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We introduce the Generalised Lensing and Shear Spectra (GLASS) code which is available for
download from https://github.com/astro-informatics/GLaSS It is a fast and flexible public code, written
in PYTHON, that computes generalized spherical cosmic shear spectra. The commonly used tomographic
and spherical Bessel lensing spectra come as built-in run-mode options. GLaSS is integrated into the
COSMOSIS modular cosmological pipeline package. We outline several computational choices that
accelerate the computation of cosmic shear power spectra. Using GLASS, we test whether the
assumption that using the lensing and projection kernels for a spatially-flat universe—in a universe
with a small amount of spatial curvature—negligibly impacts the lensing spectrum. We refer to this
assumption as the spatially-flat universe approximation, that has been implicitly assumed in all cosmic
shear studies to date. We confirm that the spatially-flat universe approximation has a negligible impact
on Stage IV cosmic shear experiments.
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I. INTRODUCTION

The shape of distant galaxies is distorted by inhomoge-
neities in the gravitational field along the line of sight;
a phenomenon known as gravitational lensing. When the
distortion is small, as is most commonly the case, the
change in shape is a change in the size and ellipticity of
the observed image; known as shear. The gravitational
lensing caused by large-scale structure, and in particular the
two-point correlation function or power spectrum of this
effect, is called cosmic shear.
Experiments that measure cosmic shear are sensitive to

the physics of the late Universe, making them an ideal
probe to distinguish between models of dark energy
[1]. Stage IV weak lensing experiments, that include
Euclid1 [2], WFIRST2 [3], and LSST3 [4], will provide an
order of magnitude improvement in the precision and
accuracy of cosmological parameter estimation over
existing surveys [5].

To prepare for these upcoming experiments we must
prepare fast and accurate codes to compute the theoretical
cosmic shear power spectra for any cosmology. While
there are already publicly available tomographic lensing
codes that use the Limber approximation [6,7], there are
no other codes that can compute the cosmic shear power
spectra with an arbitrary weight function. It remains an
open question which weight-function optimally extracts
cosmological information, and we leave this for a future
work.
Also, before the arrival of Stage IV data, it is vital to test

the validity of all assumptions used in cosmic shear studies.
One of these approximations is that for the purposes of
computing the cosmic shear power spectra we can always
treat the Universe as spatially flat. This is an assumption
that has not been tested previously.
The structure of this paper is as follows. In Sec. II

we review the equations for the cosmic shear power
spectra and the effect of spatial-curvature on the lens-
ing kernel and projection kernel. In Sec. III we introduce
GLASS, which computes lensing spectra, and discuss
a few computational choices that we implemented to
speed up the computation of cosmic shear power spectra.
Finally in Sec. IV we demonstrate the speed of GLASS
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and discuss the impact of the spatially-flat universe
approximation.

II. FORMALISM

A. Generalized-spherical lensing spectra

The generalized spherical-transform is defined in [8]:

γlmðηÞ ¼
ffiffiffi
2

π

r X
g

γgðrg; θgÞWlðη; rgÞ2YlmðθgÞ; ð1Þ

where γ ∈ C is the shear, the sum is over all galaxies g with
angular coordinate θg and radial coordinate rg, Wl is a
weight and 2Ylm are the spin-2 spherical harmonics. The
cosmic shear power spectrum in this basis is

Cγγ
l ðη1; η2Þ ¼

9Ω2
mH4

0

16π4c4
ðlþ 2Þ!
ðl − 2Þ!

Z
dk
k2

Gγ
lðη1; kÞGγ

lðη2; kÞ;

ð2Þ

where Ωm is the fractional energy density of matter, c is the
speed of light in vacuum and H0 is the value of the Hubble
constant today. The G-matrix is

Gγ
lðη; kÞ≡

Z
dzpdz0nðzpÞpðz0jzpÞ

×Wlðη; r½z0�ÞUlðr½z0�; kÞ ð3Þ

where r½z� is the comoving distance at a redshift z and the
U-matrix is

Ulðr½z�; kÞ≡
Z

r

0

dr0
FKðr; r0Þ
aðr0Þ jlðkr0ÞP1=2ðk; r0Þ; ð4Þ

where a is the scale factor, jlðkrÞ are the spherical Bessel
functions and Pðk; rÞ is the power spectrum. The radial
distribution of galaxies is denoted by nðzÞ and pðzjz0Þ gives
the probability that a galaxy has a redshift z, given a
photometric redshift measurement z0. For a spatially-flat
cosmology the lensing kernel, FKðr; r0Þ, is

