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Abstract  13 

1. The assembly of species communities at local scales is thought to be driven by 14 

environmental filtering, species interactions, and spatial processes such as dispersal 15 

limitation. Little is known about how the relative balance of these drivers of community 16 

assembly changes along environmental gradients, especially man-made environmental 17 

gradients associated with land-use change.  18 

 19 

2. Using concurrent camera- and live-trapping, we investigated the local-scale assembly of 20 

mammal communities along a gradient of land-use intensity (old-growth forest, logged forest 21 

and oil palm plantations) in Borneo. We hypothesised that increasing land-use intensity 22 

would lead to an increasing dominance of environmental control over spatial processes in 23 

community assembly. Additionally, we hypothesised that competitive interactions among 24 

species might reduce in concert with declines in α-diversity (previously documented) along 25 

the land-use gradient.  26 

 27 

3. To test our first hypothesis, we partitioned community variance into the fractions explained 28 

by environmental and spatial variables. To test our second hypothesis, we used probabilistic 29 

models of expected species co-occurrence patterns, in particular focussing on the prevalence 30 

of spatial avoidance between species. Spatial avoidance might indicate competition, but 31 

might also be due to divergent habitat preferences.  32 

 33 

4. We found patterns that are consistent with a shift in the fundamental mechanics governing 34 

local community assembly. In support of our first hypothesis, the importance of spatial 35 

processes (dispersal limitation and fine-scale patterns of home-ranging) appeared to decrease 36 

from low to high intensity land-uses, whilst environmental control increased in importance 37 
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(in particular due to fine-scale habitat structure). Support for our second hypothesis was 38 

weak: whilst we found that the prevalence of spatial avoidance decreased along the land-use 39 

gradient, in particular between congeneric species pairs most likely to be in competition, few 40 

instances of spatial avoidance were detected in any land-use, and most were likely due to 41 

divergent habitat preferences.  42 

 43 

5. The widespread changes in land-use occurring in the tropics might be altering not just the 44 

biodiversity found in landscapes, but also the fundamental mechanics governing the local 45 

assembly of communities. A better understanding of these mechanics, for a range of taxa, 46 

could underpin more effective conservation and management of threatened tropical 47 

landscapes. 48 

 49 

Keywords: β-diversity, community assembly, environmental filtering, land-use change, 50 

mammals, oil palm agriculture, selective logging, species co-occurrence.  51 

Page 3 of 50

Journal of Animal Ecology: Confidential Review copy

Journal of Animal Ecology: Confidential Review copy



4 

 

INTRODUCTION 52 

An understanding of how species assemble into communities is a central goal of 53 

contemporary ecology (HilleRisLambers et al. 2012). Significant advances have been made 54 

since the turn of the century, with new conceptual and mathematical models of the 55 

mechanisms of assembly, including better integration of scale (Leibold et al. 2004), niche 56 

differentiation (Tilman 2004), dispersal (Gravel et al. 2006), and community drift (Hubbell 57 

2001). At the same time, natural habitats across the globe, and in particular in the tropics, 58 

have been subjected to unprecedented rates of clearance and disturbance (Asner et al. 2009), 59 

but we know very little about the drivers of community assembly in these novel, man-made 60 

systems. In turn, this means we have a poor capacity to predict the consequences of land-use 61 

change on diversity, and to devise useful management interventions that deal directly with the 62 

fundamental mechanisms that create and maintain local-scale diversity in man-made 63 

landscapes.  64 

 65 

Two contrasting drivers of community assembly are generally thought to be dominant at the 66 

local scale: niche assembly and dispersal assembly. Niche assembly mechanisms have a 67 

century-long pedigree in ecology (e.g. Grinnell 1917; Elton 1927) and involve selection of 68 

species according to their fundamental environmental niche (the “abiotic filter”), as well as 69 

small-scale interactions with competitors, mutualists and consumers (the “biotic filter”). 70 

Dispersal assembly refers to the stochastic assembly of a local community by dispersal, i.e. 71 

by the movement of organisms across space (Vellend 2010). Local communities are said to 72 

be “dispersal limited” whenever immigration is restricted and they are therefore isolated to 73 

some degree. Although dispersal was recognised in some of the earliest models of community 74 

assembly (e.g. Macarthur & Wilson 1967), it has since become associated with the unified 75 

neutral theory (Hubbell 2001), in which dispersal is conceptually from the metacommunity 76 
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(Leibold et al. 2004). Contemporary assembly theory recognises that niche and dispersal 77 

assembly are not mutually exclusive and that both may operate concurrently (Mutshinda & 78 

O’Hara 2011). The challenge, therefore, is to identify the relative importance of these two 79 

assembly mechanisms, and under what circumstances the balance might be altered.  80 

 81 

Land-use change represents the principal threat to biodiversity in the tropics (Laurance, Sayer 82 

& Cassman 2014), and a vast body of literature has accumulated on changes in diversity 83 

along man-made environmental gradients. From this, we know that α-diversity (site-level 84 

species richness within a land-use) often declines along gradients of land-use intensity 85 

(Gibson et al. 2011), but β-diversity (site-to-site variation in community composition within a 86 

land-use) does not appear to change in a consistent direction (Dormann et al. 2007; Newbold 87 

et al. 2016). For tropical forests which are selectively logged or converted to agriculture, β-88 

diversity may increase (Berry et al. 2008), decrease (Kitching et al. 2013; Solar et al. 2015), 89 

or show a grain-dependent response (Wearn et al. 2016). Whilst an understanding of β-90 

diversity patterns can inform reserve design, little insight is gained about the underlying 91 

drivers of assembly. Indeed the same patterns in β-diversity can be produced by vastly 92 

different drivers of assembly (Myers et al. 2013). The drivers of assembly matter in the case 93 

of management because they might inform what steps are appropriate to restore biodiversity 94 

in a given degraded area. For example, if environmental control is the dominant driver of 95 

assembly, then steps to restore habitat quality may be important. Alternatively, if dispersal 96 

limitation dominates assembly then restoring landscape connectivity might be more 97 

important.  98 

 99 

For a better understanding of the impacts of land-use change on species communities, it will 100 

be necessary to uncover the dominant drivers of assembly along gradients of land-use 101 

Page 5 of 50

Journal of Animal Ecology: Confidential Review copy

Journal of Animal Ecology: Confidential Review copy



6 

 

intensity. One hypothesis is that increasing levels of disturbance along gradients of land-use 102 

intensity may lead to the breakdown of spatial structure – created by dispersal limitation and 103 

broad gradients in, for example, climate or elevation – in the occurrence of species. At the 104 

same time, environmental control may assume a more dominant role in assembly as land-use 105 

intensity increases. For example, logging greatly increases the frequency and area of edge 106 

habitat in forests, a micro-habitat which forest species often show strong responses to (Pfeifer 107 

et al. 2017). The importance of environmental control may be even more pronounced in 108 

plantation habitats, which drastically differ from the forests that species are adapted to – in 109 

terms of structure, resources and microclimate – and are often subject to intense management 110 

