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Abstract: This paper considers how best to identify statistical outliers
in psychophysical datasets, where the underlying sampling distributions
are unknown. Eight methods are described, and each is evaluated using
Monte Carlo simulations of a typical psychophysical experiment. The best
method is shown to be one based on a measure of absolute-deviation
known as S,,. This method is shown to be more accurate than popular
heuristics based on standard deviations from the mean, and more robust
than non-parametric methods based on interquartile range. Matlab code
for computing S, is included.

1. The problem of outliers

A statistical outlier is an observation that diverges abnormally from the overall pattern
of data. They are often generated by a process qualitatively distinct from the main
body of data. For example, in psychophysics, spurious data can be caused by technical
error, faulty transcription, or — perhaps most commonly — participants being unable
or unwilling to perform the task in the manner intended (e.g., due to boredom,
fatigue, poor instruction, or malingering). Whatever the cause, statistical outliers can
profoundly affect the results of an experiment!, making similar populations appear
distinct (Fig 1A, top panel), or distinct populations appear similar (Fig 1A, bottom
panel). For example, it is tempting to wonder how many ‘developmental’ differences
between children and adults are due to a small subset of non-compliant children.
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Fig 1. Examples of (A) how the presence outliers can qualitatively affect the overall
pattern of results, and (B) common errors made by existing methods of outlier
identification heuristics. P-values pertain to the results of between-subject ¢-tests.
See body text for details.
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2. General approaches and outstanding questions

One way to militate against outliers is to only ever use non-parametric statistics,
which have a high breakdown point?, and so tend to be robust against extreme
values. In reality though, non-parametric methods are often impractical, since they are
less powerful, less well understood, and less widely available than their parametric
counterparts. Alternatively then, many experimenters identify and remove outliers
‘manually’, using some unspecified process of ‘inspection’. This approach is not without
merit. However, when used in isolation, manual inspection is susceptible to bias and
human error, and it precludes rigorous replication or review. Finally then, statistical
outliers can be identified numerically. If the underlying sampling distribution is known,
then it is trivial to set a cutoff based on the likelihood of observing a given data point.
However, when the sampling distribution is unknown, researchers are often compelled
to use numerical heuristics, such as “was the data point more than N standard
deviations from the mean?”. Currently, a plethora of such heuristics exist in common
usage. It is unclear which method works best, and at present unscrupulous individuals
are free to pick-and-choose whichever yields the outcome they expect/desire. The
goal of this work was therefore (i) to describe what methods are currently available
for identifying statistical outliers (in datasets generated from an unknown sampling
distribution), and (ii) to use simulations to assess how well each method performs in
a typical psychophysical context.

3. State-of-the-art methods for identifying statistical outliers
Here we describe eight methods for identifying statistical outliers. Five of these
methods are also shown graphically in Fig 3.

SD x;=outlier if it lies more than A standard deviations, o, from the mean, z:
|lzi| > (Z + Ao), (Eq 1)

where )\ is typically between 2 (liberal) and 3 (conservative). This is one of the most
commonly used heuristics, but is theoretically flawed. Both the Z and ¢ terms are easily
distorted by extreme values, meaning that more distant outliers may ‘mask’ lesser ones.
This can lead to false negatives (identifying outliers as genuine data; Fig 1B, top panel).
The method also assumes symmetry (i.e., attributes equal importance to positive and
negative deviations from the center), whereas psychometric data are often skewed.
This can lead to false positives (identifying genuine data as outliers; Fig 1B, bottom
panel). Furthermore, while SD does not explicitly require normality, the +\o bracket
may include more or less data than expected if the data are not Gaussian distributed.
For example, +2¢ includes 95% of data when Gaussian distributed, but as little as 75%
otherwise (Chebyshev’s inequality).