FKðr; r0Þ≡ r − r0

rr0
: ð5Þ

The power spectrum caused by the random ellipticity
component of galaxies, the shot noise spectrum, is given by:

Nee
l ðη1; η2Þ ¼

σ2e
2π2

Z
dznðzÞWlðη1; rÞWlðη2; rÞ; ð6Þ

where σ2e is the variance of the intrinsic (unlensed) elliptic-
ities of the observed galaxies. We take σe ¼ 0.3 through-
out [9].

Taking the weight-function, Wlðη; r½z�Þ≡ jlðηr½z�Þ in
Eqs. (3) and (6) yields the equations for ‘3D cosmic shear’
first proposed in [10]. To recover the “tomographic” cosmic
shear spectra, first proposed in [11], we take the weight
function, WI, as a top hat function in redshift only:

WIðzÞ≡
�
1 if z ∈ I

0 if z ∉ I;
ð7Þ

the tomographic bin associated with redshift region I.
Taking the Limber approximation [12], the U-matrix

becomes:

Ulðr; kÞ ¼
Fkðr; νðkÞÞ
kaðνðkÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2ðlþ 1=2Þ
r

P1=2ðk; νðkÞÞ; ð8Þ

where νðkÞ≡ lþ1=2
k . This is a good approximation

for l > 100 [13,14].

B. The lensing kernel for Ωk ≠ 0

In a spatially-curved universe, the expression for the
lensing kernel in Eq. (5) must be replaced by the more
general expression:

FKðr; r0Þ≡ fkðr − r0Þ
fkðrÞfkðr0Þ

; ð9Þ

where fkðrÞ is the comoving angular distance [15]. This is
given by:

fKðrÞ≡

8>><
>>:

K−1=2 sin ðK1=2rÞ if K > 0

r if K ¼ 0:

ð−KÞ−1=2 sinh ðð−KÞ1=2rÞ if K < 0:

ð10Þ

where the curvature, K, is defined as K ≡ −ðH0=cÞ2Ωk,
and Ωk is the spatial curvature density today.

C. The projection kernel for Ωk ≠ 0

In a spatially-flat universe, the gravitational potential at a
time labeled by the redshift z, Φðr; zÞ, is related to the
underlying density field, δðr; zÞ, by the Poisson equation:

∇2
rΦðr; zÞ ¼ 3ΩmH2

0

2aðtÞ δðr; zÞ; ð11Þ

where ∇2
r is the Laplacian associated with a spatially-flat

universe.
The potential,Φðr; zÞ, in the observer’s frame is given in a

coordinate system defined by two angles on the sky and a
radial distance denoted by ðr; θ;ϕÞ. Meanwhile the density
field is in rectilinear coordinates. To relate the two, and hence
find the lensing spectra in terms of the matter power
spectrum, we expand the potential in spherical Bessel space:
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ΦlmðkÞ ¼
ffiffiffi
2

π

r Z
d3rΦðrÞjlðkrÞYlmðθ;ϕÞ; ð12Þ

where jlðkrÞ are spherical Bessel functions and Ylmðθ;ϕÞ
are spherical harmonics. Then since spherical harmonics and
spherical Bessel functions are eigenfunctions of the Laplace
operator, we have:

ð∇2
r þ k2ÞjlðkrÞYlmðθ;ϕÞ ¼ 0; ð13Þ

and from Eq. (11) the lensing potential is related to the
density field in harmonic space by:

Φlmðk; zÞ ¼ −
3ΩmH2

0

2k2aðtÞ δlmðk; zÞ: ð14Þ

From this it is possible to derive the expression for the cosmic
shear power spectrum. Since Bessel functions relate the
lensing potential in rectilinear coordinates to a projected
shear signal on the sky, we refer to jlðkrÞ as the projection
kernel. In the final expression for the cosmic shear power
spectra, the projection kernel is found in the U-matrix (see
[16] for a full derivation).
Meanwhile in a spatially-curved universe, we must take

the Laplacian associated with the curved Robertson-Walker
metric [17] in Eq. (11). Hence the projection kernel must
change too. In particular spherical Bessel functions must be
replaced by hyperspherical Bessel functions, Φβ

l ðrÞ,
because they are eigenfunctions of the Laplace operator
in a spatially-curved cosmology. That is

