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Abstract

We study the role of limited commitment in a standard auction environment. In
each period, the seller can commit to an auction with a reserve price but not to future
reserve prices. We characterize the set of equilibrium profits attainable for the seller
as the period length vanishes. An immediate sale by efficient auction is optimal when
there are at least three buyers. For many natural distributions two buyers is enough.
Otherwise, we give conditions under which the maximal profit is attained through

continuously declining reserve prices.

Auction theory has found many applications ranging from private and public procurement
to takeover bidding and electronic commerce. The vast majority of prior work on revenue
maximizing auctions has as its starting point the celebrated work of Myerson (1981) and
Riley and Samuelson (1981). Under a regularity condition, the optimal auction format is a

standard auction (e.g., a second-price auction or a first-price auction) with a reserve price.
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Consequently, a revenue-maximizing auction prescribes an inefficient exclusion of some low-
valued buyers.

To implement the optimal auction, it is crucial that the seller can commit to permanently
withholding an unsold object off the market. If no buyers bid above the reserve price, the
seller has to stop auctioning the object even though there is common knowledge of unrealized
gains from trade. This assumption, however, is not entirely satisfactory in many applications.
For example, in the sale of art and antiques, real estate, and automobiles, aborted auctions
are common. If an auction fails, the object is still available and can be sold in the future.
Indeed, unsold objects are often re-auctioned or offered for sale later, at a price below the
previous reserve price. As such, understanding the role of commitment in an auction setting
is of both practical and theoretical relevance. We aim to clarify whether reserve prices can
be used to increase profits if the seller cannot credibly rule out having auctions with lower
reserve prices in the future.

We consider the classic auction model with one seller, a single indivisible object, and
multiple buyers whose values are drawn independently from a common distribution. Different
from the classic auction model, if the object is not sold on previous occasions, the seller can
sell it again with no predetermined deadline. In each time period until the object is sold,
the seller posts a reserve price and holds a second-price auction.! Each buyer can either
wait for a future auction or submit a bid no smaller than the reserve price. Waiting is
costly—both the buyers and the seller discount at the same rate. Within a period, the seller
is committed to the rules of the auction and the announced reserve price. The seller cannot,
however, commit to future reserve prices. The seller’s commitment power varies with the
period length (or effectively with the discount factor). If the period length is infinite, the
seller has full commitment power. As the period length shrinks, the seller’s commitment
power diminishes. Within this framework, we analyze the continuous-time limit at which
the seller’s commitment power vanishes.

The role of commitment has been studied in the durable goods monopoly and Coasian
bargaining literature; see, e.g., Coase (1972), Fudenberg, Levine and Tirole (1985) and Gul,
Sonnenschein and Wilson (1986). Our model can be viewed as a Coasian bargaining model
with multiple buyers. The central question raised by Coase is whether the inability to
commit robs the seller of her monopoly power so that she is forced to behave competitively.
In the Coasian bargaining literature, the answer is yes, if we restrict attention to stationary

equilibria, confirming Coase’s conjecture; without this restriction, however, the seller can

I Allowing the seller to choose between standard auctions will not change our analysis and results.



retain her monopoly power and achieve approximately the monopoly profit (Ausubel and
Deneckere, 1989). We show that the results with multiple buyers are qualitatively different;
for example, the full commitment profit (Myerson, 1981) cannot be achieved under limited
commitment.

Our main result is that an immediate sale by an efficient auction maximizes revenue if
there are three or more buyers. For many natural distributions two buyers is enough. In an
efficient auction, the seller sets a reserve price equal to her reservation value. In other words,
it is not beneficial for the seller to set reserve prices strictly above her reservation value if
there are more than two buyers. This result shows that a modest level of buyer competition
would induce the seller to surrender her monopoly power completely—in stark contrast to
the Coasian bargaining problem. The intuition for this result will be discussed in detail in
the next section.

With two buyers and for some distributions, the seller may not behave competitively and
an immediate sale by an efficient auction is not revenue-maximizing. The equilibrium reserve
prices, however, are still constrained by the seller’s lack of commitment, and must decrease
over time and eventually converge to the competitive level. If the monopoly profit function
associated with the value distribution is concave, the optimal limit outcome is described by
an ordinary differential equation, which allows us to characterize the exact maximal revenue
and show that it can be attained through an initial auction with a strictly positive reserve
price followed by a sequence of continuously declining reserve prices.

Finally, we extend the model to allow for an uncertain number of buyers and explain why
an efficient auction may not be optimal. If the uncertainty is small, however, an immediate
sale by and efficient auction is approximately optimal.

The key idea we employ is to translate the limited-commitment problem into an auxil-
iary mechanism design problem with full commitment, but with a crucial extra constraint
intended to capture limited commitment. In the original limited-commitment problem, at
any stage of the game, the seller can always run an efficient auction to end the game, so
her continuation value in any equilibrium must be bounded below by the payoff from an
efficient auction for the corresponding posterior belief. We impose the same bound as a
constraint in the full commitment problem.” The value of the auxiliary problem provides an
upper bound for the equilibrium payoffs in the original game (in the continuous-time limit).

We proceed to solve the auxiliary problem and show that its value and its solution can be

2For a given auxiliary mechanism, the seller knows exactly which set of types are left at each moment
in time, if the mechanism is carried out. Consequently, she can compute the posterior beliefs as well as her
continuation payoff from the given mechanism.



approximated by a sequence of equilibrium outcomes of the original game. Therefore, the
value of the auxiliary problem is precisely the maximal attainable equilibrium payoff in our
original problem, and the solution to the auxiliary problem is precisely the limiting selling

strategy that attains this maximal payoff.

Related Literature

The Coasian bargaining model with a single buyer is a special case of our setup. Coase
(1972) argues that a price-setting monopolist completely loses her monopoly power and
prices drop quickly to her marginal cost if she can revise prices frequently. Fudenberg,
Levine and Tirole (1985) and Gul, Sonnenschein and Wilson (1986) confirm that every
stationary equilibrium—stationary in the sense that the buyer’s equilibrium strategy can only
condition on the current price offer—satisfies the Coase conjecture. Ausubel and Deneckere
(1989) show that, if there is “no gap” between the seller’s reservation value and minimum
valuation of the buyer, there is a continuum of non-stationary “reputational equilibria” in
addition to the stationary Coasian equilibria. In these reputational equilibria, the price
sequence posted by the seller may start with some arbitrary price which decreases over
time, and any deviation from the equilibrium price path by the seller is deterred by the
threat to switch to a low-profit Coasian equilibrium path. In the limit as the period length
diminishes, these trigger-strategy equilibria allow the seller to achieve any profit between
zero and the monopoly profit.> In contrast, if there is a “gap” so that the seller’s reservation
value is strictly below the lowest buyer valuation, as is the case in Fudenberg, Levine and
Tirole (1985), the game has essentially a finite horizon. All equilibria are stationary, so it is
impossible to construct trigger-strategy equilibria and achieve a profit strictly higher than
what is attained in Coasian equilibria.

Our auction framework was first introduced by Milgrom (1987) and subsequently studied
by McAfee and Vincent (1997). These papers restrict attention to stationary equilibria—
explicitly by assumption in Milgrom (1987), and implicitly in McAfee and Vincent (1997)
by focusing on the gap case. As in the bargaining model, stationarity implies that the seller
behaves competitively as the period length converges to zero.

As in Ausubel and Deneckere (1989), we drop the stationarity restriction and look for
the highest profit attainable for the seller among all possible equilibria. A natural idea is

to replicate Ausubel and Deneckere’s (1989) trigger strategy equilibrium construction with

3Wolitzky (2010) analyzes a Coasian bargaining model in which the seller cannot commit to delivery. In
his model, the full commitment profit is achievable even in discrete time because there is always a no-trade
equilibrium which yields zero profit.



the stationary equilibrium as off-path punishment. With one buyer, Ausubel and Deneckere
(1989) are able to attain the full commitment profit in the limit because off-path punishment
is very harsh as a stationary equilibrium yields zero profit for the seller. In contrast, with
multiple buyers, the only known target—the full commitment profit—is not attainable.* In
order to attain the full commitment profit, the seller would have to maintain a constant
reserve price above her reservation value (Myerson, 1981). Once the initial auction fails,
keeping the reserve price constant yields a continuation profit of zero. The seller can deviate
and end the game by running an efficient auction which yields a positive profit.

Hence, different from Ausubel and Deneckere (1989), we first have to characterize the
maximal profit attainable among all equilibria and investigate whether strategies more com-
plicated than the simple trigger strategy can yield a higher profit. Therefore, our main
methodological contribution is to define and solve an auxiliary mechanism design problem
that characterizes the maximal profit and provides a candidate solution to the original prob-
lem.

Several other papers have analyzed auctions or mechanism design with limited commit-
ment. Skreta (2006, 2016) considers a general mechanism design framework but assumes a
finite horizon. She shows that the optimal mechanism is a sequence of standard auctions
with reserve prices.” In contrast, we restrict attention to auction mechanisms in each period
and characterize the full set of equilibrium profits as the commitment power vanishes.

An alternative approach to modeling limited commitment is to assume that the seller
cannot commit to trading rules even for the present period. McAdams and Schwarz (2007)
consider an extensive form game in which the seller can solicit multiple rounds of offers from
buyers. In Vartiainen (2013), a mechanism is a pure communication device that permits the
seller to receive messages from buyers. Akbarpour and Li (2018) ask which mechanisms are
credible in the sense that they are immune to manipulations of the extensive form of the
mechanism. In contrast to all these papers, we posit that the seller cannot renege on the
agreed terms of the trade in the current period. For example, this might be enforced by the
legal environment.

The paper is organized as follows. In the next section, we present a heuristic example that
illustrates the intuition behind our main result. Section 2 formally introduces the model.

Section 3 states the results. Section 4 presents our methodological approach. Section 5

4McAfee and Vincent (1997) have discussed this issue (p. 248) and suggested that trigger-strategy equi-
libria are less likely to exist if there is more than one buyer.

®Horner and Samuelson (2011) and Chen (2012) analyze the dynamics of posted prices under limited
commitment in a finite horizon model. They assume that the winner is selected randomly when multiple
buyers accept the posted price.



presents the extension to an unknown number of buyers. In Section 6 we comment on
alternative modeling assumptions. Unless noted otherwise, proofs can be found in Appendix

A. Omitted proofs can be found in the Supplemental Material.

1 A Heuristic Example

We use a simple example to illustrate the intuition behind our main result. In particular, we
investigate the (im)possibility of constructing a particular class of equilibria in continuous
time that can achieve a higher profit than an efficient auction.

Consider n buyers whose values are uniformly distributed on [0,1]. On the equilibrium
path the seller posts a reserve price p; for t > 0; a buyer bids his true value at t if his value v
is above a cutoff vy, so v; is the highest type remaining at time ¢. Following any deviation by
the seller from p, at time ¢, the continuation equilibrium is payoff equivalent to an efficient

auction without reserve price,® and the seller’s profit is’

Deviations by buyers are undetectable and thus ignored. Note that, given the cutoff strategy
and the uniform prior, the seller’s posterior at any history is again uniform. Therefore, it
is natural to consider equilibria where the seller chooses a price path p; that declines at a

constant rate a > 0, that is p; = ppe~* for some py > 0.

The Buyers’ Incentives Consider the cutoff type v; at ¢ > 0. This buyer type must be
indifferent between buying at p;, and waiting for a period of length dt to accept a lower
price p;iq;- The latter leads to discounting and exposes him to the risk of losing if one of
his opponents has a valuation between v, 4, and v;. Therefore, the indifference condition for
dt — 0 is: .

o= =02 | - o), B
where r > 0 is the discount rate. On the left-hand side, —p,dt is the gain from a lower price.
On the right-hand side —rdt (v, — p;) is the loss due to discounting and (n — 1)%dt (ve — pt)

is the expected loss from losing against an opponent.

6In the one-buyer case, this off-path outcome is obtained by the continuous time limit of Coasian equilibria.
With multiple buyers, the profit of Coasian equilibria converges to II¥ even if the initial reserve price does
not converge to zero (see McAfee and Vincent, 1997, p. 251).

"This is the expected value of the second order-statistic of n uniform random variables on [0, vy].
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Inserting p; = poe~* in the indifference condition (1) we obtain

(n—1)+r/a

ntrja and  v; = voe . (2)

Do = pvo, pP=
The initial reserve price py may be low enough so that a mass of buyer types [vg, 1] place
valid bids at t = 0. After this, the price is lowered smoothly, and the probability that two
buyers bid in the same auction is zero. Absent competition in the same auction, a winner

of an auction at any time t > 0 will therefore just pay the current reserve price p;.

The Seller’s Incentives For the seller to follow the equilibrium price path p;, we need to
ensure that the seller’s continuation profit at each ¢ > 0 is not lower than the profit following

a deviation, I1¥(v;). This condition is given by,

> —r(s—t) n (,US)"*1 . n—1
e Ps——— (—0s) ds > V. (3)
¢

The left-hand side is the expected present value of the seller’s profit at ¢ > 0 on the presumed
equilibrium path: at each moment s > ¢, the transaction price is p if the cutoff buyer v,
bids; the cutoff type has a conditional density n (vs)n_1 / (vy)" (i-e., the density of the highest
value of the buyers) and the cutoff changes with the speed —us.

Substituting (2) into (3), we obtain

n—14r/a n n—1 n
n+r/a x n+1+r/avt - n A R (4)
Vv - ~" 4 vV
seller’s share p screening surplus S seller’s share p¥ efficient surplus S¥

The first term (p) on the left-hand side is the seller’s share of the surplus. As a — oo, p
converges to pZ, the seller’s share in the efficient auction. The second term (S) is the total
surplus generated from active screening through a price path that declines at rate a.® As

a — 00, S converges to ST, the efficient surplus.

Cost and Benefit of Screening Relative to an Efficient Auction Our main interest is
to understand when the seller can attain a higher profit from active screening (i.e., a < o0)

than from the efficient auction (i.e., @ = o0), that is, when it is possible to construct an

8To understand the formula for S, imagine that the sale event arrives at Poisson rate na since there are
n buyers using the cutoff v, = v,e=%5=% for s > t. In addition, the surplus generated from a sale declines
at rate a + r because it is discounted at rate r and the marginal type declines at rate a. Together this yields

expected discounted surplus: [, anve= (=0~ (rta)ls=tgs = TToTa vt



equilibrium that yields a higher profit than an efficient auction. The relative magnitude of
the four terms in (4) nicely illustrates the cost and benefit associated with active screening
relative to an efficient auction. The cost of screening is the surplus destroyed due to delayed

trading, S — S¥ < 0, an efficiency loss shared between the seller and the buyers. To a first-

order approximation the cost for the seller is (S — S¥)pFf ~ —2=L “v;. On the other hand,

(n+1)*
the seller may benefit from screening because she can extract a larger share of the surplus,
p > pP. This gain can be approximated by (p — p¥)SE ~ (n—l—ll)ngvt'g

1
(n+1)n -
ﬁ > 0, which is equivalent to n < v/2 + 1. Thus, if there are three or more buyers,

active screening is less profitable for the seller than the efficient auction. The reverse is true

The net gain from screening relative to the efficient auction, is strictly positive if

if there are only two buyers. Theorem 2 proves that this observation holds for a large class

of distributions and without making any restrictions on the class of equilibrium price paths.

Summary of the Intuition We have illustrated the trade-off between allocation efficiency
and rent extraction faced by the seller. How this trade-off is optimally resolved depends on
the number of buyers. With a small number of buyers, the seller’s share of the surplus
is relatively low due to lack of competition. As a result, her share of the efficiency cost
of screening is relatively low but she may benefit a lot from screening through higher rent
extraction. By contrast, if the number of buyers is high, the seller already extracts a high
share of the surplus through buyer competition. Therefore, a larger fraction of the efficiency
loss from screening has to be assumed by the seller, but at the same time there is less room
for her to benefit from screening. As the number of buyers increases, the cost of screening
will start to dominate the benefit of screening, so the seller will screen buyers only if their

number is low.

Maximal Equilibrium Revenue We have explained that an equilibrium with active
screening can be constructed only when there are less than three buyers. With two buyers,

the constraint (4) is
1+7r/a 2

1
2+r/a 3 +rfa =3
This constraint is binding if r/a € {0, 1}, and slack if r/a € (0,1). Hence for vy € [0, 1] and

r/a € [0,1], (2) describes an equilibrium. Which of these equilibria maximizes the seller’s

>

9To be more precise, we can write S and p as functions of r/a with S¥ = S(0) and p¥ = p(0). The
Taylor approximation at r/a = 0 yields S(r/a)p(r/a) — SEpE ~ S'(0)(r/a)p? + SEp(0)(r/a). The first

term, S’(0)(r/a)p? = 7(7;:11)2 Ly, is the approximation of the cost (S — S¥)p¥; and the second term,

SEp(0)(r/a) = S"(0)(r/a)p® + SEp(0)(r/a), is the approximation of the benefit (p — p¥)SF.




revenue?

We will argue below that for any price path that leaves the constraint slack, there exists a
price path with r/a = 1 that yields higher revenue. Hence we can set r/a = 1 and maximize
over vy. The expected profit for the seller is given by

21)0 (1 — 'Uo) Po + (1 — U0)2 (Uo + L _31)0) + (’U())2 HE(U()). (5)

N J/ N J/
- -

expected revenue from the initial auction at t=0 continuation value

The initial auction yields a revenue of py if a single buyer has a valuation above the cutoff v,

(with probability 2vg (1 — vg)). If both buyers bid in the initial auction, the revenue is the

expectation of the lower valuation which is vy + 152 (with probability (1 — vo)?). If none of

the buyers places a bid at ¢ = 0, the binding incentive constraint implies that the expected

revenue from future sales is equal to I1”(v,) (with the remaining probability (vg)?).
Maximizing the profit (5) yields vy = 2/3. Together with r/a = 1 we obtain:

4 2
Dy = 56_” and v, = 56_”.

The maximal equilibrium profit, is % ~ 0.38. It is higher than the profit from the efficient

auction (% ~ 0.33) and lower than the profit from the optimal auction with commitment

(% ~ 0.42).
Binding Incentive Constraint for the Seller To see why the seller’s revenue is highest

when her incentive constraint is binding, we write the seller’s profit as

[I(vg,a) = n/o J(v)f(v)Q(v)dv

1—F(v)
f)
expected discounted trading probability of a buyer with valuation v, who trades at time

T(v)."" We use F(v) and f(v) to denote the distribution function and the density of the

buyers’ valuations.

where J(v) = v — is the virtual valuation and Q(v) = (F(v))™ e T is the

We now argue that the seller’s incentive constraint must bind, because otherwise we
can modify the solution in a way that some high types trade earlier and low types trade

later, which increases the seller’s profit for distributions with a concave monopoly profit

10Jf v > vy the trading time is T'(v) = 0. Otherwise, T'(v) is given by vp(,) = v. Using vp(,) = voe "T®),

we get yields T(v) = (1/a) In(vo/v) and Q(v) = (F(v)) ™" (v/vg) /).
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Figure 1: Improving profits through mean preserving spreads in trading times. (Parameters:
(vo,a) = (1,4), (vg,a) = (.462,1), r =1.)

v(l — F(v)). Consider a pair (v, a) for which the seller’s incentive constraint is slack, i.e.,
r/a < 1. See Panel (a) in Figure 1 for an illustration. We decrease a to @ = r so that the
incentive constraint becomes binding. At the same time we choose 7y < vy so that buyers
with high types trade earlier and buyers with low types trade later. Specifically, we choose

1 so that the following condition holds:

[ @ = [ e ©)

Note that (6) implies that Q(v) is a mean-preserving spread of @(v) We now argue that
this implies that @ yields a higher profit for the seller. Using integration by parts, we can

rewrite the seller’s profit as follows:

Twm®=nl(W@%%l—HMDMWMZnA@ﬂ—Fwwww>

For the uniform distribution, v(1 — F(v)) = v(1 — v) is concave. Since Q(v) is a mean-

preserving spread of @(U) this implies that
H(Uo, CL) < H(QA)Q, d)

Therefore, the alternative pair (0g, a) yields a higher profit for the seller.

