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ABSTRACT
The oracle problem remains one of the key challenges in software
testing, for which little automated support has been developed so far.
We introduce OASIs, a search-based tool for Java that assists testers
in oracle assessment and improvement. It does so by combining
test case generation to reveal false positives and mutation testing to
reveal false negatives. In this work, we describe how OASIs works,
provide details of its implementation, and explain how it can be
used in an iterative oracle improvement process with a human
in the loop. Finally, we present a summary of previous empirical
evaluation showing that the fault detection rate of the oracles after
improvement using OASIs increases, on average, by 48.6%.
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1 INTRODUCTION
The software testing process consists of two key components: gen-
erating test inputs and checking whether the outputs for these
inputs are correct. The latter motivates the oracle problem, i.e., the
problem of defining accurate oracles, capable of detecting all and
only faulty behaviours exercised during testing. While there is a
large body of research devoted to automated test input generation,
methods for automatically generating test oracles are less common.
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Some initial steps in this direction are automated test case gener-
ation tools as EvoSuite [3, 4] and Randoop [12] which are able to
automatically synthesize test assertions. However, these test case
assertions encode the implemented behaviour of the program rather
than the intended behaviour. Therefore, to turn them into oracles
there is a need to identify and fix the incorrect ones, which requires
human intelligence. Another form of automated oracles are dynam-
ically inferred invariants [1]. They are extracted from a finite set
of execution traces. As a result, they can have a high false positive
rate [16] and, therefore, also require human intervention. However,
developers struggle with this task. On average, they misclassify
9.1% to 31.7% of correct invariants as incorrect and 26.1%-58.6% of
incorrect invariants as correct [15].

OASIs1 (OracleASsessment and Improvement) is a search-based
tool that aims to support the developer in assessing and improving
oracles. It targets in-program logical assertions (program invariants)
in Java and analyses oracles based on two properties: Complete-
ness: All correct program states are accepted by the oracle, which
raises an alarm only for faulty states, with no false alarms (no false
positives). Soundness: All faulty program states are rejected by
the oracle, so there are no missed faults (no false negatives). OASIs
generates counterexamples as test cases that demonstrate incom-
pleteness and unsoundness, which the tester uses to improve the
assertion oracle.

In Section 2 we introduce our approach that is based on search
based test case generation [3, 6, 11] to identify false positives and
mutation testing [9, 10] to identify false negatives. In Section 3 we
explain how OASIs can be used for an iterative oracle assessment
and improvement process with the developer in the loop. Finally, in
Section 4 we provide a summary of previous empirical evaluation
of OASIs [8].

2 COMPONENTS & IMPLEMENTATION
OASIs is a command-line tool, see Figure 1, which takes five pa-
rameters as input: source code location of the Java class, the name
of the class, the name of the method where the initial assertions
are located, the search budget for FP detection and the search bud-
get for FN detection. The last two parameters are optional and, if
omitted, OASIs uses the default budgets of 60 seconds for FP and of
120 seconds for FN detection. OASIs starts the oracle assessment
process by first looking for a False Positive. If no False Positive is
detected, the search for False Negatives is initiated. The output of
the tool consists of a message which, in case oracle deficiency is de-
tected comprises the exact kind, or just indicates that no deficiency

1https://github.com/guneljahan/OASIs
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Figure 1: OASIs Components

was found. For each detected oracle deficiency, the evidence (in the
form of test suite) is provided.

2.1 False Positive Detection
Given a program assertion, we detect its false positives by generat-
ing execution scenarios where the assertion fails yet it should hold
because the behaviour of the program is deemed correct. In such a
case, failure of the assertion points to a bug in the assertion, not in
the program.

Source code transformation. First, we perform a testability
transformation [5] that transforms the assertion in the code into
a new branch. Let us consider a program under test P containing
n assertions a1 . . . an : ai = assert (ci ), i ∈ [1 . . .n], where ci is
the boolean expression used in the assertion ai . For each asser-
tion ai , i ∈ [1 . . .n] in P the proposed testability transformation
takes ci , negates it and replaces the assertion ai with a new branch
containing the negated condition: if (!(ci )) {}. Figure 2 shows an
example of such a transformation. The condition of the assert state-
ment at Line 4 ‘(result != x)’ in Figure 2 (top), is negated to
‘(!(result != x))’ and then the assertion is replaced with the
branch: ‘if (!(result != x)) {}’ in Figure 2 (middle). The
source code transformation also detects the lines of code where
the newly-created branches are located and passes them to the test
case generator, so that these branches can be differentiated from
the already existing ones.

Test Case Generator. After this transformation, the criterion
for false positive detection turns into the standard branch cover-
age criterion. The test case generator to cover the newly created
branches is developed as an extension of EvoSuite’s branch cover-
age criterion [2, 3]. Let P be the original program and B the set of
branches in P . Let P ′ be the transformed version of P and B′ the
set of branches in P ′. The standard version of EvoSuite will aim to
cover all the branches in P ′. However, we are interested in covering
only branches BA = B′ − B, i.e., the set of branches that are created
as a result of the transformation of assertions in P into branches.
We altered the fitness function of EvoSuite so that it aims to cover
only the ‘then’ parts of the ‘if’ statements at branches in BA. In
Figure 2, the bottom part shows an example of a test case generated
as evidence of a False Positive for the assertion at line 4 in the top
part. Indeed, if we execute the reported test case this assertion will
fail, as result is actually equal to x.

