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Summary

Various rod-shaped bacteria mysteriously glide on surfaces in the absence of appendages such as 

flagella or pili. In the deltaproteobacterium Myxococcus xanthus, a putative gliding motility 

machinery (Agl–Glt) localizes to so-called Focal Adhesion sites (FA) that form stationary contact 

points with the underlying surface. We discovered that the Agl–Glt machinery contains an inner-

membrane motor complex that moves intracellularly along a right-handed helical path, and when it 

becomes stationary at FA sites, it powers a left-handed rotation of the cell around its long axis. At 

FA sites, force transmission requires cyclic interactions between the molecular motor and adhesion 

proteins of the outer membrane via a periplasmic interaction platform, which presumably involves 
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a contractile activity of motor components and possible interactions with the peptidoglycan. This 

work provides the first molecular model for bacterial gliding motility.

Introduction

Certain rod-shape bacteria move along their long axis in the absence of extracellular 

appendages, such as flagella or pili, in a process called gliding motility1. In Myxococcus 
xanthus gliding is mediated by bacterial Focal Adhesion sites (FA). During gliding motility, 

FA sites assemble at the leading cell pole and retain a fixed position relative to the surface 

until they disassemble at the lagging cell pole1. FA sites contain a molecular machinery, 

named Agl-Glt, containing more than fourteen proteins2–4. Genetic analysis suggested that 

this machinery is formed by two membrane-associated machineries: (i), a 

putative three protein TolQR-like Proton Motive Force (PMF)-driven 

channel (AglR,Q,S) –the suspected energy producing system3,5,6; and (ii), a 

putative eleven-protein integral envelope-associated complex (GltA-K) that interacts with 

the Agl system2–4. These machineries are further connected to a cytosolic protein complex 

formed by the AglZ protein, the Ras-like G-protein MglA and the MreB actin cytoskeleton 

(hereafter MreB complex7, Figure 1a). This MreB complex recruits, and promotes the 

assembly of the Agl-Glt machineries (Figure 1a). Directional Agl-Glt movements from the 

leading towards the lagging cell pole were suggested to propel the cell forward3,8, but how 

these movements may be transduced into cell movement remains unknown5,9. Here, we 

reveal the functional architecture of the Agl-Glt complex and establish how its activity is 

transduced to the contact surface across the highly structured layers of the cell envelope.

Results

We quantitatively characterized the dynamic behavior of FA sites by analyzing the motions 

of AglZ-YFP-containing complexes using Total Internal Reflection Fluorescence 

Microscopy (TIRFM). Cells attached to a chitosan-coated surface alternated between motile 

and non-motile states. In these conditions, we were able to capture the movement of AglZ-

YFP clusters over extended periods of time with high temporal resolution. Two main AglZ-

YFP cluster populations were observed: static and dynamic (Figure 1b, blue and orange, 

respectively). Motile cells on chitosan exhibited at least one AglZ-YFP static cluster, 

indicating that a single static cluster is necessary and sufficient for cell propulsion. We also 

observed dynamic AglZ-YFP clusters. These clusters tended to form at the cell pole and 

migrate directionally towards the opposite pole (Figure 1b, Extended Figure 1a). On 

average, clusters formed every minute and moved at constant velocity (3.2 ± 0.9 μm/min, 

n=227) over distances of 1.5 ± 1 μm (n=203), often becoming dissociated upon reaching the 

opposite pole. Cluster speeds varied within and between cells (Extended Figure 1b), possibly 

due to varying numbers of motor units in a cluster (see below) and varying PMF levels 

between cells3,6. Dynamic clusters likely represent unattached motility complexes because: 

(i) in motile cells, they were only detected if a fixed cluster was also present and (ii), in most 

cells the transition from a non-motile to a motile state coincided with cluster immobilization 

(>85%, n=34, Figure 1b, orange-blue cluster). To quantitatively characterize this behavior, 

we measured the correlation ß between cell movement and presence of static and dynamic 
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clusters (Figure 1b, lower panel). Importantly, presence of static -but not dynamic-clusters 

was highly correlated with cell movement (Figure 1c, n=95).

Close examination of dynamic clusters by TIRF revealed that they not only move between 

poles but they also move across the cell width following a helical path (Figure 1d). The 

helicity, characterized by φA, the angle representing the pitch of a helix when projected on a 

plane (Figure 1e), was constant between cells (78°±5, n=54, Figure 1e). In most cases (92%, 

n=54), the direction of rotation of AglZ-YFP clusters relative to the direction of movement 

was counterclockwise (CCW), denoting a right-handed helical path. Treating the cells with 

A22, a drug that inhibits MreB polymerization10, decreased the number of dynamic clusters 

per cell (Extended Figure 1c–d) but notably not their helical movement and directionality 

(Extended Figure 1e).