10



2 Model

We consider the standard auction environment where a seller wants to sell an indivisible
object to n > 2 potential buyers. Buyer ¢ privately observes his own valuation for the object
v’ € [0,1]. Bach v® is drawn independently from a common distribution with c.d.f. F (-),
and a twice continuously differentiable density f () such that f(v) > 0 for all v € (0,1).
The highest order statistic of the n valuations (v',...,v") is denoted by v its c.d.f. by
F® and the density by f™. The seller’s reservation value for the object is constant over
time and we assume that it is equal to the lowest buyer valuation.'! In Section 5, we discuss
the case that the seller’s reservation value is strictly higher than the lowest valuation which
introduces uncertainty about the number of serious buyers.

Time is discrete and the period length is denoted by A. In each period t = 0, A, 2A, ...,
the seller runs a second-price auction with a reserve price. To simplify notation, we often
do not explicitly specify the dependence of the game on A. The timing within period ¢ is
as follows. First, the seller publicly announces a reserve price p; for the auction in period ¢,
and invites all buyers to submit a valid bid, which is restricted to the interval [p;, 1]. After
observing p;, all buyers decide simultaneously either to bid or to wait. If at least one valid
bid is submitted, the winner and the payment are determined according to the rules of the
second-price auction and the game ends. If no valid bid is submitted, the game proceeds to
the next period. Both the seller and the buyers are risk-neutral and have a common discount

—rA

rate r > 0. This implies a discount factor per period equal to 6 = e < 1. If buyer ¢ wins

in period ¢ and has to make a payment 7, then his payoff is e~ (v* — 7%), and the seller’s
payoff is e "7,

We assume that the seller has limited commitment power. She can commit to the reserve
price that she announces for the current period: if a valid bid is placed, then the object is sold
according to the rules of the announced auction and she cannot renege. She cannot commit,
however, to future reserve prices: if the object was not sold in a period, the seller can always
run another auction with a new reserve price in the next period. She cannot promise to stop
auctioning an unsold object, or commit to a predetermined sequence of reserve prices.

We denote by hy = (po,pa, .., pi—a) the public history at the beginning of ¢t > 0 if no
buyer has placed a valid bid up to ¢, and write hy = () for the history at which the seller

chooses the first reserve price.'? Let H; be the set of such histories. A (behavior) strategy for

' The reservation value can be interpreted as a production cost. Alternatively, if the seller has a constant
flow value of using the object, the opportunity cost is the net present value of the seller’s stream of flow
values.

12\We do not have to consider other histories because the game ends if someone places a valid bid.
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the seller specifies a Borel-measurable function p; : H; — P[0, 1] for each t = 0, A, 2A, ...,
where PJ0, 1] is the space of Borel probability measures endowed with the weak* topology.'?
A (behavior) strategy for buyer i specifies a function b! : H; x [0,1] x [0,1] — P({0} U [0,1])
for each t = 0,A,2A, ..., where we assume that b(hy, p;,v") is Borel-measurable in v’, for
all hy € Hy, and all p; € [0, 1], and that supp bi(hs, ps,v') C {0} U [ps, 1], where “)” denotes
no bid or an invalid bid.

We consider perfect Bayesian equilibria (PBE),' and we will focus on equilibria that are
buyer symmetric.'> We will not distinguish between strategies that coincide with probability
one for all histories. In the rest of the paper, “equilibrium” is used to refer to this class of
symmetric perfect Bayesian equilibria. Let £ (A) denote the set of equilibria of the game for
given A.'% Let ITI* (p, b) denote seller’s expected revenue in any equilibrium (p,b) € £ (A).
We are interested in the entire set of profits that the seller can achieve in the limit when the

period length vanishes. The maximal profit in the limit is

II* :=limsup sup II°(p,b).
A0 (pb)EE(A)

The minimal profit in the limit is

IL, := ligl_i)glf (p,b%gg(A) 12 (p,b) .

While a characterization of the maximal revenue in discrete time with a low discount
factor seems intractable, the analysis of the continuous-time limit allows us to formulate a
tractable optimization problem. We will justify our approach by providing approximations
through discrete time equilibria. An alternative approach is to set up the model directly
in continuous time. This approach, however, has unresolved conceptual issues regarding
the definition of strategies and equilibrium concepts in continuous-time games of perfect

monitoring, which are beyond the scope of this paper.'”

Remark 1 (Interpretation of the Continuous Time Limit). We take A — 0 in computing the
limiting payoff. This need not be interpreted literally as running auctions frequently in real

time. As in the dynamic games literature, this formulation is equivalent to taking 6 — 1 in a

13We slightly abuse notation by using p; both for the seller’s strategy and the announced reserve price at
a given history.

14See Fudenberg and Tirole (1991) for the definition of PBE in finite games or Fudenberg, Levine and
Tirole (1985) for infinite games.

15We discuss in Section 6 why the symmetry assumption is needed for our analysis.

16We establish equilibrium existence in Proposition 4.(i) (see Appendix A.2).

17See Bergin and MacLeod (1993) and Fuchs and Skrzypacz (2010) for related discussions.

12



discrete-time problem with fized A. The continuous-time limit, however, is more convenient

when we consider limiting price paths.

3 Results

This section presents the results of the paper. Before we proceed, we introduce a mild

assumption on the density function f at zero.
Assumption 1. The density f(v) is bounded at v =0: f(0) < oc.

Our analysis goes through without Assumption 1 but we focus the exposition of the paper
on the simpler, and arguably more relevant case that the density is bounded. In Section 5,
we discuss how our results change if an infinite density (or an atom) at zero is allowed.

Our first theorem formalizes our earlier observation that with limited commitment, the
seller’s maximal commitment profit, denoted ITM | is not attainable in any perfect Bayesian

equilibrium.'®

Theorem 1. Suppose Assumption 1 holds. Then the maximal profit II* is strictly below the

seller’s mazimal commitment profit IIM .

In order to attain IIM, the seller must maintain a constant reserve price pM > 0 in
equilibrium. This is impossible because in all equilibria of our game prices must decline to
zero. In fact, for any fixed A > 0, as well as in the limit as A — 0, the maximal profit the
seller can attain is strictly below the full commitment profit IT .

Our primary goal is to characterize II* as well as the set of perfect Bayesian equilib-
rium payoffs for the seller in the limit as A — 0. To do that, we introduce the following

assumption:
Assumption 2. ¢ :=lim, o (f'(v)v) /f(v) ezists and ¢ € (—1,00).

Assumption 2 is a mild regularity condition on the lower bound that is imposed for

technical reasons.'” For example, it is satisfied if the density function f is bounded away

I81f the virtual surplus J(v) = v — (1 — F(v))/f(v) is increasing, the maximal commitment profit is given
by the profit of Myerson’s optimal auction. Otherwise, Myerson’s optimal auction may involve bunching and
is not contained in the class of auction formats that we consider.

197t is easy to see (using 'Hospital’s rule) that ¢ = lim, o (f (v)v) /F (v) —1 > 0 if the limit exists.
Assumption 2 rules out the knife-edge cases of = —1 and ¢ = co. An example for the knife-edge cases, due to
Yuliy Sannikov, is the distribution function F(v) = v(1/*)* defined on [0, 1]. For this distribution function,
¢p=—-1ifk=-1/2, and ¢ = oo if k = 1/2. With Assumption 1, we have ¢ > 0 since lim,_,o f'(v)v = 0
for any density. We state Assumption 2 in its weaker form (i.e., only imposing ¢ > —1) to make clear which
assumption is used for which argument in the proofs.
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from 0 and has a bounded derivative. It is also satisfied for a class of distributions which
includes densities with f(0) = 0 or f(0) = oo such as the power function distributions
F (v) = v* with k > 0. To obtain distributions that satisfy both Assumptions 1 and 2, we
can restrict to k > 1.

The next theorem is our main result. It shows that the only equilibrium profit achievable
by the seller is the profit of the efficient auction if there are at least three buyers. If f(0) =0

the result also holds for two buyers.

Theorem 2. Suppose Assumptions 1 and 2 hold. If n > 2 (or n > 1 when f(0) = 0),
then the profit of the efficient auction is the unique equilibrium profit attainable in the limat:
I = II, = I1%.

In the proof of the theorem, we show existence of a sequence of equilibria for which the
profit converges to II1”, and the reserve prices for all ¢ > 0 converge to 0 as A — 0.

According to Theorem 2 (and the complementary Theorem 3.(i) below), the optimality of
the efficient auction in the limit only depends on the lower tail of the distribution f(0). The
intuition is as follows. At any time ¢, the seller’s posterior is a truncation from above of the
original distribution. Therefore, the tail of the distribution determines the set of equilibria
in subgames which start after sufficiently many periods. Suppose the tail allows multiple
equilibria with different profits for the seller in every subgame starting in period t+ A. Then
it is possible to have multiple equilibria with different profits in any subgame starting at t.
By contrast, if the tail pins down a unique continuation equilibrium profit (as A — 0) for
all possible histories after sufficiently many periods, then there is a unique equilibrium profit
in the whole game. Therefore, the degeneracy of the equilibrium profit set hinges on the
properties of the tail of the distribution.

If n =2 and f(0) > 0, the efficient auction no longer attains the highest equilibrium
revenue.’’ We construct a sequence of equilibria that achieves IT* > II” and characterize the
entire set of limiting profits that the seller can obtain in equilibrium. For the construction
of equilibria we need the following additional assumption. It is adopted from Ausubel and
Deneckere (1989) who use it to prove the uniform Coase conjecture.”’ We use it when we
extend the Coase conjecture to the auction setting (see the companion paper Liu, Mierendorff
and Shi, 2018).

20Without Assumption 1 this is also possible for n > 2, depending on the type distribution. We discuss
the case of an infinite density, or an atom at v = 0 in Section 5.
21This is a standard technical restriction which is satisfied by a large class of distributions.
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Assumption 3. There exist constants 0 < M <1 < L < 0o and a > 0 such that Mv* <
F(v) < Lv® for all v € [0, 1].

To obtain a precise characterization of the equilibrium payoff set and the limit price path
(as A — 0) that achieves the maximal equilibrium payoff, we need the following additional

assumption.
Assumption 4. The revenue function v(1 — F(v)) is concave on [0, 1].

Assumption 4 is used to show that the seller’s incentive constraint must be binding to

attain II*. It is only used in the second part of the following Theorem.
Theorem 3. Suppose Assumptions 1-3 hold, n =2 and f(0) > 0. Then

(i) the mazimal equilibrium profit in the limit is strictly higher than the profit of the effi-

cient auction: IT* > II, = I[17.

(i) If in addition, Assumption 4 holds, any 11 € [HE,H*] is a limit of a sequence of
equilibrium payoffs as A — 0.

In part (ii) of Theorem 3, Assumption 4 allows us to show that the seller’s incentive
constraint must bind in the limit as A — 0 in order to achieve IT*.?> The binding constraint,
in turn, allows us to identify the optimal cutoff path which is then approximated by discrete
time equilibrium outcomes. The optimal cutoff path v; is described by the following ODE

which is derived from the seller’s binding incentive constraint (see Section A.1):*
U = —/ re” o' 9@z gy, (7)
0

where

o(v) = fv)  [e(F@)" =2 ff (F)" da] f(v) . @)
f) (n=1) [§[F () = F (2)] (F(@)" f («) 2dz

We can implement the revenue-maximizing cutoff path v; and attain II* via an initial auction

22Tn order to achieve this profit, the seller would have to coordinate on a particular equilibrium. This may
be possible if she can announce (but cannot commit to) a price price that she plans to use. In the absence of
coordination on the revenue-maximizing equilibrium, Theorem 3 characterizes the whole equilibrium payoff
set.

23This rules out the possibility that the reserve price jumps down at any time ¢ > 0, so that a positive
measure of types are induced to participate in an auction at the same time. Without Assumption 4 this may
not be the case. See Section 4.2 for a detailed discussion.
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followed by continuously declining reserve prices given by:%

*en [(F(vy) n-t
= v + r(s=1) ® d t )
Dy = Uy /t e ( (Ut)) Ugds, VYt >0 (9)

To understand the role of g(v), consider the class of power function distributions F(v) =

v* for which g(v)v equals to a constant &:

nk (nk —k—1)
Fek—1—
" nk—k + 1
Inserting this into (7) yields
vy = vge FH (10)

Hence, g(v)v determines the screening speed that achieves the seller’s maximal profit. For
the uniform example in Section 1, & = 0 with n = 2, so equation (10) becomes v; = vge™",

where vg = 2/3. The limiting price path p, = (4/9)e™"" follows from (9), yielding the

_ 31

maximal profit IT* = £7.

Relation to the Coase Conjecture Theorem 2 can be interpreted as a Coase conjecture
result, because it predicts that, as A — 0, the seller’s profit converges to the competitive
level.?” A related Coase conjecture result is obtained in Milgrom (1987) and McAfee and
Vincent (1997), but their result is entirely driven by their stationarity restriction. This
restriction is either explicitly assumed (Milgrom, 1987), or implicitly applied by the gap
assumption that the seller’s reservation value is strictly lower than the lowest buyer valuation
(McAfee and Vincent, 1997). In stationary equilibria, all buyers follow stationary bidding
strategies which can be interpreted as a demand curve faced by the seller. The seller would
like to collect the surplus below the demand curve as quickly as possible. As A — 0, she can
collect the whole surplus by setting more and more finely spaced reserve prices in shorter
and shorter intervals. Prices must therefore decline to zero immediately which implies that
the demand curve collapses to zero as well, and the Coase conjecture follows. This logic

works independent of the type distribution and the number of buyers but crucially relies on

24The initial price at ¢t = 0 is given by po = vg + [, e (F(vs)/F(vg))n_1 V5ds, where v = limy o v;.
For a derivation see Section 4.2.

25In the bargaining setting (n = 1) the Coase conjecture is understood as follows: as A — 0, the seller’s
initial price offer pg must converge to her reservation value 0. As first noted by McAfee and Vincent (1997),
however, py can stay positive in the auction setting even though all subsequent reserve prices converge to 0
in the limit. The limiting profit is thus equal to the profit of the efficient auction.
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stationarity.?® In contrast, Theorem 2 imposes no stationarity restriction, and shows that
limited commitment alone forces the seller to behave competitively if there are at least three
buyers. Therefore, Theorem 2 helps clarify the role of limited commitment in the auction
setting. With three or more buyers, using reserve prices to screen buyers does not yield a
profit in excess of the profit of the efficient auction.

The comparison between the profit from an efficient auction and the potential benefits
from screening can also help understand the gap case, as analyzed by McAfee and Vincent
(1997), where the buyers’ type distribution has support [e,1]. By posting price p; = ¢, the
seller can guarantee herself a profit € > 0, even with one buyer. In contrast to the no-gap
auction case where the lower bound on the seller’s profit at time t (i.e., the profit from
running the efficient auction at time t) goes to zero as v; — &, here the profit bound ¢ is
a constant independent of v;. In fact, for v; sufficiently close to e, the profit attainable by
setting p; = € coincides with the full commitment profit. As a result, the game ends in finite
time which implies that all equilibria must be stationary.’” Hence, in the gap case, the Coase

conjecture directly follows from stationarity.

4 Methodology and Overview of Proofs

Our strategy to characterize II*, the corresponding limit price path, and the set of limit
equilibrium profits for the seller, is to analyze an auxiliary dynamic mechanism design prob-
lem. To formulate the problem, we identify basic properties of equilibria of the discrete time
game (Section 4.1). These properties are necessary conditions for equilibrium outcomes. We
then formulate the same restrictions in continuous time and use them to define the feasible
set of mechanisms in the dynamic mechanism design problem (Section 4.2). Necessity of the
constraints implies that the value of the auxiliary problem is an upper bound for II*. To
establish sufficiency, we show that the optimal value of the auxiliary problem is attained by
a sequence of discrete time equilibria as period length goes to zero. Therefore, the optimal
value of the auxiliary problem is exactly the maximal profit attainable in any equilibrium in

the continuous time limit.

26Proposition 4 which states the Coase conjecture for stationary equilibria in our auction setting only
requires Assumption 3.

27In the gap case where the last period is endogenous, as well as in a game with an exogenous last period,
the equilibrium can be found by backward induction. This implies that it is essentially unique. In both cases
reputational equilibria are ruled out by uniqueness.
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4.1 Equilibrium Properties

In any equilibrium of the discrete time game, all buyers play pure strategies that are char-
acterized by history-dependent cutoffs. This is captured by the following Lemma which
establishes the “skimming property,” an auction analog of a result by Fudenberg, Levine
and Tirole (1985). Its proof is standard and thus omitted.

Lemma 1 (Skimming Property). Let (p,b) € E(A). Then, for each t = 0,A,2A, ..., there
ezists a function By : Hy x [0,1] — [0, 1] such that every buyer with valuation above Bi(h:, pt)
places a valid bid and every buyer with valuation below By(hy, py) waits if the seller announces

reserve price p; at history hy.

The next lemma shows that randomization by the sender on the equilibrium path is not
necessary to attain the maximal profit. This lemma is a new observation that is not trivial.
It is used to characterize the maximal profit. In a model with one buyer, this step is not
needed since the maximal profit attainable is the full commitment profit. Therefore, the

following lemma does not appear in the prior literature on Coasian bargaining.”®

Lemma 2 (No Need for Randomization). For every equilibrium (p,b) € E(A), there exists
an equilibrium (p',0') € E(A) in which the seller does not randomize on the equilibrium path
and achieves a profit 12 (p, ') > 1% (p, b).

Lemma 1 implies that at any history, the posterior of the seller is given by a truncation
of the prior. Lemmas 1 and 2 together imply that for the characterization of IT*, we can re-
strict attention to equilibrium allocation rules which are deterministic (up to tie-breaking).*’
Symmetric deterministic equilibrium allocation rules can be described in terms of a trading
time function 7" : [0,1] — {0,A,2A, ...} which must be non-increasing because of Lemma
1. Given that buyers bid truthfully in a second-price auction, in any symmetric equilibrium
the object will be allocated at time T'(v(™), to the buyer with the highest valuation.

The last lemma in this section shows that the seller can ensure a continuation profit no
smaller than the profit of an efficient auction, even though running an efficient auction is

not a part of an equilibrium.

28Gul, Sonnenschein and Wilson (1986) show the existence of equilibria without randomization on path
whereas Lemma 2 focuses on revenue-maximization.

29In the proof of Theorem 3 we show that any payoff in [IT1¥ II*] can be achieved in a limit of pure
equilibrium outcomes. Therefore, this restriction is also without loss for the set of limit profits achievable
for the seller.
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Lemma 3 (Lower Bound on Equilibrium Payoff). Fiz any equilibrium (p,b) € E(A) and
any history hy. If the seller announces the reserve price p; = 0 at hy, then every buyer bids

his true value and the game ends.

Lemma 3 provides a lower bound for the seller’s payoff on and off the equilibrium path
which provides a constraint for continuation payoffs in the auxiliary problem introduced
below. It also follows from Lemma 3 that II, > II®. See the Supplemental Material for

proofs of Lemmas 2 and 3.

4.2 The Auxiliary Mechanism Design Problem

In the auction context, limited commitment invalidates the full commitment solution as a
target for equilibrium construction, so we have to first find the maximal equilibrium profit
in order to characterize the entire set of equilibrium profits for the seller. In this subsection,
we set up the auxiliary mechanism design problem with full commitment which we use
to characterize the maximal profit, and briefly explain why solving the auxiliary problem

constitutes the crucial step in proving the main results.