1 public class Subtract {
2 public int value(int x, int y) {
3 int result = x - y;
4 assert (result != x);
5 return result; } }

1 public class Subtract {
2 public int value(int x, int y) {
3 int result = x - y;
4 if (!(result != x)) {}; // target
5 return result; } }

1 @Test(timeout = 4000)
2 public void test0() throws Throwable {
3 Subtract subtract0 = new Subtract();
4 int int0 = subtract0.value(1057, 0); }

Figure 2: Example of False Positive Detection, including an
initial class with incorrect assertion (at Line 4, top), source
code transformation for the class (middle), and generated
test case to report False Positive (bottom)

2.2 False Negative Detection
An assertion has no false negatives if it exposes all faults. Therefore,
if we deliberately insert a fault into the source code of program P ,
a sound oracle ought to always report the presence of this fault.
Hence, to find evidence of false negatives we use mutation testing
to insert a (known) fault into program P that corrupts the program
state so that the corrupted state reaches the given assertion and the
assertion statement does not fail.

Source-code instrumentation. First, we instrument the source
code of the class so that we canmonitor (1) the values of all variables
visible at the program point where the assertion is located (2) the
outcome of the assertion, i.e. whether it passes or fails.

Mutation Analysis. After the instrumentation, we use Evo-
Suite’s strong mutation killing criterion. Let us consider the im-
plementation under test P and its mutationsM1, . . . ,Mk . Program P
and each of itsmutants haven assertionsa1, . . . ,an :ai = assert (ci ),
i ∈ [1 . . .n]. Let us consider the variables (v1, . . . ,vmi ) in scope at
the assertion point ppi . Their values after running a test case on P

are (vo1 , . . . ,v
o
mi

), while they are (vMj
1 , . . . ,v

Mj
mi ) after running the

same test case on mutantMj .
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1 public class FastMath {
2 public int getMax (int a, int b) {
3 int max;
4 if (a >= b) {
5 max = a; //max = -a;
6 } else {
7 max = b;
8 }
9 assert (max >= a && max >= b);
10 return max; } }

1 //1. getMax, Line 5 InsertUnaryOp Negation(max:-1,1)
2 @Test(timeout = 4000)
3 public void test0() throws Throwable {
4 FastMath fastMath0 = new FastMath();
5 int int0 = fastMath0.getMax((-1), (-110)); }

Figure 3: Example of False Negative Detection, including an
initial class with weak assertion (at Line 9, top), and gener-
ated test case and mutations to report False Negative (bot-
tom)

In EvoSuite, a mutant is strongly killed if EvoSuite can create a
test case assertion (not to be confused with the program assertions
that are assessed for false negatives) that evaluates to false if the
test is executed on the mutant and to true if it is executed on the
original class. To detect false negatives, we further restricted the
notion of mutation killing by adding two additional conditions
to be satisfied: (1) The conditions in the program assertions do
not change their values: ∀i ∈ [1 . . .n] : cMj

i = coi . (2) At least,
one of the variables visible at ppi has different values in P andMj :
∃i ∈ [1 . . .n] : vMj

1 , vo1 ∨ . . . ∨ v
Mj
mi , v

o
mi

.
Output Improvement.The original output of EvoSuite’s strong

mutation killing criterion produces a test suite in which, for each
test case, it lists mutations that are strongly killed by the test case.
We change the output, so that for each mutation we also list vari-
ables that have changed their values as a result of mutation. If
a variable has a primitive type we also provide the values in the
original and mutated version. This provides additional support for
the developer in the improvement process by indicating which
variables the program assertion ignores or does not check strongly
enough.

In Figure 3 (top) we provide an example of a method with weak
assertion (at line 9). OASIs reports a False Negative for this assertion,
as in Figure 3 (bottom). The report contains a test case and a de-
scription of the mutation in the comments above the test case. As it
follows from the description, the mutation applies a unary negation
operator to variable a at line 5, changing the value of variable max
from -1 to 1. However, the assertion in the method does not react to
this change, as in themutated versionmax is equal to 1, which is still
greater than the value of a == -1 and b == -110. This False Negative
can be eliminated by replacing the assertion in Figure 3 (top) with
assert (max >= a && max >= b && (max == a || max == b));.

3 ITERATIVE IMPROVEMENT PROCESS
We propose a process for iterative oracle assessment and improve-
ment based on the outcomes of false positive/negative detection by

OASIs. As illustrated in Figure 4, the human is an integral part of
the process, as a source of knowledge about the intended behaviour
of the program. Moreover, the human in the loop is asked to manu-
ally improve the oracle when a false negative or a false positive is
reported.

