
1 

 

Robust Estimation of Snare Prevalence Within a Tropical Forest Context 1 

Using N-Mixture Models. 2 

Hannah J. O’KELLY
1*

, Marcus J. ROWCLIFFE
2
, Sarah M. DURRANT

2
 and E.J. MILNER-3 

GULLAND
3 4 

 
5 

1 The Wildlife Conservation Society (WCS) Cambodia Program, # 21, Street 21, Phnom 6 

Penh, Cambodia  7 

2 The Zoological Society of London (ZSL), Institute of Zoology, Regent’s Park, London 8 

NW1 4RY, UK 9 

3 Department of Zoology and Merton College, Tasso Leventis Professor of Biodiversity, 10 

University of Oxford, Oxford OX1 3PS, U.K. 11 

*  Corresponding author okellyhj@gmail.com  12 

  13 

mailto:okellyhj@gmail.com


2 

 

Abstract 14 

Hunting with snares is indiscriminate and wasteful, and this practice is currently one of the gravest 15 

threats to terrestrial vertebrates in the tropics. However, as snares are difficult to detect and often 16 

dispersed widely across large, inaccessible areas it is problematic to reliably estimate their prevalence 17 

and no standard survey methods exist. Conservation managers need reliable, timely, information on 18 

the spatio-temporal patterns of hunting and on responses to interventions, and we present an 19 

innovative sampling and analysis framework that allows for the rigorous estimation of snare 20 

detectability and ‘abundance’, but which can be feasibly implemented in challenging field contexts. 21 

This new approach was used to undertake a large-scale systematic snare survey in Keo Seima 22 

Wildlife Sanctuary, in Eastern Cambodia, and the resulting data were analysed using a novel 23 

application of N-mixture models.  A range of environmental and management factors were examined 24 

as potential determinants of snare abundance and detectability, and proximity to the Vietnamese 25 

border was shown to be overwhelmingly the most influential factor. Snares were more common in the 26 

wet season rather than the dry season, and the detection probability of snares was shown to be low (~ 27 

0.33), as predicted.  No clear relationships between snaring levels, anti-poaching patrol effort and 28 

ungulates densities were evident from these data. There was clear evidence that certain factors, such 29 

as the percentage of dense forest cover, will exert confounding effects on both detectability and 30 

abundance, highlighting the critical need to take account of the imperfect detection when designing 31 

threat monitoring systems. 32 
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1. Introduction  36 

Illegal hunting, be it for local subsistence or to supply ever-expanding markets with meat, pets, trophies 37 

and other body parts, arguably constitutes the greatest current threat facing wild vertebrates in tropical 38 

Asia and Africa (Corlett 2007; Fa & Brown 2009; Harrison et al. 2016). Unsustainable hunting can have 39 

dire consequences not just in terms of causing species extirpations and degrading the ecological integrity 40 

of forest systems, but also through its impact on the livelihoods of the rural, often marginalised, people 41 

who depend on these resources (Milner-Gulland & Bennett 2003; Fa et al. 2016). 42 

Traditional approaches to the monitoring poaching and other forms of illegal resource use (i.e. interview-43 

based techniques, self-reporting, direct observation) all have methodological challenges associated with 44 

them (Gavin et al. 2010). This is largely due to the fact that offenders typically have strong incentives to 45 

conceal the true nature of their activities from investigators, potentially leading to severe and 46 

unquantifiable bias in estimates of the prevalence of illegal resource-use (Keane et al. 2008; Gavin et al. 47 

2010). With the global roll-out of standardised law enforcement monitoring systems such as SMART, 48 

there has been a growing interest in threat data collected during routine patrols (i.e. encounters of 49 

infractions; e.g. Jachmann 2008; Linkie et al. 2015), and the use of such cheap and readily available data 50 

will undoubtedly continue to increase. However, as essentially a by-product of efforts to deter illegal 51 

activities, these data typically also contain severe biases which can limit their utility for threat monitoring 52 

purposes (Gavin et al. 2010; Keane et al. 2011). 53 

Any attempt to estimate the prevalence of a given threat can be affected by the same two sources of bias 54 

which affect all ecological surveys, imperfect detection and unrepresentative spatial sampling (Williams 55 

et al. 2002). The importance of considering these potential biases when designing ecological monitoring 56 

programs has been repeatedly highlighted (Yoccoz et al. 2001; Legg & Nagy 2006; Nichols & Williams 57 