Mechanisms

The auxiliary mechanism design problem is formulated in continuous time and assumes that
the seller has full commitment power. Buyers participate in a direct mechanism and make
a single report of their valuations at time zero. The mechanism awards the object to the
buyer with the highest reported type (up to tie breaking). If the mechanism awards the
object to buyer 4, then the allocation takes place at time T'(v*), where T : [0,1] — [0, oc] is
a deterministic and non-increasing trading time function specified by the mechanism. This
is motivated by Lemmas 1 and 2. Moreover, the mechanism specifies a payment for the
winning buyer.

The discounted trading probability of a buyer with type v is e ™7™ if he is the highest
buyer and zero otherwise. The (interim) expected discounted winning probability of a buyer
is thus Q(v') = (F(vi))”*lefrT(”i), and this is non-decreasing since 7' is non-increasing.
Therefore, any non-increasing trading time function is implementable, and following standard
arguments, individual rationality and incentive compatibility constraints for the buyers can

be used to express the seller’s profit as

/1 J(v) e O aFEM (y), (11)
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where J(v) :=v — (1 — F(v))/f(v) denotes the virtual valuation. J(v) corresponds to the
marginal revenue of a monopolist (see Bulow and Roberts, 1989).
We define cutoff types as
v :=sup{v|T (v) > t}.

vy is the highest type that does not trade before time ¢. Since all buyers with types v > v,
trade before ¢, the posterior distribution at ¢, conditional on the event that the object has
not yet been allocated, is given by the truncated distribution F(v|v < v;). Therefore, we

call v; the posterior at time t. We denote the posterior distribution functions by

F; (v) := : FM(v) = —— 2

The virtual valuation for the posterior [0,v] is denoted by

T(vlv < v) = v — F (v <vp) — F (vjv < ) e F(v) — F (v)

f oo <v) flo) 7

and we set J;(v) := J(v|v < v;), whenever we consider a fixed cutoff path v,.
Generally, vy is continuous from the left, and since it is non-increasing, the right limit

exists everywhere. We will denote the right limit at ¢ by

v = limv,.
s\t

For each t, v;7 is the highest type in the posterior after time ¢ if the object is not yet sold.

Any non-increasing trading time function 7' (with cutoffs v;) can be implemented by the

+ n—1
Vg _ _ F (U)
ot r(T(v)—t) d 12
Y% v. (& V.
t t /0 (F (U;—)) ( )

This price sequence is derived from the envelope formula which implies that for each t > 0

price path

the marginal type v, is indifferent between bidding at time ¢ and waiting.*® Consequently,
all types above v;" strictly prefer to bid before or at time ¢, all lower types strictly prefer to
wait. If v, is differentiable, v;” = v; for all ¢ > 0 and (12) simplifies to (9)

30The envelope condition for v € [vf,v;] is e (f;:r (v—az)dF" ' () + F (vf)n_l (v — pt)> =
fov Q(z)dz. Substituting Q(v) and v = v;", and rearranging yields (12).
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Payoff Floor Constraint

If the seller has full commitment power, the dynamic mechanism design problem of maxi-
mizing (11) without further constraints, reduces to a static problem. The optimal solution
is to allocate to the buyer with the highest valuation if his valuation exceeds the optimal
reserve price pM, and otherwise to withhold the object. Formally, in terms of trading times,
this is given by?*!
™ (v) = 0 ifvzph (13)
oo if v < pM.

To obtain an auxiliary problem that captures the seller’s incentives under limited com-
mitment, we add an additional constraint. Motivated by Lemma 3, we assume that the
continuation payoff of the seller must be bounded below by the revenue of an efficient auc-
tion for the given posterior at each point in time. To state this “payoff floor constraint”

formally, we denote the revenue from an efficient auction for the posterior v, as

1 vt n
= (Ut)/o Jo(x)dF™(z).

The seller’s continuation payoff from the dynamic mechanism at time ¢ is

HE(Ut)

1 vt
- —r(T(x)—t) (n)
Fo () /0 e Ji(z)dF"™ (z).

Therefore, the payoff floor constraint (PF) is given by (where we have dropped the term
1/F™ (v;) on both sides):

/ e @@= J (2)dF™ (z) > / Jy(z)dF™ (), for all t > 0.
0 0

The payoff floor constraint introduces a dynamic element into the auxiliary problem that

distinguishes it from a standard static mechanism design problem under full commitment.

31If J(v) is strictly increasing, p™ is given by J(p™) = 0 and T™ (v) induces the same winning probabilities
QM (v) as Myerson’s optimal auction.
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Auxiliary Problem

To summarize, we can formulate the auxiliary problem as the following dynamic mechanism

design problem:

1
sup /e‘rT(m)J(x)dF(")(x) (14)
T:10,1]—[0,00] J0O
s.t. T is non-increasing, (IC)
and / e " T@= 1 (2)dF™ () > / Jy(2)dF™ (x), ¥t > 0. (PF)
0 0

We call any T : [0,1] — [0, 00] that satisfies (IC) and (PF) a feasible solution of the
auxiliary problem. We denote the value of the auxiliary problem by V' and standard tech-
niques can be used to show that an optimal solution exists (see Proposition 1 in Appendix
A). In the following we give an overview how the auxiliary problem is used to prove our main
results. We only outline the crucial steps, while the formal analysis is deferred to Appendix
A.

Using the Auziliary Problem to Characterize Equilibrium Profits. We first explain why
the auxiliary problem is the correct problem for the characterization of the maximal limit
profit achievable in equilibrium, i.e., II* = V. For necessity of the constraints, note that
(PF) rules out a deviation by the seller to an efficient auction, which is a necessary condition
for an equilibrium. Therefore, V' is an upper bound for the seller’s maximal profit II*, which
is formally proved in Proposition 5 in Appendix A. To show that (PF) is sufficient, we use
existence of stationary equilibria which we show in the companion paper Liu, Mierendorff
and Shi (2018). If V = II¥, existence of equilibrium, together with IT* < V = II¥ implies
II* = II¥ because any equilibrium yields a profit of at least II¥. If V > II¥ the construction
uses the simple trigger strategy with stationary equilibria as off-path punishment. Here the
payoff floor constraint is sufficient since the profit of stationary equilibria converges to the
right-hand side of the payoff floor constraint as A — 0 (see Liu, Mierendorff and Shi (2018)).
Therefore, the payoff floor constraint exactly captures limited commitment and the optimal
value of the auxiliary problem is exactly the maximum revenue attainable in any equilibrium
as the seller’s commitment power vanishes.

Optimal Solution of the Auxiliary Problem. To prove Theorems 2 and 3 we characterize
the optimal solution to the auxiliary problem. This involves two main steps. First, we show
that concavity of v(1— F'(v)) implies that the payoff floor constraint must hold with equality

at an optimal solution. Using integration by parts we can rewrite the objective function in
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(14) as
| e a@art @ =n [ )@ =n [ o - Fojae). a3

Consider T'(v) and T(v) with associated discounted winning probabilities Q(v) and Q(v). If
Q(v) is a mean-preserving spread of Q(v), which means that the trading times for 7'(v) are
more spread out, then T\(v) yields a higher profit for the seller.

In Lemma 8 in Appendix A.1 we show that when the payoff floor constraint is slack for
some time interval [a,b], we can construct a feasible variation T'(v) with more spread out
trading times for the types with trading times in (a,b) so that ex-ante profit is improved. If
instead v(1 — F'(v)) is convex, we have to construct a variation that concentrates the trading
times of the types that trade between a and b, rather than spreading them out. Such a
variation, however, is only feasible if the trade is not already concentrated on a single point
in time. Therefore, with a non-concave monopoly profit, we cannot rule out that the payoff
floor constraint is slack on some time-interval if there is an atom of trade in this interval.*?

The second main step is to determine when there exists a feasible solution to the binding
payoff floor constraint. If (PF) holds with equality we show that v; must satisfy (see Lemma
9 in Appendix A.1)

2t g(v)oe +r =0, (16)

Ut
If n = 2 this differential equation has a decreasing solution which we can use in the proof
of Theorem 3. Conversely, we show that any solution to the differential equation (16) is
increasing in a neighborhood of zero if n > 2 (or n > 1 if f(0) = 0) (see Lemma 11
in Appendix A.1). This means that the binding payoff floor constraint does not yield a
feasible solution of the auxiliary problem. For Theorem 2 we exploit that for any distribution
v(1— F(v)) is concave in a neighborhood of zero which implies that (PF) must be binding.**
Since the binding payoff floor constraint does not yield a feasible solution if n > 2, only the

efficient auction 7% (v) = 0 is left as an optimal solution to the auxiliary problem.

32We have not been able to rule out this possibility or to construct an example where a solution with this
feature is optimal.

33T0 see this note that (v(1 — F(v))” = —2f(v) —vf’(v). Hence concavity is equivalent to(vf’(v)/f(v)) >
—2. Remember from Footnote 19 that lim,_,o(vf’(v)/f(v)) > —1. This implies concavity for v in a neigh-
borhood of zero.

23



5 Uncertain Number of Buyers

So far we have assumed that the seller knows the number of serious buyers who have values
above her cost, that is, all buyers’ valuations are weakly above the seller’s reservation value
¢ = 0. This is a natural assumption if all buyers with values below ¢ know that they will
surely lose and thus do not show up in the auction.

What if the seller is uncertain about the number of serious buyers? A possible modeling
approach is to assume that there are n potential buyers, but not all of them are interested in
buying the object because their values may be lower than c. If we maintain the normalization
¢ = 0, v is the net valuation of the buyer. This implies that the support of F(v) is [v, 1]
with v < 0.>* The number of serious buyers with v > ¢ is uncertain, and it is possible that
no buyer has a value above c¢. Again, the seller can either run an efficient auction to end
the game immediately, or set a declining reserve price path p; to screen buyers. If the seller
chooses to screen buyers, she will simultaneously update her belief about buyers’ values as
well as the number of serious buyers.

As in the main model, we adopt the mechanism design approach and use the auxiliary
problem to investigate whether it is possible to have an equilibrium with a positive price
path that yields a strictly higher revenue than an efficient auction.®® Since the seller will
never sell the object below her cost, the formulation of the auxiliary problem is exactly the
same as before, but we need to keep in mind that now F(0) > 0, in contrast to the main
model, where F'(0) = 0. Again, we solve the auxiliary problem by constructing a solution
candidate, assuming that the payoff floor constraint binds for all ¢ > 0. We can differentiate
the binding payoff floor constraint and obtain the ODE in (16), where g (v;) is given by
(8) as before. If F'(0) > 0, however, this differential equation has a decreasing and thus
feasible solution for all n (see Lemma 12 in Appendix A.7). It follows from Proposition 2 in
Appendix A.1, that for any n, the value of the auxiliary problem is strictly higher than the
revenue of an efficient auction.®”

Intuitively, if the object remains unsold as time goes by, the seller attaches an increasingly

higher probability to the event that the number of serious buyers is small. If the number

of serious buyers is indeed small, the expected revenue from an efficient auction will be low,

34Up to the normalization this is equivalent to assuming that the support of F(v) is [0,1] and ¢ > 0.

35Given vy, the number of serious buyers is binomially distributed with B(n,1 — F(0lv < v;)).

36We completely solve the auxiliary problem for the case of an uncertain number of buyers but do not
extend the approximation by discrete time equilibria.

3TAll lemmas (1-9) and propositions (1-3) used to characterize the optimal solution of the auxiliary
problem are unchanged.
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and thus it is possible for the seller to use screening to generate revenue strictly higher than
an efficient auction. In other words, because the revenue of the efficient auction can be very
low, the threat of reverting to Coasian equilibrium becomes very effective and is sufficient
to support equilibria with positive reserve prices.*®

To link the model here to our main model, we define distribution function F with support

0,1] by

F(v)=F(v) for all v € [0,1].
F coincides with F, except that F translates all the probability mass assigned by F to
negative valuations into an atom at v = 0. Since the seller does not sell to buyers with
valuations strictly below 0, the two distributions F and F are equivalent from the perspective
of the seller’s revenue.

To understand the role of uncertainty, let us fix the distribution F. We approximate
the atom at zero using atomless distributions with unbounded densities around zero. These
distributions violate Assumption 1. However, we can drop Assumption 1 and generalize the
result of Theorem 2 as follows: under Assumption 2, an efficient auction is optimal if and
only if n > N (F) = 1++/2+ ¢/ (1+ ¢). Without Assumption 1, it is possible for ¢ to take
any value above —1 and thus for N (F) to take any value above 1. For example, for power
function distributions F (v) = v* on [0,1], we have N (F) = 1+ vk +1/k. As k — 0, the
distribution F' (v) = v* puts a lot of probability mass at points near zero, similar to the case
of an atom at zero. At the same time, N (F') — oo, so an efficient auction is not optimal for
any number of bidders, exactly as in the case of an atom at zero.

We conclude by showing that our main result is robust to a small amount of uncertainty.
The uncertainty about the number of serious buyers is captured by A = F (0). Let the
optimal solution to the auxiliary problem for A > 0 be denoted by w;}. We consider the
limit as A — 0 so that the uncertainty about the number of buyers vanishes. If Assumptions
1 and 2 hold as in Theorem 2, and there are three or more buyers, we prove in Appendix
A.7 that, as A — 0, the sequence of the cutoff paths {w;'} converges to a limiting path w}
that satisfies w? = 0 for all ¢ > 0. Moreover, the seller’s profit converges to the profit of an

efficient auction. Therefore, the main result of our paper continues to hold approximately

when there is a small amount of uncertainty.

38Note also that when the seller’s belief attaches an increasing probability to the event that there is at most
one serious buyer, the continuation game becomes similar to the case analyzed in Ausubel and Deneckere
(1989) where positive reserve prices can be sustained.
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6 Concluding Remarks

In this paper we have studied the role of commitment power in auctions where the seller
cannot commit to future reserve prices. Our analysis draws insights from the bargaining
literature, and the auction and mechanism design literature. We conclude the paper by
discussing our modeling assumptions and possible extensions.

Symmetry Restriction. Throughout the paper, we have restricted attention to buyer-
symmetric equilibria. If we allow for asymmetric equilibria, we can formulate an asymmetric
auxiliary problem in terms of a trading time function (or a sequence of cutoffs) for each
buyer. Since the seller can only choose a single price in each period, however, the set of
implementable cutoff sequences for a given buyer depends on the cutoff sequences chosen
for the other buyers. Therefore, the asymmetric auxiliary problem requires additional con-
straints which are quite complex and not very tractable. A more fundamental problem for a
tractable specification of the auxiliary problem arises because we do not know how to extend
the proof of Lemma 2 (No Need for Randomization) to asymmetric equilibria.?® Conse-
quently, we cannot restrict attention to deterministic allocation rules. Finally, symmetry
also helps to rule out that buyers play dominated strategies in second-price auctions, which
is a standard assumption.’’ In light of these issues, it seems that the complications involved
in studying asymmetric equilibria are on par with the complications that arise when ana-
lyzing general mechanisms. We believe that the analysis of general mechanisms is a fruitful
direction for future research but is beyond the scope of this paper.

Modeling Limited Commitment. Our way of modeling limited commitment assumes that
the seller can commit to the terms of trade within a single period: if A = oo, there is full
commitment; as A — 0, the seller’s commitment power vanishes. This approach is taken by
Milgrom (1987) and McAfee and Vincent (1997).

An alternative modeling approach is to assume that the seller’s opportunity of running

an additional auction is uncertain. This can be cast into a continuous-time framework as

39In the proof for the symmetric case, for any (possibly mixed) equilibrium, we select the sequence of (sym-
metric) cutoffs implemented along one particular on-path history. Since every symmetric sequence of cutoffs
is implementable by some sequence of reserve prices, we are able to construct a new equilibrium without on-
path randomization and weakly higher profits. With asymmetric cutoffs, this is no longer possible because
the cutoffs implemented along a particular history may not be implementable by a single deterministic price
sequence.

40For n > 2, Blume and Heidhues (2004) show that the second-price auction has a unique equilibrium if
the seller uses a non-trivial reserve price. Therefore, symmetry is not needed to rule out low-profit equilibria
if n > 2. By posting a reserve price close to zero, the seller can end the game with probability arbitrarily
close to one and guarantee herself a profit arbitrarily close to the profit of an efficient auction. This implies
that the lower bound for the seller’s equilibrium payoff that we obtain in Lemma 3 is independent of the
symmetry assumption if there are at least three buyers.
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follows. There is a Poisson arrival of auction opportunities, with constant arrival rate A.
An auction can only be held at time ¢ = 0 or when there is an arrival. If A\ = 0, there is
full commitment; if A — oo, the commitment power vanishes. This model is similar to ours
except that the period length A is random, but A — 0 in distribution as A\ — oo.

Yet another approach is to allow the seller to use long-term contracts. If the legal
environment allows the seller to commit to the auction rules within a given period, why
can she not write a contract that forces her to keep an object off the market and thereby
gain commitment power? Intuitively, such contracts are not renegotiation proof, which may
explain why we do not see them in practice.*!

A general formulation of the problem with long-term contracts with renegotiation exists
for the case of bilateral contracts (see Hart and Tirole, 1988; Strulovici, 2017, and references
therein). In our setup with multiple buyers, however, modeling renegotiation introduces new
conceptual issues, such as the protocol of multiple-person bargaining and signaling in the

renegotiation phase.
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A Appendix A

In this appendix, we sketch the key steps in characterizing the optimal solutions to the
auxiliary problem, which will form the basis of our proofs of Theorems 1-3. The proof of
Proposition 4 (existence of stationary equilibria and uniform Coase conjecture) is contained
in the companion paper Liu, Mierendorff and Shi (2018). All other proofs omitted from
this appendix are collected in Section B of the Supplemental Material. Section C of the
Supplemental Material constructs equilibria that approximate the solution to binding payoff

floor constraint and proves Proposition 6 which is used in the proof of Theorem 3.

A.1 Analysis of the Auxiliary Problem
Preliminary Observations

Before characterizing optimal solutions to the auxiliary problem, we note several Lemmas
regarding the payoff floor constraint that will be used in the proofs.

First we consider solutions where a strictly positive measure of types trade at the same
time ¢ so that v; > v;". In other words, there is an “atom” of types that trade at t. The

following lemma shows that if the payoff floor constraint is satisfied right after the atom,
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then the payoff floor constraint at ¢ (right before the atom) is strictly slack. Moreover, if
we reduce the size of the atom by lowering v; to v € (v;7,v;) so that some types in the
atom trade earlier than ¢, the payoff floor constraint at ¢ remains strictly slack for all choices

v € (v, vy).

Lemma 4 (Slack PF before Atom). Let T : [0, 00] — [0, 1] be non-increasing (not necessarily
feasible) and denote the corresponding cutoff sequence by v,. Suppose there is an “atom” at
t >0, that is, v, > v,". If the payoff floor constraint is satisfied at t*, that is

+ +

/ T J (gl < 0P )P0 () > / " Tl < )P (2). (17)
0 0
then we have, for all v € (v, vy,
/v e T@Y J(z|z < 0)dF™ (z) > /v J(z|z < 0)dF™(z). (18)
0 0
In particular, the payoff floor constraint is satisfied at t. The inequality (18) is strict if
v > 0.

Second, we show that a feasible solution to the auxiliary problem cannot end with a

single atom where all remaining types trade.

Lemma 5 (No Final Atom). Let T' be a feasible solution. Then for all t > 0 such that
vy > 0, there exists w € (0,v;) such that T'(v) >t for all v < w.

Finally, we observe that the payoff floor constraint must by strictly slack in quiet periods

(a,b) where v, is constant, i.e., where no trade takes place.

Lemma 6 (Slack PF in Quiet Period). Let T be a feasible solution and a < b such that
vy = vy for allt € (a,b), then (PF) is a strict inequality for all t € (a,b].
Characterizing Optimal Solutions

After introducing these observations about the payoff floor constraint, we now prove inter-
mediate results which are used to characterize optimal solutions to the auxiliary problem
and the set of feasible profits. The first observation is that an optimal solution exists which

follows from standard arguments.