We reasoned that if propulsion was linked to the counterclockwise trafficking of AglZ-YFP-

containing motility complexes, then a gliding cell body should rotate along a similar helical 

path but of opposite handedness (i.e. clockwise or CW, Figure 2a). To test this, we followed 

the dynamics of fiducial markers (artificial fluorescent D-Amino Acids, or TADA) fixed to 

the cell periphery during cell movement (Extended Data Figure 2a–d). In motile cells, 

TADA clusters moved from one side to the opposite side of the cell with angular velocities 

proportional to the speed of motility (Figure 2b, Extended Data Figure 2e), consistent with 

TADA clusters reporting on the overall rigid-body rotational movement of the cell during 

propulsion.

To determine the direction of rotation, we directly tracked the 3D position of TADA clusters 

during cell movement by inducing astigmatism into the optical detection path11 (Methods). 

In agreement with our predictions, TADA clusters rotated in the clockwise direction during 

cell propulsion (Figure 2c, Extended Data Figure 2f, n=8). These observations were 

confirmed by monitoring fluorescence intensity fluctuations with respect to the imaging 

focal plane during cell movement (Methods, Extended Data Figure 2g, n=17). The rotation 

angle for TADA clusters (φT) was constant between cells (82.6 ± 2.7 ° n=25, as measured by 

both methods, Figure 2d) and closely matched the angle of rotation (φA) measured for AglZ-

YFP clusters (78°±5). Interestingly, φT did not vary significantly with cell speed (Figure 2d). 

Altogether, these findings suggest that anchoring of dynamic AglZ-YFP containing 

complexes leads to the clockwise rotation of the cell and its forward propulsion.

To gain further insight into the molecular mechanism of motility, we genetically dissected 

the functional groups composing the Agl-Glt machinery (Figure 1a). Notably, mutations in 

agl and glt genes led to aberrant localization patterns and perturbation of AglZ-YFP cluster 

dynamics (Figure 3a, Extended Data Figure 3a). The global effect of each mutant in the 

localization pattern of AglZ-YFP was evaluated by measuring four observables: the 

proportion of cells exhibiting clusters, the mean number of AglZ-YFP clusters, and their 

longitudinal and radial distributions for wild-type and mutant cells (Figure 3a, Extended 

Data Figure 3b). Principal component analysis (PCA) was used to quantitatively characterize 

the effect of each mutant in the assembly of AglZ-YFP clusters (Methods). This statistical 

method allowed us to convert the set of correlated observables into a set of linearly 

uncorrelated principal components (PCs).
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The first three PCs described >87% of the variance (Extended Data Figure 4a–d). PC1 

represented a linear combination of the number of AglZ-YFP clusters, longitudinal cluster 

position, and proportion of cells with clusters. PC2 mostly represented the average number 

of clusters detected per cell, while PC3 was essentially dominated by the mean radial cluster 

position (Extended Data Figures 4a–d). A synthetic representation of results can be obtained 

by plotting the mean position of each mutant in a PC space where the wild-type (WT) is 

arbitrarily positioned at the origin (Figure 3b; for clarity only PC1 and PC2 are shown but 

the analysis is computed from PC1-3, Extended Data Figure 4e). Therefore, for each mutant, 

the distance to the origin and the direction represent the relative effect of a mutation on the 

number and distribution of AglZ-YFP clusters. Predicted inner membrane (IM) components 

(IGJ) exhibited the largest perturbation in the assembly dynamics of AglZ-YFP clusters, 

while periplasmic-outer-membrane (OM) group proteins (ACDEHK) displayed the lowest 

effect (Figure 3b). Interestingly, AglQ (motor) affected AglZ-YFP cluster formation in a 

qualitatively different manner, represented by a direction in PC space orthogonal to that 

observed for other mutants.