ð∇2
SKð χÞ þ ðckÞ2ÞΦβ

lðχÞYlmðθ;ϕÞ ¼ 0; ð15Þ

where β≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðckÞ2 þ K

p
, χ ¼ r=c and

SKðχÞ≡
8<
:

sin χ if K > 0

χ if K ¼ 0

sinh χ if K < 0:

ð16Þ

Following the same argument used in the spatially-flat
case, we find the hyperspherical Bessel functions enter the
U-matrix, in place of the normal spherical Bessel functions,
as the projection kernel.
The Limber approximation also has to be generalized to

spatially-curved cosmologies [18]. In this case the Limber-
approximated U-matrix becomes:

Ulðr; kÞ ¼
�
1 − K̂

l2

β2

�−1
4

Uflat
l ðr; kÞ; ð17Þ

where K̂ is the sign of the curvature K, and Uflat
l ðr; kÞ is the

Limber approximated U-matrix for a spatially-flat universe
defined in Eq. (8).

III. THE GLASS CODE

We now describe the GLASS code that can compute all
the power spectra previously described.

A. Description and run options

GLASS is a flexible code written in PYTHON and it is
fully integrated into the COSMOSIS modular cosmological
pipeline [7]. The code is provided with PYTHON wrappers
and cosmological information can be read directly from the
COSMOSIS pipeline or from an external source.
There are numerous run-mode options. The user can

choose between several weights. These include: the top
hats associated with tomographic binning with an equal
number of galaxies per bin or equally spaced tomographic
bins in redshift, the spherical Bessel weight, or a custom-
ized weight provided by the user. The number of tomo-
graphic bins can also be varied. The user can specify which
l-modes to sample over a prescribed redshift range. The
package is distributed with default functional forms for the
radial distribution of galaxies, nðzÞ, and photometric red-
shift error pðzjz0Þ. These are:

pðzjzpÞ≡ 1

2πσzðzpÞ
e
−ðz−ccalzpþzbiasÞ2

2σzp ; ð18Þ

with ccal ¼ 1, zbias ¼ 0 and σzp ¼ Að1þ zpÞ, with default
value is A ¼ 0.05 [19] and

nðzpÞ ∝
a1
c1

e
−ðz−0.7Þ2

b2
1 þ e

−ðz−1.2Þ2
d2
1 ; ð19Þ

with default values ða1=c1; b1; d1Þ ¼ ð1.5=0.2; 0.32; 0.46Þ
[20]. It is possible for the user to provide custom functional
forms too.
The Limber approximation can be turned on or off. Since

the Limber approximation is less accurate at low-l [13], it
can be turned on for any chosen l > lLim, for a specified
value of lLim.
Finally it is possible to independently turn the spatially-

curved lensing kernel and projection kernel approximations
on or off; however later we show these approximations
have negligible impact. Hyperspherical Bessel functions
are computed with a PYTHON wrapper that calls CLASS
[21]. Details about the implementation of the hyperspher-
ical Bessel functions in CLASS are given in ([18,22]).
GLASS has been compared to the spherical Bessel code

used in [23] and gives very similar output when using the
spherical Bessel weight (Spurio Mancini et al. in prep).

B. Computational choices

Several numerical choices have been implemented in
GLASS to reduce the computation time.
Values of the Bessel functions, jlðxÞ, are computed just

once and stored in a 2D look up table in l and x. The values
of jlðkrÞ, can then be found as needed. We sample

TESTING THE COSMIC SHEAR SPATIALLY-FLAT … PHYS. REV. D 98, 023522 (2018)

023522-3



sufficiently densely in x so that final lensing spectra is not
affected above machine precision. Compressing the data in
this way reduces memory requirements and was used
before in [17,24]. In the hyperspherical case, it is not
possible to compress the data to a 2D-array. In this case the
hyperspherical Bessel functions are computed on the fly,
slowing down the total computation time.
Even though the Bessel functions need only be com-

puted once, the computation of these has also been
optimized in GLASS. For a given argument x, GLASS
computes and stores all jlðxÞ for all l-modes simulta-
neously using Miller’s algorithm which is based on
recurrence relations and implemented in the GNU
Scientific Library [25], and called using CTYPESGSL. If
the maximum l is too high, Miller’s algorithm suffers from
underflow. GLASS avoids this by first sparsely sampling
the x-range to determine a maximum lmaxðxÞ, for each x,
which is defined as the l-value past which the Bessel
functions fall below machine precision. GLASS sets
jlðxÞ ¼ 0 for all l > lmaxðxÞ.
As the Bessel functions are precomputed, the majority of

the computation time is taken by evaluating the nested
integrals in Eqs. (1)–(4). In GLASS all these are evaluated
using matrix multiplications on a grid in r and k. For
example the U-matrix can be written as a matrix multipli-
cation given by:

Ulðr; kÞ ≈
X
r0
Aðr; r0ÞBðr0; kÞ; ð20Þ

Aðr; r0Þ≡ Δr0 FKðr;r0Þ
aðr0Þ , whereΔr0 is the spacing of the grid in

r0 and Bðr; r0Þ≡ jlðkr0ÞP1=2ðk; r0Þ.
All matrix multiplications in GLASS are implemented

using the numpy.dot function. This is one of the few
functions that releases the Global Interpreter Lock in
PYTHON, so the matrix multiplications are parallelized
when numpy is linked to a linear algebra library such
as BLAS (Basic Linear Algebra Subprograms), Math
Kernel Library (MKL) or Apple Accelerate. There are also
MPI run-mode options for the Monte Carlo samplers in
COSMOSIS, which can be used to further distribute the
workload over multiple cores.
The final speed improvements come from making the

Limber approximation. Since the Bessel functions oscillate
quickly, particularly for high-l, making the Limber
approximation reduces the size of the computation grid
needed to accurately evaluate the U-matrix. Meanwhile
GLASS can simultaneously turn the Limber approximation
off at low-l so that accuracy is not lost at these large
angular scales where the Limber approximation is invalid.

IV. RESULTS

We now present results on the GLASS computational
scaling, and the impact of the spatially-flat universe

approximation. In what follows we assume a 15,000 square
degrees survey with 30 galaxies per arcmin2 as predicted for
the Euclid wide-field survey.

A. GLASS module timing

We now present the results of several speed tests using
GLASS. All results cited are for 10-bin tomography with an
equal number of galaxies per bin sampling 50l-modes
below lmax ¼ 3000 on a single 2.7 GHz Intel i5 Core on a
2015 Macbook Pro with 8 GB of RAM.
It takes 28 seconds to compute all the Bessel function

data, but this must only ever be computed once. This shows
how vital it is to precompute the Bessel data.
The nested integral and hence the lensing spectra are

computed on an N × N grid, where N is the number of
linearly sampled points in z and logarithmically sampled
points in k. We plot the computation time as a function of
grid resolution, N, in Fig. 1. For N < 300, it takes less than
a second to compute the lensing spectra when the Limber
approximation is assumed for l > 100.
As the resolution is increased beyond N ¼ 600, the

computation time, t, follows the power law t ∝ N2.87. This
reflects the fact that the computation time becomes domi-
nated by the nested matrix multiplications. Naively matrix
multiplications scale as OðN3Þ because all N2 elements of
the first matrix must be multiplied by N elements in the
second matrix. Our code does slightly better and scales as
OðN2.87Þ because it uses the highly optimized numpy.dot
routine.
It was shown in [8] that a resolution of N ¼ 400 is

sufficient to capture nearly all the lensing kernel and

FIG. 1. Time to compute 50l-modes in GLASS against grid
resolution N (i.e., number of tomographic bins, or k-modes in 3D
cosmic shear) on a single 2.7 GHz Intel i5 Core. Spectra for
resolutions up to N ¼ 400 can all be computed in less than 1.5s.
This is a sufficient resolution to evaluate the tomographic cosmic
shear power spectra and recover all information from the 3D
shear field [8]. At high-l, the computation time, t, is dominated
by the matrix multiplications and hence scales as t ∝ N2.87.
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power spectrum information. Meanwhile a resolution of
N ¼ 2000 is required to capture 80% of the information
when using the spherical Bessel weight and an extremely
high resolution of N ¼ 5000 is needed to capture 97% of
the information for this choice of weight [8].