2006) but these issues are equally applicable to the monitoring of threats such as hunting. Employing a 58 

probabilistic sampling strategy and investing in sufficient survey effort can ensure representativeness 59 

(Brashares & Sam 2005), but accounting for detection error can be more challenging. The problem of 60 

imperfect detection is of particular relevance to illegal hunting, not only because it precludes reliable 61 
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monitoring of this threat, but also because a key factor in successful poaching deterrence is a high rate of 62 

detection (Leader-Williams & Milner-Gulland 1993; Hilborn et al. 2006). And yet, to our knowledge, 63 

there are no published studies which attempt to estimate the extent or impact of illegal hunting using 64 

systematic surveys which account for imperfect detection.   65 

The development of flexible hierarchical models has greatly improved researchers' ability to 66 

simultaneously account for variation which is related to spatial or temporal variation in an underlying 67 

ecological process of interest (i.e. occurrence or abundance) and variation which is due to the imperfect 68 

observation of this process (i.e. detectability Royle & Dorazio 2008; Kéry & Royle 2016). One class of 69 

hierarchical models are the multinomial and binomial mixture models of Royle (2004 a,b), which to date 70 

have been most frequently used in the analysis of avian point count data, although they have also been 71 

employed in the study of mammal and amphibian populations (Mazerolle et al. 2007; Zellweger-Fischer 72 

et al. 2011). A natural extension of these methods is to adapt them for modelling observations of hunting 73 

rather than of wildlife.  74 

We present a case study in which binomial mixture models, or ‘N’ mixture models, are used to generate a 75 

robust estimate of snaring prevalence in a protected area in Eastern Cambodia. As elsewhere in the 76 

tropics, wire snares are a common method of hunting in this region, as the equipment involved is 77 

affordable and easily accessible, and the technique is effective for a wide range of vertebrate species 78 

(Noss 1998; Becker et al. 2013). This form of hunting is particularly detrimental because in practice it is 79 

often indiscriminate and wasteful  (Lindsey et al. 2011; Gray et al. 2017), and the use of snares is 80 

therefore illegal in Cambodia. However, the covert nature of this activity means that it is extremely 81 

difficult to detect perpetrators or snares, and consequently the enforcement of snaring prohibitions is 82 

challenging (Noss, 1998). Although some surveys have been undertaken in Africa (i.e. Wato et al. 2006; 83 

Lindsey et al. 2011; Becker et al. 2013) none of them address the detection issue, and almost no studies 84 

have been carried out in Southeast Asia (but see Linkie et al. 2015). This is despite the fact that hunting 85 

with snares represents one of the gravest threats to terrestrial biodiversity in the region (Gray et al. 2017). 86 

Without accurate measurement of such threats, managers cannot easily evaluate the success of 87 
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conservation actions designed to reduce snaring levels, or design more effective interventions as a result 88 

(Hockings et al. 2000).  89 

The aim of this study was to develop an approach which could reliably estimate the abundance and 90 

detectability of snares, but that could be implemented within a typically challenging tropical forest 91 

context. Our objectives were both methodological and relevant to management, and related both to the 92 

field component and the subsequent modelling process: 93 

Objective 1.  Develop an appropriate sampling design for a snare survey to produce data suitable for 94 

analysis within a hierarchical modelling framework. Objective 2. Analyse the resultant snare survey data 95 

using N-mixture models to generate a detectability-corrected spatially explicit index of snare abundance. 96 

Objective 3. Within this modelling framework, investigate a priori hypothesised relationships between a 97 

range of potential covariates and both snare detectability and snare abundance.  98 

2. Methods 99 

2.1 Methodological Framework 100 

Any application of N-mixture models requires both spatial and temporal replication within the data 101 

(Royle 2004a, 2004b; Kéry et al. 2005), hence a sampling design was required which incorporated both 102 

multiple sites and repeated surveys of each site. In practical terms, although relatively numerous, snares 103 

are extremely difficult to detect (O’Kelly et al. 2017). They also tend to be aggregated in space at one 104 

scale (i.e. where one hunter operates) whilst also dispersed across a large survey area (i.e. the entirety of 105 

the protected area).  Therefore, the sampling design necessarily involved a balance between maximising 106 

the efficiency of data collection and adhering to best practice in terms of scientific rigour.  107 