(Styring et al. 2011; Luskin & Potts 2011).  111 

 112 

It might be expected that the biotic filter, in particular the strength of species interactions, 113 

will also be affected by land-use change (Tylianakis et al. 2008). Reductions in α-diversity 114 

along gradients of land-use intensity may be hypothesised to weaken competitive interactions 115 

and, all else being equal, may lead to communities which are more assembled by neutral 116 

processes (Weiher et al. 2011). In tropical forest, logging and conversion to plantation 117 

habitats has previously been shown to reduce α-diversity in a range of taxonomic groups (e.g. 118 

Gibson et al. 2011), but the potential for a concomitant weakening in species interactions 119 

relative to intact habitat remains poorly explored.  120 

 121 

The last decade has seen the development of new analytical tools to investigate the 122 

mechanisms of community assembly (e.g. Chase & Myers 2011; Dray et al. 2012). In 123 

particular, β-diversity can be dissected into its environmental and spatial components, using 124 

canonical ordination (Dray et al. 2012). The importance of niche assembly can be inferred 125 

from the explanatory power of environmental variables thought to control the occurrence of 126 
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species, whilst the importance of spatially-contagious processes such as dispersal and home-127 

ranging can be inferred from the explanatory power of surrogate spatial variables. β-diversity 128 

left unexplained by environmental control and space is likely due to random community drift, 129 

as well as any unmeasured environmental variables (which are not structured in space) and 130 

measurement error (Legendre et al. 2009). Although species interactions are generally 131 

thought to operate at smaller spatial scales than environmental filtering (Weiher et al. 2011), 132 

the two components to niche assembly are difficult to separate on the basis of spatial 133 

modelling alone (Kraft et al. 2015). Competitive interactions can however be expected to 134 

leave a signature of negative co-occurrence patterns between pairs of species (Veech 2006). 135 

Competition is especially likely among species which share more traits, such as congeneric 136 

species (assuming phylogenetic conservatism in traits). Negative co-occurrences, though, are 137 

also consistent with divergent habitat preferences, and therefore sound knowledge of a study 138 

system is needed in order for useful inferences to be made. In order to conclusively 139 

demonstrate competition, experimental work is needed.  140 

 141 

Recent technological advances have opened up the possibility of collecting community-wide 142 

biodiversity data at higher spatial and temporal resolutions than has been possible before 143 

(Turner 2014), even for highly mobile taxa, such as mammals. This is an important 144 

development, since the majority of studies investigating community assembly have focussed 145 

on sessile organisms (e.g. Vellend et al. 2007; De Cáceres et al. 2012; Siefert et al. 2013; 146 

Myers et al. 2013). High mobility likely has a number of effects on community dynamics, for 147 

example by allowing species to more effectively partition themselves in space and time, and 148 

may therefore be expected to alter the dominant drivers of community assembly. It is now 149 

acknowledged that contemporary theory in community ecology must be confronted with 150 
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empirical data from a wide a range of organisms in order to advance the field (Weiher et al. 151 

2011). 152 

 153 

Here we investigate the local-scale drivers assembling mammal communities along a gradient 154 

of land-use intensity which is ubiquitous in Southeast Asia: old-growth forest, logged forest 155 

and oil palm (Elaeis guineensis) plantations. Much of the remaining forest in Southeast Asia 156 

has been logged or degraded (Margono et al. 2014; Gaveau et al. 2014), and conversion to oil 157 

palm has been occurring at an unprecedented rate over recent decades (Wilcove et al. 2013). 158 

Mammals are highly mobile and rare, making them a challenge to sample. To overcome this, 159 

we used concurrent networks of camera traps and live traps to sample almost the entire 160 

terrestrial mammal assemblage, and expended much higher sampling efforts than would be 161 

typical for other taxonomic groups. We have previously shown that mammal communities in 162 

our study sites exhibit a decline in α-diversity along the land-use gradient, and are assembled 163 

in a significantly non-random manner (Wearn et al. 2016). In this study, we test two specific 164 

hypotheses about the drivers of community assembly: 1) that increased land-use intensity 165 

results in an increasing dominance of environmental control over spatial processes, and 2) 166 

that reductions in α-richness along a gradient of land-use intensity result in a reduced role for 167 

competitive interactions.  168 

 169 

MATERIALS AND METHODS 170 

Sampling design across the land-use gradient 171 

We sampled mammals along a gradient of land-use intensity in Sabah, Malaysian Borneo, 172 

taking advantage of the experimental design of the Stability of Altered Forest Ecosystems 173 

(SAFE) Project (Ewers et al. 2011). The gradient consists of old-growth forest within the 174 

Maliau Basin Conservation Area, repeatedly-logged forest within the Kalabakan Forest 175 
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Reserve and two adjacent oil palm plantations straddling the Kalabakan Forest Reserve 176 

boundary (Wearn et al. 2016).  177 

 178 

We employed a clustered hierarchical sampling design, with individual sampling points 179 

clustered together into 1.75 ha plots, and 3 to 6 plots in turn clustered into blocks (Fig. 1). 180 

This multi-scale approach allowed for the investigation of fine-scale drivers of assembly, 181 

such as competition between species, whilst also allowing for the investigation of larger-scale 182 

gradients in community composition within a study site. Plots consisted of 48 potential 183 

sampling points, separated by 23 m, of which a random subset were chosen for sampling 184 

(mean number of points per plot = 14). Separation distances between plots (170 to 290 m) 185 

and between blocks (0.6 to 3 km) were similar across the land-uses. The SAFE Project has 186 

been deliberately designed to minimise confounding factors across the land-use gradient, 187 

including latitude, slope and elevation (Ewers et al. 2011), and this applied equally to our 188 

sampling design for mammals. 189 

 190 

Across the study sites, 430 points were sampled using both camera-trapping and live-191 

trapping. These were nested within 31 plots and 8 blocks (9 plots in 3 blocks for old-growth 192 

forest; 16 plots in 3 blocks for logged forest, and 6 plots in 2 blocks for oil palm). We 193 

excluded 12 points which had been camera-trapped for less than seven days, giving a total 194 

sampling effort of 9,430 live trap nights and 19,116 camera trap nights (after correcting for 195 

camera failures). The sampling intensity was similar across land-uses (mean trap nights per 196 

sampling point: 60 in old-growth forest; 78 in logged forest, and 58 in oil palm). 197 

 198 

Mammal community sampling  199 
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Medium and large mammals were sampled using camera traps (Reconyx HC500), deployed 200 

strictly within 5 m of each randomly chosen sampling point (following methods previously 201 

outlined in Wearn et al. 2013). Our deployment of cameras at random locations, not just 202 

along trails, is a departure from traditional camera-trapping protocols, and uniquely allows us 203 

to uncover fine-scale patterns of β-diversity in medium and large mammals, driven by species 204 

habitat-use and occupancy. Since camera traps are continuous-time detectors, we considered 205 

photographic capture events to be independent if they a) contained different individuals or b) 206 

were separated by > 12 hours, which matched the approximate minimum separation between 207 

live trap events. Camera traps were active between May 2011 and April 2014, during which 208 

most plots (28 of 31) were sampled multiple times (mean effort per plot = 617 trap nights). 209 

