same runs presented in Zuccarello
et al. (2015) where the MHD equations are solved in a
nonuniform Cartesian grid that expands from the location
x=y=z=0 and covers the domain xä[−10, 10], y ä
[−10, 10], zä[0, 30] where x and y are the horizontal
directions and z is the vertical one. The goal of that study was
to carefully determine and investigate the onset of the eruptions
in the framework of the torus instability. To achieve this goal, a
parametric study consisting of four different simulations was
performed. For each of the four different simulations, the time
of the onset of the eruption was carefully determined using a
series of relaxation runs.
The four simulations share the same initial phase where the

magnetic field is modified from an initial, potential configura-
tion into a sheared one (Sections 2.1 and 2.2). From this point
onward, four different boundary motions that result in four
different ways to build a flux rope and bring it to the eruption
point are applied (Section 2.4). Finally, a proper eruption phase
follows in each of the four runs (Section 2.5). The first two
phases, shearing and flux rope formation, are the most relevant
ones for the study of helicity evolution discussed in this article.

2.1. Initial Condition

The initial condition for the magnetic field, common to all
simulations, consists of an asymmetric and bipolar active
region generated by two unbalanced sub-photospheric mono-
poles (see Figure 1, left panel). In the non-dimensional units of
the simulation (cf. Section 2.4 of Aulanier et al. 2010, for a
possible choice of dimensional units), the initial density in the
volume is ρ(t=0)=B2(t=0), such that the initial Alfvén
speed is cA(t=0)=1, while the initial velocity field is
u(t=0)=0.
We impose “open” boundary conditions for all of the

boundaries apart from the boundary at z=0, i.e., the
photospheric boundary, where line-tied boundary conditions
are applied instead (Aulanier et al. 2005). We notice that, as a
result of the applied boundary motions and field dynamics, the
configuration of the field is naturally expanding and flux is free
to leave the simulation box trough lateral and top boundaries
throughout the simulations.

2.2. The Common Shearing Phase

For all of the simulations, the initial potential magnetic field
is evolved into a current-carrying magnetic field by imposing
asymmetric vortices centered around the local maxima
of B z 0z =∣ ( )∣.
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Figure 1 (right panel) shows the applied flow field. By
design, these boundary flows induce shear close to the polarity
inversion line (PIL) of the active region and affect the
periphery of the active region only mildly. Moreover, the
flows are tangent to the iso-contours of Bz(z=0); therefore,
during this phase, the distribution of Bz at the photospheric
boundary z=0 remains unchanged. Because the major
component of the flow field during this phase consists of
shearing motions close to the PIL, we refer to this phase as the
shearing phase and to these motions as shearing motions.

The shearing flows are applied from t;10tA until
t;100tA. At the end of this phase, the magnetic field
configuration is characterized by a highly sheared, current-
carrying magnetic arcade surrounded by a quasi-potential
background field anchored around the center of the magnetic
polarities (see Figure 1, middle panel).

To ensure that the normal component of the magnetic field at
the boundary remains unchanged, during this phase the
photospheric diffusion is set to ηphot=0. The coronal diffusion
and pseudo-viscosity are set to ηcorona=4.8×10−4 and
ν′=25, respectively (see Section 2.3 of Zuccarello
et al. 2015).

2.3. Control Case: The Non-eruptive Run

As a term of comparison throughout this paper, we also
include a non-eruptive control run obtained by avoiding the
photospheric driving phase of Section 2.4. For this run, at the
photospheric boundary we impose u(t100tA) = 0 and
ηphot=4.8×10−4 for 100tAt164tA and ηphot=0 for
t164tA. The coronal diffusion and pseudo-viscosity are the
same as those for the shearing phase for 100tAt164tA
and they are increased by a factor 4.37 and 1.67, respectively
for t164tA.

The diffusion and pseudo-viscosity parameters have the
same time dependence as the other four simulations runs. This
allows us to distinguish the effects of direct diffusion, which
we expect to be similar for identical parameters, from the run-
specific dynamic due to different evolution of energy and
helicity.

2.4. The Flux-rope Formation Phases

From t;105tA, the flux rope formation phase starts. During
this phase, at the line-tied boundary we apply four different
types of photospheric motions.

