
Supplementary Information – Analyses and Models 

Coherent representations of subjective spatial position in primary visual cortex and hippocampus 

Analysis of response profiles for electrophysiological data 

To calculate the response profile of each neuron as a function of position in the virtual corridor 
we used a local smoothing method1–3. First, the spike count was calculated in a 250 ms window. 

We then discretized the position of the animal in 2 cm bins, yielding 50 bins and we calculated 

the spike count map and occupancy map for each neuron. Both the spike count and occupancy 

maps were smoothed by convolving them with a common Gaussian window whose width was 

optimized to maximize reliability (see below), and the response profile was calculated as the ratio 

of the smoothed spike count map and the occupancy map4. 

Response profile reliability was calculated as the fraction of variance in firing rate explained by 
the response profile: 

Reliability = 1 −
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where 𝑦(𝑡) is the firing rate of the neuron at time t, 𝑦′(𝑡) was the prediction by the place-field for 

the same time bin and 𝜇 is the mean firing rate of the training data4. We used five-fold cross-

validation to calculate place fields and reliability. Only neurons with a reliability greater than 0.01 

were considered for further analysis. 

Analysis of response profiles for two-photon data 

To obtain response profiles as a function of position along the corridor, we discretized the 

position of the animal in 1 cm bins, yielding 100 bins and we calculated the fluorescence map and 

occupancy map for each neuron. Both the spike count and occupancy maps were smoothed by 

convolving them with a fixed Gaussian window of 5 cm.  Only time points with running speeds 

greater than 1 cm/s were included in further analyses. For consistency with the response profiles 

obtained from electrophysiological data, we only looked at responses for which the cross-

validated reliability was higher than 0.01. These cells were considered to have activity 

significantly modulated by position in the corridor. To model single-cell activity under the 

assumption that responses are identical in the two segments of the corridor, we fit (using least 

squares) a model function to the response profile along the visually-matching segment where the 

cell peaked. The model function was the sum of two Gaussians that meet at the peak. To obtain a 

prediction along the whole corridor, we then duplicated the fitted response at ± 40 cm away from 

the maximum.  

The Spatial modulation ratio was measured by splitting the dataset into odd and even trials. For 

each cell, the position of the peak response was measured from the response profile averaged 

across odd trials. We then computed the ratio between responses at this position and the visually-

identical position 40 cm away, using the response profile averaged across even trials. Cells which 

had a maximal response too close to the start or the end of the corridor (0-15 cm or 85-100 cm) 

were not considered for analysis of the ratio of responses. Therefore, this excluded cells which 

responded too close to the start or the end of the corridor, which were outside the visually-

matching segments. Two-dimensional response profiles with respect to position and speed 

(Extended Data Figure 5c) were calculated as previously described4.  



General linear model analyses 

To assess the spatial modulation of V1 neurons while jointly accounting for all other visual and 

behavioural factors, we fitted each cell’s calcium fluorescence trace (a time-dependent 

continuous variable) to three different general linear (or multilinear ridge regression) models of 

the form: 𝑦̂ = 𝑋𝛽,̂ where 𝑋 is an T-by-M matrix with T time points and M predictors, 𝑦̂ is the 

predicted calcium trace (T-by-1 array). Optimal coefficient estimates 𝛽̂ (M-by-1 array) that 

minimise the sum squared error were obtained using: 𝛽̂ = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦, where 𝜆 is the 

ridge-regression coefficient. 

In the full model, the predictor matrix 𝑋 contains several sets of columns: a set of spatial basis 

functions 𝐼𝑖(𝑥𝑡); pupil position 𝑒𝑥𝑡, 𝑒𝑦𝑡; the speed 𝑠𝑡 at 5 time lags; pupil diameter 𝑝𝑡 again at 5 

time lags; and a step function 𝑟𝑡 indicating reward with 4 time lags. A model using all these 

predictors has the form: 

𝑦𝑡 = 𝛽0 + ∑ 𝛽𝑖𝐼𝑖(𝑥𝑡)
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where 𝛽0 is a constant. 

Predictors were defined similarly to Ref. 5. The first spatial basis functions corresponded to 

regions prior to the visually identical segments:  

𝐼1(𝑥) = {
1 𝑖𝑓 𝑥 ∈ [0,5]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

𝐼2(𝑥) = {
1 𝑖𝑓 𝑥 ∈ [5,10]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

The basis functions corresponding to visually matching segments consisted of double step 

functions with weights 𝑎 and 𝑏 (defined below): 

𝐼3(𝑥) = {
𝑎 𝑖𝑓 𝑥 ∈ [10,15]

𝑏 𝑖𝑓 𝑥 ∈ [50,55]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Basis functions 𝐼4 … 𝐼10 were defined similarly, to cover the x range 15… 50 and 55…90. The final 

two functions 𝐼11 and 𝐼12 covered the non-repeating x ranges [90,95] and [95,100]. 

The pupil diameter and eye position predictors were all scaled to lie in a range [-1,1], while 

speed was scaled to the range [0,1]. The pupil diameter and speed predictors were lagged with 

5 time shifts: 𝜏𝑗 ∈ {−1000 𝑚𝑠 , −500 𝑚𝑠 , 0 𝑚𝑠, 500 𝑚𝑠, 1000 𝑚𝑠} .  The reward predictor 𝑟𝑡 was 

defined to be 1 within a 500 ms window of the reward, 0 otherwise, and was lagged by 𝜏𝑘 ∈
{−1000 𝑚𝑠 , −500 𝑚𝑠 , 0 𝑚𝑠, 500 𝑚𝑠} 

The three prediction models used different combinations of these predictors. The first model, the 

visual model, relied on just visual predictors 𝐼𝑖,with the constraint that 𝑎 = 𝑏 = √2 such that the 

basis functions have unit norm. Therefore, this model resulted in responses that repeated in the 

visually identical segments perfectly.  