We refined the functional connections between agl-glt genes by further investigating the 

impact of gene deletions in the formation of GltI-YFP7 and AglQ-mCherry3,7 clusters, 

putative cytosolic and motor components of the gliding machine. The overall effect of gene 

deletions in the number and distribution of GltI-YFP clusters was similar to that observed 

for AglZ-YFP, consistent with GltI and AglZ belonging to the same functional group (Figure 

3c). GltJ and GltG, two predicted IM proteins2 and thus possibly in direct contact with GltI, 

had a large effect on GltI-YFP assembly (Figure 3c). Interestingly, GltD, GltH and GltK 

exhibited a larger impact than other proteins in their subgroup (e.g. A,B,C,E), suggesting 

that direct protein-protein interactions between these proteins and factors of the GltI 

subgroup may be needed for GltI-YFP localization (Figure 3c). Finally, we analysed the 

effect of deletions in the assembly of motor components (AglQ). Strikingly, deletion of 

factors in all subgroups led to severe perturbations in the formation of AglQ-mCherry 

fluorescent clusters (Figure 3d), suggesting that the motor may require several contacts with 

different Glt proteins to form functional clusters. However, specific components exhibited 

differential roles: GltJ, D and K displayed the largest effects, while GltB barely affected 

formation of AglQ clusters (Figure 3d). Overall, this data indicate that the motility complex 

is divided into several distinct functional groups (Figure 3e).

To determine the sequence of events leading to the assembly of propulsive complexes, we 

imaged the dynamic localization of AglZ-YFP (cytosolic-IM group) simultaneously with 

that of proteins belonging to each of the other functional subgroups: AglQ (motor), GltD 

(periplasmic), or GltC-mCherry (peri-OM complex) (Figures 4a, 4c, 4e). By conventional 

epifluorescence microscopy, cytosolic (AglZ) and motor components (AglQ) in motile cells 

(1.5% agar) displayed a strong ability to form clusters, in contrast to the dispersed 

localization of periplasmic and OM complex components (GltC,D) to the cell periphery 

(Extended Data Figure 5a). Thus, we used TIRFM to image the dynamic localization of 

these factors in motile cells adhered to chitosan-coated glass. AglQ-mCherry and AglZ-YFP 

co-localized in both stationary and mobile clusters, indicating that these proteins form a 

stable complex in the bacterial IM (Figure 4a, see also Methods and Extended Data Figure 

5b–c, 6). To analyze whether clusters containing both AglZ and AglQ were linked to cell 

Faure et al. Page 4

Nature. Author manuscript; available in PMC 2017 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



motility, we calculated for each cell the correlation between cell movement and co-

localization and computed the distributions for both stationary and mobile clusters (Figure 

4b, see Methods and Extended data Figure 7). Interestingly, stationary clusters were highly 

correlated to cell movement while mobile clusters were not, consistent with AglZ and AglQ 

being part of the trafficking internal complex (Figure 4b). In contrast, GltD- and GltC-

mCherry co-localized with AglZ-YFP only in stationary clusters (Figures 4c, e and 

Extended Data Figures 5b–c) and co-localization of stationary AglZ-GltC/D clusters was 

highly correlated to cell movement (Figures 4d, f). These data strongly suggest that 

cytosolic-IM and motor complexes assemble together in a mobile unit that requires a 

physical connection to periplasmic and OM components to form stationary clusters that 

impart cell movement.

To further investigate this hypothesis, we determined the correlation between cell speed and 

the proportion of clusters containing both AglZ and AglQ/GltC/GltD (Figure 4g). Dynamic 

clusters containing AglZ and AglQ were observed in motile cells, however their number was 

independent of cell speed, indicating that they are not propulsive by themselves (Figure 4g). 

On the contrary, the proportion of AglZ/AglQ clusters being stationary rapidly increased 

with cell speed (Figure 4g). Interestingly, the number of AglZ/AglQ clusters reached a 

maximum at ∼50% of the cell maximum speed (V1/2), suggesting that this number is not a 

limiting factor (Figure 4g). In fact, the recruitment of GltD and GltC to FA sites could be a 

limiting step because a significant number of static AglZ clusters lack GltD and especially, 

GltC (Extended Data Figure 5b–c). Consistent with this, the number of stationary AglZ/

GltD and AglZ/GltC clusters was only ~60% of the maximum at V1/2 and full speed was 

only reached when the percentage of GltD/GltC stationary clusters recruited to FA sites 

saturated (Figure 4g). Thus, the recruitment of GltD and GltC to FA sites is required for 

propulsion likely because these proteins belong to complexes that link the motor to the 

external surface.

To further test whether the stoichiometry of Agl-Glt components regulates the activity of FA 

sites, we measured how the mean fluorescence intensity of stationary and mobile clusters 

changed with normalized cell speed (Figure 4h, see Methods). Cell speed increased with the 

number of AglZ and AglQ subunits accumulating in stationary clusters while their 

proportion in mobile clusters was systematically lower (Figure 4h). All in all, these results 

show that stationary FA complexes form due to the transient recruitment of periplasmic and 

OM proteins by the mobile PMF-driven IM complex. Importantly, the activity of stationary 

complexes is regulated at two levels: by the number of Agl motor units (force generation) 

and by the number of local contacts with periplasmic-OM components (transmission).