Figure 2 (bottom panels) shows the applied boundary
motions. The four different velocity fields aim to mimic flow
patters typically observed on the Sun. The four different
velocity fields result in four different simulations runs labeled
as “Convergence”, “Stretching”, “Dispersion Peripheral”
(Disp. Periph.), and “Dispersion Central” (Disp. Cent.).
The run labeled “Convergence” is characterized by flows

that only have a horizontal component and are applied only in
the proximity of the PIL. These flows result in the advection of
photospheric magnetic field toward the PIL, but do not affect
the central and peripheral parts of the active region.
In the run labeled “Stretching”, the flows are now applied not

only in the proximity of the PIL but also in the periphery of the
active region. The effect of these flows is to induce an
asymmetric stretching of Bz(z=0).
Finally, the runs labeled as “Disp. Periph.” and “Disp. Cent.”

are characterized by flows that spreads radially from the center
of the magnetic polarities. The difference between the two flow
patterns is the size of the portion of the magnetic polarities that
is affected by the flow. In “Disp. Periph.”, only the periphery of
the magnetic polarities is subjected to the flows, resulting in a
peripheral dispersion of the magnetic field, while in “Disp.
Cent.”, a larger region of the polarity is subjected to these
flows, resulting in a more significant diffusion of the magnetic
polarities.
Figure 2 (bottom panels) shows that all of the flows have a

component that advects oppositely directed vertical magnetic
field toward the PIL. To allow the cancellation of this
oppositely directed magnetic flux, during this phase the
photospheric diffusion is set to ηphot=4.8×10−4. The
coronal diffusion and pseudo-viscosity are kept the same as
in the shearing phase.
The response of the solar corona to the applied boundary

flows for the “Disp. Periph.” run is shown in Figure 2 (top
panels). As a consequence of the cancellation of magnetic flux
around the PIL, a magnetic flux rope is formed through
magnetic reconnection at a bald-patch separatrix (Démoulin
et al. 1996). This reconnection process transfers sheared,
arcade-like magnetic flux into the flux rope, eventually
increasing the total current within it, and driving its slow rise
up to a point when the torus instability sets in and the flux
rope undergoes a full eruption. A similar mechanism yields
the formation of a flux rope in the other runs as well (see
Zuccarello et al. 2015, for additional details). The flux rope

Figure 1. Evolution of the magnetic field for the shearing phase common to all the simulations (left and middle panels) and the applied boundary motions (right
panel). The magnetic field lines are color coded with the current density, where yellow/red means higher current density. White/black indicate positive/negative
Bz(z=0), respectively. White/magenta arrows indicate flows applied to the negative/positive polarity.

3

The Astrophysical Journal, 863:41 (11pp), 2018 August 10 Zuccarello et al.



formation phase ends at the time of the eruption, which
happens at a different time in the four simulations.

2.5. The Eruption Phase

The onset of the torus instability is determined through a
series of relaxation runs in which the photospheric boundary
flows are gradually re-set to zero using a ramp-down time
profile of total time width Δt=6tA.

In other words, for each of the four experimental set-up,
dozens of simulations have been performed in which the
applied flows were imposed for different durations before being
smoothly stopped. Only when the boundary flow was imposed
long enough, a marked eruption was observed. If the boundary
flows are stopped before the instant tI, the system either relaxes
to a new equilibrium or the flux rope undergoes an extremely
deflected eruption (see Zuccarello et al. 2015, for additional
details). However, if the boundary flows are stopped at
(or after) tI, the flux rope undergoes a full eruption and
expands in the numerical domain. As the four simulations have
different photospheric flow evolutions, the exact time at which
the instability sets in is different for the four cases. By stopping
the photospheric driver at different instants in time and letting
the system evolve under the effect of the residual Lorentz force,
Zuccarello et al. (2015) have shown that the onset of the
instability leading to full eruptions occurs at tI=196, 214, 220
and 164tA for the “Convergence”, “Stretching”, “Disp.
Periph.”, and “Disp. Cent.” runs, respectively. It should be
noted that the time tI corresponds to the middle of the ramp-
down time profile; therefore, the boundary flows are zero only
for t t t3I I A +¯ . The vertical lines in all the Figures of the
present paper indicate the time tĪ.

By using the same ramp-down time profile, at time tI we also
re-set the photospheric diffusion to zero. For numerical stability
reasons, at the same time tI and by using a similar ramp-up time

profile, we increase the coronal diffusion by a factor 4.37 and
the pseudo-viscosity by a factor 1.67. Because we focus on the
triggering of the instability, in the following, only the evolution
until 10tA after the time tĪ of each simulation is shown.
However, all simulations were continued for long after that
time (see Zuccarello et al. 2015).

