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Abstract

Understanding temporal change and long-term persistence of species and communities is
vital if we are to accurately assess the relative values of human-modified habitats for biodi-
versity. Despite a large literature and emerging consensus demonstrating a high conserva-
tion value of selectively logged tropical rainforests, few studies have taken a long-term per-
spective. We resampled small mammals (<1 kg) in a heavily logged landscape in Sabah,
Borneo between 2011 and 2016 to investigate temporal patterns of species-level changes
in population density. We found that small mammal population density in heavily logged
forest was highly variable among years, consistent with patterns previously observed in
unlogged forest, and uncovered evidence suggesting that one species is potentially declin-
ing towards local extinction. Across nine species, population densities varied almost sev-
enfold during our 6-year study period, highlighting the extremely dynamic nature of small
mammal communities in this ecosystem. Strictly terrestrial murid species tended to exhibit
strong temporal dynamics, whereas semi-arboreal foraging species such as treeshrews had
more stable dynamics. We found no relationships between population density and fruit/
seed mass, and therefore no evidence that our patterns represent responses to inter-annual
mast fruiting of the dominant canopy dipterocarp trees. This may be due to the removal
of most of the canopy during logging, and hence the dipterocarp seed resource, although
it possibly also reflects spatiotemporal limitations of our data. Our results underline the
importance of understanding long-term variability in animal communities before develop-
ing conservation and management recommendations for human-altered ecosystems.
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Introduction

Across tropical forest ecology, there is now a broad consensus that selectively-logged and
regenerating forests retain relatively high species richness (Berry et al. 2010; Edwards
et al. 2014a, b; Bernard et al. 2016; Costantini et al. 2016; Wearn et al. 2016). This is par-
ticularly true when compared to intensive agriculture such as oil palm plantations, which
are rapidly replacing these forests (Fitzherbert et al. 2008; Sodhi et al. 2010; Gibson et al.
2011; Warren-Thomas et al. 2015; Wearn et al. 2016). Limited conservation resources
mean practitioners must prioritise areas containing high species richness and biologically
irreplaceable taxa, but we must also preserve communities which are resilient through time
in the face of environmental change. However, temporal resilience of animal communities
in selectively logged tropical forests remains understudied. Across 78 studies described in
two recent meta-analyses (Putz et al. 2012; Costantini et al. 2016), 22 sampled plots of
more than one logging age, and only 13 made direct statistical comparisons of abundance,
species richness or community composition among logging ages. Only seven studies resa-
mpled locations, with only two resampling more than 2 years apart (Bischoff et al. 2005;
Akutsu et al. 2007). The remaining 71 studies based their conclusions on a single sample
of each location.

This represents a potentially serious knowledge gap, as richness, abundance and com-
munity composition are unlikely to remain constant over time for two reasons. Firstly,
tropical climate and rainfall vary inter-annually via global-scale processes such as the El
Nifio Southern Oscillation (ENSO). Particularly in South-East Asia, ENSO drives inter-
annual biotic processes such as mast fruiting of trees, causing fluctuations in abundance
of granivorous insects (Nakagawa et al. 2003) and small mammals (Curran and Leighton
2000; Emmons 2000; Nakagawa et al. 2007b, c; Wells et al. 2007). There is some evidence
that this process remains important after logging, albeit with altered intensity (Appanah
and Rasol 1990; Curran and Webb 2000). Secondly plant community succession occurs
through time, from short-term responses such as increased leaf and fruit production (Johns
1988), to gradual community compositional changes and reversion of biotic and abiotic
conditions towards a primary forest-like state (Curran et al. 1999; Brearley et al. 2004;
Liebsch et al. 2008). Fluctuating background resource availability, succession, or succes-
sive logging rotations are all likely to modify species interactions and niche availability.
Species may respond by invading and increasing abundance, fluctuating, or declining to
local extinction rapidly, or gradually (i.e. extinction debt; Ferraz et al. 2003; Kuussaari
et al. 2009; Wearn et al. 2012). Net temporal changes to community structure may there-
fore be complex.