A clear prediction of this model is that the motility complex should require direct adhesive 

contacts with the underlying surface to propulse the cell. Consistent with this, Reflection 

Interference Contrast Microscopy (RICM) revealed that motile cells are uniformly in contact 

with the substratum while high RICM densities are correlated with the position of AglZ-

YFP clusters (Extended Figure 5d). Interestingly, we observed that vesicles only containing 

OM-materials and specific OM Glt proteins (GltC-mCherry) were deposited at sites 

coinciding with the position of FA complexes in the wake of motile cells (Figure 5a, 
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Extended Data Figure 5e–f) Overall, this data suggest that adhesions involve strong intimate 

contacts between the surface and the periplasm-OM complex.

To gain molecular insight into the mechanisms involved in force generation and surface 

adhesion, we predicted a protein-domain structure of the motility complex using 

bioinformatics approaches (Figure 5b, Extended Data Figures 8–9). Remarkably, both AglQ 

and AglS contain predicted TolR-like PG-binding motifs12 and AglR, a TolQ homolog 

interacts with GltG2 a TolA/TonB-like protein (Extended Data Figure 8a–b). GltG and GltJ 

are similar modular proteins, specifically sharing a single transmembrane helix, a 

periplasmic helical domain, and TonBC motifs13. Interactions of GltGJ with OM 

components could occur between their TonBC domains and potential TonB-box-carrying 

proteins -GltF in the periplasm (Extended Data Figure 8a) and GltAB, two predicted porin-

like β-barrel proteins in the OM (Extended Data Figure 9a–b).

Thus, PG-anchored Agl motor units may act as stators pushing against adhesive OM 

complexes through PG to generate propulsive forces. We reasoned that these dynamic 

interactions might be revealed under conditions where the rigidity of the cell envelope is 

reduced, for example in cells undergoing sporulation where rapid PG remodeling leads to 

the formation of round cells14. Indeed, inducing sporulation rapidly led to the formation of 

balloon-shaped cells (Figure 5c). Remarkably, a small fraction of cells (<1%) entering 

sporulation are still motile and form conspicuous constrictions that, similar to FA 

complexes, remained fixed relative to the surface (Figure 5c). These constrictions likely 

result from the activity of the Agl-Glt machinery because i), they only formed in motile 

sporulating cells (less than 1% of the sporulating cell population) and ii), both AglQ-sfGFP 

(inner membrane, or IM) and GltC-mCherry (outer membrane, or OM) were enriched at 

constriction sites (Figure 5c). Thus, in sporulating cells where the structure of peptidoglycan 

is different (PG is not detected in mature spores15) dynamic Agl-Glt-driven physical 

contacts between the OM and the IM are unmasked.

Discussion

Based on our results,we propose that the Agl motor and associated IM proteins move 

directionally by cyclic interactions with factors in the periplasmic-OM complex (Figure 5d). 

Analogous to Tol/Exb systems13,16, these steps would occur by pmf-driven conformational 

changes in the Glt TolA/TonB-like proteins (GltG and/or GltJ, Figure 5b), the flexible-

domain of which might extend and retract through the PG layer (Figure 5d). PG itself could 

act both as a transient anchor point, as it becomes bound by AglQ/S via the possible TolR-

like PG-binding motif, and a guiding factor, opposing contractions and favoring lateral 

movements (Figure 5d).

The current study does not resolve the relative stoichiometries of the Agl-Glt proteins at 

FAs, however the data shows that the activity of FA complexes is subject to regulation, and 

contains variable stoichiometries of Agl motor components and connections with the 

underlying surface. Thus, it is possible that several “legs” operate coordinately at these sites. 

The directionality of motility complexes is remarkably robust between cells, suggesting a 

role of a core cellular structure; PG is an attractive candidate because the glycan strands are 

Faure et al. Page 6

Nature. Author manuscript; available in PMC 2017 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proposed to have a global right-handed helical ordering and could serve as track to guide the 

motility complex17. At FAs, the interaction with the surface appears to be strong, implying 

the existence of a specific adhesion(s) and consequently, a relief mechanism like in gliding 

parasites where the major adhesion is removed from the motility complex by specific 

proteolysis18. Excitingly, the model makes several important predictions that will help future 

studies, specifically guiding the exploration of protein interactions in the system, the next 

step towards a molecular understanding of the motility mechanism.