Manual 

Refinement

Initial Oracle

Im
pr

ov
e

OASIs

FP Detection

FN Detection

A
ss

es
s

Figure 4: Iterative Improvement Process

The starting point for iterative oracle assessment and improve-
ment is an initial oracle. This oracle can be defined manually by
developers, or can be produced automatically by tools for invariant
inference, like Daikon [1], or can even be the empty (implicit) or-
acle. Oracle deficiencies (i.e. false negatives or false positives) are
detected and reported automatically by OASIs. The developer fixes
the assertions in the program, based on the reported oracle defi-
ciencies. Some care must be taken in this step, in order to recognise
the following corner cases: (1) A reported false positive might point
to a bug in the program, not in the assertion; (2) A test case killing
a mutant and triggering an assertion violation in the mutant might
be associated with consistent bugs in both implementation and
assertion; (3) A mutant might accidentally fix a fault in the program
(this is expected to occur extremely rarely), causing a reported false
negative to point to a bug in the program, not in the assertion. The
first case is important, since the improved oracle is immediately
used for fault detection when this case occurs.

Once assertions have been improved by the developer, the iter-
ative process restarts and the new assertions are assessed for the
presence of further oracle deficiencies. The process continues until
the OASIs is unable to generate new counterexamples and finishes
with an improved (more complete and sound) oracle.

4 EVALUATION SUMMARY
In this section we summarize our previously published empirical
evaluation [8].

Different types of initial oracles.We have assessed the appli-
cability of our approach for three types of initial oracles: (1) implicit
oracle where no assertion is present, hence fault detection relies
entirely on program crashing or raising exceptions (2) inferred
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properties, where we use invariants generated by Daikon as ini-
tial assertions (3) manual oracle where initial oracles are already
provided with the SUTs in form of JML specification, which we
transformed into standard Java assertions. Overall, results show
that OASIs is effective in improving all three types of initial ora-
cles. The process typically involves from one to three iterations to
converge to an oracle for which no deficiency is reported.

Effectiveness. The effectiveness of the improved oracle is as-
sessed in terms of increased fault detection with respect to the
initial and test case oracle. We analyse the mutation score for test
case assertions and for program assertions before and after the
improvement process. The results show an 85.9% improvement for
implicit, 42.0% for inferred and 19.9% for manual assertions. The
improved program assertions achieve 51.8% and 53.4% higher mu-
tation score than the test case assertions generated by EvoSuite
and Randoop respectively. In all cases, the observed mutation score
increase is statistically significant (p ≤ 0.05). The Vargha-Delaney
effect size Â12 is always large (in our study, Â12 ≥ 0.89).

Real bug detection. During our experiments we detected 4 real
bugs in Apache Commons Math project (MATH-1256, MATH-1258,
MATH-1259, MATH-1414), which have been reported to (and then
fixed by) the developers.

Human in the loop. During our experiments the human in
the iterative oracle improvement process was represented by the
first author. She had no familiarity with the subjects, no previous
experience in writing specifications but, of course, knew very well
how to interpret the output of the tool. We defined precise rules and
procedures for oracle improvement to be followed by the human
experimenter, to mitigate internal threat to validity. As a result,
the human in the loop in our experiments has behaved largely
deterministically and unimaginatively.

5 RELATEDWORK
Different metrics have been proposed to assess test oracle quality. In
their work Huo and Clause [7] measure it in terms of the presence of
brittle test case assertions and unused inputs. While their approach
was able to detect 164 tests containing brittle assertions and 1,618
tests containing unused inputs among 4,000 real test cases, it has
a high false positive rate. The work by Schuler and Zeller [14]
introduces the concept of checked coverage - the dynamic slice of
covered statements that actually influence the oracle. The results
of their study show that checked coverage is a better indicator of
the quality of testing than coverage alone. However, no guidance is
provided on how to improve the oracle quality. The work by Zhang
et al. [17] introduces iDiscovery, which aims to improve the quality
of the oracles iteratively using symbolic execution. However, it is
applicable only to automatically inferred oracles.

There are only two existing studies that evaluate the successful-
ness of humans in improving automated oracles. They respectively
use CrowdSourcing [13] to verify test case assertions and use devel-
opers to determine user classification effectiveness for invariants
[15]. Their results contradict each other: the second study indicates
that human testers are not good at identifying correct test oracles,
while the first one indicates that qualified human testers can reli-
ably identify correct test oracles and fix incorrect ones. This shows

a need in more experiments analysing the performance of human
testers in the oracle improvement process.

6 CONCLUSION AND FUTUREWORK
We present OASIs, a tool for assessing and improving test oracles
by reducing the incidence of both false positives and false negatives.
Experimental results show that OASIs is able to identify both false
positives and false negatives in three important types of initial
oracles (implicit, inferred and manual), leading to an average 48.6%
improvement of mutation score over all the analysed classes and
exposing real faults that have been reported to and fixed by the
developers. Our next goal is to validate our results by conducting
experiments where OASIs is used by real developers.
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