GMM x;=outlier if it lies more than )\ standard deviations from the mean of the
primary component of a Gaussian Mixture Model:

|zi| > (Z1 + Ao1) where  pdf (z) = w®(z; p1,01) + (1 —w) (x5 2, 02). (Eq 2)

An obvious extension to SD: The two methods are identical, except that when fitting
the parameters to the data, the GMM model also includes a secondary component
designed to capture any outliers (see Fig 3). The secondary component is not used to
identify outliers per se, but prevents extreme values from distorting the parameters
of the primary component. In practice the fit of the secondary component must be
constrained to prevent it ‘absorbing’ non-outlying points.
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rSD Same as SD, but applied recursively until no additional outliers are identified:

0 =
{li | > (%0 + Aog) (Eq 3)
|z > (&, + Aon) -

This approach aims to solve the problem of masking by progressively peeling away
the most extreme outliers. However, like SD, it remains intolerant to non-Gaussian
distributions. In situations where samples are sparse/skewed, this approach therefore
risks aggressively rejecting large quantities of genuine data (see Fig 1B). Users typically
attempt to compensate for this by using a relatively high criterion level, and/or by
limiting the number of recursions (e.g., A > 3, Nmax = 3).

IQR =x;=outlier if it lies more than A times the interquartile range from the median:
|z;| > (& + Nigr) . (Eq 4)

This is a non-parametric analog of the SD rule: substituting median and iqr for mean
and standard deviation. Unlike SD, the key statistics are relatively robust. Thus, the
breakdown points for Z and iqr are 50% and 25% (respectively), meaning that outliers
can constitute up to 25% of the data before the statistics start to be distorted?®.
However, like SD, the IQR method only considers absolute deviation from the center. It
is therefore insensitive to any asymmetry in the sampling distribution (Fig 1B, bottom).

pretile x;=outlier if it lies above the \™ percentile, or below the (1 — \)™:

x; > Py or x; < Pi_jy. (Eq 5)

This effectively ‘trims’ the data, rejecting the most extreme points, irrespective of their
values. Unlike IQR, this method is sensitive to asymmetry in the sampling distribution.
But it is otherwise crude in that it ignores any information contained in the spread of
the data points. The prctile method also begs the question in that the experimenter
must estimate, a priori, the number of outliers that will be observed. If \ is set
incorrectly, genuine data will be excluded, or outliers missed.

Tukey x;=outlier if it lies more than \ times the igr from the 25%/75™ percentile:
x; > (Prs + Nigr) or x; < (Pas — Nigr). (Eq 6)

Popularized by John W. Tukey, this attempts to combine the best features of the IQR and
prctile method. The information contained in the spread of data, iqr, is combined with
the use of lower/upper quartile ‘fences’ that provide some sensitivity to asymmetry.

MAD,, =x;=outlier if it lies farther from the median than )\ times the median absolute
distance [MAD] of every point from the median:

(W) >\ where MAD, = 1.4826 g(fc}m |x; — ]n__l(leci zjl, (Eq 7)
where 1.4826 is simply a scaling factor, used for consistency with the standard
deviation over a Gaussian distribution (see Ref [3]). Unlike the non-parametric
methods described previously, this method uses MAD rather than igr as the measure of
spread. This makes this method more robust, as the MAD statistic has the best possible
breakdown point (50%, versus 25% for iqr). However, as with IQR, MAD,, assumes
symmetry, only considering the absolute deviation of datapoints from the center.

S, x;=outlier if the median distance of x; from all other points, is greater than A
times the median distance of every point from every other point:

djzi | — 25
(W) >\ where S, =1.1926c, me {mid |x; — ;1:]|} , (Eq8)
n i=lin | j#i
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where 1.1926 is again for consistency with the standard deviation, and ¢, is a finite
population correction parameter (see Ref [3]). Like MAD, the S,, term is maximally
robust. However, this method differs from MAD,, in that S,, considers the typical
distance between all data points, rather than measuring how far each point is from a
central value. It therefore remains valid even if the sampling distribution is asymmetric.
The historic difficulty with S, is its computational complexity [O(n?)]. However, for
most psychophysical applications processing times are on the order of milliseconds,
given modern computing power.

4. Comparison of techniques using simulated psychophysical observers

To assess the eight methods described in Section 3, each was applied to random
samples of data prelabeled as either ‘bad’ (should be excluded) or ‘good’ (should not
be excluded). Rather than simply specifying arbitrary sampling distributions for these
categories, we generated data by simulating a typical two-alternative forced-choice
[2AFC] experiment in which a 2-down 1-up transformed staircase* was applied to NV
simulated observers.