The second model, the non-spatial model, added the influence of all the behavioural factors we 

measured: running speed (𝑠𝑡+𝜏𝑘
), reward events (𝑟𝑡+𝜏𝑘

), pupil size (𝑝𝑡+𝜏𝑘
), and the horizontal 

(𝑒𝑥𝑡) & vertical (𝑒𝑦𝑡) pupil position.  

Finally, the third model, spatial model, allowed for an independent scaling of the two identical 

sections of the room. This model allowed 𝑎 ≠ 𝑏, subject to the constraint that the spatial basis 
functions had unit norm. To achieve this, we used exhaustive search over a parameter 𝛼 ∈ [0,1], 

with 𝑎 =
𝛼

√𝛼2+(1−𝛼)2
 and  𝑏 =

1−𝛼

√𝛼2+(1−𝛼)2
. Note that 𝛼 = 0.5 would correspond to a purely visual 

representation with spatial modulation ratio close to 1, while 𝛼 = 1 or 𝛼 = 0 would correspond 

to a response only in the first or second segment, and a spatial modulation ratio close to 0. 

To fit the parameters, we used the ridge regression coefficient, λ that maximized the percentage 

of variance explained using five-fold cross-validation, searching the values 𝜆 =0.01, 0.05, 0.1, 0.5 

or 1. In the spatial model (where 𝑎 ≠ 𝑏), we performed multiple ridge regression fits, searching 

for the optimal value of 𝛼 using a step size of 0.1, for each λ.      

The single cell responses predicted by these models were then processed similarly to the original 

recorded responses to obtain the response profiles and spatial modulation ratio predicted by the 

three models.  The deviation of the model predictions from the original data were evaluated by 

fitting an ellipse to the distribution and quantified using the angle of its major axis (the first 

eigenvector of the covariance matrix).  

Decoding population activity and calculating correlations between V1 and CA1 

Population activity was decoded using an independent Bayes decoder6. For every time bin, we 

calculated the probability of being at a location 𝑥 given population response 𝑅 as: 

𝑃(𝑥|𝑅) =
1
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where 𝑓𝑖(𝑥) is the response profile and 𝑟𝑖 is the spike count of the ith neuron in a time bin, M is the 

number of neurons and t is the time window. Z is a normalizing constant, which makes the 

probabilities across all positions sum to one6,7. The probability of being in the reward zone was 

calculated by summing the posterior probabilities in the reward zone, and normalised relative to 

the value in correct trials (Figure 3c and 3f).  

When calculating joint distributions (Figures 2 and 3), we smoothed the distribution by a 

Gaussian window with a width of 4 spatial bins. To account for the effects of position and speed 

on calculating the correlations between V1 and CA1 decoding errors, we shuffled the data within 

the time points when the animal was at the same position (within 2cm) and ran in a specific speed 

range (5 cm/s bins: 5-10 cm/s to 30-35 cm/s).  

To determine whether correlations between the V1-encoded and CA1-encoded positions could 

arise from variables such as speed and reward, we asked whether the prediction of position 

encoded in one brain region was improved by the position encoded in the other region, even after 

accounting for all other visual and non-visual variables (Extended Data Figure 10). Specifically, 

we used a non-linear decoder8,9 (Tree Bagger regression implementation of random forests from 

the statistics toolbox of Matlab), to evaluate how well we could predict the position decoded from 

V1, based on: (i) the actual position of the animal, (ii) running speed, (iii) animal licks, (iv) 



rewards, and (v) position estimated from CA1 neurons. The lick and reward events were 

smoothed by a 50ms Gaussian window before using them as inputs to the decoder. The maximum 

number of trees used was 50, as we found that performance saturated by that point. To test if CA1 

contributed to the prediction of the V1 estimate, we then predicted the V1 decoded positions 

without the CA1 estimate as an input to the decoder (Extended Data Figure 10).  

Simulation of V1 complex cells 

Response profiles expected from purely visual neurons were obtained from simulations of a 

population of complex receptive fields. Complex receptive fields were modelled as two Gabor 

filters in spatial quadrature (i.e. shifted in spatial phase by 90o) having the same orientation and 

spatial frequency. Responses were simulated by convolving the VR images at successive positions 

along the corridor with the pair of Gabor filters and taking the sum of their squared outputs 

(energy model10,11). The receptive fields were designed so to simulate different orientation 

selectivity (from 0o, 15o, …, 165o; we overrepresented the cardinal orientations) spatial frequency 

selectivity (0.04, 0.05, 0.06 and 0.07 cycles/o), which are the ranges typically observed in the 

mouse visual system12–14.  The receptive fields were simulated to cover azimuths from 40o to 80o, 

matching the receptive field position of the cells we focused on in our recordings. In addition, the 

responses generated by the complex cell model had profiles that were similar to the (purely 

visual) responses observed in the recorded data (Extended Data Figure 3). We did not observe 

phase specific responses in our recordings (i.e. multiple sharp peaks within each landmark), 

which would be expected for simple cells. 
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