3. Magnetic Helicity and Energy Decompositions

The magnetic helicity H of a magnetic field B in a volume 
is defined as:

A BH d , 1

ò= · ( )

where A B=  ´ is the vector potential. This quantity is
gauge invariant only when the magnetic field B is fully
contained inside the volume  , e.g., when the magnetic field is
tangential to the surface ¶ that bounds  . This condition is
rarely satisfied in the magnetic field systems that are of interest
in solar physics, i.e., open coronal volumes.
Following the work of Berger & Field (1984), Finn &

Antonsen (1985) showed that in the case where B is not fully
contained in  , a quantity that is gauge invariant by definition
and it is better suited to characterize the system, is the relative
magnetic helicity:

A A B BH d , 2V p p 

ò= + -( ) · ( ) ( )

with Ap the vector potential of the potential field Bp =
Ap ´ that has the same distribution of the normal

component of B on the bounding surface.

Figure 2. Evolution of the magnetic field for the Dispersion Peripheral run during the flux rope formation phase (top panels) and the applied boundary motions
(bottom panels) for the four different simulations runs. The color scheme is the same as in Figure 1.
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A possible decomposition of Equation (2) is (Berger 2003):

H H H , with 3V j pj= + ( )

A A B BH d , 4j p p 

ò= - -( ) · ( ) ( )

A B BH d2 , 5pj p p 

ò= -· ( ) ( )

where Hj is the magnetic helicity of the non-potential, or
current-carrying, component of the magnetic field, B Bj = -
Bp, and Hpj is a volume-threading term involving both Bp and
Bj. Because B and Bp have the same normal distribution on ¶ ,
both HV, Hj and Hpj are separately gauge invariant. Similarly to
(Pariat et al. 2017, cf. Section 4.1), in the present paper, the
quantities Bp, Ap, and A are computed using the method of
Valori et al. (2012).

The different flux rope formation phases are associated with
different photospheric boundary motions that result in different
evolutions of Bz(z=0). As a result, the magnetic flux is
different for the different simulations. In order to account for
these differences when comparing the various helicity decom-
positions at the moment of the eruption we consider their
normalized value, i.e., HV(t)/Φ

2(t), Hj(t)/Φ
2(t) and H t tpj

2F( ) ( ),
where t B z t d d0, x y

z z
1

2 0òF = =
=

( ) ∣ ( )∣ .
In the present paper, the different decompositions of the

magnetic energy are computed following the approach
discussed in Valori et al. (2013), where the magnetic energy
of a magnetic field with finite non-solenoidality ( B 0 ¹· ),
can be decomposed as:

E E E E , 6V p j ns= + + ( )

where Ep and Ej are the energies associated with the potential and
current-carrying solenoidal contributions, and Ens, is the sum of
the artifact non-solenoidal contributions (see Equations (7), (8) in
Valori et al. 2013, for the corresponding expressions). For purely
solenoidal fields Ens is zero, however, finite non-solenoidality is
generally present when discrete numerical meshes are considered.
As discussed in Valori et al. (2016), the non-solenoidality of the
field actually affects the precision of the helicity computations.
For the simulations presented here, the average non-solenoidality
is E E 0.02ns V  . We note that in order to apply the method of
Valori et al. (2012), the nonuniform grid used to perform the
simulations has been interpolated into a uniform grid, and the
divergence values are increased by the interpolation. While these
values are not representative of the quality of the simulations
themselves, they nevertheless allow us to estimate the precision of
the magnetic helicity computations discussed here. According to
the results of Valori et al. (2016), the precision of our helicity
computations is 2%.

4. Evolution of the Magnetic Flux

The evolution of the photospheric magnetic flux as a
function of time and, for all the simulation runs, is presented in
Figure 3. The magnetic flux is constant during the common
shearing phase. This is a consequence of the design of the
boundary motions, which do not change the phostospheric

distribution of Bz, and of the fact that the photospheric diffusion
is ηphot=0 during this phase.
In the control non-eruptive run, where the flows are set to

zero and only a finite photospheric diffusion is imposed at the
boundary, only 2% of the initial photospheric flux is diffused
within ∼60 tA.
During the flux rope formation phase, opposite magnetic flux

is advected toward the PIL in all four simulations. Combined
with a finite photospheric diffusion, this results in the
cancellation of about 13%–18% of the initial photospheric
flux at the moment of the onset of the eruption.
From tĪ, both photospheric flows and diffusion are re-set to

zero, and the photospheric flux remains constant until the end
of the simulation.
The change in the slope of the photospheric flux that we

observe toward the end of the flux rope formation phases in
Figure 3 is essentially due to the change in the forcing of the
bottom boundary of the simulation, as is expected considering
that this quantity is only measured at this boundary, and does not
allow one to discern the moment of the onset of the instability.
Finally, we note that at the moment of the eruption, the

different runs have reached different values of the magn-
etic flux.