Each observer consisted of a randomly generated psychometric function (Fig 2), which
was used to make stochastic, trial-by-trial responses based on the current stimulus level
and a random sample of additive internal noise. Trial-by-trial response data were then
processed and analyzed as if from a human participant. Of the N observers, X% were
‘non-compliant’ (on average, their psychometric functions had a higher mean, variance,
and lapse-rate), and were thus likely to produce outlying data points (i.e., estimates
of 70.7% threshold: Fig 3, red bars). The remaining observers were ‘compliant’ (on
average lower mean, variance, and lapse-rate), and produced the main distribution of
‘good’ data (Fig 3, green bars).
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Fig 2. Mean [+1 SD] empirical cumulative distributions for simulated observers.
For all individuals, the shape of the underlying psychometric function was
logistic. Guess rate was fixed at 50%. Other parameters were independently
randomly generated for each simulated observer, using either a truncated Gaussian
(compliant) or uniform distribution (non-compliant) — see table for parameters.

The number of observers, N, took the values (8, 32, 128), representing small, medium,
and large sample size. The number of non-compliant observers varied from 0 to 50%
of N (e.g., (0,1, ...,16), when when N=32). For each condition, 2,000 independent
simulations were run, for a total of 108K simulations.

Results and Discussion

The results are shown in Fig 4. We begin by considering only the case where N=32
(Fig 4, middle column), before considering the effect of sample size.

As expected, the SD rule proved poor. When A\=3, it was excessively conservative —
seldom exhibiting false alarms, but missing the great majority of outliers, particularly
as the number of outliers increased. Lowering the criterion to A=2 yielded more
reasonable results. However, SD still exhibited a lower hit rate than most other
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Fig 3. Methods. Each observer’s trial-by-trial responses were used to generate an
estimate of their 70.7% correct threshold. X% of threshold estimates came from
‘non-compliant’ simulated observers (here: N=32, X%=19). Each of eight methods
in Section 3 were then used to identify which observations were generated by
‘non-compliant’ observers (i.e., likely statistical outliers). Only five methods are
depicted here, as the other three (rSD, MAD,, and S,,) have no obvious graphical
analog. The final panel shows the full sampling distributions over 20,000 trials, and
the ideal unbiased classifier, for which: Hit rate = 0.97, False Alarm = 0.05.

prctile

r

methods, and also exhibited a high false alarm rate when there were few/no outliers.
The modified GMM and rSD rules exhibited increased robustness and accuracy,
respectively. However, compared to non-parametric methods, they were generally only
more sensitive than the prctile method, which was only accurate when the predefined
exclusion rate matched the true number of outliers exactly.

The two igr-based methods, IQR and Tukey, exhibited high sensitivity when the
number of outliers was low (<20%). However, as expected, they exhibited a marked
deterioration in hit rates when the number of outliers increased beyond 20% (i.e., in
accordance with the 25% breakdown point for iqr).

The two median-absolute-deviation-based methods, MAD,, and S,,, were as sensitive
as all other methods when outliers were few (<20%), and were more robust than
the igr methods — continuing to exhibit high hit rates and few false alarms even when
faced with large numbers of outliers. Compared to each other, MAD,, and S,, performed
similarly. However, the S, statistic makes no assumption of symmetry, and so ought to
be superior in situations where the sampling distribution is heavily skewed.

We turn now to how sample size affected performance. With large samples (N=128),
the pattern was largely unchanged from the medium sample-size case (N=32), except
that rSD exhibited a marked increase in false alarms, making it an unappealing option.
With small samples (N=8), the prctile and rSD methods became uniformly inoperable,
while most other methods were unable to identify more than a single outlier. The MAD,,
and S,, methods, however, remained relatively robust, and generally performed well,
though they did exhibit an elevated false alarm rate when there were few/no outliers.
It may be that this could be rectified by increasing the criterion, ), as a function of NV,
however this was not investigated here. The GMM method also performed well overall
in the small-sample condition. However, it did also exhibit the highest false alarm rate
when there were no outliers, and was only more sensitive than MAD,, or S,, when the
proportion of outliers was extremely high (>33%).