 210 

Small mammal trapping was conducted at the plot level, with two locally-made steel-mesh 211 

traps (18 x 10-13 x 28 cm) placed near ground level (0 - 1.5 m) within 10 m of each of the 48 212 

sampling points and baited with oil palm fruit (see Wearn et al. 2016 for further details on the 213 

trapping and handling protocols). Here we only use data from the 418 points which were also 214 

sufficiently sampled using camera traps. Each session consisted of seven consecutive 215 

trapping days and some plots (15 of 31) were sampled for multiple sessions over the course 216 

of the study (mean effort per plot in this study = 304 trap nights). Trapping was carried out 217 

between May 2011 and July 2014, during which there were no major mast-fruiting events. 218 

 219 

Environmental and spatial components of β-diversity across land-use 220 

We dissected mammal β-diversity within each land-use into its environmental and spatial 221 

components, using distance-based redundancy analysis (Peres-Neto et al. 2006), hereafter 222 

RDA. This involves partitioning community variance into the fractions explained by 223 

environmental and spatial variables, using the model  Y = f[E + S] + R, where Y is the 224 
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community response matrix, E and S are matrices of environmental and spatial covariates, 225 

respectively, and R is a matrix of residuals (Dray et al. 2012).  226 

 227 

Environmental variables were composed of three sets: 1) fine-scale habitat structure variables 228 

(canopy closure, canopy height, mean tree diameter-at-breast height (DBH), tree density, a 229 

habitat disturbance score, presence of a logging road, vegetation cover in four height strata, 230 

and deadwood volume); 2) topographical variables (slope, elevation and flow accumulation), 231 

and 3) landscape context within a 500 m radius (above-ground live tree biomass, forest cover 232 

and distance from the nearest forest). Polynomial functions of the DBH, habitat score and 233 

topographical variables were also included, to allow for non-linear responses. Full details of 234 

the environmental variables used are provided in Appendix S1 (see Supporting Information).  235 

 236 

The spatial component of β-diversity was modelled using surrogate variables representing 237 

positive spatial correlation. This positive spatial correlation is the signature of the dispersal 238 

limitation and home-ranging we were interested in. We emphasise that we are not here 239 

investigating the large-scale dispersal limitation that determines species ranges, but rather the 240 

dispersal limitation (and ranging) occurring at small-scales that determines the stochastic, 241 

“lottery-like” occurrence patterns within a species range. We thought dispersal limitation 242 

would be weak for the largest and best-dispersing mammal species in our dataset, but that 243 

barriers to large-scale movement might nonetheless exist for these species (e.g. caused by 244 

steep mountain tops, rivers, large land-slides, or highly degraded areas that some species 245 

might be less likely to cross). We thought dispersal limitation might be more important for 246 

many of the medium and small-sized mammal species in our dataset, likely with limited 247 

capacity to disperse at will across our study landscapes, and also for the rarer species in our 248 

dataset (producing few propagules).  249 
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 250 

Surrogate variables to model the positive spatial correlation were based on the geographic 251 

coordinates of sampling points, and included 1) distance-based Moran’s eigenvector maps 252 

(db-MEMs), and 2) trend-surfaces (Dray et al. 2012). MEMs represent a spectral 253 

decomposition of the distances among sampling points, and can potentially model spatial 254 

patterns at all scales perceivable in the sampling design (Borcard et al. 2004). We used db-255 

MEMs to model fine-scale spatial patterns present within sampling blocks (Appendix S2: 256 

Fig. S1), creating a separate set of db-MEMs for each sampling block (Declerck et al. 2011). 257 

We filled the widest gaps between sampling points in a block with a small number of 258 

supplementary points (between 5 and 10 per block; 12% of the total), which were then 259 

removed before RDA modelling (Borcard et al. 2004). This will have caused a slight loss of 260 

orthogonality between db-MEM variables, but allowed for the modelling of spatial patterns 261 

down to a scale of between 67 and 76 m. We selected only the db-MEMs with positive 262 

eigenvalues, which model positive spatial correlations. We visualised the fine-scale spatial 263 

patterns of community variation as a function of geographic distance using multivariate 264 

Mantel correlograms (Legendre & Legendre 2012). To model broader-scale spatial patterns 265 

occurring across sampling blocks, we created 1
st
- and 2

nd
-order polynomial functions of the 266 

geographic coordinates (i.e. trend surfaces), to represent both linear and saddle-shaped 267 

patterns in space (Borcard, Legendre & Drapeau 1992). 268 

 269 

For the medium- and large-sized mammal species in our dataset, within-block patterns (i.e. 270 

those modelled using db-MEMs) will primarily reflect habitat-use and home-ranging, but 271 

may also represent dispersal limitation for the smaller species. Broader-scale patterns (i.e. 272 

those modelled using trend surfaces) will primarily reflect dispersal limitation, as well as 273 
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home-ranging in the most mobile species in the dataset, such as the Sunda clouded leopard 274 

(Neofelis diardi). 275 

 276 

We applied the modified forward-selection method (Blanchet, Legendre & Borcard 2008), 277 

based on the adjusted coefficient of multiple determination (R
2

adj), to select a parsimonious 278 

set of environmental and spatial variables for the final RDA models in each land-use (see 279 

Appendix S2: Table S1 and Fig. S2). This was done separately for each of the three sets of 280 

environmental variables (habitat structure, topography and landscape context variables) and 281 

two sets of spatial variables (db-MEMs and trend-surface variables). For the final, 282 

parsimonious RDA models in each land-use, we quantified the variance explained by 283 

environment, space, and jointly by both environment and space, using variation partitioning 284 

(Peres-Neto et al. 2006). We tested for significant differences between land-uses in the 285 

variation explained (overall, by environment and by space) using a bootstrap procedure 286 

(Peres-Neto et al. 2006).  287 

 288 

We also repeated the above steps (selection of parsimonious sets of variables, and variation 289 

partitioning) for the combined dataset across all three land-uses, fitting a ‘global’ RDA 290 

model. This allowed us to add land-use into the RDA as a categorical variable, and determine 291 

if there was important community variation across land-use which our environmental and 292 

spatial variables had failed to capture.   293 

 294 

RDA models were fitted to Hellinger-transformed community matrices, with mammal 295 

detections per seven days summed over the camera- and live-trapping protocols. The 296 

Hellinger transformation divides by the total abundance at a site and then takes the square-297 

root (therefore dampening the effect of extremely abundant species), and has previously been 298 
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shown to have desirable properties in the context of RDA (Legendre & Gallagher 2001). 299 