Proposition 1. An optimal solution to the auxiliary problem exists.
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For n = 1, the case of a single buyer, the right-hand side of the payoff floor constraint
is zero, and the optimal solution is 7™ .*> For n > 2 this is not the case, as shown in the

following lemma.

Lemma 7 (Cutoffs Converge to Zero). For any T in the feasible set of the auziliary problem,

T(v) < oo for all v >0 and lim;_,o v; = 0.

Next, we show that the efficient auction (T'F) is optimal if and only if it is the only feasible
solution to the auxiliary problem. It is clear that any feasible solution yields a profit that is
at least as high as the profit of the efficient auction. Otherwise, the payoff floor constraint
would be violated at ¢ = 0. The following proposition shows that if positive reserve prices
are feasible, that is, if the feasible set includes a solution with delayed trade for low types,

then the seller can achieve a strictly higher revenue than in the efficient auction.

Proposition 2. An efficient auction (T) is an optimal solution to the auxiliary problem if

and only if it is the only feasible solution.

To get an intuition for this result, compare the efficient auction in which all types trade
at time zero, to an alternative feasible solution in which only the types in (vg, 1] trade at
time zero, where vy < 1.** There are two effects that determine how the profits of these two
solutions are ranked. First, in the alternative, the trade of low types is delayed, which creates
an inefficiency. Second, the delay for the low types reduces information rents for higher types.
We must argue that the total reduction in information rents exceeds the inefficiency, so that
the ex-ante profit is higher under the alternative solution. We first consider the reduction in
information rents only for the types in [0, vy ]. This is what matters for the continuation profit
at time 0T, right after the initial trade. Feasibility implies that the reduction in information
rents for the types in [0, vy must already (weakly) exceed the revenue loss from inefficiency.
Otherwise, the continuation profit at 0 would be smaller than the profit from an efficient
auction given the posterior vy, and thus the payoff floor constraint would be violated. If we
now include the types in (vg, 1] in the comparison, we must add the reduction in information
rents for these types but there is no additional inefficiency because these types trade at time
zero in both solutions. Therefore, the total reduction in information rents is strictly higher
than the inefficiency, and the ex-ante profit under the alternative is strictly higher than

under the efficient auction.

42This also implies the “folk theorem” obtained by Ausubel and Deneckere (1989).
43In the proof of Proposition 2, we show that we can always construct a feasible solution with 0 < vg < 1,
if there exists any feasible solution that differs from the efficient auction.
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Proof of Proposition 2. The “if” part is trivial. For the “only if” part, suppose there is
another feasible solution T other than the efficient auction TF = 0. Let U; denote the cutoff
path corresponding to T. Note first that the range of 7' cannot be a singleton because this
would imply that T'(v) = ¢ for all v € [0, 1] for some ¢ > 0. Then the expected revenue would
be given by

e "t /1 J(v)dF™ (v),

which is strictly lower than the revenue from an efficient auction at time 0. Therefore, the
payoff floor constraint would be violated at ¢ = 0, contradicting the feasibility of 7.
Hence, there exists some time s with 0 < o7 = @, < 1 such that T'(v) < s for all v > @,

and T'(v) > s for all v < ;. Then we can define a new feasible solution

. 0 if v > v,

T(w)—s ifv <,

with corresponding cutoff path ;. Solution T is feasible because T satisfies the payoff floor
constraint for all ¢ > s. Moreover, we have 0 < @J < 1 because ﬁar = ?,. We can invoke

Lemma 4 (slack PF before atom) by setting t = 0 and v = vy = 1 to obtain

/ 1 e T J(2)dF™ (z) > / 1 J(2)dF™ ().

The left hand side of the above inequality is the revenue from T, while the right hand side

is the revenue from 7% = 0. This completes the proof. O

Proposition 2 implies that in order to decide whether the efficient auction is optimal or
not, it suffices to determine whether it is the unique feasible solution. This will be particularly
useful, if we are able to construct solutions with non-zero trading times. We approach such
a construction by considering the binding payoff floor constraint.

Solutions to the binding payoff floor are also important for the characterization of optimal
solutions of the auxiliary problem. The following proposition shows that the payoft floor
constraint must be locally binding for an optimal solution if the monopoly profit is locally

concave.

Proposition 3. If v(1—F(v)) is strictly concave on an interval [0,v], then for every optimal

solution, the payoff floor constraint binds for all t such that v, € (0,7).
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To clarify the role of concavity, we state the main lemma that is used in the proof. Re-
member that Q(v) = e™7 ™ (F(v))"! denotes the expected discounted winning probability
of type v for any solution T'. The following lemma shows that if for 7" and T, discounted win-
ning probabilities Q(v) are more spread out than discounted winning probabilities Q(v),*!

then concavity implies that the ex-ante profit is higher for T.

Lemma 8 (MPS). Let T' be a feasible solution of the auxiliary problem with cutoffs v,. Let
a < b be such that v(1—F(v)) is strictly concave on the interval [vy,v,]. Let T - [0,1] — [0, 00]
be non-increasing and satisfy T(v) = T(v) for all v & (v, v,), such that

/IQ(U) —Qu)dv <0, Yz € [vy,v4), (19)

with equality for © = v,. Then T satisfies (PF) for all t & (a,b). If (19) holds with strict
inequality for a set with strictly positive measure, then the ex-ante profit is strictly higher for
T than for T and (PF) is a strict inequality for all t < a.

When the payoff floor constraint is slack for some interval (a,b), then we can construct
an alternative trading time function T that differs from 7T only for types in (vy,v,)."> We
select a cutoff type w € (v, v,), types above w are assigned an earlier trading time and types
below w are assigned a later trading time. Clearly this implies that Q(v) is more spread out
than Q(v). Concavity of v(1 — F'(v)) implies that this variation improves ex-ante expected
profits. The additional results stated in Lemma 8 also allow us to show that the alternative
solution 7 satisfies the payoff floor constraint.

In the proof of Theorem 2, we will use Proposition 3 on intervals of the form (0,¢). In
this case, the requirement of local concavity is satisfied for any distribution function without
imposing Assumption 4, if € is sufficiently close to zero (see the discussion at the end of
Section 4.2). Since Lemma 5 shows that a feasible solution cannot end with a single atom,
Proposition 3 has bite in this case: (PF) must be binding for all ¢ such that v; € (0,¢) in
the optimal solution.

The next lemma shows that the binding payoff floor constraint implies that v; must

satisfy a second-order ordinary differential equation.

Lemma 9 (Binding PF yields ODE). Let v; be a sequence of cutoffs for a feasible solution
T, for which the payoff floor constraint is binding for all t € (a,b), where 0 < a < b < 0.

#“Formally, if we interpret Q(v) and Q(v) as distribution functions, this means that Q(v) is a mean-
preserving spread of Q(v).
45Tn the proof of Proposition 3, we also consider the case where v, = vp.
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Then vy is twice continuously differentiable and strictly decreasing on (a,b) and satisfies the

differential equation (10).

Next we characterize precise conditions under which there exists a solution to this ODE
that is non-increasing and thus is feasible in the auxiliary problem. It turns out that a feasible
solution exists if n < N(F) and does not exist if n > N(F), where the distribution-specific
cutoff N(F) for the number of buyers is defined as*®

Depending on the type distribution, the cutoff N(F) can take any value above one. For
example, if valuations are distributed according to F' (v) = v* with support [0, 1] and k > 0,
we have ¢ = k — 1 and N(F) =1+ +/1+ k/k. If k = 1 we obtain the uniform distribution
and N(F) = 14 /2. This verifies our claim in Section 1, that with three or more buyers,
the seller cannot do better than running an efficient auction if the distribution is uniform.
If k < 1, the density is unbounded at zero which violates Assumption 1. In this case N(F)

can be large. For the proofs of our main results we obtain the following lemma:

Lemma 10 (Low Cutoff). If Assumptions 1 and 2 are satisfied, then N(F) < 3. If f(0) > 0
then N(F) € (2,3), and if f(0) =0, then N(F) < 2.

The following lemma shows that the cutoff determines if a feasible solution to the binding
payoff floor constraint exists. For the statement of the lemma, let vy be the unique solution
to (7) with vy = x.

Lemma 11 (Solution to Binding PF). (i) If n > N(F), there exists no non-increasing

solution to (16) that satisfies vy > 0 and lim;_,oo vy = 0.
(ii) Ifn < N(F), v¥ is a decreasing solution to (16) that satisfies vo = x and lim;_,, v, = 0.

(iii) Suppose n < N(F), and Assumption J is satisfied. Let ¥, be a decreasing solution to
(16) that does not coincide with v¥ for any x € [0,1]. Then there exists & € [0, 1] such
that v¥ yields a strictly higher profit than o;.

Note that, when feasible solutions exist, they are not necessarily unique for a given
boundary value vy, because (16) is a second-order differential equation. Using Lemma 8,
part (iii) of Lemma 11 shows that any solution to (16) that does not satisfy (7) is strictly

dominated by the solution to (7) for some initial cutoff x.

46Recall that ¢ = lim,_.o %, which exists and is greater than —1 by Assumption 2.
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A.2 Optimal Value as Equilibrium Revenue Upper Bound

Based on Ausubel and Deneckere (1989) we start by showing existence of stationary equi-
libria, i.e., equilibria with stationary buyer-strategies that only depend on the valuation and
the current reserve price. We also generalize the uniform Coase conjecture for stationary

equilibria to the auction setting.
Proposition 4. (i) (Existence) A stationary equilibrium exists for everyr > 0 and A > 0.

(ii) (Uniform Coase Conjecture) Suppose Assumption 3 holds. For every ¢ > 0, there
exists A. > 0 such that for all A < A, all x € [0,1], and every symmetric stationary
equilibrium (p, b) of the game with period length A and a truncated distribution F(v|v <
x) on [0, 2], the seller’s profit associated with this equilibrium, 11> (p, b|z), is bounded
above by (1 +¢)I1¥ (x), where I¥ (x) is the seller’s profit from the efficient auction

under this truncated distribution.

The second part of the proposition shows that the seller’s profit in every symmetric
stationary equilibrium converges to the profit of the efficient auction.*” Uniform convergence,
in the sense that I12 (p, b|x) /TI¥ (z) — 1 uniformly for all = € (0, 1], will be used in the
construction of trigger strategy equilibria for Theorem 3.

Clearly, the lower bound of the seller’s profit for all equilibria is achievable by T (v) = 0.
This corresponds to a second-price auction with reserve price p, = 0 at time ¢ = 0, and
TE(v) = 0 implies v; = 0 for all ¢ > 0. Therefore, the payoff floor constraint is trivially
satisfied for both ¢ > 0 and ¢ = 0. The following result shows that the optimal value of the

auxiliary problem is an upper bound for all equilibrium revenues in the original game.

Proposition 5 (Seller’s Equilibrium Payoff Bounds). Let (A,,) be a decreasing sequence with
Ay, N\ 0, and let (pm,by) € E(A,) be a sequence of equilibria. Then lim sup 2™ (p,,, by,) €

m—0oQ
(112, V). In particular TT* < V.

4TNotice that in contrast to the uniform Coase conjecture for one buyer (Ausubel and Deneckere, 1989),
Proposition 4.(ii) does not show that the initial reserve price pg converges to zero. This is in fact not the
case in the auction setting as was noted by McAfee and Vincent (1997). However, reserve prices for ¢ > 0
converge to zero which is sufficient for the convergence of equilibrium profits to the profit of an efficient
auction—the counterpart of the Coase conjecture in the auction setting.
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A.3 Equilibrium Approximation of the Solution to the Binding
Payoff Floor Constraint

The final ingredient for the proofs of our main results is an approximation of solutions to
the binding payoff floor constraint with cutoff paths that arise as equilibrium outcomes of

the discrete time game.

Proposition 6 (Equilibrium Approximation of Binding PF). Suppose Assumptions 2 and
3 are satisfied, and n < N(F). Then for any v, there exists a decreasing sequence 2, \ 0
and a sequence of equilibria (p™,b™) € E(A,,) such that the sequence of trading functions T™
implemented by (p™,b™) and the seller’s ex-ante revenue I (p™, b™) converge to the profit

achieved by the solution given by (7) with boundary condition vy .

To obtain the approximation, we construct trigger strategies as outlined in Section 4.2.
We use a discrete trading time 72 : [0,1] — {0,A,2A, ...}, where A > 0 is an arbitrarily
chosen period length. T2 is constructed such that the payoff floor constraint is slack for all
t € {0,A,2A,...}. This approximation, together with the price sequence given by (12), will
be used to define the equilibrium price path for a game with given A. On the equilibrium
path, buyers best respond to this price path. If the seller deviates from the equilibrium price
path, the buyers use a continuation strategy given by a stationary equilibrium. Note that
buyers can react to a deviation by the seller in the same period. Therefore, the response
to a deviation is immediate and the seller cannot obtain profits in excess of the stationary
equilibrium profit. The uniform Coase conjecture (Proposition 4.(ii)) thus implies that the
profit after a deviation converges to the profit of the efficient auction. The equilibrium path,
on the other hand is carefully constructed such that it yields a profit above the profit of
stationary equilibria. As A — 0, T? is constructed such that it converges to the solution
to the binding payoff floor constraint, but sufficiently slowly so that stationary equilibria
can be used to provide incentives for the seller. The details of the construction are rather

technical and are deferred to Appendix C in the Supplemental Material.

A.4 Proof of Theorem 1

Proof. From Proposition 1 we know that an optimal solution to the auxiliary problem exists
and hence V' is attained by an element in the feasible set. By Lemma 7, T'(v) < oo for
all v > 0 for any feasible solution 7. Under Assumption 1, we have J(v) < 0 for v in

a neighborhood of zero, which implies p* > 0. Therefore T (v) = oo for some v and
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hence T™ is not in the feasible set of the auxiliary problem. Moreover, T is the only non-
increasing trading time function that attains II*. Therefore V < IIM. The payoff bounds
in Proposition 5 then imply II* < V < IIM. O]

A.5 Proof of Theorem 2

Lemma 10 implies that under Assumption 1 the cutoff N(F) is less than three, and less than
two if £(0) = 0. Hence the conditions in Theorem 2 imply n > N(F). We proceed just using
n > N(F) since Assumption 1 is not used elsewhere in the proof. The proof has two parts.
The first characterizes the solution to the auxiliary problem. The second part shows that
the value of the auxiliary problem is IT* and that its optimal solution can be approximated

by discrete time equilibria.

Value of the Auxiliary Problem We use an indirect argument to show that if n > N(F),
the feasible set of the auxiliary problem only contains the efficient auction. Informally: if
there was an alternative optimal solution, then it would have to satisfy the payoff floor
constraint with equality, which is impossible if n > N(F). This informal argument has
several gaps which are filled in the following formal proof.

Suppose by contradiction, that there exists a element 7" in the feasible set of the auxiliary
problem for which T'(v) > 0 for a positive measure of types.*®. Proposition 2 implies that in
this case, the efficient auction is not optimal. T itself need not be optimal, but Proposition 1
implies that an optimal solution to the auxiliary problem exists, which we call T with cutoffs
denoted by ©,. To derive a contradiction, we show that for 7' the payoff floor constraint must
be binding for all ¢ such that v; € [0,e]. By Lemma 11.(i), there exists no feasible solution
to the binding payoff floor constraint if n > N(F), which yields the contradiction.

To show that the payoff floor constraint must be binding, we use the observation that for
any distribution function, there exists ¢ > 0 such that v(1— F(v)) is concave for all v € [0, €].
Since ¢ > —1 by Assumption 2, there exists a valuation € > 0 such that for all v € [0, €],
(f'(v)v)/f(v) > —2 which implies that v(1 — F(v)) is concave on this interval. This local
concavity in a neighborhood of zero is only useful if 0; € [0, ] for some ¢ > 0. This is implied
by Lemma 5, which shows that the optimal solution to the auxiliary problem does not end
with an atom. Therefore, there must be some time ¢ > 0 such that 97 € (0,¢). Therefore,

Proposition 3 implies that T must satisfy the payoff floor with equality for all ¢ > ¢.

48We identify trading time functions that coincide almost everywhere so that a trading time function with
T(v) =0 for all v > 0 is equivalent to the efficient auction where T'(v) = 0 for all v > 0
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Equilibrium So far we have shown by contradiction that the value of the auxiliary problem
is V = II”. The bounds on the seller’s equilibrium payoff from Proposition 5 then imply
that II* = V = II¥ = II,. Hence, the seller’s equilibrium payoff is unique and given by V.
Finally, Proposition 4 shows the existence of stationary equilibria, and since IT* = IT¥, there

must exist a sequence of stationary equilibria for which the seller’s profit converges to I1Z.

A.6 Proof of Theorem 3

Lemma 10 implies that under Assumption 1 the cutoff N(F) is between two and three if
f(0) > 0. Hence the conditions in Theorem 2 imply n < N(F). We proceed just using
n < N(F) since Assumption 1 and f(v) > 0 are not used elsewhere in the proof. The proof
has two parts. The first characterizes the solution to the auxiliary problem. The second
part shows that the value of the auxiliary problem is II* and that its optimal solution can

be approximated by discrete time equilibria.

Value of the Auxiliary Problem For part (i) we show that there exists a feasible (not
necessarily optimal) solution of the auxiliary problem that yields a profit greater than I1Z
and hence V' > TI¥. By Lemma 11.(ii), there exists a feasible solution to the auxiliary
problem that differs from the efficient auction if n < N(F). Together with Proposition 2,
this implies that the efficient auction is not the optimal solution of the auxiliary problem if
n < N(F).

For part (ii) we first show how V' can be achieved. By Proposition 3 and Assumption 4,
the payoff floor constraint must be binding at the optimal solution to the auxiliary problem.
By Lemma 11.(iii), the optimal solution must satisfy (7) and is unique up to the choice of
vy . If we choose v§ optimally, we thus obtain the optimal solution to the auxiliary problem
which achieves V.

Next we show that any value in [IT” V] can be achieved by a solution to the ODE in
(7) by varying vy Let v¥ be the sequence of cutoffs obtained from the ODE in (7) with
boundary condition v; = x € [0,1] and denote the value of the objective function of the
auxiliary problem evaluated at vf by II(x). We thus have to show that the range of II(z) is
[ITZ, V]. Tt is clear that = 0 leads to I1(x) = IT¥ and we have shown above that that there
exists #* such that II(z*) = V. To complete the proof we show that II(x) is continuous. To

see this, denote the trading time function corresponding to vf by T%. II(z) is obtained by
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substituting T'(v) = T*(v) in the objective function of the auxiliary problem. Note that

T*(0) 0, if v >,
v) =
T'(v) = T"(z), ifv<uz.

—rT(

Hence T%(v) is continuous in z for all v > 0 and therefore e v) is continuous in z for all

v > 0. Since e"7*(") is bounded, II(z) is continuous in z, which completes the proof.

Equilibrium Approximation For part (i) we show that there exists a solution that
yields a profit above IT¥ which can be approximated by a sequence of equilibria. This shows
IT* > I1”. Again by Lemma 11.(ii), a profit IT > II¥ can be achieved by the solution to
the ODE in (7) for some vy € (0,1). Proposition 6 shows that this solution to (7) can
be approximated by discrete time equilibrium outcomes. Hence, there exists a sequence of
equilibria (P, bm) € E(A), for A,, — 0 as m — 0o, such that lim,, ;e T2 (P, by ) = 1.
This implies IT* > IT > IIZ.

For part (ii) Proposition 6 shows that there exists a sequence of equilibria (p,,, b,) €
E(A,,), for A,, — 0 as m — oo, such that lim,,_,o 14" (py,, byy) = I(z). Since this holds
for any x € (0,1) and the range of II(z) is [IT¥, V] this completes the proof.