N-mixture models are extensions of the Poisson generalized linear model (GLM) or generalized linear 108 

mixed model (GLMM), but they include an additional stochastic component that explicitly models the 109 

observation process (Kéry & Royle 2010, 2016). These models can produce estimates of abundance 110 

without the need for the identification of individuals, and they are particularly appropriate for scenarios 111 
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where data are relatively sparse  (Royle 2004a, 2004b).  These models are also useful for investigating 112 

how both the abundance and detection processes vary as a function of both ecological and management 113 

factors (i.e. Chandler et al. 2009; Chandler & King 2011). 114 

Our modelling approach incorporated two stages, the first of which examined covariates for which we had 115 

some clear a priori hypothesis regarding their relationship to abundance and/or detectability. The second 116 

phase involved including additional covariates in order to explore the relationship between threats (i.e. 117 

snaring rates), interventions (i.e. patrol effort) and impacts (i.e. wildlife densities). Whilst the 118 

relationships and potential causal linkages of the second stage are of fundamental interest to conservation 119 

managers, they are difficult to predict a priori or to interpret with any certainty. 120 

2.2 Study Site  121 

The Keo Seima Wildlife Sanctuary (KSWS) covers a 292,690ha mosaic of evergreen, semi-evergreen 122 

forest and deciduous forest in eastern Cambodia. Biodiversity values within  KSWS are high, as it holds 123 

globally or regionally significant populations of elephants and wild cattle, and multiple species of 124 

primates, carnivores and large birds (Evans et al. 2012; O’Kelly et al. 2012).  125 

The 20,000 people living near or within KSWS comprise both indigenous ethnic minorities and ethnic 126 

Khmer, the latter having arrived during a more recent wave of in-migration. Agriculture is the dominant 127 

livelihood activity but residents are also heavily forest dependent and a critical source of income for many 128 

families is tapping of liquid resin from Dipterocarpus trees, which takes place widely throughout the 129 

reserve (Evans et al. 2012).  The most significant threat to key wildlife species in KSWS is over-hunting 130 

and several large mammal species have been extirpated from the area (O’Kelly et al. 2012). Populations 131 

of many other taxa have been drastically reduced by hunting with guns and, more commonly, snares, both 132 

of which are prohibited.  133 

2.3 Sampling Design and Field Protocols 134 
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Sampling took place across the 187,983 ha core area of KSWS in 37 clusters of 12 x 1km
2
 “sites”. 135 

Clustered sites formed a circuit around a set of permanent line transects used for long-term wildlife 136 

monitoring and positioned using a systematic design with a random starting point (O'Kelly et al. 2012). 137 

The cluster design maximised sampling efficiency but at the cost of inducing potential non-independence 138 

of sites within a cluster.  139 

However, each cluster of sites was assumed to be spatially independent with respect to both hunter and 140 

prey movement during the study period. The distance between clusters was c.7km which is greater than 141 

the ranging distances of any of the target species and likely to be much further than the distances typically 142 

covered by hunters in this terrain (patches of <1 km2, HJOK pers obs).  143 

Between February 2011 and February 2012, all 37 clusters were sampled over a two to four-day period, 144 

which ensured that sites were closed to changes in snare abundance over the course of the study. The 145 

majority of clusters (28) were surveyed by two field teams, over the same time period but working 146 

independently of one another.  Nine clusters were surveyed by only one team due to logistical constraints. 147 

Teams walked a minimum of 2km per 1km
2 

site, choosing routes likely to maximise the detection of 148 

snares, whilst also attempting to achieve maximum spatial coverage of each site.  149 

Two main types of snare are common within KSWS; single snares (usually medium or large-sized and 150 

constructed using thick wire rope), and snare lines consisting of multiple smaller snares (typically 151 

constructed from much thinner wire, as is typically used for brake cables) set along a low drift fence 152 

constructed from bamboo and brushwood. The actual number of snares, and whether they are set, is 153 

clearly relevant with respect to mortality risk but during this study an observation corresponded to a snare 154 

“incident” regardless of the type or number of snares concerned. In terms of detectability, only the first 155 

snare in a drift line is important, as all others in the line will have a detection probability of close to 1. 156 