Detection probabilities likely vary across species and across the two protocols, but we do not 300 

expect that this will substantially affect the relative sizes of the variance fractions explained 301 

by environment and space, although imperfect detection could inflate the unexplained 302 

variance in all cases. The Hellinger transformation is asymmetrical, meaning that species 303 

absences, which could be a result of non-detection rather than lack of presence, have a lower 304 

influence on the coefficient than presences. Our sampling points were not independent, in the 305 

sense that individual animals may have been detected across multiple points. This will mean 306 

that the precision associated with our environmental RDA models will likely be inflated, but 307 

we here focus on the variation explained, rather than on the results of specific hypothesis tests 308 

using these models (which would require unbiased estimates of uncertainty). We also note 309 

that variation partitioning represents a very effective way of assessing environmental control 310 

after controlling for spatial non-independence (Peres-Neto & Legendre 2010), as we have 311 

done. 312 

  313 

Species co-occurrence 314 

We investigated co-occurrence patterns among species within each land-use using 315 

probabilistic models (Veech 2013). These models use the hypergeometric distribution to 316 

calculate the probability that two species spatially co-occur either less or more often than 317 

expected based on their mean incidence probabilities (Griffith, Veech & Marsh 2014). Using 318 

the observed co-occurrence frequencies and a specified alpha level (in this case, α = 0.05), 319 

species co-occurrences were classified as significantly positive or negative, or occurring at 320 

random. Random co-occurrence patterns can potentially be generated both by genuine non-321 

association between species or by a lack of statistical power. We had a relatively large 322 

number of sites within each land-use (56 to 213) and high sampling effort, with simulations 323 
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suggesting that in this case models would typically have very high power to detect deviations 324 

from random co-occurrence as small as 5% of the total number of sites. We did not analyse 325 

species pairs with expected co-occurrence frequencies < 1 (following Veech 2013). 326 

 327 

We were particularly interested in negative species co-occurrences, which will primarily be 328 

due to either 1) competition driving spatial niche separation, or 2) divergent habitat 329 

preferences. We are unable to conclusively determine which of these mechanisms is 330 

responsible for negative co-occurrences, and capture both possible explanations under the 331 

term “spatial avoidance” (e.g. Davis et al. 2018). We did, however, investigate if the number 332 

of congeneric pairs among the negative co-occurrences was greater than expected by chance, 333 

which would lend more support to competition as an explanation. Spatial co-occurrence 334 

analyses are unable to detect temporal niche separation and we are here focussed only on the 335 

spatial assembly of communities.  336 

 337 

All analyses were done in R version 3.1.0 (R Development Core Team 2014), using the 338 

additional packages vegan 2.0-10 (Oksanen et al. 2013), PCNM 2.1-2 (Legendre et al. 2013) 339 

and cooccur 1.0 (Griffith et al. 2014).  340 

 341 

RESULTS 342 

We obtained 1,237 captures of 20 species from live-trapping, and 10,464 photo-captures of 343 

56 species from camera-trapping, giving a total of 61 mammal species detected (15 species 344 

were captured using both methods). Overall trapping rates (live-trapping and camera-trapping 345 

combined) were similar for old-growth and logged forest (0.47 and 0.38 captures per trap 346 

night, respectively), but lower in oil palm (0.19).  347 

 348 
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How much community variation is explained by environment and space? 349 

In old-growth forest, space explained significantly more of the community variation than 350 

environment (95% CI of the difference: 0.05 – 0.14, p < 0.001). Most of the variation 351 

explained by environmental variables was spatially-structured (90%; Fig. 2), and only a 352 

small, albeit significant, fraction of the variation was explained by pure environmental 353 

control (F(12, 112) = 1.34, p < 0.01). Mammal communities in logged forest and oil palm were 354 

less structured in space than old-growth forest (Fig. 2; 95% CI of the variance explained for 355 

old-growth forest: 0.26 – 0.37; 95% CI for logged forest: 0.05 – 0.15; 95% CI for oil palm: -356 

0.05 – 0.24). In logged forest, just 14% (95% CI: 10 – 19%) of the total variance was 357 

explained by environmental and spatial variables, much lower than for old-growth forest 358 

(33%, 95% CI: 27 – 39%) and oil palm (30%, 95% CI: 15 – 46%). However, the independent 359 

environmental and spatial components were still significant (environment: F(10, 179) = 1.90, p 360 

< 0.001; space: F(16, 179) = 1.91, p < 0.001). The variance explained by environmental and 361 

spatial variables was not significantly different for logged forest communities (95% CI of the 362 

difference: -0.06 – 0.01, p = 0.17). In oil palm, 86% of the explained variation was related to 363 

environmental control (79% independently) and the spatial component was significantly 364 

smaller (95% CI of the difference: 0.02 – 0.30, p = 0.02). Despite the contrasting variation 365 

partitioning results across the land-use gradient, total community variation (i.e. site-to-site β-366 

diversity within a land-use) was broadly similar across the land-uses: Var(YOld-growth) = 0.57; 367 

Var(YLogged) = 0.58, and Var(YOil palm) = 0.53. 368 

 369 

The relative importance of habitat structure, topography and landscape context 370 

The relative importance of each set of environmental variables for structuring communities 371 

within land-uses differed markedly (Fig. 2). Fine-scale habitat structure was an important 372 

independent component in all land-uses (old-growth forest: F(6, 143) = 2.35, p < 0.001; logged 373 
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forest: F(7, 195) = 2.83, p < 0.001; oil palm: F(6, 45) = 3.08, p < 0.001). At coarser-scales, 374 

landscape context was important in old-growth forest, both in combination with fine-scale 375 

habitat structure and also independently (F(6, 143) = 2.35, p < 0.001), but was only important in 376 

oil palm in combination with topography (F(4, 45) = 1.72, p = 0.01) and not independently (F(3, 377 

45) = 1.29, p = 0.16). Landscape context was found to be entirely unimportant for logged 378 

forest communities (F(1, 204) = 1.25, p = 0.31). Topography was important mostly in 379 

combination with other variables, but was also important in its own right in old-growth forest 380 

(F(5, 143) = 3.03, p < 0.001).  381 

 382 

Broad- and fine-scale structuring of communities in space 383 

Broad- and fine-scale spatial processes were equally important in old-growth forest (95% CI 384 

of the difference: -0.04 – 0.08, p = 0.43) and oil palm (95% CI of the difference: -0.11 – 0.13, 385 

p = 0.90), but there was a trend for the dominance of fine-scale space in logged forest (95% 386 

CI of the difference: -0.06 – 0.00, p = 0.09). We calculated post-hoc that broad-scale space, 387 

independent of environment, explained 6%, 3% and 1% of the community variation in old-388 

growth forest, logged forest and oil palm, respectively. The same portions for fine-scale space 389 

were 9%, 4% and 3%, respectively. Mantel correlations between community distances and 390 

geographic distances were weak in all cases (r < 0.12). However, in old growth forest, there 391 

was a signal of positive correlation at distances less than 100 m, which was apparently absent 392 

in the two anthropogenic land-uses (Appendix S2: Fig. S3). 393 

 394 

Is the effect of land-use on community assembly explained by our covariates? 395 

The RDA model for the combined dataset across all three land-uses (global model) showed 396 

that land-use explained just 1.8% of the variance independently (Appendix S2: Fig. S4), 397 

suggesting that our measured environmental variables successfully captured the 398 
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environmental gradient. In addition, the ordination tri-plot of the environmental component 399 

of this model showed clear separation of sampling points across the three land-uses (Fig. 3), 400 

with the first and second RDA axes explaining 7.2% and 3.9% of the community variation, 401 

respectively. Environmental and spatial variables in the global model, each explaining a 402 

similar portion of the community variance (95% CI of the difference: -0.03 – 0.03, p = 403 

0.776), together explained a total of 33% of the variance (Appendix S2: Fig. S4).  404 