Short-term “snapshot” biodiversity assessments, such as the majority we examined
above, generally cover at most one or two generations of the focal taxa. In failing to capture
temporal dynamics, such studies risk generating erroneous management recommendations,
under-allocating resources to species in extinction debt, and skewing long-term estimates
of ecosystem processes such as seed dispersal or herbivory. To avoid these outcomes, and
capture the long-term biodiversity value of logged forest, population- and community-level
studies should ideally measure changes in both diversity and abundance through time, ide-
ally starting before logging but at least covering multiple generations of the focal taxon,
with regular, standardised monitoring techniques (Lindenmayer et al. 2012). Such stud-
ies are understandably rare, as the necessary sampling effort is logistically and financially
challenging, however they provide insights which would otherwise be missed (Linden-
mayer et al. 2012).
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Among the most functionally important animal groups in tropical forests are small
mammals, which are major seed predators (Asquith et al. 1997; Curran and Webb 2000;
Wells and Bagchi 2005). Despite a sizeable literature examining communities in frag-
mented systems (Pardini 2004; Piittker et al. 2008; Vieira et al. 2009; Gibson et al. 2013),
small mammals remain understudied in continuous logged forest, particularly in South-
East Asia (Meijaard and Sheil 2008). We found only two studies examining temporal pat-
terns of abundance or species richness in continuous logged forest (Isabirye-Basuta and
Kasenene 1987; Wells et al. 2007). Both studies chiefly considered intra-annual reproduc-
tive trends, and did not explicitly examine patterns over longer timeframes. Isabirye-Bas-
uta and Kasenene (1987) demonstrated intra-annual species abundance fluctuations over
a four-year period in Uganda, with increasing amplitude and reduced population stability
in logged versus unlogged forest. Conversely, Wells et al. (2007) found little difference in
abundance fluctuations, community evenness and dominance between Bornean logged and
unlogged forest. Although both studies provide some evidence that complex temporal pat-
terns seen in unlogged forest are retained with varying magnitude after logging, they are
methodologically limited by small sample size, and short duration respectively, and neither
study accounted for detection probability, a common limitation of ecological studies (Kell-
ner and Swihart 2014). To our knowledge no study has explicitly examined population
dynamics of small mammals between years in logged forest; or considered either extinction
debt, or interannual fluctuations.

Here we examined population dynamics of a small mammal community over a 6-year
period in a continuous, heavily logged forest landscape typical of the large areas in South
East Asia threatened by conversion to plantation agriculture. Uniquely, we resampled our
communities annually, in identical locations controlling for aspect, topography and alti-
tude. We controlled for imperfect detection using mark-recapture modelling, and tested for
inter-annual variation in density, including long-term declines. We also tested for a likely
causal factor by examining the relationship between small mammal population density
and the density of seed and fruit rain. We reveal temporal patterns of community vari-
ability and persistence, and discuss the implications for landscape conservation of mammal
communities.

Methods
Study area

We collected field data at the Stability of Altered Forest Ecosystems (SAFE) project in Sabah,
Malaysian Borneo (Ewers et al. 2011), a landscape-scale experiment situated within a 1-mil-
lion ha multi-use forest concession owned by Yayasan Sabah (Sabah Foundation). The SAFE
site, and the Yayasan Sabah concession in general, consists of selectively-logged lowland dip-
terocarp forest. Most of the area has been subject to at least two rounds of selective logging
between the 1980s and the 2000s, a landscape history typical of Sabah and the wider South-
East Asian region (Johns 1997; Putz et al. 2012). Most large, commercially valuable timber
trees were felled and removed, with an estimated cumulative 302.8 t ha™! of aboveground
tree biomass removed (Pfeifer et al. 2016), leaving continuous, spatially heterogeneous for-
est which is among the most heavily logged forest in the tropics (Burivalova et al. 2014). Our
sites were not logged during the period of this study from 2011 to 2016, however some piece-
meal salvage logging occurred within the wider landscape during this timeframe. Detailed
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locations, timings and extraction densities were not available, however no logging occurred
within 100 m of our sites.