5. Trends in Magnetic Energy and Helicity

In this Section, we discuss the trends in the time evolution of
the magnetic energy and of the magnetic helicity for the
different runs.

5.1. Comparison between the Shearing and Flux-rope
Formation Phases

Figure 4 (top panels) shows the evolution of the different
energy decompositions. During the common shearing phase,
i.e., from t;10tA to t;100tA, EV shows a linear increase up
to about 37% of its initial value. A comparison between Ej and

Figure 3. Time evolution of the photospheric magnetic flux for the common
shearing phase (red), for the non-eruptive run (cyan), and for the four
eruptive runs.
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Ep (Figures 4(b) and (c)) shows that the increase in EV is due to
the increase of Ej. This is expected, as the shearing flows are
designed in such a way to not change the boundary distribution
of Bz, and, hence, of Ep.

In the control non-eruptive run, from t;105tA onward, all
of the different energy decompositions display a decrease
due to the finite photospheric and coronal diffusion. After
t;164tA, EV and Ej continue to decrease even faster (the
coronal diffusion is further increased during this phase, see
Section 2.3), while Ep is now constant, as ηphot is re-set to zero
during this phase.

During the different flux rope formation phases, i.e., from
t;105tA to t;tI, EV decreases, and this is the case up to the
end of the simulations (not shown in the Figure). Despite the
total magnetic energy decreases, Figure 4(b) shows that, apart
from the control case, Ej actually increases during the flux rope
formation phase, up to the time t;tI, where it reaches a
maximum and starts to decrease. Figure 4(c) shows that Ep
decreases during the flux rope formation phase, suggesting that
the major reason of the energy decrease during the flux rope
formation phase is due to a decrease of Ep.

A comparison between the shearing and the flux rope
formation phases shows that the major injection of Ej occurs
during the shearing phase; the rate of increase of Ej during the
shearing phase is between ∼4.5 and ∼54 times higher than its
rate of increase during the flux rope formation phase.

The time evolution of HV is shown in Figure 4(d). During
the common shearing phase, HV steadily and linearly increases
with time. This trend changes during the flux rope formation
phase, when the total helicity is either roughly constant or

slightly decreases. This is true until the end of simulations (not
shown in the Figure). The situation is different when only the
current-carrying component of the helicity, i.e., Hj, is
considered (Figure 4(e)). Similarly to HV, Hj also increases
during the shearing phase but with a profile that is somehow
different. The linear increasing phase starts with a delay of
about 10–15 tA with respect to HV.
Figure 4(e) shows that from t;105tA onward, for the

control run, Hj is either constant or decreases. The situation is
different for the other runs, where during the flux rope
formation phase Hj continues to increase up to tĪ. Figure 4(e)
also shows that Hj increases at a comparable rate both during
the shearing and the flux rope formation phases.
The evolution of Hpj is shown in Figure 4(f). Similarly to HV,

during the shearing phase, Hpj steadily increases in time,
accounting for the major part of the helicity injection during
this phase. From t;105tA onward, Hpj for the control run is
either constant or decreases. While the other runs also show the
same trend, their respective decrease of Hpj is more significant
than the one observed for the control run. Therefore, the
decrease of Hpj during the flux rope formation phase is not only
due to the finite diffusion, but likely to a re-distribution of the
relative helicity between its different component Hj and Hpj
(cf. L. Linan et al. 2018, in preparation).
To summarize, the analysis shows that: (1) the largest

injection of total magnetic energy and relative magnetic helicity
occurs during the shearing phase; (2) during the shearing phase,
Ej increases as it is the case for Hpj, i.e., magnetic energy and
helicity behave differently during this phase; (3) at the end of
shearing phase, EV is dominated by Ep, and HV is dominated by

Figure 4. Time evolution of the different energy (top) and helicity (bottom) terms for the shearing and flux rope formation phases.
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Hpj, i.e., magnetic energy and helicity are similar in this aspect;
(4) in the flux rope formation phase, both EV and HV decrease,
both Ep and Hpj decrease, and both Ej and Hj increase, i.e., they
behave similarly, unlike during the shearing phase; (5) Hj is
injected with roughly the same rate during the shearing and flux
rope formation phases, while this is not the case for Ej where
the most of the injection occurs during the shearing phase;
(6) overall, the flux rope formation phase has helped to
strengthen the non-potentiality of the field and its relative
portion in both EV and HV budgets; at the end of the flux rope
formation phase, both Ej/EV and Hj/HV have increased
compared to their values at the start of this phase (see
Section 6).