 405 

Co-occurrence patterns across the land-use gradient 406 

Co-occurrence patterns became increasingly random along the land-use gradient, with 26%, 407 

14% and 7% of analysed species pairs classified as non-random in old-growth forest (n = 392 408 

species pairs), logged forest (n = 627 pairs) and oil palm (n = 43 pairs), respectively. Of these 409 

non-random associations, most were positive (Fig. 4) and only in old-growth forest was there 410 

any substantial evidence of negative co-occurrences, i.e. spatial avoidance (13% of non-411 

random associations). However, it should be noted that Type II errors are a possibility for oil 412 

palm, in which 25% of associations classified as random represented deviations of > 3% of 413 

the total number of sites (this was the case for just 1% and 0% for old-growth and logged 414 

forest, respectively). 415 

 416 

Three of the 13 instances of spatial avoidance in old-growth forest were of congeneric pairs. 417 

A simple randomisation test in which 13 species pairs were selected at random 10,000 times, 418 

showed that this pattern was highly unlikely (p < 0.001, 95% CI of the number of expected 419 

congeners: 0 – 1). There were too few instances of spatial avoidance in the other land-uses to 420 

run this test.      421 

 422 

DISCUSSION 423 
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We found patterns that are consistent with a shift under land-use change in the fundamental 424 

mechanics governing local community assembly. We found that across the land-use gradient: 425 

1) environmental control was less important (old-growth forest), equally as important (logged 426 

forest) and more important (oil palm) than spatial processes in explaining community 427 

variation; 2) mammal communities were increasingly less spatially-structured (the share of 428 

the explained variation within the pure spatial component, and in the component jointly 429 

explained with habitat, increased), and 3) the prevalence of spatial avoidance between species 430 

decreased, particular among congeneric species pairs. Results (1) and (2) lend support to the 431 

first of our initial hypotheses, that increases in land-use intensity lead to an increasing 432 

dominance of environmental control over spatial processes (spatially-correlated dispersal and 433 

ranging) in assembly. Result (3) is consistent with the second of our initial hypotheses, that 434 

competitive interactions play a reduced role with increasing land-use intensity, but the 435 

support is weak given that few instances of spatial avoidance were detected in any land-use. 436 

In addition, more evidence is required, for example from experimental work, in order to 437 

conclusively demonstrate competition. Our study adds to a small body of research which has 438 

begun to investigate the impacts of land-use change on community assembly (Vellend et al. 439 

2007; Pakeman 2011; Ding et al. 2012; Döbert et al. 2017; Danneyrolles, Arseneault & 440 

Bergeron 2018). To our knowledge, this is the first time that land-use change has been 441 

associated with altering the drivers of community assembly in non-sessile organisms. 442 

 443 

Increased environmental control under land-use change 444 

The patterns in our data suggest that the importance of environmental filtering compared to 445 

spatial processes was stronger along the land-use gradient. These results support previous 446 

work on plant communities indicating an increasing role for environmental control under 447 

disturbance, as indicated by increased phylogenetic and functional trait clustering (Pakeman 448 
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2011; Ding et al. 2012) and by variance partitioning analyses similar to those undertaken here 449 

(Danneyrolles et al. 2018). Contrary to this trend, one study of understorey plant 450 

communities (also conducted within the SAFE experimental design) found evidence that 451 

environmental control at fine scales decreased due to selective logging, as indicated by 452 

increased phylogenetic and functional dispersion (Döbert et al. 2017). Comparisons across 453 

studies are hampered by differences in spatial scale and analytical methods, but more studies 454 

of non-sessile taxa are especially needed in order to make broader generalisations about the 455 

impacts of land-use change on assembly.  456 

 457 

Of the three land-uses in our study, environmental control was apparently strongest in oil 458 

palm (both in absolute terms and relative to spatial processes), particularly due to variation in 459 

habitat at fine scales (Fig. 2). Oil palm plantations often exhibit substantial heterogeneity 460 

(Luskin & Potts 2011), for example in the age and height of palms, the amount of scrub 461 

vegetation in the understorey and the presence of access roads, and indeed we found these to 462 

be important fine-scale environmental filters (Table S3). This echoes findings more generally 463 

in plantations (e.g. Greenberg et al. 1997; Peh et al. 2006; Styring et al. 2011; Lantschner, 464 

Rusch & Hayes 2012) and may indeed be a robust pattern in these highly-modified habitats. 465 

This sensitivity to fine-scale environmental control could be because species in plantations 466 

are persisting closer to their biological tolerances (e.g. for food resources, microclimate or 467 

cover from predators). Our finding that mammal communities in oil palm were strongly 468 

assembled by environmental control suggests that there is at least the potential for 469 

ameliorating the impacts of oil palm by altering management practices. For example, the 470 

ground and understorey layer, typically cleared in plantations using herbicides, could be 471 

maintained in some areas (Foster et al. 2014).    472 

 473 
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Spatial processes assembling communities across the land-use gradient 474 

Old-growth communities were much more spatially-structured than communities in logged 475 

forest and oil palm (Fig. 2). The spatial processes involved in assembling old-growth 476 

communities at the local scale are likely to have included broad-scale dispersal limitation 477 

between sampling blocks, and finer-scale home-ranging movements. The latter is the most 478 

likely explanation for the stronger positive correlation in old-growth communities seen at 479 

distances below 100 m (Appendix S2: Fig. S3). One hypothesis for the weaker positive 480 

correlation signal evident in the two anthropogenic habitats might be that these habitats 481 

favour species with high dispersal capacity, or facultative behaviours which mean that 482 

individuals range more widely, in order to access resources more effectively in a 483 

heterogeneous environment. In old-growth forest, there was also a large portion of the 484 

variance explained by space and environment together. This fraction likely represents a 485 

combination of spatially-structured environmental control, for example along topographical 486 

gradients (which we have shown were important in old-growth forest), and spatial processes 487 

which happen to correlate with environmental gradients.   488 

 489 

Does land-use change weaken the biotic filter? 490 

We found that the prevalence of spatial avoidance among species pairs decreased along the 491 

gradient of land-use intensity, which might suggest a weakening of the biotic filter. However, 492 

we consider that divergent habitat preferences, rather than competition, is the likely 493 

explanation for most of the instances of spatial avoidance. Indeed, 69% of the spatial 494 

avoidance pairs involved the greater mouse-deer (Tragulus napu), which our environmental 495 

RDA identified as an old-growth forest specialist (Fig. 3). We did detect three instances of 496 

spatial avoidance among congeneric species (Appendix S2: Fig. S5), a result which we found 497 

to be highly unlikely by chance. It is possible, therefore, that competition is driving spatial 498 
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niche separation in two morphologically very similar and abundant Maxomys rats (M. surifer 499 

and M. rajah), the greater and lesser (T. kanchil) mouse-deer, and the thick-spined and Malay 500 

porcupines (Hystrix crassispinis and H. brachyura). Overall though, co-occurrence analyses 501 

provided only weak evidence that competition weakens along the gradient of land-use 502 

intensity. 503 

 504 

Few instances of spatial avoidance were detected in any land-use, suggesting that competition 505 

is unlikely to be a dominant assembly process in our study system. This would perhaps be 506 

expected for a trophically-diverse mammal assemblage, able to avoid competition through 507 

resource-partitioning. It is also in agreement with a broader set of studies on a range of taxa, 508 

all suggesting the primacy of environmental control over competition in determining the 509 

occurrence and abundance of species (Veech 2006, 2013; Houlahan et al. 2007; Mutshinda, 510 