Live-trapping grids

Using a standardised sampling grid (Wearn et al. 2017), we sampled small mammals annually
from May 2011 to July 2016, with a gap in 2013 during which no sampling was conducted for
logistical reasons. We maintained a permanent trapping effort of eight grids, which were each
resampled once per year; plus eight additional grids which were trapped once, four each in
2011 and 2012 (for a map of our sampling sites, see Wearn et al. (2017). We trapped all grids
between December and July, although matching exact dates and trapping order between years
was not practical.

Each grid comprised a 4x 12 array of sampling points with 23 m separation. We placed
two “Tomahawk”-style steel cage traps within a 5 m radius of each point, for a total of 96 traps
covering approximately 2.1 ha, (Cusack et al. 2015; Wearn et al. 2016, 2017). We sited the
two traps at each sampling point on approximately 180° opposed bearings, but preferentially
chose microhabitat features providing cover for small mammals (e.g. dense ground vegetation,
fallen wood, roots, or rocks). We placed all traps at ground level, or <0.5 m on fallen logs.
We took care to sample at precisely the same locations during each year of the study, although
there was occasional positional error, either where we resited traps due to tree falls, landslips
or ant nests; or where positions were shifted accidentally due to steep topography or by large
mammals. We considered these errors negligible for the purposes of this study.

Trapping and processing protocol

One sampling session for each grid consisted of seven consecutive trap nights annually. Each
trap was covered with a black polythene wrapping to provide waterproofing and shade for
captured animals, baited with one ripe oil palm fruit and left for approximately 20-24 h before
checking. We checked all traps daily in the early morning, and processed and individually
marked all new small mammal captures before releasing them at the original capture loca-
tion within 1 h. Following the ethical trapping and handling guidelines issued by the Ameri-
can Society of Mammalogists (Sikes et al. 2011), we released highly stressed or sick animals
immediately without processing, or humanely euthanised (< 1% of captures) where animals
were severely sick or injured. Prior to each season, our fieldwork was subject to a thorough
ethical review process (via the Institute of Zoology, Zoological Society of London).

We identified individuals to species, and where possible aged and sexed all individu-
als using published information (Payne and Francis 1985), supporting this with biometric
measurements (hind foot length, ear length, anogenital distance, weight, head-body length,
tail length) where necessary. We marked new individuals with Passive Inductive Transponder
(PIT) tags (Francis Scientific Instruments, Cambridge, UK), which allowed us to uniquely
identify recaptured individuals at their capture location.

Detectability controlled population density estimation
The value of controlling for detectability in ecological surveys is a question under debate

(Banks-Leite et al. 2014; Guillera-Arroita et al. 2014), with a large majority of studies not
doing so (Kellner and Swihart 2014). Accounting for correlates of detection probability
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by good survey design may reduce the need for detectability-controlled measures of abun-
dance, occupancy or species richness, which are frequently data-hungry and therefore
restrict authors’ abilities to study rare species (Banks-Leite et al. 2014). In the context of
our study, however, accounting for imperfect detection is advisable. Most small mammals
in tropical forests are dietary generalists, and many are plastic in their choice of foraging
strata (Emmons 2000; Nakagawa et al. 2007a). Therefore the relative availability of seed
and fruit on the forest floor compared to foods available in other strata—variability that
may be particularly acute due to mast seeding—may affect foraging patterns and responses
to bait (thus detection probability) independently of changes in density.

We calculated population density using spatially explicit capture-recapture modelling
(hereafter SECR) using package secr (Borchers and Efford 2008; Efford 2013) in R version
3.0.3 (R Core Team 2018). First, we trimmed the capture data for each grid to only include
animals which were tagged and positively identified. We then converted the trap location
information (polar bearing and distance from the nearest of the 48 grid points) to an X-Y
coordinate system.

SECR models require a minimum quantity of recaptures to produce a reliable estimate
of population density, with an approximate minimum of five recaptures generally recom-
mended (Royle et al. 2013). Our SECR models grouped the density estimates by species,
and to satisfy this assumption we therefore only included density estimates based on >5
recaptures per species per year. Where rare species did not exceed this minimum for at
least four (i.e. 50%) of the grids in a given year, we excluded them from the analysis. Apart
from these exceptions, SECR models were fitted to all the data for each grid, spanning all
sampling sessions for 2011-2016.