A.7 Uncertain Number of Buyers

Suppose that F'(v) has support [v, 1], with v < 0. The derivation of the ODE from the
binding payoff floor constraint in the proof of Lemma 9 is unchanged if v < 0 instead of
v = 0. Therefore the binding payoff floor constraint implies that v; is twice continuously
differentiable and satisfies (16) with g(v) given by (8). Lemma 11, which gives a condition for
the existence of a decreasing solution to (16) for v = 0, has to be modified for the case that
v < 0. Remember that we have defined vf as the unique solution to (7) with the boundary

condition vy = x. We have the following modified version of Lemma 11:

Lemma 12 (Lemma 11 for v < 0). Suppose buyers’ valuations are independently drawn

from distribution F on [v, 1] with v < 0. Then
(i) vf is a decreasing solution to (16) that satisfies vo = = and limy_,o, v; = 0.

(ii) Suppose in addition that Assumption j is satisfied. Let 0, be a decreasing solution to
(16) that does not coincide with v¥ for any x € [0,1]. Then there exists & € [0, 1] such
that v¥ yields a strictly higher profit than o;.
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With Lemma 12 in hand, we can apply Proposition 2 which shows that the efficient
auction is not the optimal solution to the auxiliary problem if the feasible set contains
another solution. Proposition 2 holds unchanged if v < 0. Hence, an efficient auction is no
longer an optimal solution to the auxiliary problem for any n.

Next we investigate what happens to the optimal cutoff path w; as we truncate the
distribution F'(v) at v’ € (v,0), and let v — 0. Denote the truncated distribution function
by F(v). Note that the proof of Lemma 12 does not depend on the precise shape of Fi,/(v)

for v < 0. Therefore, we can replace F,,(v) by the distribution function
Fx(v) = A4 (1= \)Fy(v)

with support [0, 1], where A = (F'(0) — F(v')) / (1 — F(v')), and Fy(v) is F(v) truncated at
v = 0. It is easy to verify that for v > 0, F\(v) = Fy(v), and F) has an atom of mass
A= F,(0) at v = 0. Hence, v' — 0 corresponds to taking the limit A — 0.

We denote the optimal solution for A > 0 by w;' as in Section 5. We want to show that
for all t > 0, w} — 0 as A — 0. Consider any sequence \,, > 0, m = 0,1,... such that
Am — 0 as m — 0. Suppose by contradiction that w;™ does not converge to 0 pointwise for
all £ > 0. This implies that there exists s > 0 and w > 0 such that for a subsequence my,
w;\ ™ > w, Vk. Since w}™ is non-increasing for all m, this also implies that w;\mk > w for
all £ < s. By Helly’s theorem, we can select another subsequence my such that w;\ Ty w)

almost everywhere, where the sequence w? is non-increasing and w? € [0, 1]. Moreover, since

A
k
Wy

satisfies the payoff floor constraint for all k£, by the dominated convergence Theorem
w} also satisfies the payoff floor constraint. Hence w} it is a feasible solution to the auxiliary
problem.

If Assumptions 1 and 2 are satisfied and there are three or more buyers, any feasible
solution to the auxiliary problem satisfies v; = 0 for all ¢ > 0. This implies that w? = 0 for
all ¢ > 0 which is a contradiction since w? > w > 0 for ¢t < s. Therefore, w} — 0 for all
t > 0. Hence, as the uncertainty about the number of buyers vanishes, the cutoffs in the
revenue-maximizing equilibrium converge to zero for all ¢ > 0. The dominated convergence

theorem also implies that the seller’s profit converges to the profit of an efficient auction.
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Supplemental Material for Online

Publication

B Appendix B: Omitted Proofs

B.1 Proof of Lemma 2

Proof. In the main paper we slightly abuse notation by using p; both for the seller’s (possibly
mixed) strategy and the announced reserve price at a given history. This should not lead to
confusion in the main part but for this proof we make a formal distinction. We denote the
reserve price announced in period ¢ by x;. A history is therefore given by h; = (z¢, ..., Zi_a)-
Furthermore we denote by hy+ = (hy, x¢) = (2o, ..., %—a,x;) a history in which the reserve
prices xg,...,T;_a have been announced in periods ¢t = 0,...,t — A but no buyer has
bid in these periods, and the seller has announced z; in period ¢, but buyers have not
yet decided whether they bid or not. For any two histories hy = (xg,za,...,Ti—a) and

hl = (xg, @', ..., 2, _A), with s < ¢, we define a new history
/ / / /
he @ by = (Tg, Tay ooy T Ay Ty e e vy Tt—A)-

That is, hy @ 1/, is obtained by replacing the initial period s sub-history in h; with A. Finally,
we can similarly define hy+ @ R, for s < ¢t. With this notation we can state the proof of the
lemma.

Consider any equilibrium (p,b) € £(A) in which the seller randomizes on the equilibrium
path. The idea of the proof is that we can inductively replace randomization on the equilib-
rium path by a deterministic reserve price and at the same time weakly increase the seller’s
ex-ante revenue. We first construct an equilibrium (p°, %) € £(A) in which the seller earns
the same expected profit as in (p,b), but does not randomize at ¢ = 0. If the seller uses a
pure action at ¢ = 0, we can set (p°,8%) = (p,b). Otherwise, if the seller randomizes over
several prices at ¢ = 0, she must be indifferent between all prices in the support of py(ho).
Therefore, we can define p3(hg) as the distribution that puts probability one on a single
price xg € supppo(ho). If we leave the seller’s strategy unchanged for all other histories
(p2(hy) = pi(hy), for all t > 0 and all hy € Hy) and set b° = b, we have defined an equilibrium
(p°, b°) that gives the seller the same payoff as (p, b) and specifies a pure action for the seller
at t = 0.
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Next we proceed inductively. Suppose we have already constructed an equilibrium
(p™,b™) in which the seller does not randomize on the equilibrium path up to ¢ = mA,
but uses a mixed action on the equilibrium path at (m+1)A. We want to construct an equi-
librium (p™*!, v™*1) with a pure action for the seller on the equilibrium path at (m + 1)A.

Suppose that in the equilibrium (p™, ™), the highest type in the posterior at (m + 1)A

0
(m+1)

t (m 4+ 1)A, which we denote by x?mH)A, such that the expected payoff of ﬁ?mH)A at

hiv = (hy, x((]m +1) A) is weakly smaller than the expected payoff at h,. In other words, we

is some type [ A > 0. We select a price in the support of the seller’s mixed action

pick a price that is (weakly) bad news for the buyer with type ﬁ?m DA This will be the

equilibrium price announced in period ¢ = (m + 1)A in the equilibrium (p™*!, o™*!). The

formal construction of the equilibrium is rather complicated. The rough idea is that, first we

0
(m+1

continuation as (p™,b™). Second, on the equilibrium path up to period mA, we change the

posit that after x ya Was announced in period (m+1)A, (p™, b™*1) prescribes the same

reserve prices such that the same marginal types 3 as before are indifferent between buying

immediately and waiting in all periods t = 0, ..., mA. Since we have chosen m?m +1)a tO be
bad news, this leads to (weakly) higher prices for ¢t = 0,...,mA, and therefore we can show

that the seller’s expected profit increases weakly. Finally, we have to specify what happens
after a deviation from the equilibrium path by the seller in periods ¢ = 0,...,(m + 1)A.
Consider the on-equilibrium history h; in period ¢ for (p™*!, b™1). We identify a history hy
for which the posterior in the original equilibrium (p, b) is the same posterior as at h; in the

new equilibrium. If at h;, the seller deviates from p™*!

by announcing the reserve price Iy,
then we define (p™*1, 0™ *1) after hy+ = (hy, 24) using the strategy prescribed by (p, b) for the
subgame starting at iLﬁ = (iLtJr, z;). We will show that with this definition, the seller does
not have an incentive to deviate.

Next, we formally construct the sequence of equilibria (p™,b™), m = 1,2, ..., and show
that this sequence converges to an equilibrium (p>°,b>) in which the seller never randomizes
on the equilibrium path and achieves an expected revenue at least as high as the expected
revenue in (p,b). We first identify a particular equilibrium path of (p°,°) with a sequence

of reserve prices h%, = (z9,2%,...) and the corresponding buyer cutoffs 8% = (30, 5%,...)

that specify the seller’s posteriors along the path h? = (xJ,2%,...)." Then we construct
an equilibrium (p™,b™) such that the following properties hold: for t = 0,...,mA, the
equilibrium prices " chosen by the seller are weakly higher than z) and the equilibrium

cutoffs B are exactly (Y; for t > mA, or off the equilibrium path, the strategies coincide

49Note that the cutoffs 8 are the equilibrium cutoffs which may be different from the cutoffs that would
arise if the seller used pure actions with prices zJ, 2%, ... on the equilibrium path.
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with what (p° %) prescribes at some properly identified histories, so that the two strategy
profiles prescribe the same continuation payoffs at their respective histories.

In order to determine Y, = (2], 2%,...) and 8° = (5Y, 8%, ...) we start at ¢t = 0 and define
x) as the seller’s pure action in period zero in the equilibrium (p°, %) and set 35 = 1. Next
we proceed inductively. Suppose we have fixed z{ and ) for t = 0, A, .... To define z}, 5, we
select a price in the support of the seller’s mixed action at history hy, , = (zf, ..., z{) in the
equilibrium (pY;8°) such that the expected payoff of the cutoff buyer type 37, conditional on
oy A is announced, is no larger than this type’s expected payoff at the beginning of period
t + A before a reserve price is announced.” We then pick 7, , as the cutoff buyer type
following history (z{,...,2¥,2%, 1) .

(p°, b°) was already defined. We proceed inductively and construct equilibrium (p

form =0,1,... as follows.

(1) On the equilibrium path at ¢t = (m + 1) A, the seller plays a pure action and announces

: m+1 .— 40
the reserve price Tlmina = Llnin)a-

(2) On the equilibrium path at ¢t = 0,4,...,mA, the seller’s pure action z}"*' is chosen
such that the buyers’ on-path cutoff types in periods t = A, ..., (m +1)Ais "+ =

B, where 3P was defined above.

(3) On the equilibrium path at the history hyx+ = (zg,...,2;) for t =0,A,... (m+ 1) A,
each buyer bids if and only if v* > "™ = 9.

(4) at t > (m+ 1) A : for any history h; = (zo,...,2t+—a) in which no deviation has oc-

curred at or before (m + 1) A, the seller’s (mixed) action is p™ ! (h;) := p° (ht ® <:138, .

For any history hy+ = (zo, ..., Z;_a, x;) in which no deviation has occurred at or before

m+1’ bm+1)

) :L‘((Jerl)A) > :

(m + 1) A, the buyer’s strategy is defined by o™ (h;+ ) := b <ht+ ® (xg, . ,:c(()mH)A)) .

(5) For any off-path history h; = (xq, ..., 2z—a) in which the seller’s first deviation from the
equilibrium path occurs at s < (m + 1) A, the seller’s (mixed) action is prescribed by
P (he) = p° (he ® (2,...,29_4)) . For any off-path history hy+ = (2o, ..., Zi—a, 2¢)
in which the seller’s first deviation from the equilibrium path occurs in period s <

(m+ 1) A, the buyer’s strategy is o™ (hy+) := b0 (b ® (20, ..., 2% 4)) -

50Tf the seller plays a pure action at h? LA then z) . A the price prescribed with probability one by the pure
action. If the seller randomizes at hy, A, there must be one realization, which, together with the continuation
following it, gives the buyer a payoff weakly smaller than the average.

43



In this definition, (1) and (2) define the seller’s pure actions on the equilibrium path up
o (m+ 1) A. The prices defined in (1) and (2) are chosen such that bidding according to
the cutoffs 3" is optimal for the buyers. Part (4) defines the equilibrium strategies for all
remaining on-path histories and after deviations that occur in periods after (m+1)A, that is,
in periods where the seller can still mix on the equilibrium path. The equilibrium proceeds
as in (p°,b°) at the history where the seller used the prices zJ, . .. ,x?m 11)a in the first m +1
periods. This ensures that the continuation strategy profile is taken from the continuation of
an on-path history of the equilibrium (p°, °), where the seller’s posterior in period (m+1)A
is the same as in the equilibrium (p™*! ™). Finally, (5) defines the continuation after a
deviation by the seller at a period in which we have already defined a pure action. If the
seller deviates at a history h; = (2f,...,27 »), then we use the continuation strategy of
(p°, %), at the history (zf,...,29_,).

We proceed by proving a series of claims showing that we have indeed constructed an

equilibrium.

Claim 1. The expected payoff of the cutoff buyer B%H)A = ﬂ?mH)A at the on-path history
mina = (g, ..., x"A) in the candidate equilibrium (p™,b™) is the same as its payoff at

the on-path history hf,, .\ n = (20, ..., @p,a) in the candidate equilibrium (p°,1°) .

Proof. This follows immediately from (1)—(3) above. O

Claim 2. The expected payoff of the cutoff buyer merll)A ﬁ(m+1 A at the on-path history

h;’g;il) Ay = (xg’l*l,...,xle,x%rjlm) in the candidate equilibrium (xz™1, ™) is the

same as this cutoff type’s expected payoff at the on-path history h?(m+1)A)+ = <:L‘8, R x?mH)A)

in the candidate equilibrium (p°, 0°).

Proof. By construction, +1) = T{py1ya- 1t follows from part (4) that (p™*',™+!) and

(p°,0°%) are identical on the equilibrium path from period (m + 2) A onwards. The claim

follows. o
Claim 3. The expected payoff of the cutoff buyer Bm+1 = B?mH)A at the on-path his-
tory h pa = (zgtt, ..., 2 k") in the candidate eqmlzbmum (p™ L ™) is weakly lower

than thzs cutoff type’s expected payoff at the on-path history h? (m+1)A = (29,...,2% 1) in the

equilibrium (p°, 0°) .

Proof. In the candidate equilibrium (p™*!, ™ *1) | the cutoff type’s payoffs at histories h (m +1 A

and hm+1 Lyayt Are the same because the seller plays a pure action in period (m + 1) A. In
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the equilibrium (p° %), the cutoff type’s payoff at history hm“+ Ayt

his payoff at history h‘(]m A because of the definition of m(m A (which chosen to give the

is weakly lower than

cutoff type a lower expected payoff than the expected payoff at h(()m +1) A)- The claim then

follows from Claim 2. OJ

Claim 4. The expected payoff of the cutoff buyer ﬁ m—l—l)A ﬁ?mH)A at the on-path history

h?;;:}l) = (xgnﬂ, . ,x"mwArl) in the candidate equilibrium (p™*, 0™ %) is weakly lower than
this cutoff type’s expected payoff at the on-path history h( A = (g, ..., x"A) in the

candidate equilibrium (p™,b™) .

Proof. By Claim 1, the cutoff type’s expected payoff at the on-path history A"

(m+1)A
(7", ...,x"5) in the candidate equilibrium (p™, b™) is the same as its payoff at the on-path
history A, 1)a = (20, - - -, ¥),4) in the candidate equilibrium (p% °) . The claim then follows
from Claim 3. O

Claim 5. For eachm =0,1,... andt=0,1,...,mA, we have z]"** > 2.

Proof. By Claim 4, the cutoff type BZ;LTDA = Blmina = B?mH)A in period (m + 1) A on the

equilibrium path in the candidate equilibrium (p™*!, pm+1)

has a weakly lower payoff than
its expected payoff in the candidate equilibrium (p™,d™). To keep this cutoff indifferent in

period mA in both candidate equilibria, we must have xm“ > " . Then to keep the cutoft

type Sk = By = B9 \ indifferent in period (m — 1) A, we must have xz’““ll) > Tl 1A
The proof is then completed by induction. O

Claim 6. The seller’s (time 0) expected payoff in the candidate equilibrium (p™*, o™ 1) is
weakly higher than the seller’s expected payoff in the equilibrium (p°, b°).

Proof. By parts (1)—(3) of the construction, at t = 0,..., mA, (pm“,bm“) and (p™,b™)
have the same buyer cutoffs on the equilibrium path. At t = (m+ 1) A, the seller in
(p™+, 0™ ) chooses z{(hf L o
period (note that even though we haven’t show that (p™,b™) is an equilibrium, the seller is

indeed indifferent in (p™,b™) at (m + 1) A because play switches to (p°,b°) with identical

that is in the support of the seller’s strategy in (p™, ™) in that

continuation payoffs by Part (4) of the construction). It then follows from Claim 5 that the
seller’s (time 0) expected payoff in (p™™!,b™*1) is weakly higher than the seller’s (time 0)
expected payoff in (p™, b™) . The claim is proved by repeating this argument. O

Claim 7. Fort = A,...,(m + 1)A, the seller’s expected payoff at the on-path history

(zgth, .. 2 | in the candidate equilibrium (p™ ™, 6™ ) is weakly higher than the seller’s
expected at the history (xg, e ,x?_A) in equilibrium (p°, 0°) .
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Proof. Denote m; = t/A so that ¢t = m;A and consider (p™,b™). By parts (1)-(3) of the
construction, the buyer’s cutoff type at (xg‘t, e ,x?ﬁA) in this equilibrium is the same as
the buyer’s cutoff type at (xg, o ,x?_A) in equilibrium (p°, 0°) . By part (4) of the construc-
tion, the seller’s payoff at history (xg“, e ,x?ﬁA) in (p™,b™) coincides with the seller’s
payoff at history (z,...,2}_A) in equilibrium (p°, 8°) . Now consider the candidate equilib-
rium (p™H!, 6™+ and the history (zgt, ..., z""). By claim 5, (zgt, .. 2Lt >

(mg“, e ,x?fA) . Note that the candidate equilibrium (p™ ! ™ 1) further differs from the
equilibrium (p™, b™) on the equilibrium path in period ¢ + A. But 2™ is in the support
of the seller’s randomization in (p™,d™*) (which makes the seller indifferent by part (4)

of the equilibrium construction—see the proof in Claim 6). Therefore, the seller’s payoff at

(mg“ﬂ, e ,x?le) in the equilibrium (p™**1, ™ *1) is weakly greater than at (xgnt, . ,xﬁA)
in the equilibrium (p™*1 o™ *1). This completes the proof of the claim. O
Claim 8. For each m = 0,1,...,(p™", ™) such constructed is indeed an equilibrium.

Proof. The buyer’s optimality condition follows immediately from the construction. Now
consider the seller. By part (5) of the construction, for any off-path history hy = (2o, ..., 2_a)
in which the seller’s first deviation from the equilibrium path occurs at s < (m + 1) A, the
continuation strategy profile prescribed by (p™*!, v™*1) is exactly that prescribed by (p°, 0°)
at a corresponding history h; & (xg, o A) with exactly the same expected payoff (the
payoff is the same due to the fact that the seller’s strategies coincide and the fact that the
buyer’s cutoff at f; in (p™**, 0™ ) is the same as that at hy @ (zf,...,22_A) in (p% %))
Hence there is no profitable deviation at hy in (p™T! b™*1) just as there is no profitable
deviation at by @ (zf,...,2% A) in (p°,0°).

By part (4) of the construction, at t > (m + 1) A, for any history hy = (x¢,...,T—n)
in which no deviation has occurred at or before (m + 1) A, the seller’s strategy at h; in
(p™*, o™ 1) coincides with the seller’s strategy at hy & (:E()”, e B A) , with exactly
the same continuation payoffs (see the previous paragraph). Hence there is no profitable
deviation at h; in (p™*1 o™t

Now consider parts (1)—(3) of the construction, for ¢t =0,...,(m + 1) A. By Claim 6 and
7, staying on the equilibrium path gives the seller a weakly higher payoff than that from
the equilibrium (p°, %) at the corresponding history. But deviation from the equilibrium
path triggers a switch to (p°,b%) at a corresponding history. Since there is no deviation in
(p°,0°), deviation becomes even less desirable in (p™*!, ™1) . This completes the proof of

the claim. u
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[e.9]

m—o- We construct a limit

So far, we have obtained a sequence of equilibria {(p™, ™)}
equilibrium candidate (p>, ) as follows. First, note that for each ¢ the on-path equilibrium
actions z;" of the seller are monotonically increasing as m — oo. Therefore we obtain a well-
defined limit path x{°. For any history on the limit path, let (p>,b>) prescribe to follow
the limit path. Next consider a history h; off the limit path x{°. Let s < t be the time of
the first deviation. Then, by monotonicity of the on-path actions of the seller, there exists
M >t such that for all m > M, h; is an off-path history for (p™, b™) and the first deviation
is at time s. Hence by definition, behavior converges at this history and we can define
p>(hs) = pM(h'). We use an analogous construction for histories h;, off the limit path.