Methods

Bacterial Strains, Plasmids, and Growth

Strains, primers, and plasmids are listed in Extended Data Tables S2 and S3. See Extended 

Data Tables S2 and S4 for strains and their mode of construction. M. xanthus strains were 

grown at 32°C in CYE rich media as previously described1. Plasmids were introduced in M. 
xanthus by electroporation. Mutants and transformants were obtained by homologous 

recombination based on a previously reported method1. All fusions were expressed by gene 

replacement at the endogenous loci allowing expression from the natural promoters. Q-PCR 

experiments confirmed that expression is similar to WT levels (expression ratios varied 

between 1 and 2 compared to WT levels). Three types of AglQ fusions were used 

throughout the study, TIRF experiments used AglQ-mCherry expressed from the 

endogenous locus in place of the WT gene. For technical reasons, the PCA analysis and 

expression of AgQ-sfGFP and, used fusions expressed after ectopic integration of the gene 

of interest at the Mx8-phage attachment site in a ΔaglQ deletion backgrounds (Extended 

Data Table S4). All three strains were indistinguishable in terms of motility and expression 

patterns. E. coli cells were grown under standard laboratory conditions in Luria-Bertani 

broth supplemented with antibiotics, if necessary.

Motility assays on agar surfaces

For standard phase-contrast and fluorescence microscopy, cells from exponentially growing 

cultures were transferred to a 1.5% agar pad with TPM buffer (10 mM Tris-HCl, pH 7.6, 8 

mM MgSO4, and 1 mM KH2PO4) on a glass slide and covered with a coverslip. Imaging 

was performed in a temperature adjusted microscope chamber at 32°C. To test the function 

of peptidoglycan during motility, sporulation was induced by adding 5% glycerol directly 

into the agar pads as previously described2. This treatment induces rapid and controlled 

degradation of the Myxococcus peptidoglycan leading to the formation of viable 

spheroplasts2. Cells were imaged 15 min after deposition on a glycerol-pad in order to image 

their motility while converting to spheroplasts.

Microfluidics on chitosan-coated glass slides

M. xanthus cells were immobilized on a chitosan-coated surface, as described previously3. 

In brief, custom-built polydimethylsiloxane microfluidic glass chambers were coated with 

chitosan solution and washed after 30 min. Chambers were further rinsed with 1 ml TPM 

buffer (10 mM Tris-HCl, pH 7.6, 8 mM MgSO4, 1 mM KH2PO4). Subsequently, 1 ml of an 

exponentially growing culture was injected into the chamber and left for 30 min without 

flow. Unattached cells were removed by rinsing with 1 ml TPM by manual injection and 
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time-lapse microscopy on attached cells was performed. When needed, A22 (Merck 

Millipore) was injected manually at indicated concentrations a few minutes after the cells 

were confirmed to be motile.

Labelling cells with fluorescent D-Amino Acids

Lyophilized TADA (MW = 381,2g/mol) powder was re-suspended in DMSO at 150mM and 

conserved at −20°C. The labeling was performed, for 2h at 32°C, using 2μl of the TADA 

solution for 1ml of cells culture (OD600 0.5) in presence of 1M NaCl for a duration time of 

2H. The sample was then washed four times with 1ml of TPM and finally resuspended at 

OD600 5 before being transferred to an agar pad.

Bioinformatics analyses

Iterative sequence profile searches were performed using the PSI-BLAST4 and 

JACKHMMER5 programs run against the non-redundant (NR) protein database of National 

Center for Biotechnology Information (NCBI). Similarity-based clustering for both 

classification and culling of nearly identical sequences was performed using the 

BLASTCLUST program (ftp://ftp.ncbi.nih.gov/blast/documents/blastclust.html). The 

HHpred program was used for profile-profile comparisons6. Structure similarity searches 

were performed using the DaliLite program7. Multiple sequence alignments were built by 

the Kalign and PCMA programs8,9, followed by manual adjustments on the basis of profile-

profile and structural alignments. Secondary structures were predicted using the JPred 

program10. For previously known domains, the Pfam database was used as a guide11, and 

the profiles were augmented by addition of newly detected divergent members that were not 

detected by the Pfam models. Clustering with BLASTCLUST followed by multiple 

sequence alignment and further sequence profile searches were used to identify other 

domains that were not present in the Pfam database. Signal peptides and transmembrane 

segments were detected using the TMHMM and Phobius programs12,13. Contextual 

information from prokaryotic gene neighborhoods was retrieved using custom Perl scripts 

that extract the upstream and downstream genes of the query gene, along with their 

orientation, from GenBank files. A combination BLASTCLUST and sequence profile 

searches were then used to cluster the proteins to identify conserved gene-neighborhoods. 

Structural visualization and manipulations were performed using the PyMol (http//

www.pymol.org) program. The in-house TASS package, which comprises a collection of 

Perl scripts, was used to automate aspects of large-scale analysis of sequences, structures 

and genome context.