The locations of all snare incidents encountered was recorded using GPS units, together with the number 157 

of snare(s), estimated age of snare(s), habitat type and evidence of any captures (i.e. live animals, 158 
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carcasses, bones etc.). Cables and wires were removed from all snares, and anchor poles were cut, thus 159 

preventing future use of the structure.  160 

3. Data Analysis  161 

3.1 Binomial Mixture Models 162 

The simplest of N-mixture models assumes that there are no changes in abundance over the survey 163 

period, in which case repeated counts (corresponding to visits by multiple survey teams in this case) 164 

within sample location i are treated as independent realizations of a binomial random variable with 165 

parameters Ni (local abundance) and pi (detection probability). It is further assumed that Ni comes from 166 

some common distribution specified by parameters to be estimated from the data. The structure of these 167 

models is described in detail in Royle (2004a, b) and Kéry et al. (2005). 168 

N-mixture models, like other classes of hierarchical model, can accommodate a range of covariates 169 

hypothesised to influence both abundance and detection probability. Site-level covariates are 170 

related to conditions which remain constant across surveys (e.g. forest type). Observation or 171 

survey-level covariates are related to individual surveys and thus may differ or remain the same 172 

across surveys (e.g. precipitation). The effects of covariates on abundance and detectability are 173 

modeled linearly in a GLM fashion via a log-link function. All models in this analysis were fitted 174 

using the package “unmarked” (Fiske & Chandler 2011) in R version 2.14.0 (R Core Team 2012). 175 

The fitting function “pcount” within the unmarked package fits the N-mixture model of Royle 176 

(2004).  177 

 178 

3.2 Modelling Process 179 

A wide range of factors are likely to influence the abundance, distribution, and detectability of snares. A 180 

full list of the potential covariates considered is given in Table 1A (supporting material). Correlations 181 

between covariates were examined to eliminate redundancy and all covariates were standardized. Route 182 

length was log-transformed and all other covariates were transformed into standard normal deviates. For 183 
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this analysis, we specified a Poisson mixture distribution to model latent snare abundance. We used 184 

parametric bootstrapping to evaluate the goodness-of-fit of the final set of selected models using chi-185 

square and Freeman Tukey fit statistics.   186 

Given the complexity of the study system, we focused on a limited set of candidate models with the 187 

intension of avoiding over-parameterisation (Johnson & Omland 2004). We used a multi-step process to 188 

investigate a priori hypotheses on factors affecting abundance and detectability of snares, and to 189 

investigate additional relationships. For model selection, we used a ranking system based on Akaike’s 190 

Information Criterion (AIC) and ΔAIC (assuming models with ΔAIC <2 are broadly equivalent in terms 191 

of fit). 192 

In step one, we modelled snare abundance as a function of site-level covariates (% dense forest cover, 193 

terrain ruggedness, season, distance to village, distance to patrol station, distance to reserve boundary, 194 

distance to international border). Quadratic effects were included where non-linearity was expected (i.e. 195 

as a function of distance to village and terrain ruggedness) as was an offset using log-transformed effort 196 

(km walked) per site. The best fitting models were selected to take forward to the next step.  197 

In step two, we modelled covariates hypothesised to affect detection probability. These included the site-198 

level covariate of proportion of dense forest cover, which remained constant across visits, and the survey-199 

level covariates of relative climb and survey effort which were specific to a visit. Top-ranked models 200 

selected from step one were extended to include all combinations of these covariates.  201 

In step three, we examined models containing covariates that theoretically may affect abundance but for 202 

which the functional relationship between variables is likely to be of a more complex nature. The 203 

covariates considered during this phase included ungulate densities (distance sampling-derived density 204 

estimates from line transects within each cluster) and various of measures of anti-poaching patrol effort 205 

(km patrolled on foot and motorbike). Finally, we used the top-ranking models to create spatially explicit 206 

predictions of detectability-corrected snare abundance across the entire core area, based on known 207 

covariate values.  208 
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4. Results 209 

4.1 Snare Encounters and model selection  210 

During the 2,200km of search effort across the 440km
2
 survey area, 140 snaring incidents were 211 

encountered (64 single snares and 76 snare lines) (Figure 1). The sites with one or more encounters 212 

(ranging between 1-6 per site) were dispersed across 18 of the 37 clusters. Over 1,300 wire/cables were 213 

removed by survey teams and all snare lines encountered were destroyed. 214 

For the abundance component of the modelling process, the top four models (ΔAIC <2) included dense 215 

forest, distance to reserve boundary, distance to international border, distance to village, and season ( 216 

Table 2A supporting material). These models were taken forward to step two of the process.  217 

When all combinations of these detection-related covariates were added to the models selected above, 218 