We fitted maximum-likelihood SECR models using command secr.fit, modelling each
grid separately and focusing on temporal changes in density between years. The model
estimates three parameters from the data: the population density (D), the “amplitude” of
the detection function curve (g0, the detection probability at hypothetical home range cen-
tres), and the “width” parameter of the detection function (o, which is related to the ani-
mals’ home range radius). These parameters may be constant or related to grouping factors,
in our case the species and the sampling year. Accordingly, we specified models of increas-
ing complexity (Table 1), and used a model selection approach to select the best model for
each grid (lowest Aikake’s Information Criterion [AIC]). We calculated estimates of popu-
lation density for each species separately by using species identity as a grouping factor in
the model. We then obtained annual community-level density estimates. We first summed
the annual density estimates of all species within each grid to obtain a pooled estimate for
grid-level community density, and then averaged these across grids to produce a landscape-
level estimate for each year. We then compared our density estimates among years using
generalized linear mixed models with Gamma error family and the inverse link function
(Package Ime4, Bates et al. 2015). Since at least Tupaia treeshrews appear to show defined
breeding seasons in this system (Emmons 2000), month of sampling is likely to confound
our annual density estimates. We therefore included month as a random effect in all our
models.

Seed and fruit data

To investigate the link between resource availability and small mammal population dynam-
ics, we modelled our species-level density estimates against monthly average figures for
seed and fruit rain. These data originate from two sources: (1) 1 m? litter traps set once

@ Springer



3160 Biodiversity and Conservation (2018) 27:3155-3169

Table 1 Specifications of models used in the model selection process in this study. “Density” is the popula-
tion density estimate, g0 is the maximal probability of detection of an individual at distance=0 from the
hypothetical home range centre, and ¢ is the width of the halfnormal detection function, all three of which
may be held constant (~ 1) or made dependent on species or sampling year. The models were fitted sepa-
rately for each sampling grid

Model specification Comments

Density~species, g0~1, 6~1 Models for grids sampled in only one year
Density~species, g0~1, o~species

Density~species, g0~species, 6~species

Density~species*year, g0~1, 6~1 Models for grids sampled in multiple years
Density~species*year, g0~1, o~species

Density~species*year, g0~species, o~species

Density~species*year, g0~species*year, 6~species

Density~species*year, g0~species*year, 6~species*year

each at 96 sites across the SAFE project area during 2010-2011, and collected after two
weeks; and (2) 0.25 m? litter traps set at five permanent 1 ha carbon plots (25 per plot)
during 2011-2016, collected every 2—6 weeks. The litter traps in (1) were located between
0 and 9.5 km from the grid locations, while the litter traps in (2) were between 0.4 and
10.2 km from the grid locations. Litter was oven-dried, sorted and weighed to give dry
mass (g) of leaves, woody debris, flowers, fruit, and seeds. We pooled the fruit and seed
data as the categorization is subjective and both are likely to be important to small mam-
mals. We scaled the estimates to a uniform measure of g m~2 month~!, and averaged across
the plots to give a landscape-scale monthly estimate of seed/fruit fall, which we believe is
broadly representative of local-scale seed/fruit fall, both at background levels and during
mast fruiting.

We modelled the species-level small mammal density estimates for each grid against the
seed/fruit fall value for the relevant month in which the mammal trapping occurred, using
generalized linear models with a log link function, and removing grids (n=12 or 26.7% of
the total data) for which fruit and seed data for that month was not available. Since inter-
annual peaks in fruit/seed availability should take time to reflect in an increased abundance
of small mammals, we fitted models with seven increasing lag periods from 0O to 6 months,
in each case fitting the small mammal data to the appropriate earlier month’s seed and fruit
data. We selected the best-fitting model in each case by comparing AIC values.