It remains to show that (p°°, b>°) is an equilibrium. It is clear that buyers do not have an

incentive to deviate. For the seller, suppose the seller has a profitable deviation at some his-

)
m=0"

tory hm,a. By the definition of (p°°, b>°) and the construction of the sequence {(p™, ™)}
the continuation play at h; in the candidate equilibrium (p>°, ), where h; is a history with
hna as its sub-history, will coincide with continuation play at h; prescribed by equilibrium
(pm/, bm') for any m’ > m, which is in turn described by p° (ht &) (xg, e ,x(()mflm>> and

B0 (ht+ D (xg, . ,x?m_l) A)) by part (5) of the equilibrium construction. Since (pm', bm')
is an equilibrium, this particular deviation is not profitable in the equilibrium (pm/, bm') for
any m’ > m. But the on-path payoff of (pm/, bm/) converges to that of (p>,b>), and we have
just argued that the payoff after this particular deviation is the same for both (pm', bm') and
(p™,b°°). This contradicts the assumption of profitable deviation. O

B.2 Proof of Lemma 3

Proof. Fix a history h;. Note that if all buyers bid, then by the standard argument, it
is optimal for each buyer to bid their true values. Therefore, it is sufficient to show that
each buyer will submit a bid. By the skimming property (Lemma 1), we only need to
show B;(hs, p;) = 0. Suppose by contradiction that S;(hs, p;) > 0. Consider a positive type
Bi(he, pr) — €, where € > 0. By Lemma 1, if this type follows the equilibrium strategy and
waits, he wins only if his opponents all have types lower than S;(h, p;) — €, and he can only
win in period t + A or later at a price no smaller than 0. If he deviates and bids his true
value in period ¢, it follows from Lemma 1 that he wins in period ¢ at a price 0 if all of his
opponents have types lower than §;(h;, p;). Therefore, the deviation is strictly profitable for
type Bi(he, pr) — €, contradicting the definition of 5;(h¢, pr). ]
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B.3 Proof of Proposition 1

Proof. Let §(v) := e7"") denote the discount factor for type v who trades at time T (v).
We can rewrite the auxiliary problem as a maximization problem with 0(v) as the choice

variable:

0

1
sup/ 5(v) J(v) f™(v) dv

0
s.t. d(v) € ]0,1], and non-decreasing,

Vo € [0,1] : /OU 5(s) J(sls < v) f™(s)ds > (v) /0” J(s|s < v) f(s)ds. (20)

We show that (PF) is equivalent to (20). First suppose that (PF) holds. If v' is not part
of an atom, i.e., T-YT(v')) = {v'}, then (PF) at ¢’ = T'(v') is equivalent to (20) at v'. If
v" is part of an atom, Lemma 4 (slack PF before atom), implies that if (PF) holds for all
t > T'(v') in a neighborhood of T'(v'), then (20) must hold for v'.

Conversely, suppose that (20) holds for all v € [0,1]. If ¢ € T'([0,1]) then the (20) for v,
implies that (PF) holds at t. Next, suppose that ¢ is in a “quiet period,” i.e., t ¢ T([0,1]).
Let ¢’ be the start of the quiet period, i.e., ' = sup{s|vs > v;}. Let v™ \ v; be a sequence
of valuations such that T'(v™) — ¢’ and hence §(v™) — §*(v¢). Since (20) holds for all v™,

we have

/0 " 5(s) J(sls < v) £ (s) ds > 5 () /0 " Jsls < w) F(s) ds.

But this is equivalent to (PF) for ¢*. Since the RHS of (PF) is constant and the LHS is
increasing in the quiet period (¢, t], this implies that (PF) is satisfied for ¢.

To summarize, we have shown that the constraint set of the above problem is isomorphic
to the auxiliary problem (with 6(v) = e™""®)). This shows that existence of an optimal
function ¢ in the above problem implies existence of an optimal solution to the payoff floor
constraint which proves the Proposition.

Let @ be the supremum of this maximization problem and let (J;) be a sequence of

feasible solutions of this problem such that

1

lim or(v) J(v) f™(v) dv = 7. (21)

k—oo 0

By Helly’s selection theorem, there exists a subsequence (g, ), and a non-decreasing function
6 : [0,1] — [0,1] such that &, (v) — &(v) for all points of continuity of §. Hence (after select-

ing a subsequence), we can take (J;) to be almost everywhere convergent with a.e.-limit &
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(taking the subsequence does not change the limit in (21)). By Lebesgue’s dominated con-

vergence theorem, we also have convergence w.r.t. the L?-norm and hence weak convergence

in L?. Therefore

/5 v) f™ (v dv—hm/ék v) f™(v) dv = 7.

k—oo

It remains to show that § satisfies the payoff floor constraint. Suppose not. Then there
exists 0 € [0,1) such that

/ 5(s) J(sls < 8) f™(s) ds < () / J(s|s < ) f™(s) ds.
0
Then there also exists v > © such that ¢ is continuous at v, and
/ 5(s) J(s|s < v) f™(s)ds < 5(v) / J(s|s <) f™(s)ds.
0 0

Define
S :

5(v) /OU J(s|s <v) f™(s)ds — /Ov 5(s) J(s|s <v) f™(s)ds.

Since v is a point of continuity we have 6(v) = limy_.o 6,(v). Therefore, there exists k, such
that for all £ > k,,

22
27

‘S(U) /0 J(sls < v) F™(s) ds — 6x(v) /0 J(s|s < v) ™ (s) ds

and furthermore, since 6, — & weakly in L?, we can choose k, such for all k£ > k, also

3
5"

/0” 5(s) J(s|s < v) f(s)ds — /OU or(s) J(s|s <) f™(s)ds

Together, this implies that for all £ > k,,

/OU Or(s) J(s|s < v) f™(s)ds < 6 (v) /Ov J(s|s < v) f™(s)ds,

which contradicts the assumption that J, is a feasible solution of the reformulated auxiliary

problem defined above. O
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B.4 Proof of Lemma 4

Proof. Fix v € (v;",v]. We obtain a lower bound for the LHS of (18) as follows:

/ e " T@= J(z)z < v)dF™ ()
0
+

— / J (x| < v)dF™ (z) + / e T@=D J( gz < v )AF™ (z)
v 0

+

_ /0 @) (W) dF®™) (z)

v ,U;L
> [ ale < 0)aFO@) + [ Il < o)dFO @)
v 0

+

_ /0 @) <%§;(m> dF™ (z).

The equality follows because all types in (v,",v] trade at time ¢, and the inequality follows
from (17). To prove (18), it is sufficient to show that the RHS of (18) is smaller than the

above lower bound. The RHS can be written as

+ +

/v (el < 0 dFO (@) + /0 " Il < o )AF® () /0 ! (W) 4F O (1),

t

Comparing this with the above lower bound, we only need to show:

B /Ov,g+ (T (@)-1) <%§<Ui)) dF™ () > — /Ov? <%;;(”t+)) dF™ (),

or equivalently

(=)

Since T'(x) >t for x < v} and F(v) — F(v;) > 0 for v > v;", the last inequality holds and

/0 "1 = o) <—F (v) =~ Pl )) AF ™) (z) > 0.

the proof is complete. n

B.5 Proof of Lemma 5

Proof. Suppose by contradiction that for some ¢ with v; > 0, we have T(v) = t for all
v € [0,v;]. Then for all € > 0 the payoff floor constraint at t — ¢ is

/ e e (V)" (v) + / T g (0)dF (v) > / e ()dF" (w).
0 Ut 0
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Rearranging this we get

/ (e TN — 1) gy (v)dF")(v) > (1—e7) / i ()dF") (v).

The RHS is strictly positive for € > 0 but sufficiently small because, by the left-continuity

of v; and continuity of J; (v) in ¢, we have

V¢

lim [ J_o(v)dF"(v) = / J(0)dF™ (v) > 0.
e=0 /g 0

On the other hand, since J; (v;) = v, > 0, we have J;_. (v) > 0 for v € (v, v,_) with e > 0

but sufficiently small. Note that

T (v) >t—ec forall ve (v,v.)

Therefore, e "T®=(=¢) < 1 for all v € (v;,v,_.), and thus the LHS is non-positive. A

contradiction. O

B.6 Proof of Lemma 6

Proof. Fort € (a,b], the right-hand side of (PF) is independent of ¢ since v; is constant. The
left-hand side is increasing in t, since ¢ enters the discount factor. Feasibility of T implies
that (PF) is satisfied at a™ and therefore it must be strictly slack for ¢ € (a, b]. O

B.7 Proof of Lemma 7

Proof. Suppose by contradiction that T is feasible but T'(v) = oo for some v > 0. Since T is
non-increasing, there exists w € (0, 1) such that T'(v) = oo for all v € [0,w) and T'(v) < oo
for all v € (w,1]. The left-hand side of the payoff floor constraint can be rewritten as, for

all t < oo,
/ e " T@=D 1 (2)dF™ (z) = / e " T@=D 1 (2)dF™ ().
0

Since T'(v) < oo for all v € (w, 1], we have v; — w as t — oco. Hence, as t — oo, the limit of

the left-hand side is zero:

lim [ e "T@=0 1 (2)dF™ () = 0.

t—00 w
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The limit of right-hand side of the payoff floor constraint as ¢t — oo, however, is strictly
positive:
lim | J(x)dF™(z) / J(z|z < w)dF™(z) > 0.

t—o00 0

Therefore, the payoff floor constraint must be violated for sufficiently large ¢, which contra-
dicts the feasibility of 7. m

B.8 Proof of Lemma 8

Proof. For t > b, T satisfies the (PF) because T'(v) = T(v) for all v < v,. If &, = v, the
same argument extends to ¢ = b. If 9, > v, T satisfies (PF) for all ¢ > b. Therefore, Lemma
4 (slack PF before atom) implies that T satisfies (PF) at ¢ = b.

To show that 7" satisfies the (PF) for ¢ < a, we define ¢,(v) := J,(v) f(v). For any t > 0,

(PF) can be written as
ne”/ Q(v)hy(v)dv > F™ (v)IIF (v,).
0

For t < a, & = v;. Therefore the right-hand side does not change if we replace Q by Q.

Therefore, it suffices to show that

ne* / " Qw)(w)do > e / " Qo))

for all ¢ < a. Defining W,(v fo Y (x)dx, this inequality is equivalent to

/Q e dv>/@ Ju(v

= OB)TL(b) — O(a)Ty(a) — / ,(0)d0(v) >QH)T4(B) — Q(a)Vy(a)

- [ wiq

= [ wwioe < [ "0, 0)dQ().

To obtain the first and third lines we have used that Q(v) = Q(v) for v ¢ (a, b).

To establish the last line note first that both ) and Q are increasing, and hence up to
an affine transformation, they are distribution functions on [v,, v,]. It follows from (19) that
Q is a mean-preserving spread of Q. Second, note that ¥,(v) = vo(v) + (1 — F(v;)). Since

52



o(v) = J(v)f(v) is strictly increasing by assumption, ¢, is strictly increasing and W, is
strictly convex. Convexity of W together with the mean-preserving spread implies that the
last line holds.

If (19) is a strict inequality for a set with strictly positive measure, then all inequalities
are strict which implies that (PF) becomes a strict inequality for ¢ < a, and the ex-ante

revenue is strictly increased by replacing T" with T. O]

B.9 Proof of Proposition 3

Proof of Proposition 3. Let T be an optimal solution to the auxiliary problem with associ-
ated cutoffs v;, and suppose by contradiction that there exists s > 0 such that v; € (0,7)

and the payoff floor constraint is slack at s. Define

s':=inf {0 € (T(v), s]| (PF) is a strict inequality for all ¢ € [0, 5]}

s" :=sup {o > s| (PF) is a strict inequality for all ¢ € [s, 0]} .

Since vy is left-continuous everywhere, s’ < s and hence s’ < s”. In the following, we consider
two cases:
Case 1: v > vy
In this case, there exists an interval (a,b) C [¢,s”] such that v, > vy, and for a positive
measure of types v € (vp, v,), T'(v) € (a,b). In other words, (a,b) is not a “quiet period.”
We construct an alternative solution 7' that satisfies the conditions of the MPS-Lemma
8 as follows:
T(v), ifové (v, v,),
T():= < a, if v € (w,v,),
b, if v € (vp, wl.

We choose w such that

/v“ (efr’f’(v) B efrT(v)> (F(v))" 'dv

Uy

:/’L)a (e_m B e—rT(v)) (F(U))n_ldv + /w (e—rb _ e—rT(v)) (F(U))n_ldv —0. (22)

w vp

The existence of such w follows from the intermediate value theorem: The second line is
continuous in w. For w = v, the first integral in the second line vanishes and the second is

negative. Conversely, for w = v, the second integral in the second line vanishes and the first
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is positive. Hence there exists w € (vp,v,) for which the second line is equal to zero.
Next, note that

/x <677~T(v) _ efrT(v)> (F(v))" dv

Uy
is decreasing in x for x < w and increasing for x > w. This together with (22) implies that
T satisfies the conditions of Lemma 8. There is a positive measure of types v € (vp,v,) for
which T'(v) # T'(v). T therefore satisfies the payoff floor constraint for ¢ ¢ (a,b), and yields
strictly higher ex-ante profit than T

For the contradiction, it remains to show that 7" satisfies the payoff floor constraint for
t € (a,b). Since (a,b) € [¢, "], the payoff floor constraint with 7" is a strict inequality for all
t € (a,b). By choosing the interval (a,b) sufficiently small, we can ensure that replacing T
by T does not violate the payoff floor constraint on (a,b). This concludes the proof for Case
1.

Case 2: v, = vy for allt € (s, 5"].

In this case, the interval where the payoff floor constraint is slack is a “quiet period”
without trade. This implies that v; is discontinuous at s”. Otherwise the payoff floor
constraint would be continuous in ¢ at s” which would require that it is binding at s”.
However, if the payoff floor is binding at the endpoint of the “quiet period,” it must be
violated for ¢ € (s, s”)."" Therefore v; must be discontinuous at s"—i.e., vgr > v],.

Similar to Case 1, we construct an alternative solution 7' that satisfies the conditions of
the MPS-Lemma 8. The alternative solution is parametrized by two trading times a < s” < b

and a cutoff valuation w which we set to w = (v + v],)/2.

T(v), ifvé (vy,ve),
T(U> = a, if v S (U}, US”);

b, if v € (vp, w).

In words, we “split the atom” at w. For the higher types in the atom we set an earlier trading
time a and for the low types we delay the trading time to b. To preserve monotonicity we
also delay the trading times of all v € (vy, v},) to b.

If we fix b > s” we need to select a such that we preserve the mean preserving spread of
Q:

51For t € (s, "), the right-hand side of (PF) is independent of ¢ whereas the left-hand side is increasing
in t.
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/”a (e — e TW) (F(v))"dv + /w (e — e (F(v))" 'dv = 0. (23)

w Uy

The second integral is negative and decreasing in b and the first is positive and decreasing in
a. Therefore, for b sufficiently close to s” there is a unique a € (¢, s”) so that the equation
is satisfied. a € (s, s") implies that v, = vy so that T' is monotone. We have constructed
T such that (19) holds with equality for z = v, and by a similar argument as in case 1 it
is satisfied for all x € [v,,vp]. Therefore, by the MPS-Lemma 8, T yields higher ex-ante
revenue than T and satisfies (PF) for all ¢ ¢ (a,b). It remains to show that we can choose b
such that (PF) is satisfied for all ¢ € (a,b).

T satisfies (PF) for all ¢, and v, is discontinuous at s”. Therefore, Lemma 5 (no final

atom) implies that v, > 0 and we can apply Lemma 4 (slack PF before atom). This yields
/ e TO=") (v < w)dF™ (v) > / J(wlv < w)dF™.
0 0

If we choose b sufficiently close to s” this inequality also holds for T. Moreover, a is decreasing

in b and a — s” for b — s”, therefore we have
/ e " TW=0) J(yly < w)dF™ > / J(v|v < w)dF™.
0 0

This shows that T satisfies (PF) for t = a*. Since the cutoff ¢, defined by 7' is constant
on (a,b), this implies that the payoff floor constraint is satisfied for all ¢ € (a,b) (see footnote
51). This completes the proof for Case 2. O

B.10 Proof of Lemma 9

Proof. We first show that v, is continuously differentiable for all t € (a,b) where v, > 0. To

show this we establish several claims.

Claim 1. v > v, and T is continuous on v € (vy, v)).

Proof. v} = v, would imply a that (a,b) is a quiet period. By Lemma 6 (slack PF in quiet
period) this would required that (PF) is a strict inequality for ¢ € (a,b). Similarly, if 7" has a
discontinuity at v € (vp,v;), then there is a quiet period (s, s’) which contradicts that (PF)
is binding for all ¢ € (a,b) by Lemma 6. O

Claim 2. T is strictly decreasing for v € (v, v)).
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Proof. Suppose by contradiction, that there exists a trading time s € (a,b) such that
T7(s) = (v, v,] where v} < v,. Since T is a feasible solution, Lemma 5 (no final atom)
implies that v > 0. By Lemma 4 (slack PF before atom), this implies that (PF) is a strict

inequality at s which is a contradiction. O
Claim 3. T is continuously differentiable with T'(v) < 0 for all v € (v, v])

Proof. Since T is continuous and strictly decreasing for v € (v, v)), a binding payoff floor

constraint for all ¢ € (a, b) is equivalent to the condition that, for all v € (v, vy ),

/ e T@ J(z|lx < v)dF™(z) = e_TT(”)/ J(z|z < v)dF™(z),
0 0
which can be rearranged into

oty _ Jo €T (el < 0)dF ™ (a)
= fov J(x|$ < U) dF(”)(x)

e
Continuity of T" and continuous differentiability of F' imply that the right-hand side of this

expression is continuously differentiable, and thus 7" is also continuously differentiable.

Differentiating with respect to v and solving for 7"(v) yields

T'(v) =

L[ = fy H PO @)] [y e @O S o) < v) dFO(a)
r (Jy J(z|z <v)dF ”)(:c))z

L [fO) — fy e @@-Te) L g (z)|

r fv ($|~’lf <) dF")(z)

[f(")(v)v — 0 ( dF™ (x ] fo vl < v)dF™ (1)

n

N

1 il
r (Jy J(z|z <v)dF® (:c))
. [ FO () — [ e T@-Tw) fgg dF ™ (x)]
o IR @m<van@)
o) Jo (e T@=TE) 1) L qpe) (z)
r f J(z]z < v)dFM(z)

where the second equality follows from the binding payoff floor constraint. In the last line,

the numerator is strictly negative and the denominator is positive. Therefore 7"(v) < 0. O

Together Claims 1-3 imply that v; is continuously differentiable for ¢t € (a,b) where
Ve > 0.
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Next we derive a differential equation for v; from the binding payoff floor constraint. In
the process we also show that v, is twice continuously differentiable.
Since vy is continuously differentiable on (a,b), we can differentiate (PF) on both sides

to obtain

e "ty f (ve)0y — /Ovt e 1@ f}zé;);}t dF™ (x)

et /Ovtjt<x>dF<”><x> T, f (1) / flw) ”tdF"><>

OJs(x) _ _ fue)o
where we have used 5 = )

This equation can be further simplified

e P00
/o ) W

, and T'(v;) = t which follows from continuity of T'(v).

= —pre " /Ovt Jt(x)dF(”) () —e " Ovt fj(:éi;jt dF(")(:U).