AIC ranking resulted in a further four top models (Table 2A supporting material).  All of these models 219 

were taken forward to the more exploratory stage of the analysis described below. Goodness-of-fit 220 

statistics are provided in Table 3A (supporting material). 221 

In the final phase of the modelling process the inclusion of covariates related to patrol effort generally had 222 

a negative effect on snare abundance but only minimally improved model fit (Table 4A supporting 223 

material) The inclusion of covariates relating to animal density generally did not improve model fit as 224 

measured by AIC (Table 4A supporting material). Therefore, the top-ranking model from step two was 225 

used to create spatial prediction of snare abundance based upon the known range of influential covariates 226 

(see section 4.3). 227 

4.2 Estimates of Detectability and Abundance 228 

When applied to avian point count data, for which they were originally developed, N-mixture models 229 

produce estimates of the average abundance of birds per sample location. In this study, given the use of 230 

survey effort in km as an abundance offset, abundance can be interpreted as the expected number of snare 231 

incidents per 1km surveyed. Since the width of the survey routes was not fixed, the effective area sampled 232 
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is unknown and expected density of snares per site cannot be calculated. In addition, because counts 233 

corresponded to snare incidents rather than actual numbers of snares, the resultant measure can be most 234 

appropriately viewed as an index of snare abundance.   235 

None of the covariates tested at step three of the modelling process improved model fit significantly and 236 

hence we proceeded with the top-ranked models from step two (Table 1). For each of these highest-237 

ranking models, back-transformed estimates of expected probability of detection and indices of 238 

abundance when all the relevant covariates are fixed at their mean are given in Table 5A.  Abundance 239 

estimates for models containing covariates differ substantially from the null model, which treats 240 

abundance and detectability as constant. Estimates of detectability remain relatively consistent across 241 

models, at either around 0.28 or 0.36, indicating that on average only one snare incident is detected for 242 

every three that could potentially be detected.  243 

4.3 Predicted Snare Distribution  244 

Spatially explicit predictions of detectability-corrected snare abundance across the entire core area are 245 

mapped in Figure 2, based on the best model from step 2 (Table 1). Snaring is heavily concentrated in the 246 

Southern sector of the site, close to the Vietnamese border and around villages and patrol stations. North 247 

of the main road, levels of snaring drop off rapidly and a large proportion of the Northern sector of the 248 

reserve appears to be virtually devoid of snares. It is worth noting that the Southern sector of the reserve 249 

is also the area with the highest proportion of dense evergreen forest whereas the Northern sector is 250 

dominated by open dry forest (Figure 1). 251 

4.4 Covariate Effects on Abundance and Detectability 252 

The inclusion of covariates within models allows us to quantify relationships between abundance and key 253 

environmental gradients. We can examine predictions of abundance for any of the covariates individually, 254 

by specifying a range for each of the covariates of interest whilst fixing all other covariates at their mean 255 

value.  256 
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Using this approach, predicted estimates of snare abundance in the dry season are approximately one third 257 

lower than equivalent estimates for the wet season. In terms of forest type, a typical location has just 258 

under 50% dense forest cover, and snare abundance is extremely low in sites with below average cover. 259 

Above this average level, predicted abundance increases rapidly as the proportion of dense forest cover 260 

increases, and predictions for sites with full cover are over six times higher than for an average site. With 261 

respect to proximity to villages, predictions of snare abundance initially decrease as distance to village 262 

increases, up to approximately seven kilometres, after which they begin to increase with greater distances 263 

from villages. At 13 kilometres from a village, snare abundance is predicted to be three times higher than 264 

the average, but abundance is at its highest around the outskirts of villages, where it is predicted to be four 265 

times higher than average. Snare abundance decreases both with distance to the reserve boundary and 266 

with distance to the international border. However, whereas predicted snare abundance within one 267 

kilometre of the reserve boundary is over just 25% higher than the average, predicted abundance within 268 

one kilometre of the international boundary is greater than the average by two orders of magnitude, 269 

indicating the stark difference between the strength of these effects.  When terrain ruggedness is included 270 

in models, predictions of snare abundance increase as terrain ruggedness increases, but differ from the 271 

average by less than 10%. Surprisingly, snare abundance appears to decrease with distance to patrol 272 

station. However, this effect is relatively weak, with predicted abundance at one kilometre from a station 273 

just 20% higher than the average, whilst predictions at the maximum distance of 26 kilometres from a 274 