Microscopy

Epifluorescence—For regular epifluorescence, GFP or mCherry fluorochromes were 

visualized at 32°C using a temperature-controlled TE2000-E-PFS microscope (Nikon) with 

a 100× NA 1.3 (PhC) objective and a CoolSNAP HQ2 camera (Photometrics). All 

fluorescence images were acquired with appropriate filters with a minimal exposure time to 

minimize bleaching and phototoxicity effects. Images were recorded with Metamorph 

software (Molecular Devices)
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TIRFM—TIRFM was performed with an inverted microscope (Axio Observer A1, Zeiss, 

Germany) equipped with a 100× Plan-Achromat oil-immersion objective (NA=1.46) 

mounted on a closed-loop piezoelectric stage (PIFOC, Physik Instrumente, Germany). Two 

lasers with excitation wavelengths of 488nm (OBIS 488LS, Coherent USA) and 561nm 

(Sapphire 561LP, Coherent USA) were used for YFP and mCherry imaging, respectively 

(Coherent Inc, USA). Laser beams were combined and collimated by a series of dichroic 

mirrors and achromatic lenses, individually controlled by an acousto-optic tunable filter 

(AOTF, AA Opto-electronic, France) and focused onto the back focal plane of the objective 

through the rear port of the microscope. A translation stage was used to shift the position of 

the two beams with respect to the objective, enabling an easy permutation between Epi and 

TIRF imaging (Applied Scientific Instrumentation, USA). The fluorescence emission signal 

was collected by the objective lens, separated from the excitation wavelengths through a 

four-band dichroic mirror and filtered using bandpass filters inserted in a high-speed 

motorized filter wheel (Chroma Technology, USA). The filtered emission signal was then 

imaged onto an emCCD camera (Andor Ixon 897, Ireland) through relay lenses allowing for 

an effective pixel size of 105nm. Along a separate path, a 785nm IR laser beam was focused 

on the back focal plane of the objective and reached the glass/sample interface in Total 

Internal Reflection conditions. The reflected IR beam was imaged by a CMOS camera 

(Thorlabs Inc, USA) and its position calculated during live acquisition. The information was 

fed-back to a z-positioning piezo stage through a PID software to correct for any change in 

the objective/sample distance. This active autofocus system locks the focal plane position 

with a precision of +/− 20nm over hours. All acquisition software controlling lasers, filter 

wheel, translation stages and cameras were homemade using LabView 2012 (National 

Instruments, France). For time-lapse imaging, a high-speed motorized filter wheel was used 

to sequentially image YFP and mCherry channels with a switching time of less than 200ms. 

Typically, 5–10 images were acquired at 20Hz for each channel and the process was 

repeated 45–50 times every 15–30s, depending on the cell speed. For real-time imaging, 500 

images were taken at 20Hz in the YFP channel. Laser intensity was optimized to get the best 

signal to noise ratio while limiting photobleaching and phototoxicity. In order to compensate 

for chromatic aberrations, each channel was assigned a specific setpoint for the autofocus 

depending on the position of the focal planes for YFP and mCherry fluorescence signals.

Astigmatism for 3D time-lapse experiments—First, analysis of TADA-bright clusters 

by epifluorescence showed that they are diffraction limited and circular in shape making 

their 3D tracking by astigmatism possible. 3D-imaging was performed as previously 

described14. Briefly, to obtain 3D imaging conditions, a corrective MicAO 3D-SR system 

(Imagine Optic™, France) was inserted into the emission pathway between a modified 

Nikon Eclipse Ti-S inverted microscope and an EMCCD camera (Andor Ixon 897, Ireland). 

The MicAO 3D-SR adaptive optics device was used to correct the microscope point spread 

function (PSF) from optical aberrations introduced in the imaging path and optimized the 

photon budget. For 3D detection, subtle changes in astigmatism are further added in order to 

break the axial symmetry of the PSF and allow for an estimation of the axial position of 

diffraction-limited fluorescent objects. Time-lapse imaging of TADA clusters was performed 

after transferring to an agar pad freshly labelled cells mixed with 100nm fluorescent beads 

(TetraSpeck™, Thermo scientific USA), used as fiducial and calibration markers. Every 15–
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30s, two series of 5–10 successive images were simultaneously acquired at 20Hz : one under 

continuous epifluorescence illumination with a 561nm read-out laser to detect the 

fluorescence of the TADA clusters (Sapphire 561LP, 150mW, Coherent USA) and the 

second using a brightfield illumination to get an image of the cells. Then, a calibration was 

performed on the same field of view by imaging single fluorescent beads while scanning the 

sample along the optical axis (z) by steps of 50nm.