Results
Trapping success, species richness and overall density

In total we ran 45 grid sampling sessions of 7 days each across 2011, 2012, 2014, 2015 and
2016 (total=30,240 trap nights). We captured 2598 identifiable individual small mammals
(mean trap success rate=7.1%), comprising 20 species. Mean observed species richness in
2011 was 12.6+0.6; in 2012: 11.0+0.7; in 2014: 8.8+0.4; in 2015: 11.3+0.4; and in 2016:
10.6+0.5. We captured nine species in sufficient numbers (>5 recaptures in>4 grids per
year) to estimate density using SECR. These nine species cumulatively represented 2152
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individuals, or 83% of all individuals captured (Table 2). Whitehead’s Rat Maxomys whitehe-
adi was the most commonly encountered species (23.2% of individuals), with the Red Spiny
Rat Maxomys surifer (18.6%) also frequently encountered.

At the community-level, small mammal population density showed strong differences
among years (generalised linear mixed model with inverse link, F=10.875, p<0.0001,
Fig. 1b). Density declined 34% between 2011 and 2012 (p=0.004, Fig. 1), and a further 30%
of 2011 levels between 2012 and 2014 (p <0.0001, Fig. 1). By 2015 density had partly recov-
ered, and did not differ significantly from 2012 levels, although it remained slightly lower in
2016 than in 2011 (p=0.05, Fig. 1).

Species-specific trends

The best-performing density model for each grid is presented in Table S1 of Online Resource
1. The inter-annual changes in population density of individual small mammal species fell into
two broad species subgroups, one of which had strongly fluctuating densities through time
(Fig. 2a—c), and the second of which had more stable densities. The first, variable subgroup
comprised six species that mostly had patterns that mirrored the overall trend in community-
level density, as these species form the dominant component of the community (77.9% of the
individuals used for density estimation, Table 2). These species all declined strongly from
2011 to 2014, with marked synchrony between species and similar proportional losses of
population density over this period. This subgroup comprised the terrestrial murids Maxomys
whiteheadi (—74%), M. surifer (—73%), and S. muelleri (— 81%), along with the treeshrews 7.
longipes and T. tana, which declined less severely (—61, —66%). These species recovered to
varying degrees during 2015-2016 (Fig. 2a—c), with M. whiteheadi recovering most rapidly,
S. muelleri and T. longipes also regaining their 2011 densities by 2016, but M. surifer and T.
tana had not recovered by 2016. The sixth species, M. baeodon, was already a comparatively
rare species in 2011 and gradually declined throughout the course of study. Density was not
significantly lower in 2014 than 2011, but by 2016 it had declined significantly to only 29% of
the starting figure in 2011 (Fig. 2a).

The second subgroup comprised the treeshrew 7. gracilis, and the semi-arboreal murids
Leopoldamys sabanus and Niviventer cremoriventer. Although these species appeared to
dip subtly in 2011-2014 (Fig. 2d), their dynamics were characterised by lower abundance,
much higher between-grid variance around the annual estimates and no significant differ-
ences in population density among years.

Relationship with seed density

Density of fruit and seeds remained low throughout much of the time period from 2011 to
2016, however periodic spikes were evident in 2012, 2014 and 2015 (Fig. 3). Despite this,
we found no significant relationship between seed density and population density for any of
the species surveyed at any time lag (generalized linear models, all p > 0.05).

Discussion
As the longest-duration study of a small mammal community in continuous logged tropi-

cal forest, our results underline the importance of understanding long-term trends in
parameters such as population density for assessment of the value of logged forests for
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Fig.2 Mean population density of nine small mammal species at the SAFE project 2011-2016. Error
bars: + 1 S.E. a Maxomys surifer and M. whiteheadi. b Maxomys baeodon and Sundamys muelleri. ¢ Tupaia
longipes and T. tana. d Leopoldamys sabanus, Niviventer cremoriventer and Tupaia gracilis. Letters denote
significance groups, with significantly different means not sharing letters

biodiversity. Previous studies have observed strongly variable dynamics in small mammal
communities inhabiting undisturbed forests (Nakagawa et al. 2007b, c; Wells et al. 2007).
Our results suggest that this variability persists inter-annually after intensive selective

@ Springer



3164 Biodiversity and Conservation (2018) 27:3155-3169

logging in two thirds of the species we examined, and in the community as a whole. We
observed a high magnitude of inter-annual variation, with density reducing by up to 50%
between consecutive years, and up to 80% in 2011-2014. This is similar to previous evi-
dence; for example, community-level abundance in a Bornean unlogged forest declined by
approximately 90% from 1999 to 2002 (Nakagawa et al. 2007b).