station are 35% lower than the average.  275 

In the more exploratory models, predicted snare abundance for a site with no patrol visits is less than 5% 276 

higher than predicted abundance for a site with the average number of patrol visits (3.5). There was also a 277 

negative relationship between wild cattle and wild pig density and snare abundance, whereas the 278 

relationship between muntjac density and snare abundance was positive. 279 

The same approach can be used to explore how both site level and survey level covariates affect 280 

detectability. Detectability decreased with increasingly dense forest cover, such that predicted 281 

detectability in sites with 10% forest cover is seven times higher than a site with 100% forest cover. A 282 
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steeper relative slope on the route surveyed also reduced detectability such that predictions of 283 

detectability on the flattest routes are up to 10 times higher than for the steepest routes surveyed. Finally, 284 

route length had a positive relationship with detectability; for example, predictions of detectability for 285 

routes of three kilometres were 20% higher than for routes of two kilometres.  286 

5. Discussion  287 

5.1 Determinants of Snare Detectability and Abundance 288 

The relationships between snare abundance and dense forest cover, terrain ruggedness, distance to 289 

boundary, and distance to international border corresponded to a priori predictions, as did the 290 

relationships between detectability and dense forest cover and relative climb of survey routes.   291 

The importance of dense forest cover in influencing snare placement is unsurprising, given that hunters 292 

rely on this type of forest to construct and conceal snares, and that wildlife populations also depend 293 

heavily on the availability of this habitat type. However, the fact that dense forest negatively affects the 294 

detectability of snares, whilst simultaneously exerting a positive effect on snare abundance, demonstrates 295 

how crucial it is to account for imperfect detection in these types of surveys in order to avoid biased 296 

results.   297 

Proximity to population centres and markets are a major determinant of hunting occurrence and in this 298 

case we see the overwhelming influence of the location of the Cambodian/Vietnamese border on snare 299 

abundance. This can be attributed to the extremely high demand on the Vietnamese side (Shairp et al. 300 

2016; Sandalj et al. 2016), which is driving an influx of hunters into KSWS from across the border (WCS 301 

Cambodia Program, unpublished data).  302 

The relationship between snare abundance and distance to village illustrates how multiple processes can 303 

influence snare distribution at different scales. Snaring levels are high in the southern part of the reserve, 304 

close to the Vietnamese border, and also close to the larger settlements located in the southeastern and 305 

southwestern corners of the reserve. However, several other snaring patterns are also evident. Reserve 306 
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residents commonly set snares around the outskirts of their fields (to combat crop raiding), in the 307 

immediate vicinity of the village. When residents go into the forest specifically to hunt, the distance they 308 

travel is presumably limited by several factors including their mode of transport (i.e. on foot or by 309 

motorbike) and their food and/or fuel supplies. Nevertheless, some residents travel considerable distances 310 

from their villages in order to visit their resin trees, and in these instances, they may spend several days or 311 

even weeks at temporary “resin camps” and they will set snares during this time (WCS Cambodia 312 

Program, unpublished data). This gives rise to a complex, non-linear relationship between snare 313 

abundance and distance to village.  314 

Prior to this study, conflicting hypotheses existed regarding the seasonality of snaring within this 315 

landscape.  The predominant theory was that snaring levels increased in the dry season when access to the 316 

reserve is easier and wildlife populations tend to be aggregated around water and food sources. However, 317 

other local reports had suggested that hunters focused their efforts during the wet season, to take 318 

advantage of the greater cover afforded by dense foliage and damp ground, and possibly also a reduction 319 

in anti-poaching patrol effort, as a well as a gap in the local agricultural calendar. The results of this 320 

survey indicate that hunting levels are appreciably higher during the wet season.  321 

The apparent negative relationship between snare abundance and distance to patrol stations may seem 322 

counter-intuitive but it is important to note that patrol stations within the KSWS have been placed 323 

strategically, in locations where threat levels are known to be particularly acute and/or in locations known 324 

to be particularly important for key wildlife species. Indeed, areas of perceived high animal density are 325 

precisely the areas likely to be targeted both by hunters and by management and enforcement agencies.  326 

Levels of hunting may remain proportionally higher in these areas despite the presence of a station 327 