5.2. Role of the Different Boundary Flows during the Flux-rope
Formation Phase

In this Section, we compare the evolution during the
different flux rope formation phases, focusing on the
similarities and differences between them.

Figure 5 (top panels) shows the evolution of the different
energy decompositions during the flux rope formation phases. In
order to facilitate the comparison, the curves in Figures 5 and 6
are shifted such as to align the eruption times. The total magnetic
energy, EV, decreases for all the runs including the non-eruptive
one (see Figure 5(a)). However, the “Disp. Cent.” run, which is
the run where the major part of the active region is subjected
to the convergence flows, displays the fastest decrease of EV,
while the “Convergence” run, where only the portion of the

active region closets to PIL is subjected to the convergence
motions, shows the slowest decrease of EV. The latter is actually
comparable to the decrease of EV for the control run, where no
flows are applied and the energy dissipation is only due to the
coronal and photospheric diffusion.
The time evolution of Ej is shown in Figure 5(b). A clearer

distinction in the trends is visible between the eruptive runs and
the non-eruptive one. For the eruptive simulations, Ej increases
up to the moment of the eruption, while it is always decreasing
for the non-eruptive run. Differently from EV, Ej for the
“Convergence” and “Disp. Cent.” runs follows a very similar
trend, despite the fact that these two runs are the ones with the
most different flows. Figure 5(b) shows that Ej starts to
decrease after the onset of the eruption when driving flow is
terminated and coronal dissipation is increased four-fold. A
similar initial decrease is also observed for the control run as
soon as the system is allowed to relax under the effect of the
increased coronal diffusion.
Figure 5(c) shows that, during the flux rope formation phase,

Ep decreases. Furthermore, the different curves are ordered in
the same way as the ones of EV, confirming that the major
decrease of magnetic energy during the flux rope formation
phase is due to the decrease of the energy associated with the
potential magnetic field.
The time evolution of the different normalized-helicity

decompositions is presented in Figure 5 (bottom panels).
Globally, HV

2F and Hj
2F show similar trends and clearly

allow one to distinguish between the eruptive and non-eruptive
runs; the two quantities increase for the eruptive runs, while

Figure 5. Time evolution of the different energy (top) and normalized-helicity (bottom) terms during the flux rope formation phase. The timescale is shifted so that the
time are given with respect to tĪ.

7

The Astrophysical Journal, 863:41 (11pp), 2018 August 10 Zuccarello et al.



they are roughly constant (although decreasing, largely because
of the finite coronal diffusion) for the non-eruptive run. This is
true until t;tI when HV

2F and Hj
2F start to decrease for all

the runs (including the control run) as a consequence of the
increased coronal diffusion.

A closer look at Figure 5(e) shows that, while the different
curves follow a very similar trend, some differences exist. An
interesting result can be found by comparing the “Stretching”
and “Convergence” runs. For these two runs, the same
photospheric motions profile is applied close to the PIL, and
the difference only involves the periphery of the active region
(see Figure 2, bottom panels). As a result, sheared arcade flux is
advected toward the PIL and eventually converted into flux
rope’s flux, in a similar fashion for the two runs. The only

difference is at the periphery of the active region where part of
the overlying magnetic flux is anchored. This seems to suggest
that even the evolution of Hj, which is in principle only related
to the current-carrying part of the magnetic field, seems to be
affected by the evolution of the background field. This is an
example of the nonlocal character of the magnetic helicity. This
result is also consistent with the analysis of the time evolution
of Hj and Hpj of L. Linan et al. (2018, in preparation), which
indicates that Hj is usually not evolving because of boundary
flux but is rather transformed from Hpj.
Finally, Figure 5(f) shows that Hpj

2F initially decreases
during the first stages of the convergence phase and then
steadily increases up to a few Alfvén times before the onset of
the instability. This behavior is observed for all of the eruptive
runs, even if the “Disp. Cent.” run shows a proportionally
larger (smaller) decrease (increase) during the early (main)
stage of the convergence phase.
To summarize, the analysis shows that (1) apart from a single

case (Hpj
2F for the “Disp. Cent.” run), the time evolution of all

the different helicity terms shows a difference between the
eruptive and non-eruptive runs, (2) this is not the case for the
different magnetic energy terms, where only Ej shows a different
trend. (3) At the time of the onset of the eruption, a change in the
trend is observed for all of the simulation runs (apart from EV for
the “Disp. Cent.” run). The fact that this change in trend is
also observed for the control, non-eruptive run suggests that
the change in the coronal diffusion and in the boundary
motions at the time of the eruption (see Section 2) may play an
important role.