Detection and quantification of TADA clusters is described in section ‘Analysis of TADA 
clusters by astigmatism’ below. In total, data from eight cells were successfully analyzed 

(five biological replicates). However, the behaviour described was clearly observed on 

numerous occurrences (n=10), though the data was not of high enough quality (low SNR, 

cell to cell contact, cell moving too quickly or out of the observation field, etc) to obtain 

long trajectories.

RICM—For label-free imaging of the underside of cells in contact with the substratum, a 

modified form of reflection imaging for bacteria was employed15. RICM was performed on 

chitosan coated microfluidic chambers. Channels were seeded with ΔpilA cells expressing 

AglZ-YFP resuspended in TPM buffer with 1 mM CaCl2 (OD600 0.5) for 10 min, then 

washed with the same buffer. Images were obtained at 32 °C on a Zeiss axiovert 200 

inverted microscope with adjustable aperture and field stops. For imaging, an RICM 

objective (Zeiss Neofluar 63/1.25 antiflex) and a differential interference contrast objective 

(Plan-Apochromat 63×1.40 oil) were used for crossed-polarized light and fluorescence 

images, respectively. For RICM, cells were illuminated through a 546 nm ± 12 nm narrow 

bandpass filter with a mercury lamp (X-cite 120Q lamp) for 20 ms. For fluorescence, 

samples were excited with a laser at 488 nm for 1000 ms. Images were captured at 10s 

intervals and combined in ImageJ.

Fluorescence Recovery after photobleaching (FRAP)

FRAP was performed with a 488 nm laser mounted directly on the TE2000-E-PFS 

microscope (Nikon), allowing to focus a micrometer-radius laser beam with micrometer 

precision. FRAP acquisitions were performed with a home-developed macro under 

Metamorph.

Image analysis

Cluster analysis—Trajectories of fluorescent clusters were obtained from the coordinates 

calculated in a cylindrical reference system based on the shape of the cell. This step was 

performed automatically and verified manually using the MicrobeJ plugin (http://

www.indiana.edu/~microbej/) in FIJI/ImageJ16. These coordinates were used to calculate 

angle, speeds, mean square displacements and angles using the R software. To calculate the 

slope of helicoidal trajectories, the unwrapped coordinates were fitted with a linear 

regression model and φ angles were determined as the arctangent of the line coefficient 

(Extended Data Figure 2e). In TIRFM, due to the narrow depth of focus, different 

fluorescents objects (AglZ-YFP) were treated as if they were in the same plane. This 

simplified the method to calculate the trajectory angles. A z-stack projection of maxima was 

applied (FIJI). Some cells in the projection image showed clear linear alignments of clusters 
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crossing the cell body. The angle between the linear clusters trajectory and the major axis of 

the cell was manually measured with the angle tool of the FIJI software.

Principal Component Analysis—The number of clusters and the relative positions of 

AglZ-YFP, GltI-YFP and AglQ-mCherry in agl/glt mutant backgrounds were obtained by 

combining the mask of cells obtained from phase contrast images and the fast Fourier 

transform (FFT)-filtered fluorescent image (FIJI, Extended Data Figure 3b). In brief, the 

phase-contrast image of rod-shaped cells provides a mask of cell bodies and yields 

morphological parameters and definition of the longitudinal axis. Following a straightening 

operation, this axis can be used as a reference frame for cluster localization. Because the 

internal clusters are of weak intensity, the images were denoised by applying a neutral 

density filter and background subtraction. The presence of fluorescent clusters was 

systematically verified on unprocessed images to ensure that the procedures did not generate 

artifactual signals. The following list provides the number of cells analysed for each 

condition resulting from 6 technical replicates. For the AglZ-YFP reporter: WT: 67; ΔgltA: 

146, ΔgltB: 407, ΔgltC: 224, ΔgltD: 139, ΔgltE: 168, ΔgltF: 136, ΔgltG: 323, ΔgltH: 114, 

ΔgltI: 193, ΔgltJ: 174, ΔgltK: 194, ΔgltQ: 407. For the GltI-YFP reporter: WT: 187; ΔgltA: 

688, ΔgltB: 292, ΔgltC: 321, ΔgltD: 133, ΔgltE: 296, ΔgltF: 114, ΔgltG: 64, ΔgltH: 261, 

ΔgltJ: 359, ΔgltK: 694, ΔgltQ: 187. For the AglQ-mcherry reporter: WT: 163; ΔgltA: 124, 

ΔgltB: 723, ΔgltC: 266, ΔgltD: 201, ΔgltE: 399, ΔgltF: 196, ΔgltG: 189, ΔgltJ: 511, ΔgltK: 

197.