O’Hara & Woiwod 2009). However, it is also possible that species are segregated in time or 511 

vertically in space (e.g. in the forest canopy), neither of which our co-occurrence analyses 512 

would detect. We are also not suggesting that competition is absent, only that it does not 513 

appear to be a dominant force in assembly on the basis of our co-occurrence analyses.  514 

 515 

Random assembly under selective logging  516 

The overall explanatory power of our models for logged forest communities was low 517 

compared to the other land-uses. We have already noted the reduced spatial structure of 518 

community variation in logged forest, but environmental variables also explained only a 519 

small amount of the variation. In particular, from old-growth to logged forest, there was a 520 

marked reduction in the variance explained by the local landscape context and topographical 521 

variables. This could be due to a destruction by logging of the heterogeneity in forest 522 

structure and species composition which is ordinarily present across local landscapes and 523 
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along topographical gradients in old-growth forests of the region (Newbery et al. 1996). We 524 

note that our logged forest sites, which had been subjected to a very high intensity of logging 525 

(Appendix S1), were uniformly dominated by a single pioneer tree species, Macaranga 526 

pearsonii (~10% of basal area; M. Khoo, personal communication). An alternative, but less 527 

likely, explanation for the reduced ability of our models to explain community variation in 528 

logged forest would be that the environmental variables we used were inappropriate for 529 

logged forest. We did specifically design the variables to capture the structural dimensions 530 

affected by logging (Appendix S1), but we did not have fine-scale information available to us 531 

on tree species composition or direct measures of resource abundance, such as the availability 532 

of fruit. It remains the case, however, that spatial variables performed poorly in logged forest, 533 

indicating that, if there were key environmental variables missing from the analysis, they 534 

were not spatially-structured. 535 

 536 

With a reduction in the importance of environment and space, this may mean that random 537 

community drift plays a more important role in logged forest compared to old-growth forest, 538 

which could represent a pervasive, but as-yet-undocumented, legacy of logging. A similar 539 

finding of randomly-assembled communities was found in the same landscape for 540 

understorey plants, particularly at high logging intensities (Döbert et al. 2017). If this is a 541 

general finding across the region, this could call into question the prospects for large-scale, 542 

unassisted restoration of ecosystem processes in Southeast Asian logged-over forests, and 543 

may mean that more active management interventions, targeted at species of particular 544 

conservation concern, may be a more appropriate management target (Lamb, Erskine & 545 

Parrotta 2005).  546 

 547 

CONCLUSION  548 
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The widespread creation of man-made environmental gradients in the tropics may be leading 549 

to novel mechanics governing the local assembly of communities. This is a poorly-550 

appreciated facet of land-use change that needs further investigation: that it might alter not 551 

just the biodiversity found in a landscape (the focus of most studies), but the mechanisms 552 

which create and maintain this biodiversity at the local scale. More broadly, we found 553 

patterns that support the niche-neutrality continuum model of community assembly, in which 554 

dispersal, drift and environmental control all combine variously to create communities at the 555 

local scale (Mutshinda & O’Hara 2011). A better understanding of this continuum model 556 

along environmental gradients, which are arguably now a defining feature of tropical forest 557 

landscapes, could underpin more effective conservation and management of biodiversity in 558 

these highly-threatened systems. 559 

 560 
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FIGURES 770 

 771 

Figure 1. Sampling design across logged forest (A), oil palm (B) and old-growth forest (C), 772 

showing the sampling points (in red) sampled using both camera traps and live traps. Clusters 773 

of sampling plots, i.e. sampling blocks, were arranged in the same spatial configuration in 774 

old-growth forest and oil palm, but were arranged to coincide with future experimental forest 775 

fragments in logged forest. Separation between points, plots and blocks was nonetheless 776 

similar across land-uses. Shaded areas (in A) lie outside the Kalabakan Forest Reserve, 777 

consisting of a 2,200 ha Virgin Jungle Reserve (Brantian-Tatulit) to the south and an 778 

extensive (>1 million ha) area of logged forest to the north (Mount Louisa Forest Reserve and 779 

other connecting reserves). 780 

 781 

  782 
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 783 

Figure 2. Variation partitioning of mammal community composition data across a tropical 784 

land-use gradient, represented with Euler diagrams. Community variation was partitioned 785 

using redundancy analyses (RDA) according to: three sets of environmental control variables 786 

(2
nd

 column); broad- and fine-scale spatial processes (3
rd

 column), and environmental control 787 

and space overall (1
st
 column). A parsimonious set of environmental and spatial variables 788 

were chosen separately for each land-use. Percentage values represent the adjusted coefficient 789 

of multiple determination (R
2
adj) and values lying outside the area of the Euler diagrams 790 

represent the percentage variation left unexplained in each case. The landscape context RDA 791 

for oil palm could not be represented in full using a Euler diagram, and a small fraction 792 

(1.2%) shared between habitat structure and topography was omitted in order to allow for 793 

plotting. 794 

 795 
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 796 

Figure 3. Ordination tri-plot depicting the position of sampling points (coloured circles), 797 

species (blue crosses) and environmental variables (black arrows) along the first two axes of 798 

a redundancy analysis (RDA) of the mammal community composition data (combined across 799 

land-use). Land-use was not included as a variable in this model. The first and second axes 800 

were both significant in permutation tests (1
st
 axis: F(1, 399) = 65.1, p < 0.001; 2

nd
 axis: F(1, 399) 801 

= 35.2, p < 0.001). Four species which were characteristic of old-growth forest (greater 802 

mouse-deer, T. napu), logged forest (bearded pig, S. barbatus and red spiny rat, M. surifer) 803 

and oil palm (Malay civet, V. tangalunga) are individually-named.  804 

 805 
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 806 

Figure 4. Observed and expected species co-occurrences between species for each land-use 807 

type. Significant positive co-occurrences (blue points) lie above the 1:1 line and significant 808 

negative co-occurrences (orange points) lie below it. Effects sizes were calculated by 809 

standardising the difference between observed and expected co-occurrences by the number of 810 

sampling points in each land-use. 811 
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Appendix S2 - Supplementary results  

 

 

Figure S1. Example distance-based Moran’s eigenvector maps (db-MEMs), identified as 

significant in explaining β-diversity patterns using redundancy analysis.     
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Figure S2. Distance-based Moran’s eigenvector map (db-MEM) variables identified as 

significant in explaining β-diversity patterns using redundancy analysis. Variables are 

ordered from the coarsest to the finest scale within each block. Of the 156 db-MEMs 

generated, 47 were identified as significant in forward selection. Single-predictor R
2

adj values 

were derived from separate redundancy analyses for each db-MEM. 
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Figure S3. Mantel correlograms of observed community composition data (black) compared 

to fitted and residual values from redundancy analyses (RDA), across three land-use types. 