6. Thresholds in Magnetic Energy and Helicity

In the previous Section, we investigated the evolution of
different magnetic-energy and helicity-related quantities around
the moment of the onset of the torus instability, and we have
discussed how a change in the trend of the different curves that
occurs at t tI , may be somehow related to these imposed
boundary conditions. This is the reason why, for any given
quantity, the existence of a threshold at the moment of the onset
of the instability may be more important than a change in its
trend.
Zuccarello et al. (2015) analyzed these simulations in the

framework of the torus instability. In this framework, the
instability occurs when the flux rope axis reaches a height
where the decay index of the magnetic field has a critical value
that depends on the particular magnetic field configuration. For
these parametric simulations, Zuccarello et al. (2015) have
shown that when an eruption occurs, all of the flux ropes have
reached heights where the decay index n has a critical threshold
value of n;1.45±0.05.
The aim of this Section is to investigate if a critical threshold

value in any of the different energy and helicity decompositions
exists. Said differently, we investigate whether or not any of the
different energy and helicity decompositions have the same
value (for all the simulations) when the instability sets in and
the eruptions occur. The values of the different quantities
around the time of the onset of the eruption are reported in
Table 1.

6.1. Magnetic Energy and Helicity Terms

Figure 5(a) shows that no threshold in the total
magnetic energy exists at the moment of the eruption. More

Figure 6. Time evolution of the E Ej and H Hj V ratios around the onset of the
eruptions.
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specifically, Table 1 shows that EV varies from about 163.7
for the “Disp. Periph.” run to about 206.5 for the “Conv-
ergence” run. The dispersion of the values, evaluated as

E t E t E tmax min maxV I V I V I-( [ (¯ )] [ (¯ )]) [ (¯ )], is too large to
correspond to an instability threshold solely based on that
quantity. Indeed, if such a threshold existed and corresponded
to E tmax 206.5V I =[ (¯ )] , then no eruption should have been
observed for all the simulations but the “Convergence” run, as
their EV did not reach that threshold value. If the instability
threshold was equal to E tmin 163.7V I =[ (¯ )] , then the eruption
time, t;tI should have been different, as all simulations
but the “Disp. Cent.” run would have reached that value of EV
earlier than their corresponding tI.

For the type of numerical experiment presented here, in
which the system is dynamically evolved from a stable to a
unstable stage, the existence of an instability threshold
uniquely based on a given quantity, Q, necessarily implies
that the value of Q tI(¯ ) should be the same for all the eruptive
simulations. The measurement of the dispersion of Q tI(¯ )
between the eruptive runs (as done above), is thus a way to
state the existence of a threshold for that quantity. The
dispersion of about 20% obtained for EV disqualifies the
existence of a threshold based on that quantity.

A similar conclusion can be drawn also for Ej (Figure 5(b)).
At the moment of the onset of the eruption, Ej has different
values for the different runs with a range of dispersion of about
17% of Ej of the Convergence run. Therefore, Ej also does not
allow one to determine the onset of the instability. The
discrepancies are even larger when the potential magnetic
energy, Ep, is considered (Figure 5(c)).

Figure 5 (bottom panels) shows that no threshold exists also
for the different decompositions of the normalized magnetic
helicity. However, a closer inspection of the Figure and of
Table 1 show that the dispersion of the different helicity and
normalized-helicity terms is within 13% (9% for Hj), i.e., the
dispersion between the different helicity curves is about half
the dispersion of the total energy curves.

6.2. Current-carrying to Total Magnetic Energy
and Helicity Ratios

Pariat et al. (2017) have shown that the ratio E Ej V is a
possible good eruption proxy, in the sense that it could discern
between erupting and non-erupting runs. The same authors
have shown that a significantly better proxy is the ratio of the
helicity of the current-carrying part of the magnetic field to the
total magnetic helicity, H Hj V, in the sense that this proxy has
consistently larger values before the eruption for eruptive runs

than for non-eruptive and, after the eruption, the proxies of
eruptive and non-eruptive are indistinguishable.
The time evolution of the E Ej V and H Hj V for our

simulations is shown Figure 6. At the moment of the eruption’s
onset, no threshold is observed in the E Ej V ratio (Figure 6(a));
the different values have a dispersion of about 10% of the run
with the highest value.
The situation is significantly different when the H Hj V ratio

is considered. In fact, as shown in Figure 6(b), all the curves
approach the same threshold value within a dispersion of about
3%. This dispersion range is between three and eight times
smaller than the equivalent ranges in the different energies and
helicities decompositions discussed in the previous Section,
and about three times smaller than the E Ej V ratio. We note that
this dispersion is (1) within the measurement precision of the
helicity ratio, which is about 4% (see Section 3), hence
basically the same value, and (2) it is about a factor two smaller
than the dispersion of critical decay index values identified
through the detailed analysis of the electric currents and
magnetic field distribution in the different simulations (see
Zuccarello et al. 2015).