(although presumably they would be lower than pre-station levels). Alternatively, the presence of a station 328 

may afford localised protection which allows prey populations to recover, only for them to be 329 

subsequently targeted by hunters who are aware of this recovery. 330 

Various types (i.e. vehicle, motorbike and foot) and combinations of patrol effort were tested as 331 

potentially useful covariates, but these data provided little support for patrol effort as an important 332 
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predictor of snare abundance. The complex relationship between enforcement effort and illegal activities 333 

has been highlighted within the literature (Keane et al. 2008, 2011) and may explain in part the apparent 334 

lack of any obvious deterrent effect. However, it seems likely that these results may also be related to the 335 

spatial and temporal scale of this study. Due to limited patrol coverage by law enforcement teams during 336 

the study period, a large proportion of survey sites had no patrol effort associated with them. This was 337 

particularly pronounced in the case of foot patrols, which were only recorded in less than 10% of survey 338 

sites, despite being the most efficient type of patrol to locate snares (WCS Cambodia Program, 339 

unpublished data). Furthermore, temporal lags of varying lengths may occur between patrols and any 340 

subsequent deterrent effect, and the duration of any such effect is unknown. The spatial scale at which 341 

any deterrent effect will operate at is also unknown and is likely to be dependent on a multitude of factors, 342 

such as patrol type and habitat characteristics (Keane et al. 2011). In this study the unit of analysis was a 343 

one km square site and patrol effort was calculated as the number of patrols deployed within that site over 344 

a one year period preceding the survey. This seemed a realistic scale at which a deterrent effect might be 345 

evident, but a wide range of alternatives spatial and temporal specifications could have been chosen. 346 

The relationship between snaring levels and wildlife population densities is of fundamental interest to 347 

conservation managers but care must be taken when attempting to demonstrate causal linkages between 348 

the two.  Relationships are likely to be spatially and temporally scale dependant, as above, and may be 349 

obscured by confounding variables. For example, an area with apparently low levels of snaring and low 350 

wildlife densities may have naturally fewer animals due to some unmeasured habitat characteristics, thus 351 

rendering it unappealing to prospective hunters. However, this same scenario could be as a result of 352 

overhunting in area which previously had higher wildlife densities, which were then depleted through 353 

hunting, eventually causing hunters to shift their activities to other more productive areas. Further 354 

complexity can arise when wildlife abundance and hunting levels are determined by the same factors. In 355 

the KSWS both wildlife densities and hunting levels are high in the southern section of the reserve, which 356 

is the area closest to the international border and also the area with the greatest proportion of dense forest. 357 

Proximity to the border may directly influence snaring levels but it does not directly influence wildlife 358 
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abundance, whereas the presence of dense forest is likely to be a direct determinant of snare occurrence 359 

and wildlife occurrence.  360 

Although the modelling results yield little support for individual species densities as significant predictors 361 

of snare abundance, the direction of effects within models is of interest and appears to corroborate other 362 

sources of information, including biological monitoring data and field observations. The positive 363 

relationship between snare abundance and red muntjac density does suggest that hunters purposefully set 364 

snares in areas of higher muntjac abundance. This species is known to be a preferred prey choice for 365 

hunters and likely experiences high hunting pressure (Drury 2005; O’Kelly et al. 2012). Despite this, 366 

muntjac remain moderately abundant in comparison to other ungulate species, there is no evidence of a 367 

decline apparent from biological monitoring data and they persist widely throughout the reserve (O’Kelly 368 

et al. 2012). When taken together, the temporal trend data for this species and the spatial relationships 369 

inferred from the snare survey results appear to indicate a relative resilience to hunting pressure, a 370 

supposition which has been suggested in other studies (Steinmetz et al. 2010).  371 

Including wild pig and cattle densities as covariates within models did not improve model fit, but it did 372 

suggest a negative relationship between these species’ densities and snare abundance. Wild pig is one of 373 

the commonest species to appear in hunting records (FA/WCS, unpublished data) and biological 374 

monitoring data suggest that, whilst still relatively healthy, this population is undergoing a decline  375 

(O’Kelly et al. 2012). The wild cattle population within KSWS is small, declining, and potentially 376 

particularly vulnerable to the threat of hunting (O’Kelly et al. 2012).  Although it is likely that snaring is 377 

having a negative impact on wild pig and cattle populations, the evidence provided by this study is 378 

inconclusive and further work is needed to establish to what extent snaring is contributing to these 379 

declines.  380 

5.2 Methodological Implications 381 

Previous studies which utilise snare encounter data routinely collected by law enforcement teams (e.g. 382 