Since T is continuously differentiable for all v € (v, v]) by Claim 3, o, < 0 for ¢ € (a,b). By

assumption, f(v;) > 0, so we can divide the previous equation by — f(v;)0; to obtain

SR S R b ot [ 1
/o ek f<vt>vt/o Ti@)dP / jIES @, (24

This equation, together with our assumption that f(v) is continuously differentiable, implies

that v, is twice continuously differentiable. Differentiating (24) on both sides yields

e " (v by

. Vt (")
Utf(n) (Ut)Ut — f (Ut) 0 f dﬂ? Ut

=re .
f (o) B
[ R ) B @ @)
f (o) oy
/ _dF n) ) + TtnFn_l(Ut)bt'
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Multiplying both side by f (v;) 0, and rearranging we get

b (S () fM (v =2f ()n fy PN (x)de T
" (f (1) I (@) fo) (@) da > i+ =0

N J/
-~

=:g(vt)

Some further algebra yields

Awﬁ@w“wmm=4n—nnlmwmw—F@»F“%@ﬂ@mm
which implies

S {wF T ) =2 i F () do} f ()
f () <n—n0[F@o F ()] Fr=2 (v) f (v) vdv’

B.11 Proof of Lemma 10

Proof. Since f(v) is continuously differentiable lim, ,ovf'(v) exists. We first show that
lim, o v f'(v) = 0. Suppose by contradiction that lim, o vf'(v) = z # 0. If z > 0, we must

have f'(v) > z/(2v) for a neighborhood (0, €), which implies that f(e) 0)+ [5 f/(v)dv >
f(0) + [;(2/(2v))dv = oo which contradicts the assumption of a finite den51ty If 2 <0, we
have f'(v) < z/(2v) for a neighborhood (0, €), which implies that f(e) 0)+ [ f/(v)dv <

0)+ J; (2/(2v))dv = —oco which contradicts f(v) > 0. Since f (0) >0 and lim, o vf'(v) =0
together imply ¢ = lim,_,g vj{(()) =0, we have N (F) := 1+ f:ﬁ =1+2€(2,3).
If £(0) =0, we use a Taylor expansion of f(v) at zero to obtain

lim M = lim (v
v—0 f(U) v—0 f’(O)U

o=

This implies N(F) =1+ 1/3/2 < 2. O

B.12 Proof of Lemma 11

Proof. 1f Assumption 2 is satisfied, we can repeatedly use I’Hospital’s rule, and

L o) @+ £ ()

_ F(v) 1
v—=0 F ("U) Ulir(l) f("U) =14+¢ and lim

w0uf(v) 146
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to get

(n=1D¢p+n—2)(np+n+1)
(n—=1)(1+¢) '

k= limg(v)o = ¢ —
Simple algebra shows that if ¢ > —1,
k>-1 <= n<N(F).
Next, we transform the ODE (16) using the change of variables y = ©;. This yields

y'(v) + g(v)y(v) + 1 = 0.

The general solution is given by

y (’U) — [ g(z)dz (C _ / refﬁ g(z)dxd,w) 7 (25)

where m > 0.5 Feasibility requires that y(v) < 0 for all v € (0,v;). This implies that
Vo e (0,ug): C< / relm 9@z gy
Since the right-hand side is increasing in v this implies

C<C:= —/ redm 9@ gy,
0

and
C = lim /ref 9@ gy > —o0. (26)

[SHE

(i) Suppose k < —1. Since kK = lim, o g(v)v, there must exist v > 0 such that g(v) < —
for all v € (0,7]. We may assume that 0 < m < ~. In this case, the limit in (26) can be

computed as follows:

v m

hm Tef»:; Q(I)déﬂdw — hm _ re” f;n g(x)drdw
v—0 m v—0 v
m m
. m L .
<lim — redv = dw = lim — r—dw = —0o0.
v—0 v v—0 v w

52For m = 0, the solution candidate is not well defined for all x because e~ Jm 9(*)dz —
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Given that C' < C there exits no finite C' such that the general solution in (25) satisfies
y(v) <0 for all v € (0,v;). This shows part (i).
To prove part (ii), we set C = C. We show that the resulting solution

y(v) = —efﬂvwg(x)dx/ relm 9@ gy — —/ re” Ju9@dr gy, (27)
0 0

is negative and finite for all v. It is clear that y (v) < 0, so it suffices to rule out y (v) = —oo.
Since k = lim,_g(v)v > —1, there exist # > —1 and v > 0 such that g(v) > £ for all
v € (0,7]. Hence the limit in (26) can be computed as (where we may again assume that

0<m<7):

n m
lim/ redm 9@z gy, — Jipy — re~ Ju" 9@)dzr gy,

ve—0 m vr—0 vt
m m
. _ m . V\F
> lim — re "% dy = lim — r <—> dv
ve—0 vt vg—0 vt m
= —rm "- lim (m"“Jrl vf“) > —00.
K + 1 v:—0

Therefore, y (v) is finite and y(v) < 0 for all v. Next we have to show that (27) can be
integrated to obtain a feasible solution of the auxiliary problem. It suffices to verify that the

following boundary condition from Lemma 7 (cutoffs converge to zero):
lim v, = 0, (28)
t—o00

is satisfied. Recall that ©; = y(v;). Therefore, we have

V-
Dt = —e f:} g(v)dv (/ ' Tef:rjz g(iv)dmdv> )
0

We first show that, for any vy € [0, 1], the solution to this differential equation satisfies (28).

Since the term in the parentheses is strictly positive we have

el a)dv g

fovt eJm 9@z gy, -

—T.

Integrating both sides with respect to ¢, we get

Ut v ”Ua_ v
ln/ elm 9@)de gy, ln/ elm 9@y — g
0

0
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Now take t — oco. The RHS diverges to —oo and the second term on the LHS is constant,

so we must have

vt
lim ln/ eln 9@z gy, — 5
0

t—o00

which holds if and only if lim;_,,, v; = 0. Therefore, we have found a solution that satisfies
the boundary condition and is decreasing for all starting values v . This completes the proof
of part (ii).

(iii) Let 0; be a decreasing solution to the binding payoff floor constraint that does not
satisfy (7). Then z(v) = ¢, must be given by (25) for some C' < C'. The solution v¥ satisfies
(7). If we define y*(v) = 0f, y*(v) satisfies (27). Therefore we have

z(v) =yv) = (C—-C)e” 9@ 4y (3)).

This implies that 0, = vy implies Oy < Uy. We have established a single crossing property:
For any x € [0, 1], ; crosses vy at most once, and from above.

Now we pick = so that we can apply the MPS-Lemma 8. Let Q(v) be the expected
discounted winning probability times associated with the cutoff path ¢, and Q*(v) the one

associated with v¥. Define

A

Q”’” — Q(v)(v)dv

Clearly D(z) is continuous in z. = 0 implies that Q%(v) = (F(v))"~V > (F(v))®De-rT0) =
Q(v) for all v < 0} Therefore D(0) > 0. If we set = = 0;, then v¥ and @, intersect at ¢ = 0
and the crossing property implies that v¥ > @, for all ¢ > 0. This implies Q*(v) < Q(v) for
all v < ¢, and thus D(vd) < 0. Hence, the intermediate value theorem implies that there
exists 2% € (0,v%) such that D(z*) = 0. Moreover, 9; crosses v¥ exactly once and from

above. This implies that Q(v) crosses Q%(v) once and from below. Therefore we must have
/Qx Qv)dv < 0,Vz € [0,1].
Hence Lemma 8 implies that v} yields strictly higher profit than o,. O]

B.13 Proof of Proposition 5

Proof. The lower bound follows directly from Lemma 3. For the upper bound, by Lemma

2, we can restrict attention to equilibria (p,,, by,) in which the seller does not randomize on
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the equilibrium path.
We first define an e-relaxed continuous-time auxiliary problem. We replace the payoff

floor constraint by
/ e L@ 1 (0)dF™ (v) > (1 — &) F™ (v) 1% (vy).
0

By similar arguments as in the proof of Proposition 1, there exists an optimal solution to
the e-relaxed continuous-time auxiliary problem for every £ > 0. Denote the value of this
problem by V.. Clearly V. is increasing in € so that the limit lim. o V. exists. Moreover, by
similar arguments as in the proof of Proposition 1, there exists a sequence €™ 0 such that
the corresponding optimal solutions converge to a feasible solution of the auxiliary problem
for e = 0. Therefore we have

li_r}x(l)VE = lim Vim = V. (29)

m—ro0
The first equality follows from the existence of the first limit and the second follows because
the objective function is continuous.”
Next, we formulate a discrete version of the auxiliary problem. For given A, the feasible

set of this problem is given by

T:[0,1] — {0,A,2A, ...} non-increasing,

VA
and / T T@-KD) 1 () dF ™ (0) > F® (o)1 (0ps) Yk € N.
0

We denote the value of this problem by V(A). Let E4(A) C £(A) denote the set of equilibria
in which the seller does not randomize on the equilibrium path. The first constraint is clearly
satisfied for outcomes of any equilibrium in £4(A). The second constraint requires that in
each period, the seller’s continuation profit on the equilibrium path exceeds the revenue from
an efficient auction given the current posterior. Lemma 3 shows that this lower bound is
a necessary condition for an equilibrium. Therefore, the seller’s expected revenue in any
equilibrium (p, b) € £4(A) cannot exceed V(A). Moreover, for given e, the feasible set of the
discrete auxiliary problem is contained in the feasible set of the e-relaxed continuous-time

auxiliary problem if A is sufficiently small. Formally, we have:

53 As in the proof of Proposition 1, we need to formulate the problem in terms of §(v) = e~"7(*) and then
use weak convergence. We omit replicating the rigorous argument here.
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Claim: Let ¢ > 0 and A, = —1In(1 —¢)/r. For all A < A, we have

sup  11%(p,b) < V(A) < V..
(p,b)eE(A)

Proof of the claim: The first inequality has been shown in the text above. For the second,
let T2 be an element of the feasible set of the discrete auxiliary problem for A < A.. Let
v be the corresponding cutoff path. Note that for t € (kA, (k + 1)A] we have v = U(Ak_H)A

and hence

v
/ e’ (TA(U)_t)Jt('U)’rL(F(?J))n_lf(’U)d’U
0
A
Yk+1)a
_or((k+1)A—1) / o7 (T2 (v)=(k+1)A) J(kH)A(v)n(F(v))"_lf(U)dU
0

A
Vk+1)

Ze_m/ i e~ (TEO=(+D2) J A (0)n(F (v)" ™ f(0)do
0

zeirAF(n)(U(Ak—&-l)A)HE(U(Ak—i-l)A)

—e AFO (TP (02) > (1 — &) FO W) (o).

The first inequality holds because ¢t > kA, the second inequality follows from the payoff
floor constraint of the discretized auxiliary problem, and the last inequality holds because
A < A.. Therefore, T? is a feasible solution for the e-relaxed continuous time auxiliary
problem, and hence V(A) < V. if A < A.. Thus the claim is proved.

To complete the proof for Proposition 5, it suffices to show II* < V. We have:

IT* = limsup sup II%(p,b) <lim V. =V.
A0 (ph)eed(a) =0

The first equality follows from Lemma 2 which shows that the maximal revenue can be
achieved without randomization on the equilibrium path by the seller. The previous claim

implies that inequality. The second equality was shown above (see (29)). O

B.14 Proof of Lemma 12

Proof. The proof follows the same steps as in the proof of Lemma 11 but when taking the
limit k = lim, 0 g (v) v, we have to take into account that F(0) > 0. Applying I'Hospital’s
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rule, we can compute x as

o= 6l T DOLOE0) £ S @) () ~ 2(f ()0 + £ () Jo BT (s)ds
0 (n—1)f (v) [y s F=2(s)f(s)ds

Noting that F'(0) > 0, we can again apply 1'Hospital’s rule to obtain

(n — D)o f2(0) F"2(v)

zlg% (n—1)f (v) fov sF"2(s)f(s)ds =2

and

L PP EFT) =2 (o + £ ) iy () ds

v—0 (n=1)f (v) fo s F"=2(s)f(s)ds
It follows that

= —00

k = limvg(v) = +o0.
v—0

The rest of the proof of part (i) follows from the proof of Part (ii) of Lemma 11. Part (ii) is

proven by the same steps as in the proof of Part (iii) of Lemma 11. ]

C Appendix C: Equilibrium Approximation of the So-
lution to the Binding Payoff Floor Constraint

C.1 Equilibrium Approximation (Proof of Proposition 6)

In this section we construct equilibria that approximate the solution to the binding payoff
floor constraint. We proceed in three steps. First, we show that if the binding payoff floor
constraint has a decreasing solution, then there exists a nearby solution for which the payoff
floor constraint is strictly slack. In particular, we show that for each K > 1 sufficiently small,
there exists a solution with a decreasing cutoff path to the following generalized payoft floor

constraint:

/ T 1 () AE™ () = K T2 (v,). (30)
0

For K =1, (30) reduces to the original payoff floor constraint in (PF) (divided by Fi(vy)).
Therefore, a decreasing solution that satisfies (30) for K > 1 is a feasible solution to the
auxiliary problem. Moreover, the slack in the original payoff floor constraint is proportional
to T1Z (vy).

Lemma 13. Suppose Assumption 2 holds and n < N(F). Then there exists I' > 1 such that
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for all K € [1,T), there exists a feasible solution T™ to the auxiliary problem that satisfies
(30). For K N\, 1, T®(v) converges to T'(v) for allv € [0, 1], and the seller’s expected revenue

converges to the value of the auxiliary problem.

In the second step, we discretize the solution obtained in the first step so that all trades
take place at times t = 0, A, 24, .... For given K and A, we define the discrete approximation
TEA of TK by delaying all trades in the time interval (KA, (k + 1)A] to (k + 1)A:

T"%(v) := Amin{k € N| kA > T"(v)}. (31)

In other words, we round up all trading times to the next integer multiple of A. Clearly, for
all v € [0, 1] we have,

lim lim 7% (v) = lim lim T%2(v) = T(v),

K—1A—=0 A—0 K—1
and the seller’s expected revenue also converges. Therefore, if we show that the functions
TEmAm for some sequence (K,,, A,,) describe equilibrium outcomes for a sequence of equi-
libria (p™,b™) € £(A,,), we have obtained the desired approximation result.

The discretization changes the continuation revenue, but we can show that the approx-

imation loss vanishes as A becomes small. In particular, if A is sufficiently small, then the

approximation loss is less than half of the slack in the payoff floor constraint at the solution

TX. More precisely, we have the following lemma.

Lemma 14. Suppose Assumption 3 is satisfied and let n < N(F). For each K € [1,T],
where T satisfies the condition of Lemma 13, there exists AL > 0 such that for all A < A,
and all t =0, A, 2A, ...,

K,A

vt K+1
/ e (TH4@)-1) Jy(2)dFE™ (z) > axt
0

7 ().

This lemma shows that if A is sufficiently small, at each point in time ¢t = 0, A, 2A, .. .,
the continuation payoff of the discretized solution is at least as high as 1 + (K — 1)/2 times
the profit of the efficient auction.

THA can be implemented in

In the final step, we show that the discretized solution
an equilibrium of the discrete time game. To do this, we use weak-Markov equilibria as a
threat to deter any deviation from the equilibrium path by the seller. The threat is effective
because the uniform Coase conjecture (Proposition 4.(ii)) implies that the profit of a weak-

Markov equilibrium is close to the profit of an efficient auction for any posterior along the

65



equilibrium path. More precisely, let I12(p, b|v) be the continuation profit at posterior v for
a given equilibrium (p,b) € £(A) as before.”® Then Proposition 4.(ii) implies that for all
K € [1,T], where T satisfies the condition of Lemma 13, there exists A% > 0 such that, for
all A < A2 there exists an equilibrium (p,b) € £(A) such that, for all v € [0, 1],

K+1

4 (p, blv) < 11 (v). (32)
Now suppose we have a sequence K, N\, 1, where K,, € [1,T] as in Lemma 13. Define
Ak = min {A}(, A%(} We can construct a decreasing sequence A,, N\, 0 such that for all

m, A, < Ag,,. By Lemma 14 and (32), there exists a sequence of (punishment) equilibria
(p™, l;m) € E(A,,) such that for all m and all t =0, A,,,2A,,, ...

J

Km,Am
o B (z) Ko +1
IR E) g () AR (1) > T (gl

>STI(™, 6™ v 5. (33)

The left term is the continuation profit at time ¢ on the candidate equilibrium path given by
THm:Am This is greater or equal than the second expression by Lemma 14. The term on the
right is the continuation profit at time ¢ if we switch to the punishment equilibrium. This
continuation profit is smaller than the middle term by Proposition 4.(ii). Therefore, for each
m, (p™, l;m) can be used to support T5m2m as an equilibrium outcome of the game indexed
by A,,. Denote the equilibrium that supports T m4m by (p™ ™) € £(A,,). It is defined as
follows: On the equilibrium path, the seller posts reserve prices given by T5mAm and (12).
A buyer with type v bids at time T5=2m (¢)) as long as the seller does not deviate. As argued
in Section 4.2, this is a best response to the seller’s on-path behavior because the prices given
by (12) implement the reading time function T5=Am  After a deviation by the seller, she
is punished by switching to the equilibrium (p™, l;m) Since the seller anticipates the switch
to (p™, I;m) after a deviation, her deviation profit is bounded above by II(p™, l;m|vt m’Am).
Therefore, (33) implies that the seller does not have a profitable deviation. To summarize,
we have an approximation of the solution to the binding payoff floor constraint by discrete

time equilibrium outcomes. This concludes the proof of Proposition 6.

541f the profit differs for different histories that lead to the same posterior, we could take the supremum,
but this complication does not arise with weak-Markov equilibria.
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C.2 Proof of Lemma 13

The key step of the approximation is to discretize the solution to the binding payoff floor
constraint. In order to do that, we first need to find a feasible solution such that the payoff

floor constraint is strictly slack. We have the following generalization of Lemma 9.

Lemma 15. Suppose T(x) satisfies (30) for all t € (a,b) and suppose T is continuously
differentiable with —oo < T'(v) < 0 for all v € (vy,v,) and vy is continuously differentiable
for allt € (a,b). Then v, is twice continuously differentiable on (a,b) and is characterized
by )

Z—z + gy, K)in + h(vy, K) (8,)* + 7 =0,

where )
sy = L0 Q=) w0 2 @) v} £ ()
; flo  (n=1) [ [F () = F ()] F"=2(v) f (v)vdv
" K1 P2 (v) £ (0)
— V¢ V¢) Ut
M R = R T ) = F @) P2 () F (o) do’
Proof. The proof follows similar steps as the proof of Lemma 9. n

Repeatedly applying I’'Hospital’s rule yields
Lemma 16. If Assumption 2 is satisfied, we have

(n=1)¢p+n—2)(np+n+1)

K= %%g(v)v:¢— =1 (1+9) ; (34)
. K-l ¢+ 2
llg(l)g(v,K)v—/i—T<n¢+n+2+(n_1)(1+¢)>, (35)
and
lim (v, K)o = %K]; Lnt én+1)(n+dn— o). (36)

We use the change of variables y = v, to rewrite the ODE obtained in Lemma 15 as

y'(v) = = = g(v, K)y(v) = h(v, K) (y(v))*. (37)

Any solution to the above ODE with K > 1 would lead to a strictly slack payoff floor
constraint. Our goal is to show that the solution to the ODE exists for any K sufficiently
close to zero and converges to the solution given by (7) as K \, 1. We will verify below that

(7) satisfies the boundary condition lim,_,o y(v) = 0. Given this observation, we want to show
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the existence of a solution yx (v) < 0 of (37) that satisfies the same boundary condition. If the
RHS is locally Lipschitz continuous in y for all v > 0 the Picard-Lindelof Theorem would
imply existence and uniqueness and moreover, Lipschitz continuity would imply that the
yi (v) is continuous in K. Unfortunately, although the RHS is locally Lipschitz continuous
for all v > 0, its Lipschitz continuity may fail at v = 0. Therefore, for v strictly away from 0,
the standard argument applies given Lipschitz continuity, but for neighborhood around 0, we
need a different argument. In what follows, we will center our analysis on the neighborhood
of v =0.
We start by rewriting (37) by changing variables again, z(v) = y(v)v™:

2 (v) = —rv™ — (g(v, K)v — m)@ — h(v, K)LU)2 (38)

v pm

First, we show that the operator

Lic(2)(w) = / e (g, K)s —m) 2 (s, 1) ")

S sm

ds. (39)

is a contraction mapping on a Banach space of solutions that includes (7). This extends the
Picard-Lindel6f Theorem to our setting and thus implies existence and uniqueness. Next,
we show that the fixed point of Ly converges uniformly to the fixed point of Ly as K 1.
Finally, we show that we can obtain a sequence of solutions 7% that converge (pointwise) to
the solution of the binding payoff floor constraint (with K = 1) and show that the revenue
of these solutions also converges to the value of the auxiliary problem.