7. Discussion and Conclusion

We have presented a series of eruptive and non-eruptive
numerical MHD simulations of idealized solar active regions,
which evolution is characterized by different boundary
motions. With these series of simulations, we aimed at
addressing (1) which of the different boundary motions are
the most efficient to inject different decompositions of
magnetic energy and helicity, and (2) whether any of the
different energy and helicity decompositions are able to
identify the moment of the onset of the eruptions.
The initial configuration consisted of an asymmetric, current-

free, bipolar active region embedded in a constant Alfvèn speed
atmosphere.
During the first phase of the simulation runs, called the

shearing phase, shearing motions have been applied in the
proximity of the active region’s PIL. As a result, the coronal
magnetic field evolves from a potential field into a current-
carrying magnetic field characterized by a sheared arcade close
to the PIL.
Starting from this configuration, four different classes of

boundary motions, resembling motions often observed on the
Sun, have been applied. This phase was called the flux rope
formation phase. While the applied motions are relatively
different among them, a characteristic that is common to all
four motions is that they advect part of the photospheric

Table 1
Values of the Different Energy and Helicity Terms at the Moment of the Onset of the Instability

Run tI (tA) Φ EV Ep Ej E Ej V HV Hj Hpj H Hj V

Convergence 196 35 206.5 114.7± 3.1 91.8± 3.1 0.444± 0.015 260± 5 77± 5 183± 5 0.296± 0.012

Stretching 214 35 187.4 102.8± 3.6 84.6± 3.6 0.451± 0.019 250± 5 75± 5 175± 5 0.300± 0.012

Dispersion Peripheral 220 34 163.7 86.8± 3.3 76.9± 3.3 0.470± 0.020 231± 5 70± 5 161± 5 0.303± 0.012

Dispersion Central 164 36 168.1 85.1± 0.4 83.1± 0.4 0.494± 0.002 239± 5 70± 5 169± 5 0.292± 0.012

Note. The value of the different quantities are given at t t t3I I A +¯ , i.e., after the boundary motions are re-set to zero.
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magnetic flux toward the PIL. During this flux rope formation
phase, a change in the topology of the system is observed and a
magnetic flux rope is formed, which eventually erupts
(Zuccarello et al. 2015).

By analysing the time evolution of the different magnetic
energy and helicity decompositions during the sharing and flux
rope formation phases we have shown that:

1. Magnetic energy and total relative helicity are mostly
injected during the shearing phase. The magnetic energy
actually shows a significant decrease during the flux rope
formation phase. This is due essentially to the decrease
of the potential magnetic energy of the system, probably
due the fact that magnetic flux is canceled at the PIL
during the flux rope formation phase.

2. Shearing motions are the most efficient to inject Ej into
the system. The injection rate of Ej during this phase is at
least four times larger than during the flux rope formation
phases.

3. The current-carrying component of the magnetic helicity,
Hj, increases with a similar rate between the shearing and
the flux rope formation phases.

In order to determine if any signature of the eruption’s onset
could be found in any of the magnetic energy or helicity
decompositions, we analyzed the evolution of these quantities
around the moment of the onset of the eruption, to investigate if
a threshold in any of these quantities exists. Our analysis
showed that:

1. No threshold is observed for any of the quantities
entering in the decomposition of the magnetic energy
(Equation (3)) and relative helicity (Equation (6)). In the
different simulations, the eruption occurs for various
values of energies and helicities. The dispersion of these
values is between 9% and 25% depending on the
particular decomposition (with helicities decomposition
in the lower part of this range).

2. A threshold appears to exist in the ratio between the
current-carrying component of the magnetic helicity and
the total relative magnetic helicity. The onset of the
eruptions indeed occurs when the different eruptive
simulations reach the very same value of H Hj V, within
measurement precision. This is not the case when a
similar ratio in energies, i.e., E Ej , is considered.