Becker et al. 2013; Linkie et al. 2013) are limited by the fact that law enforcement patrols are reactive and 383 
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strongly non-random in nature, meaning that such data are inherently biased (Keane et al. 2008). Studies 384 

which focus on snares but ignore the critical issue of detectability (e.g. Wato et al. 2006; Lindsey et al. 385 

2011; Becker et al. 2013) risk yielding unreliable results because they rely on biased estimators of 386 

occurrence or abundance (MacKenzie et al. 2002). Our approach addresses these issues and generates 387 

robust estimates whilst also remaining feasible to implement in difficult field conditions.  388 

The modelling process described here allows us to disentangle potentially confounding effects on both 389 

detectability and abundance, such as forest cover in this study, that could otherwise lead to misleading 390 

results. It also helps us to better understand the spatial dynamics and causal mechanisms underlying 391 

snaring, by offering a flexible framework within which to model the often complex and non-linear 392 

relationships between detectability and occurrence and a range of natural and anthropogenic covariates. 393 

Within this study the effect of distance to village on snare abundance provides a good example of such a 394 

relationship.  395 

Despite the potential of the approach described here, there are still some methodological issues which 396 

require further investigation. The level of temporal replication in this study was minimal, primarily due to 397 

logistical constraints. Increasing the number of site visits (or using more simultaneous observers) in future 398 

surveys might allow for improved modelling of detection probability. In addition, our sampling design 399 

was based on clusters of sites, again due to logistical constraints, and this may have resulted in some 400 

spatial non-independence. The use of covariates helps to address this issue and where models fit well as 401 

indicated by GoF tests, as in this study, the dependence structure may not be a major concern. Future 402 

studies should also consider explicitly modelling how the characteristics of an individual snare incident 403 

might affect detection probability (i.e. single snares, short snare lines, long snare lines; type of wire/cable 404 

used; age of snares; whether snares or set or not etc.).  405 

5.3 Management Implications   406 

This approach allows us to produce detectability-corrected predictive maps of snare abundance and also 407 

provides a means of evaluating how changes in key covariates might potentially affect hunting prevalence 408 

and detection probability. Both of these aspects offer considerable management utility as they can be used 409 
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to guide current and future interventions in a more targeted way, in the expectation of improving 410 

management effectiveness.  411 

A survey of the type described here could be repeated periodically to estimate temporal change in snaring 412 

patterns and this would allow managers to monitor the actual impact of enforcement interventions, and to 413 

assess the relative success of different anti-snaring strategies. However, it is acknowledged that this type 414 

of survey entails a significant investment of resources, which may have to be diverted away from already 415 

severely overstretched law enforcement regimes.   416 

These law enforcement regimes may already involve the collection of snare encounter data as part of 417 

routine patrols, particularly as standardised systems for law enforcement monitoring such as SMART are 418 

rapidly becoming the global standard (SMART Partnership 2015). The appeal of using increasingly 419 

ubiquitous SMART data to monitor threats such as hunting is obvious. However, the analysis and 420 

interpretation of such data is fraught with difficulties (Gavin et al. 2010; Keane et al. 2011), and there is 421 

an urgent need to complement it with a better understanding of the underlying biases. The type of 422 

independent threat assessment undertaken in this study is crucial to this enterprise, as it can provide a 423 

means of validating and calibrating SMART data-derived measures. 424 

6. Conclusion  425 

In KSWS, as elsewhere, managers require reliable, real-time information on spatio-temporal patterns of 426 

hunting in order to implement effective anti-poaching measures. Disentangling the multiple processes 427 

which underlie apparent patterns of snare abundance presents significant methodological challenges and 428 

implementing data collection activities on the ground entails a raft of practical considerations. In this 429 

study, we have presented an integrated sampling methodology and analysis framework which offers 430 

considerable potential for more reliable estimation of the extent and distribution of illegal resource use, 431 

despite the often cryptic and highly variable nature of these activities. Although resources for assessing 432 

the status and trends in threats such as hunting are typically limited, often a variety of sources of relevant 433 

data may exist (including high quality data from biological monitoring and basic law enforcement 434 
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monitoring data). Multiple data sources can facilitate triangulation (Gavin et al. 2010) and having some 435 

more robust measures of threat can both contribute to, and validate, this process of triangulation. We 436 

would contend, therefore, that periodic independent threat assessments of this nature represent a 437 

necessary and worthwhile investment of scarce conservation resources, particularly if carried out 438 

relatively infrequently. 439 
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