B. Impact of the flat universe approximation
on lensing spectra

We compute the cosmic shear power spectra for a flat
fiducial cosmology with: ðΩm;Ωk;Ωb; h0; ns; As; τÞ ¼
ð0.315; 0.0; 0.04; 0.67; 0.96; 2.1 × 109; 0.08Þ. The linear
power spectrum is generated using CAMB [26] and the
non-linear part is generated using HALOFIT [27]. The
Limber approximation is assumed for l > 100. The result-
ing cross-correlated lensing power spectrum between the
highest redshift bins is shown at the top of Fig. 2.
For jΩkj ¼ 0.08, which is the expected 1σ constrain for a

Euclid-like experiment [28], we have computed the lensing
spectra inside the same bin using spatially-flat lensing and
projection kernels (FP-FL). The same lensing spectra
using: a spatially-curved projection kernel and spatially -
flat lensing kernel (CP-FL), spatially-flat projection kernel
and spatially-curved lensing kernel (FP-CL), and spatially-
curved projection and lensing kernels (CP-CL) are com-
puted. The relative difference, ΔCðlÞ=CðlÞ, between the
FP-FL spectrum and the others is shown in the bottom two
panels of Fig. 2. When the spatially-curved projection
kernel is used, we employ the modified Limber approxi-
mation defined in (17) for l > 100.4

The sample variance for a Euclid-like survey is also
shown in Fig. 2 and is given by:

ΔCðlÞ=CðlÞ ¼
ffiffiffi
2

p
½fskyð2lþ 1Þ�−1=2; ð21Þ

where fsky is the fraction of the sky observed by the
survey [29].
In all cases we find that the relative difference between the

spectra computed using the spatially-flat projection and
lensing kernels are smaller than the sample variance, up to
l ¼ 3000. This is true for the cross-correlation between all
tomographic bins. Since themajority of the information from
upcoming cosmic shear studies will be extracted from l-
modes below l ¼ 3000 [8], and the impact of changing the
projection and lensing kernel is subdominant to the sample
variance at these scales, it is safe to make the spatially-flat
universe approximation for stage IV experiments.
Testing the impact of the spatially-flat universe approxi-

mation with jΩkj ¼ 0.08 was an extremely conservative
choice. The 2015 Planck 2σ multiprobe constrain

FIG. 2. Top: The cross-correlated lensing spectrum, Cl, be-
tween tomographic bins 9 and 10, using the spatially-flat kernels.
Middle: Relative change in Cl for different kernels with
Ωk ¼ −0.08. The fiducial spectrum, Cl, uses the spatially-flat
kernels. CP, FP, CL and FL respectively denote when the
spatially-curved projection kernel, spatially-flat projection ker-
nel, spatially-curved lensing kernel, and spatially-curved lensing
kernel, are used. The sample variance for Euclid-like (ECV) and
the cosmic variance for a theoretical all sky survey (ASCV) are
also shown. The relative change in Cl is smaller than the sample
variance for a Euclid-like survey for all l < 3000. Bottom: Same
as the middle figure, but with Ωk ¼ 0.08.

4Since the modified Limber approximation in Eq. (17) im-
proves at larger l [18], if the relative change in C100 due to this
approximation is smaller than the samples variance at the largest
l-mode considered, it is negligible across all l-modes. We have
verified that this is the case.
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place jΩkj < 0.005 [30].Wehave computed the impact of the
spatially-flat universe approximation in this casewith jΩkj ¼
0.005 and found that relative difference, ΔCðlÞ=CðlÞ,
between the CP-CL and FP-FL falls a further order of
magnitude from the jΩkj ¼ 0.08 case shown in Fig. 2.

V. CONCLUSION

We have presented the GLASS code that computes
generalized cosmic shear power spectra. Spherical Bessel
and tomographic lensing spectra with an equal number of
galaxies per bin and equal redshift run-mode options are
available. More generally GLASS is capable of computing
the lensing spectra with any data weighting. This should
prove useful for determining the optimal weight for shear
data in upcoming surveys.
GLASS is fast. Using the Limber approximation, GLASS

can compute a 10-bin tomographic lensing spectra for a
single cosmology, sampling 50l-modes, in less than 0.4s.

For Stage IVexperiments where the Limber approximation
must be dropped below l < 100, the same spectra is
computed in 1.3s.
Using GLASS we have tested the spatially-flat universe

approximation, which is implicitly assumed in all cosmic
shear studies to date. We find this is an accurate approxi-
mation and it is unnecessary to compute the full expression
for upcoming surveys.
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