Pariat et al. (2017) have already discussed the promising
properties of the ratio H Hj V, as possible eruptivity proxy. The
numerical experiments set-up was however limited in the sense
that it could not conclude on the existence of a threshold, as the
magnetic systems were not driven to instability in a controlled
way from a stable configuration. This caveat is lifted for the
numerical experiments analyzed in the present study.

For the same simulations discussed in this paper, Zuccarello
et al. (2015) performed a detailed analysis of the current
distributions as well as several relaxation runs to determine the
onset of the eruption. These authors have concluded that the
driver of the eruption is indeed the torus instability; however,
different simulations had a slightly different critical values of
the decay index. They found that the critical value of the decay
index at the onset of the eruptions is in the range ncriticalä[1.4,
1.5].

The torus instability occurs when the magnetic pressure of
the current-currying flux rope is not balanced by the magnetic

tension of the magnetic field “external” to it. The condition for
the instability has been first derived analytically using
infinitesimal current rings. It has been shown that the instability
occurs when the apex of the current ring is in a location where
the decay index is nncritical=1.5 (Bateman 1978; Kliem &
Török 2006; Démoulin & Aulanier 2010). There are several
reasons why the critical decay index may differ among the
different simulations: slightly different flux rope morphologies,
limitations in determining the axis of nonanalytical flux ropes
and slightly different line-tying effects being the most relevant.
Nevertheless, the clear result of Zuccarello et al. (2015) was
that when the flux rope’s axis has reached an height where the
decay index is n;1.45±0.05 a full eruption occurs. This
value is remarkably close to the critical value for an idealized
current ring.
The helicity of the current-carrying component of the

magnetic field, Hj, is only related to the distribution of the
electric currents. On the other hand, HV also accounts for
the contribution of the interaction between this magnetic field
and the potential field. The ratio H Hj V estimates the
importance of Hj over HV, i.e., the importance of the field
only associated with the currents over the total field. In our
simulations, the torus instability occurs when the current-
carrying flux rope has enough magnetic pressure that cannot be
balanced by the tension of the potential field associated with
the given boundary. For the present simulation set-up, when
this occurs Hj is about one-third of HV, i.e., enough currents,
associated with twisted, pressure-carrying magnetic fields, have
been accumulated and they cannot be balanced any more by the
tension of the potential field associated with the given
boundary.
In this paper, we have shown that at the moment of the onset

of the torus instability, the ratio H H 0.29 0.01j V  for four
different simulations of torus unstable flux ropes. This suggests
that the ratio Hj/HV is a good proxy for the onset of the torus
instability, at least for this set of simulations. Some caution
should however be taken in interpreting the particular value of
0.29. Relative magnetic helicity, as defined in this study, is not
a simply additive quantity. It implies that had the helicities
been computed in a different volume, using different boundary
locations, a different value of the helicity threshold may have
been obtained. In the present study, the values obtained
between the simulations are consistent with each other, because
they are computed on the very same numerical domain, which
robustly validates the core results of the existence of a
threshold on Hj/HV for these simulations. The specific value
obtained is however likely not universal. This value should not
be taken straightforwardly as an eruption trigger criteria in, for
example, observational studies, before further studies have
been carried out. Relative magnetic helicity remains a poorly
understood physical quantity that may need to be theoretically
partly redefined and whose properties need to be further
understood (e.g., as in Demoulin et al. 2006; Yeates &
Hornig 2013; Dalmasse et al. 2014; Russell et al. 2015;
Aly 2018; Dalmasse et al. 2018; Oberti & Ricca 2018).
If the ratio Hj/HV turns out to be either physically related to

the torus instability or just a good proxy of it, this would
constitute a significant step forward in forecasting solar
eruptions. In fact, the determination of the eruptivity potential
of an active region based on the evaluation of the decay index
can be achieved through observations (Kliem et al. 2013;
Zuccarello et al. 2014, 2016; James et al. 2018). However, its
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routine application might not be straightforward: it requires one
to address nontrivial problems such as defining and identifying
the axis of nonanalytical flux ropes in strongly asymmetric
configurations and inferring the three-dimensional nature of
solar filaments from stereoscopic observations. On the other
hand, evaluating the ratio Hj/HV would only require the
construction of a three-dimensional magnetic field model of the
active region, the automation of which could be achieved more
easily than the other approach. However, before considering all
of the above, the robustness of this criterion, whether or not the
threshold effectively exists, and if its value is magnetic-system
independent, needs to be extensively tested, first using as many
numerical experiments as possible, and then against
observed data.
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