Before we introduce the Banach space on which the contraction mapping is defined, we
first derive bounds for the RHS of (38).

Lemma 17. Suppose Assumption 2 is satisfied. For any k > —1, there exist K > 1; an
integer m > 0 given by m = |k| if Kk > 1, and m =0 if k € (—1,1); and strictly positive real
numbers o, n, & such that the following holds.

(@) m < |s|+n,
(b) (|n|+77*TTrTLLla1+T]a2+T c {O, Oé],

(c) ImbnliZalm ¢ (0, 1),

€(0,1) if Kk >m

k+n(l+a)—m k—n(l+a)—m .
(d) = €(=5.3) ifw

€(—=1,0) ifrk<m
(e) |h(v, K)v?| < n for any v < & and K € [1, K],
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(f) lg(v, K)v — k| < n for any v < & and K € [1, K],

Proof. The choice of m implies 0 < m < || so that (a) is satisfied for any n > 0. In addition,

0 < bbm

< oo <land 0 < |k| < m + 1. Note that by the choice of m, k < m if and only if

k< 0;k=mif and only if k =0,1,...; kK > m if and only if x > 0 and & is not an integer.
Next we choose a. Consider (b) . By the choice of m, the expression in () is non-negative

for any n,« > 0. Given this, Part (b) is equivalent to

na® — (2m+1— |kl —n)a+r <0.

1 1
(2m+1— k| —n)—[(2m+1—|k|—n)2—4rn] 2 (2mA1—|k|—n)+[(2m+1—|k|—n)2—4rn] 2
Hence, 5 <a< o

1 —1k| > 0, as n — 0, the upper bound of o goes to +oo while the lower bound converge to

. Since 2m +

by L’Hospital’s rule. We choose @ = Then there exists 1y > 0 such that

ST [ 2m +1 w]"

Part (b) holds for any n € (0,n0) .

For m, a,and 1y chosen above, since 0 <
Part (c) holds for any n € (0,n).

For Part (d), consider the limit

IHI

< 1, there exists 7, € (0,79) such that

€ (0,1) if K >m
kEnl+a)—m K—m

]. — = 1 =
nlg(l) m 1 1 0 fr=m

€(—1,0) ifr<m

By continuity in both cases there exists n € (0,7;) such that Part (f) holds.

Finally, given 7 chosen for Part (f), it follows from Lemma 16 that we can choose £ and
K jointly such that (e) and (f) hold. The proof of Lemma 16 shows that ¢ can be chosen
independently of K if K < K. O]

Note that (K, m,a,n,€) in Lemma 17 only depend on the number of buyers n and the
distribution function F. Since Lemma 13 is a statement for a fixed distribution and fixed
n, we treat (K,m,a,n, &) as fixed constants for the rest of this section. In the following, we
slightly abuse notation by using n as an index for sequences. The number of buyers does not
show up in the notation in the remainder of this section except in the final proof of Lemma
13.

We define a space of real-valued functions

Zoz{z:[o,f]—ﬂk

z(v)
Um+1| € R} ’
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and equip it with the norm

(v)

Um—l—l '

||2]m = sup
v

Define a subset of Z, by
Z={z:[0,¢] = R[[z||m < a}.

Note that these definitions are independent of K < K.

Lemma 18. Suppose Assumption 2 is satisfied. Zy is a Banach space with norm || - ||, and

Z is a complete subset of Z.

Proof. For any 71,7, € R and 21, 20 € Zy and v € [0, €], we have

Nz ) +7en@)| z1(v) 22(v)
L < [ml oL + 7 o+l
< Inlllzllm + Melll22lm
< 0oQ.
Therefore Zy is a linear space. It’s straight forward to see that || - ||, is a norm on Z,. We

now show Zj is complete. Consider a Cauchy sequence {z,} C Zy: for any € > 0, there

exists V. such that ||z, — z,||m < € for any n’,n > N..

First, notice that for any n > 0, ||zu|lm < 5 := maxy<n. {||zw||lm} + & < 00. Next
we claim that zn converges pomtvvlse To see this, note that sup, |Z’(;)m—+21] < ¢ implies

that | '(;}mfl | = WH —va | < ¢ for any v. Since |quH | < 3, completeness of real interval

with the regular norm implies that there exists x (-) such that ifn—(ﬁ — x(v) pointwise and

|z(v)| < B. Now define z(v) = x(v)v™ . It’s straightforward that z,(v) — z(v) pointwise.
Finally, we show that z, converges under || - ||,,. To see this notice that ||z, — z|| =

sup, |2 — z(v)| < & for any n > N.. In addition, since |z(v)| < 3, ||2||m < 8. This proves

,Um+1

that Z is complete. The same argument shows that Z is complete, by replacing the bound
B by a. m

To study the ODE (38) for each K € [1, K],we define an operator Lx on Z as in (39).

Lemma 19. Suppose Assumption 2 is satisfied. The operator Ly is a contraction mapping

on Z with a common contraction parameter p < 1 for all K € [1, K].

Proof. First we show that LxZ € Z. For any z € Z and v € [0,¢],

/Ov —rs™ — (g(s, K)s — m)@ — h(s, K)s’ jni)z ds

L (2) ()| =
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romtl v z(s) 5 [*

< K)s — 24 " 2m+2-m=2

< | ot s —m) 2 s+ 1) [ 5
m+1 v .m+1 m—+1

S::L}+1 + sup |g(3,K)s—m|||z||m/ SS ds+na2;+1

s€[0,¢] 0

<7“Um+1 +(|H|+n_m)a Um—O—l +na2 m—+1

“m+1 m+ 1 m+ 1

_(sl+n—m)atna® +r ..

N m+1

SO{Um+1.

The first inequality follows from the triangle inequality of real numbers, Part (e) of Lemma
17 and |2(s)| < ||z||ms™"*. The second inequality follows from |z(s)| < ||]|ns™"" and

|12||;m < . The third inequality follows from Lemma 17: for any s € [0,¢] and K € [1, K]:
’g(S,K)S - TTI,| < ‘g(87K)S - KV| + |H - m‘
n+rk—mifrk>1
n+ |kl if kK € (—1,1)

= |k|+n—m.
We now show Lk : Z — Z is a contraction mapping. For any 21,z € Z and v € [0, ],

| Lic(21)(v) — L (22)(v)|
/0 —(g(s,K)s — m)M _ h(syK)SQZl(S) — 25(s) s

g/ sup |g(5,K)8_m|M
0 s€[0,£] S
s (e, s 2L 2 6) — (0
s€f0,¢] smE
v 8m+1
<l 5= m) [ o1 = zalln s
0
v S2m+2
+/O 77(|121||m+||22||m)||21—Z2||de8
Um-‘,—l m—+1
S(W+77—m)m+1H21—Z2Hm+77204m+1H21—22Hm
ma1 Bl £ —m+n2a
= +1’ ’ 77 77 ||21_Z2||m
m—+ 1

The first inequality follows from the triangle inequality for real numbers. The second inequal-
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ity follows from sup |g(s, K)s—m| < |k|+n—m which was shown above, |z1(s)—22(s)| < ||z1—
2| lms™, sup (s, K)s*| <0, and [z1(s) + 2a(s)| < [21(s)] +[22(s)] < ([[21]lm + [[22]lm)s™
The third inequality follows from ||z||,, < a.

It follows immediately that ||Lx(21) — L (22)||m < B2 20— 0] |- By Part (c)

m—+1
of Lemma 17, p := WMT;—_TJW € (0,1), which is independent of K € K. Hence Ly is
contraction mapping on Z, with a common contraction parameter for all K € [1, K]. ]

Since Lx : Z — Z is a contraction mapping, the Banach fixed point theorem implies
that there exists a unique fixed point of Lg in Z. For any K € [1,@, we denote the
fixed point by zg, i.e., zx = Lg(zx) € Z. By the Banach fixed point theorem we have

zi = lim,,_, L%(0).

Lemma 20. Suppose Assumption 2 is satisfied. The fized point of Lk on Z, and hence the
solution to the ODE (38) must be strictly negative for v > 0.

Proof. Let p; = SH—mtne -, — F21-m-n% Ve claim that there exists M, M, such that

m+1 m+1
L7 (0
M1§%§M2<0 (40)
for any n > 1.
For any n > 1,
L (0)(v) (41)
v n—1 n—1 2
_ o mtl Ly (0) (s) o (L% 1(0) (9))
_—m+1v —/0 (g(s,K)s—m)f—kh(s,K)s e ds
— r ,Um+1
m+1

' —ml S SQ—L?{_I(O) (8) Lt S S
+/0 (<g<s,K>s )<+ hls, K)s* =K )( Li(0)(s)) d

We prove separate the three cases kK > m, k = m, kK < m (which is equivalent to k < 0)

separately.
Case 1: K > m. In this case, p1,p2 > 0 by Lemma 17. Let M; = —mLH and M, =
—mil(l — p1). By part (d) of Lemma 17: M; < -1 < My < 0. Therefore we have

L (0) (v) = —=t50™"" satisfying (40). We prove the desired result by induction. For n > 1,

+
consider (41):

m—+1

L2(0)(v) < —mLva“ + /0 (“ - T: A/ ”‘;‘ZH ) (=L31(0)(s)) ds
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r m+1 ! Sm—H
ey +(k—m+n(l+a)) i —M,; . ds

r
— _ _ M m+1
( m—+1 ~ 1) v

= Myp™H!

The first inequality follows from —L’}{l(O) > 0, Lxg € Z, and replacing the coefficient of
—L%71(0) by its upper bound. The second inequality follows from x —m + n(1 + a) > 0
and replacing — L' (0) with its upper bound —M;s™*! (by the induction hypothesis). In
addition,

L)) 2 Lt [ (BRI IO (o) (9) s

m+1
>_Lvm“+(/@—m—n(1+a)) ) _M28m+1 ds
- m+1 0 S
r
— - - M m+1
( m 1 P2 2)U
ZMI'Um—H

The first inequality follows from —L7%~"(0) (s) > 0 and replacing the coefficient of (—L"(0) (s))
by its lower bound. The second inequality follows from x —m — n(1 + «) > 0 and replacing
—L71(0) with its upper bound —Mys™+! (by the induction hypothesis). The last inequality
follows from —py My > 0 and the choice of M.

Case 2: Kk < m. In this case, p1,p2 € (—1,0) by part (d) of Lemma 17. Let M; =

—m:1 1+1p2 and My = —mLH. p2 < 0 implies M; < —mLH < M, < 0. Therefore we have
Li(0) (v) = —-E50™ ! satistying (40). For n > 1, consider (41) :
r 1 v smtl
L?{(O)(U) < _m——l—lvm+ + (/‘i —m + 77(1 + Od))/o‘ (-Mg p > ds
T
— o o M m+1
< m+1 P~ 2> v

< — r Um—H

- m+1

= Mgvm+1

The first inequality follows from a similar derivation as in the case k > m. However here

k—m—+n(l+a) < 0, therefore —L7%'(0) is replaced by its lower bound —M,s™ 1. The
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second inequality follows because py My > 0. In addition,

L7 (0)(v) > —mLvaﬂ +(k—m—n(l+a)) /0 (—Ml 5”:1) ds

r
— o - M m+1
( m+1 P2 1) Y

Case 3: k = m. Then p; = —p, = 4 ¢ (—1/2,1/2) by part (d) of Lemma 17. Let

m+1
My = =gt and My = — L5 2 Since m > 0 we have p; € (0,1/2). This implies
M, < =5 < My < 0. Therefore we have Lj(0) (v) = —Lgv™*! satisfying (40). For

n > 1, consider (41) :

IN

LE(0)(s) < ———™ 4 (1 + ) /0 ) (—MﬁmH) ds

m —+ S

:( r nU+amﬂ)wH1

“Tm+1  m4+1

= Myy™*!

m+1

To obtain the first inequality, we replace —L’}{l(O) by its upper bound —M;s since
n(1+4 «) > 0. In addition,
r . v Sm—i—l
L% (0)(v) > p— 1vm —n(1 +a)/0 <—M1 . ) ds
1
(o +n( +a)Ml et
m+1 m—+1
— Ml?)m+1
To obtain the first inequality, we replace —L"*(0) (v) by its upper bound —M,s™*! since
—n(l+a) <0. O

() _ z(v)

—0as K — 1.

Lemma 21. Suppose Assumption 2 is satisfied. Then sup,ej ¢

Proof. First note that for any ¢ > 0, it follows from Lemma 16 that g(v, K)v and h(v, K )v?
are bounded over v € [0,&] and K € [1, K]. Hence there exists I' € (1, K) such that

sSup |g(U7K)U —g(U71)U| <ég,
ve[0,¢],Ke[1,T]

sup  |h(v, K)v? — h(v, 1)v?| < e.
ve[0,],Kel1,T]
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'm+1

ZK('U) z1 (v )‘ < sup, [|zx — 21||lm e < €ll2k — 21]|m, it’s sufficient to show

vm

that limg 1 ||z — 21||m = 0. The proof follows from Lee and Liu (2013, Lemma 13(b)). Let

_ |El+n—m+n2a
P = m—+1

and K € [1,T],

Since sup,ejo ¢

< 1 be the contraction parameter, which is independent of K. For all z € Z

1Lk (2)(v) = La(2)(v)]

/Ov(g(s, K)s — g(s, 1)S)ﬁ + (h(s, K)s* — h(s,1)s%) e ds

v v 2
§5/ ﬁds%—e/ 2(s) ds
0 S 0 Sm+2

,Um+1 9 ,Um+1
<e (ellms + Izl 2~

2

o+«
<e Um+1

m+1

o Oé2
Therefore, ||Lx(2) — Li(2)||m < e%HF

For any n > 1,

[ L (2) = LY (2)||m
=[| L (L3 (2)) = Ly (L3 1(2)) + Ly (L1 (2)) = Ly (LE71(2)) ||m
<Lk (L '(2) — Ly (L (2) [+ 1Ly (L5 1(2)) = Ly (L71(2)) |m

a+ao?

<
1

+pll i (2) = L7 (2) I

-1

%

+
+

6@4—04
T m+11-p

Given zx = lim,, o L% (0), there exists N. s.t. Vn > N, ||zx — L (0)|| < e:

lzx — 21l|lm < l2x = L (0)||m + [|20 = LT (0)|[im + |[ L% (0) — LY (0)|]m
a+a? 1

m+11—p

a+a? 1
=2+ — e

m+11—-p

Therefore limg 1 ||z — 21||m = 0. O

<2+4c¢
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Given definition z(v) = y(v)v™, let yx(v) = Z’;,Ef), where zy is the fixed point of L.
It follows from the previous two lemmas that yx(v) is negative and limg 1 |lyx — 11|| = 0

under standard sup norm. Now we have all the ingredients necessary to prove Lemma 13.

Proof of Lemma 13. The uniform convergence of yx implies that the cutoff sequence v*

given by v (t) = v (0) + fg yx (v (s))ds converges pointwise to the cutoff sequence v, = v}
associated with the trading time function T (v) = T (v). Since v; is continuous and strictly

decreasing (by Lemma 9), this implies that the trading time function
T (v) =sup {t: v > v}

converges pointwise to 7' (v). To see this, note that sup{t: v; > v} = sup{t : v; > v}, since
vy is continuous and strictly decreasing. Now, for all ¢ such that v; > v, there exists K* such
that v/ > v for all K < K. Hence,

[l(l{rxllsup{t.vt > v} >sup{t:v > v}.
Similarly, for all ¢ such that v; < v, there exists K* such that vX < v for K < K. Hence,
: R ¢ .
[l{li‘nlSUP{t-Ut zv}gsup{t.thv}.
Therefore, for all v, we have

; . K — .
Il{l{n‘lsup{t.vt > v} =sup{t:v >0},

or equivalently,

Il{igll T5(v) = T(v).

It remains to show that the seller’s ex ante revenue converges. Notice that the sequence

—rTE (v)

e is uniformly bounded by 1. Therefore, the dominated convergence theorem implies

that
1 1

lm [ e T80 (@)dF O () = / T J(2)dF™ (2).
KN\ S, 0
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C.3 Proof of Lemma 14

Proof. For t € {0,A,2A,...}, define

v :{UG[O,vtK’A”J(vWSvtK’A)ZO},

P L o]

Consider the LHS of the payoff floor constraint at ¢t = kA, k € Ny. Notice that, for k& > 0,
the new posterior at this point in time is equal to the old posterior at ((k—1)A)*. Therefore,

we can approximate the LHS of the payoff floor at ¢t = kA as:
—r K,A v)— K,A n K,A
/[o e e kA)‘](UW < VA )f( )(U|U < vk )dv

YN
- / IR TOSOTEO-8) [y < f52) 1O vy < 0f5)dv
0457

b [ €IS ol < of53) 0ol < ofi )
Via

—r (TE (v)—(k— r , n s

) /m@ RO (1= %) (ol < 030 FO e < o)
Via

> [ eI < ol O ol < ol

[ K,A

O,va]
— —r (TR ()=(k=1)A) (1 _ oA KAy r(n) K,A
[one (1= ) Tl < vf5) O o < of5)dv.

ViA

Where we have used that 754 (v) — TX(v) — A < 0 as well as the definitions of Vy. and
V,fA’A to obtain the first inequality. The first term in the last expression is equal to the LHS

of the payoff floor constraints at ((k — 1)A)* for the original solution v¥. Hence it is equal

7



to KIIZ(v;>). Therefore, we have

VA
/ e IO J(fy < 0f52) FO o < of52)du
0

eTTE (KA rA
=KI" (") + (e —1)/KA

Via

>KIP (0/58) + (€7 — 1) / J(vlo < 0lS2) £ (v]o < o5 dv
ViA

e OIS oo <0 f (vl < oo

_KHE<UK,A) o ( rA 1) ﬁM(%fAA) —1 HE( KA)
o kA A )
2 (05”)
where
M (w) := max {0, J(v|v < w)} f™(v]v < w)dv < w.
[0,w]
Next we show that %A_)) — 1 is uniformly bounded. Recall that by Assumption 3,

VkA

there exist 0 < M <1 < L < oo and a > 0 such that Mv* < F(v) < Lv* for all v € [0, 1].

This implies that the rescaled truncated distribution

for all v € [0, 1] is dominated by a function that is independent of x:

~ Lo*x® L
F, < = —o*.
V) S Fra =

Next, we observe that the revenue of the efficient auction can be written in terms of the

rescaled expected value of the second-highest order statistic of the rescaled distribution:
1 ~
1% (v) = / vsd Fm 1) ().
0
If we define F'(v) := min {1,Lv*} and B := fol sdF(=11) () then given F,(v) <

can apply Theorem 4.4.1 in David and Nagaraja (2003) to obtain I1¥(v) > Bv > 0. Since
1M (v) < v, we have

i A
VORI S
HE(”;?AA) B
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Therefore, LHS of the payoff floor at t = kA is bounded below by

1

{K — (e = 1) (E —~ 1)] 7 ().

Clearly, for A sufficiently small, the term in the square bracket is no less than (K +1)/2. O
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