5. Summary and concluding remarks

Of the eight methods considered, S, proved the most sensitive and robust. Specific
situations were observed in which other heuristics performed as-well-as or even better
than S,: for example, when the sample size was large (rSD), or when the proportion
of outliers was very low (IQR, Tukey) or very high (GMM). However, most methods
were less sensitive in than S,, in the majority circumstances, and failed precipitously
in some circumstances, making them unattractive alternatives. The related method
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Fig 4. Simulation results. The eight classifiers described in Section 3 were used to
distinguish between random samples of ‘compliant’ and 'non-compliant’ simulated
observers (see Fig 3). Numbers in parentheses indicate the criterion level, A, used
by each classifier.

MAD,, also proved strong, and can be considered a good method for identifying
outliers, as has been noted previously by others®. However, as discussed in Section
3, MAD,, assumes a symmetric sampling distribution, and so would not be expected
to perform as well in situations where the sampling distribution is very heavily
skewed (e.g., when dealing with reaction time data). The popular SD metric proved
particularly poor in all circumstances, and should never be used. In short, S,, appears to
provide the best means of identifying statistical outliers when the underlying sampling
distribution is unknown. Its use may be particularly beneficial for researchers working
with small/irregular populations such as children, animals, or clinical cohorts. MATLAB
code for computing S, is provided in Listing 1.

On the ethics of excluding statistical outliers

Excluding outliers is often regarded as poor practice. As shown in Section 1, however,
the exclusion of outliers can sometimes be preferable to reporting misleading results.
Automated methods of statistical outlier identification should never be used blindly
though, and they are not a replacement for common sense. Where feasible, datapoints
identified as statistical outliers should only be excluded in the presence of independent
corroboration (e.g., experimenter observation). Furthermore, best practice dictates
that when outliers are excluded, they should continue to be shown graphically, and
all statistical analyses should be run twice: with and without outliers included.
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1| function [Sn, x_j] = RousseeuwCrouxSn(X)
% Compute the measure of scale 'Sn', from Rousseeuw & Croux (1993)
h
% A robust alternative to MADn for statistical outlier identification.
s| % Unlike MADn, Sn does not make an assumption of symmetry, so in
% principle should be more robust to skewed distributions.
h
YA The outputs of this function have been validated against equivalent
% function in Maple(tm).
10| %
% Example: X=10[1522741 5]
% Sn = RousseeuwCrouxSn(X) % should give 3.015
h
% % use Sn to identify statistical outliers
15| % X=1[15227501 5];
% [Sn, x_j] = RousseeuwCrouxSn(X);
yA outliers = X(x_j/Sn > 3) J criterion typically 2 or 3
h
% Requires: none
20 ./.
% See also: mad.m
h
% Author (s): Pete R Jones <petejonze@gmail.com>
h
25| %h Version History: 19/04/2016 PJ Initial version
h
h

% Copyright 2016 : P R Jones
Yo Rk Rk kK KR R Rk ok ok KK R Rk kR KK R R R R ok ok ok K R R ok koK KK R R ok koK KK R R R K KKK K R R R R KKK K K K

30'/.
% get number of elements
n = length(X);
35 % Set c: bias correction factor for finite sample size
if n < 10
cc = [NaN 0.743 1.851 0.954 1.351 0.993 1.198 1.005 1.131];
c = cc(n);
elseif mod(n,2)==0 % n is odd
40 c = n/(n-.9);
else % n is even
c = 1;
end
% compute median difference for each element
45 x_j = mnan(n,1);
for i = 1:n
x_j(i) = median(abs(X(i) - X([1:i-1 i+1l:end])));
end
50 % compute median of median differences, and apply finite sample
% correction, c, and 1.1926 correction for consistency with the
% standard deviation over a Gaussian distribution
Sn = 1.1926 * ¢ * median(x_j);
end

Listing 1. MATLAB code for computing Rousseeuw & Croux’s S,, factor.
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