Fitted values in each case are shown for the environmental control RDA (green) and spatial 

RDA (blue). Residuals (red) are shown for the overall RDA for each land-use, containing 

both environmental and spatial variables. Filled points indicate significant correlations, as 

deduced using permutation tests and progressive Holm correction for multiple testing (α = 

0.05 for the first distance class and α < 0.05 thereafter). Grey dashed vertical lines represent 

the finest scale resolvable by the distance-based Moran’s eigenvector map (db-MEM) 

variables in each land-use.   
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Figure S4. Variation partitioning of the mammal community composition data combined 

across land-use (‘global’ RDA model), separated into variation explained by a) local habitat 

characteristics only, and local habitat in combination with land-use, b) spatial processes 

(represented by spatial surrogate variables) and c) environmental control (local habitat and 

land-use) and spatial processes together. Percentage values represent the adjusted coefficient 

of multiple determination (R
2

adj) calculated using redundancy analyses. Values lying outside 

the area of the Euler diagrams represent the percentage variation left unexplained in each 

case. 
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Figure S5. Species co-occurrence matrices across land-use types. Negative and positive co-

occurrences indicate where two species occurred together significantly less or more often 

than expected by chance, respectively. Species pairs with expected co-occurrence frequencies 

< 1 were not analysed.  
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Table S1. Environmental variables chosen by a modified forward-selection procedure 

based on the adjusted coefficient of multiple determination (R
2

adj), for the global model and 

models specific to land-use types (old-growth forest, logged forest and oil palm) and 

species groups (large mammals and small mammals).   

Environmental variable 

Redundancy analysis (RDA) model 

Global 

Old-growth 

forest 

Logged 

forest Oil palm 

Habitat structure
a
 

    Ground cover  

  

 

Understorey cover 







 

Midstorey cover 

   

 

Canopy cover 

  

 

Canopy closure (arcsine-

transformed %) 



 

 

Habitat score     

 

Habitat score
2
 







 

Logging road (binary) 

 



 

Maximum tree height (m) 

(quadrat-based)
c    

 

Tree density (quadrat-based)
c
    

 

Mean DBH (cm) (quadrat-

based)
c
 

 
 

 

Mean DBH
2
 (quadrat-based)

c
  





 

Deadwood volume (m
3
) 

(quadrat-based)
c
 

 


Topography
b 

   

 

Elevation (m)    

 

Elevation
2
   



 

Flow accumulation   

 

 

Flow accumulation
2
 





 

 

Slope (degrees)  

 

 

Slope
2 
 

   Local landscape context
b 

   

 

Above-ground live tree 

biomass (Mg/ha) (500 m 

radius) 

 

 

 

Forest cover (%) (500 m 

radius) 


 


  Distance from forest (m) 

 


a
All habitat structure variables were measured in the field. 

b
All topographical and landscape variables were derived from satellite data.  

c
"Quadrat-based" variables were measured within 25 m

2
 quadrats, located 0 - 75 m from 

sampling points, at a density of two quadrats per plot.  
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Appendix S1 – Detailed description of methods used to measure environmental 

variables 

S1. 1. Field-based measurement of environmental variables 

All habitat structure variables were quantified directly in the field. Eight variables were 

measured directly at sampling points by a single observer (O.R.W.), whilst a further five were 

measured in intensively-sampled 25 m
2 

vegetation plots as part of ongoing monitoring at the 

Stability of Altered Forest Ecosystems (SAFE) Project (Ewers et al. 2011). We hereafter refer 

to these vegetation plots as ‘quadrats’ to distinguish them from the larger plots used to 

sample mammal communities. Two quadrats were located within each sampling plot, spaced 

evenly within the plot area and 150 m apart (centre-to-centre distance). Quadrats were mostly 

< 45 m from individual sampling points (range: 0 to 75 m). 
 

 

Vegetation cover within a 5 m radius of each sampling point was estimated in four height 

strata (ground: 0-0.5 m; understorey: 0.5-3 m; midstorey: 3-20 m, and canopy: above 20 m) 

and placed into one of five broad classes for each stratum (1: 0-25%; 2: 25-50%; 3: 50-75%, 

and 4: 75-100%). Canopy cover was quantified using a spherical densiometer (Lemmon 

1957), held at waist height and recorded as an average percentage across four measurements 

(one for each cardinal direction). Before analysis, this percentage was arcsine-transformed, 

owing to the strong negative skew apparent across all measurements. The intensity of habitat 

disturbance (“habitat score”) within a 5 m radius of each point was recorded on a 1 to 5 scale 

(definitions provided in Table S1), following a similar methodology to previous studies 

(Ewers et al. 2011; Cusack et al. 2015). Higher habitat scores represent more disturbed sites, 

and sites within the oil palm plantation crop itself were never scored below 4, though areas in 

the margins of plantations were sometimes assigned scores of 3. We also noted whether the 

sampling point was on a logging road or not, due to the strong influence these features have 
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on the occurrence of some species in our study sites (Wearn et al. 2013). Old logging roads, 

often following ridge-lines, were apparent due to their graded surface, the poor regeneration 

state of understorey vegetation, and the lack of canopy cover. Habitat scores and vegetation 

cover estimates were treated as ordered categorical variables during analysis. We also 

included in the analysis a 2
nd

-order polynomial term for habitat disturbance (“habitat score
2
”), 

due to the non-linear responses to this variable we have previously found for some species 

(Cusack et al. 2015).   

 

Table S1. Definition of habitat disturbance scale.  

Habitat score Definition 

1 Undisturbed forest. Dominated by old-growth dipterocarps. High, continuous 

canopy with sparsely-vegetated understorey. Unlogged, with little recent 

disturbance evident.  

2 Disturbed forest. Mostly pioneer tree species (typically Macaranga species), 

but some old-growth dipterocarp species may be present. Discontinuous 

canopy. Lower intensity of logging or natural disturbance. 

3 Heavily-disturbed forest. High scrub or dense understorey layer (typically 

with vines and Dinochloa climbing bamboo species), with a low, heavily-

broken canopy layer (< 20 m). Possibly some large isolated trees (> 20 m). 

Intensively-logged area or large gap disturbance.  

4 Herbaceous scrub. Dominated by herbs (typically Zingiberaceae), vines and 

shrubs, with no trees > 3 m in height (except oil palm Elaeis guineensis). 

Typically representing secondary re-growth from clear-felling, or large gaps 

due to landslides. 

5 Open area. Dominated by grasses and small shrubs (< 1 m in height). 

Typically on logging roads or old log landing areas. 

 

Quadrat-based variables were measured during the course of long-term vegetation monitoring 

using RAINFOR protocols (Malhi et al. 2002; Turner et al. 2012). This involved mapping, 

measuring and tagging all trees ≥ 10 cm diameter-at-breast height (DBH) inside each quadrat. 

Tree heights were estimated by field teams on the ground, and were not significantly different 

from model-based estimates obtained using DBH measurements (M. Pfeifer, unpublished 

data). We also included a 2
nd

-order polynomial term for DBH during the analysis. This was 

because we expected hump-shaped responses to this variable in at least some species, owing 

to the fact that the largest mean DBH values were observed within oil palm quadrats. Total 
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deadwood volumes in each quadrat were obtained by summing the volumes of all coarse 

woody debris pieces (≥ 10 cm diameter), including standing, hanging and fallen deadwood. 