The diet of Bornean small mammals is poorly known (Wells et al. 2007), although the
small mammal species we examined are probably relatively functionally homogenous
(terrestrial/low canopy generalists and granivores, see Payne and Francis (1985)). Nev-
ertheless, our results demonstrate a range of inter-annual dynamics, particularly during
2011-2014. This variation in dynamics seems to follow an ecological gradient from strictly
terrestrial murids (which exhibited strong temporal dynamics) to facultatively semi-arbo-
real foragers, including climbing murids and some treeshrews (which exhibited no strong
temporal dynamics). The two treeshrew species which did vary between years (Tupaia lon-
gipes and T. tana) forage more terrestrially than 7. gracilis (Emmons 2000), and showed
intermediate variability. Strongly terrestrial small mammals are both more exposed to the
vast excesses of dipterocarp seeds during mast events (Curran and Webb 2000); and are
less plastic in their foraging strategies and less able to facultatively exploit food resources
at other vegetation strata during inter-mast food shortages. These species may therefore be
more responsive to masting than semi-arboreal foragers. Treeshrews generally have inad-
equate digestive systems to process dipterocarp seeds (Emmons 2000), but 7. longipes and
T. tana (both variable in our results) may react indirectly to masting if insect abundance at
forest floor level is greatly increased during mast fruiting events (Nakagawa et al. 2003).

This relationship between population density dynamics and feeding ecology, plus the
fact that largely synchronous patterns were broadly shared among functionally similar
species suggest that the mast fruiting-driven fluctuating patterns seen in primary forests
(Curran and Leighton, 2000; Nakagawa et al. 2007b), may persist after multiple rounds
of logging. Indeed forests subjected to a single selective logging rotation may still pro-
duce sufficient fruit/seed volumes (~23% of the primary forest figure) to attract a strong
response from local seed predators (Curran and Webb 2000). However, we did not find any
direct evidence supporting the expected seed density-mammal density relationship, which
we suggest may be due to three factors.
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Fig.3 Mean combined fruit and seed mass (g m~2) by month, captured in litter traps at the SAFE project,
2010-2016. Gaps represent missing data
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Firstly, the temporal extent of our data may still be insufficient to detect a relationship.
According to Sabah-wide records, ENSO-driven droughts in Sabah occurred in 2010, and
to a lesser extent in 2014 and 2015 (Ghazoul 2016). While we detected the 2014 mast event
(Fig. 3), for most of the rest of 6-year survey period, the litter traps contained low quanti-
ties of fruit and seed despite the variable small mammal population density. Our first litter
trap collection was carried out in the second half of 2010 (Fig. 3), so it is probable that we
did not detect the major 2010 mast, which might have explained the high small mammal
population densities at the start of our study in 2011. We also did not find evidence for the
2015 event, suggesting it might have been too minor and localized to occur in our study
area.

Secondly, unlike the West Kalimantan site studied by Curran and Webb (2000), log-
ging at SAFE has been subject to multiple rotations and the landscape retains few commer-
cially valuable mature trees. Since logging in Borneo specifically and intensively targets
the mast-fruiting Dipterocarpaceae (Johns 1997; Putz et al. 2012), it is possible that there
are insufficient mast fruiting trees remaining in the landscape to drive significant changes
in small mammal population densities, and that the variability that we observed may be
regulated by other processes, such as bottom up control via other food plant taxa, or top-
down control by predators.

Thirdly, even if logging damage at the landscape level is not sufficient to completely
disrupt mast fruiting-driven changes to population dynamics, logging disturbance is highly
spatially heterogeneous, and the forest at SAFE forms a patchwork of highly variable qual-
ity and tree cover (Pfeifer et al. 2015, 2016). Mast fruiting is already a spatially heterog-
enous process (Ghazoul 2016), and logging undoubtedly further localizes this by leaving
small “islands” of mature dipterocarp trees. This is supported by the fact that fruit/seed
rain levels were very weakly correlated between the five carbon plots which supply data
for our study (average R>=0.14). These “islands” may be visited by our small mammals
at some distance from the trapping locations, although the effect of habitat change on the
ranging behaviour of our species is poorly-known. Our seed and fruit data were collected
from plots at varying distance from our small mammal grids, and we could therefore use
the data only to represent a landscape-level average fruit availability, rather than to detect
very localized associations between fruiting and small mammal abundance.

Conclusions and conservation implications

Our results reveal dynamic inter-annual variability in small mammal population den-
sities, but not necessarily a dynamic equilibrium. Even this 6-year dataset is insuffi-
cient to demonstrate inter-annual cycling of population density, with repeated peaks
and troughs, which may require a decade or more of data. Furthermore, there is some
evidence to suggest that the diversity of this community is progressively declining:
the Small Spiny Rat Maxomys baeodon continued to decline gradually throughout the
course of our study, and is potentially under extinction debt since the last major round
of logging in the early 2000s. This, and the fact that the more abundant M. surifer failed
to recover from the 2014 crash, contrast with the rapid recovery of M. whiteheadi, which
is the most tolerant of the three to habitat degradation and the only Maxomys species
able to persist in oil palm plantation (Wearn et al. 2017). Together, these three trends
may represent an early hint that the terrestrial Maxomys sub-community is simplifying
over time, perhaps by M. whiteheadi outcompeting less disturbance-tolerant congeners;
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however several years of further monitoring will be necessary in order to confirm this,
as extinction debts in tropical forest small mammals may take 1-2 decades to become
completely realized (Gibson et al. 2013).

Our results demonstrate the value of designing studies which take a long-term
approach in order to assess the value of logged forests for biodiversity. This contrasts
with the bulk of existing studies, which compare between primary forests, logged for-
ests, and oil palm plantations based on single survey periods in each habitat, often not
simultaneously across habitats or resampled within habitats. Previous work implies that
this approach does not capture the temporal complexity of primary forest small mam-
mals (Nakagawa et al. 2007b), and our results suggest this is also true of logged forests.
Indeed, a survey of our communities in any randomly selected single year may have
produced density estimates varying by up to 80%. Such variation could affect conclu-
sions and recommendations for conservation practice, which often requires prioritizing
limited resources to protect the most biodiverse, resilient communities, and calculating
minimum viable protected areas to support populations or communities. If the assump-
tion that abundance remains approximately constant through time is not tested, and esti-
mates of community abundances are drawn from different phases of the inter-annual
dynamic (either due to spatial asynchrony in community dynamics, or temporal asyn-
chrony in sampling), the data informing those decisions will not be easily comparable,
and two surveys of similar communities might produce very different results, or vice
versa. Errors such as these will also affect abundance-weighted functional diversity met-
rics (e.g. Villéger et al. 2008), and comparisons of ecosystem processes driven by small
mammals, such as seed predation (Curran and Webb 2000; Guariguata et al. 2002).

We agree with Lindenmayer et al. (2012) that further emphasis is needed on long-
term studies which regularly resample community or population parameters of interest
in order to create temporally reliable estimates of the value of human-modified habitats
for biodiversity. Clearly, not all taxa are likely to display equally temporally variable
responses across all human-modified ecosystems. Our data suggest, however, that at
least in some cases the taxa likely to be variable can be identified a priori from care-
ful consideration of their ecological and functional characteristics. The need for a more
temporally explicit understanding is most acute in systems such as South-East Asian
tropical forests which are strongly influenced by inter-annual processes. Although such
studies are logistically challenging, they will prove invaluable in understanding the bio-
diversity potential of human-modified ecosystems globally.
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