Volumes of each piece were estimated using the formula for a truncated cone, following 

(Baker et al. 2007), which required measuring the diameter of each piece at both ends, as well 

as the length. For standing deadwood, the top-most diameter was estimated using the taper 

function (Chambers et al. 2000).  

 

S1. 2. Satellite-based measurement of environmental variables 

Topographical variables were all derived from the Advanced Spaceborne Thermal Emission 

and Reflection Radiometer Global Digital Elevation Model (DEM) version 2 

(https://lpdaac.usgs.gov), jointly developed by the Ministry of Economy, Trade and Industry 

of Japan and the United States National Aeronautics and Space Administration, and which 

was provided at 30 m horizontal resolution. We extracted elevation data from this DEM at 

our sampling points, applying bilinear interpolation. Slope was estimated as the maximum 

rate of change from each cell in the DEM and was calculated in degrees (taking values 

between 0 and 90). To calculate flow accumulation, we 1) created a depressionless DEM by 

filling in ‘sink’ artefacts in the data, 2) created a flow direction map from this corrected 

DEM, and then 3) for each cell, summed the number of upstream cells. Areas of zero or low 

flow accumulation represented ridges, whilst high flow accumulation areas represented 

gullies, stream heads, streams and rivers. For the purposes of analysis, we log-transformed 

flow accumulation, owing to the strong positive skew in the values, with rivers otherwise 

represented by very large values. All topographical variables were calculated in ArcMap 

version 10 (ESRI, Redlands, California, USA). During analysis, we also included 2
nd

-order 

polynomial terms for each topographical variable, owing to the non-linear, and possibly 

hump-shaped, species responses we expected for these variables.  
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Ground-based measurements of above-ground live tree biomass (AGB) were taken from all 

vegetation quadrats (n = 193) sampled across the SAFE Project, which amounts to intensive-

sampling of > 12 ha in total. AGB was calculated for each quadrat using Chave et al.'s (2014) 

pan-tropical algorithm. Spectral data were derived from sensors onboard the RapidEye 

satellite (European Space Agency Earth Observation Portal: https://earth.esa.int), which were 

provided at 5 m resolution. All pre-processing and atmospheric correction of the images, 

taken in 2012 and 2013, followed the steps outlined in Pfeifer et al. (2016). Within 20 m 

radius buffers centred on each quadrat, we extracted the spectral intensity values for each of 

the five bands present in the RapidEye images (blue, green, red, red-edge and near-infrared) 

and calculated a spectral vegetation index, the Modified Soil-Adjusted Vegetation Index 2 

(MSAVI2) from the red and near-infrared bands (Qi et al. 1994). Note, we did not take the red 

and near-infrared band spectral intensities forward into modelling, since these were used in 

the calculation of MSAVI2. We transformed MSAVI2 by taking its exponent, because of the 

saturating response observed at high levels of AGB. We also calculated a measure of image 

texture (dissimilarity), within 9 x 9 pixel moving windows, for each band. 58 quadrats were 

covered by cloud or cloud shadow in our images and were excluded. Using linear models of 

AGB as a function of each possible combination of the nine covariates (MSAVI2, three 

spectral intensity covariates and five dissimilarity covariates), we then obtained a candidate 

set of “best” models based on information-theoretic criteria (i.e. models for which ΔAICc < 

4) and calculated model-averaged estimates for each parameter (Table S2) based on the 

model selection weights in this set. The pseudo-R
2
 (explained deviance) of this final model 

was 0.53. 

 

Based on the model-averaged parameters, we made AGB predictions within 500 m, 1 km and 

2 km radius buffers surrounding each of our sampling points, at a resolution of 25 m
2
, which 
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matched the resolution of our ground-based measurements. Finally, we calculated the mean 

AGB (excluding cloud-covered pixels) within each buffer size. All steps in the analysis of 

AGB were done in R version 3.1.0 (R Development Core Team, 2014), using the packages 

raster 2.3-0 (Hijmans 2014), rgeos 0.3-8 (Bivand & Rundel 2014), glcm 1.2 (Zvoleff 2015) 

and MuMIn (Barton 2015).   

 

Table S2. Model-averaged parameter estimates for linear models of field-based above-

ground live tree biomass (AGB) measurements, as a function of satellite-derived measures of 

vegetation, spectral intensity and image texture.  

Parameter Estimate 

Standard 

error 

(adjusted) z-value p-value 

Relative 

variable 

importance
a
 

Intercept 145.03 38.21 3.80 < 0.001 - 

Band 2 (green) intensity -17.44 3.56 4.91 < 0.001 1 

Band 2 (green) 

dissimilarity 

20.99 5.92 3.55 < 0.001 1 

Band 4 (red-edge) 

intensity 

8.28 2.61 3.18 0.001 1 

exp(MSAVI2) -29.97 12.05 2.49 0.013 0.97 

Band 3 (red) dissimilarity 6.41 5.00 1.28 0.20 0.42 

Band 1 (blue) dissimilarity 5.69 5.11 1.12 0.27 0.34 

Band 5 (near-infrared) 

dissimilarity 

-1.15 1.34 0.86 0.39 0.31 

Band 4 (red-edge) 

dissimilarity 

-1.89 3.38 0.56 0.58 0.26 

Band 1 (blue) intensity -0.13 2.81 0.05 0.96 0.19 
a
Calculated as the sum of the AICc weights for the models in which the given parameter 

appears. 

 

AGB values across buffer sizes were highly correlated (Pearson’s r > 0.98), so we fitted 

redundancy analysis (RDA) models (with the vegan 2.0-10 package in R; Oksanen et al. 

2013) for each buffer size and used the buffer size explaining the largest share of the 

community variation (calculated using the adjusted coefficient of multiple determination, 

R
2

adj; Blanchet et al. 2008) in further analyses. This selected the buffer with a 500 m radius 

(R
2

adj = 11.1%), although there were not large differences in the variation explained by the 

different buffer sizes (1 km: 10.8 %; 2 km: 10.7 %).  
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In order to calculate landscape forest cover and distances from forest for each sampling point, 

we first created a digitised forest cover map in ArcMap using visual interpretation of 

RapidEye satellite images, in combination with cloud-free Landsat 7 and 8 images (30 m 

resolution) released by Hansen et al. (2013). We distinguished natural forest from mature oil 

palm and Acacia mangium plantations by observing the dynamics of vegetation gain and loss 

over multiple years (1999-2013), as well as using our detailed knowledge of the study sites, 

but it is possible that some older plantation areas may have been included in our forest cover 

map (if they were already > 5 m in height before the year 2000 and were not harvested after 

that time). Euclidean distances from forest were calculated in ArcMap and percentage forest 

cover was quantified in buffers with 500 m, 1 km and 2 km radii using the rgeos package in 

R. As for AGB, we fit RDA models for each of the buffer sizes and selected the radius which 

explained the largest percentage of the community variation. This resulted in the 500 m 

radius being chosen (R
2

adj = 6.2%), though similar percentage variances were explained by 

the other buffer sizes (1 km: 5.8%; 2 km: 5.3%).  
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