Two-color TIRFM—Image analysis was performed using Matlab 2015 (The MathWorks, 

Inc. For each experiment, only cells displaying gliding displacement were analyzed. For 

each selected bacterium, a temporal RGB image was calculated using mCherry fluorescence 

images and the cell trajectory path manually drawn (Extended Data Figure 6a). A montage 

and its associated kymograph was then calculated for both YFP and mCherry channels by 

straightening and re-slicing each time-lapse image along that path (Extended Data Figure 

6b). For the kymograph, the best contrast was obtained by averaging the intensity of the 

three brightest pixels (over a total of 13 pixels) for each slice. To further improve the 

contrast of the kymographs and highlight the presence of fluorescent clusters, a denoising 

algorithm (modified from17) was applied (Extended Data Figure 6c). Photobleaching was 

also quantified for each channel based on the variation of non-specific fluorescence signal 

measured in the cells over time. A single exponential model was used to fit the variation of 

intensity and correct the kymograph intensity accordingly. Small shifts induced by chromatic 

aberrations between the two channels were corrected as well by realigning the two 

kymographs using an image cross-correlation algorithm (precision of 1 pixel, 105nm). 

Finally, for the co-localization calculation, the intensity of both images were standardized in 

order to compare the fluorescent signals from both YFP and mCherry channels.

Cell tracking in kymographs—In order to calculate the cell displacement over time, the 

kymograph displaying the best contrast was first interpolated: the number of pixels was 

increased by two-fold in each dimension and the intensity of each pixel recalculated using a 

cubic interpolation algorithm. An iterative edge-detection algorithm based on the Canny 

method was then applied to the interpolated image18. Typical values for the standard 
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deviation were between 3 and 5 pixels. By iteratively changing the Canny detection 

threshold, the algorithm converged toward two different edges highlighting the movement of 

both cell poles during the time-lapse. Errors in the edge calculation were sometimes 

observed when the lagging pole of the cell was not properly attached to the chitosan-treated 

surface and/or when other bacteria were in contact with the selected cell. In that case, a 

manual correction was performed in order to remove inconsistent points and rectify the 

position of the edges.

Often, the two edges were not exactly identical due to imprecision in the localization of 

poles. Indeed, we could observe that the leading pole of the cell was usually very well 

defined (highest fluorescence intensity) resulting in a very precise calculation of its 

localization over time. On the contrary, the lagging pole was often poorly defined due to 

lower fluorescence intensity and/or weaker adhesion to the chitosan treated surface. 

Therefore, in order to quantify the cell displacement during the time-lapse, the edge defined 

with the highest precision was selected. The speed was also estimated from the first-

derivative of the displacement and analyzed in order to automatically identify when the cell 

was mobile (gliding) during the time-lapse acquisition. To do so, for each experiment, a 

velocity threshold was empirically estimated by analyzing the movement of a small subset of 

cells. Then, for each time-point, bacteria were classified as either mobile or immobile 
depending on whether their velocity surpassed the velocity threshold. Typical values for the 

threshold lay between 0.05 and 0.2 μm/min, depending on experimental drift and noise 

(Extended Data Figure 6d). In average, cell speed on Chitosan coated surface was 0.5 +/ 

−0.5 μm/min.

Colocalization—Co-localization between YFP-tagged and mCherry-tagged proteins was 

calculated in three steps (Extended Data Figure 7a). First, the two montages were separately 

analyzed in order to localize the fluorescent clusters in each channel. For each montage, its 

normalized cross-correlation with a Gaussian spot (standard deviation of 1 pixel) was 

computed. Fluorescent aggregates were then delimited by thresholding the image (typical 

value between 0.55 and 0.75) and grouping the selected pixels in separate clusters based on 

their connectivity. Clusters composed of less than 4 pixels were systematically discarded.

In a single cell, many different fluorescent clusters Cn=1,2,… could be simultaneously 

detected, each with a different trajectory. Since the same fluorescent cluster Cn could be 

detected in several successive images, localizations were grouped by manually stitching 

together its detections (Cn
ti, Cn

ti+1, … Cn
ti+k) on the montage. Therefore, each cluster 

Cn=1,2,… was now defined by all its localizations during the time-lapse acquisition. By 

analyzing their positions over time, each observation of the same cluster was labeled as 

either stationary or dynamic. Finally, it is important to point out that clusters detected at the 

poles were not taken into account for the analysis. The pixel size in our experiments was 

105nm, thus the precision of detection of the maximum of intensity of clusters from 

kymographs was approximately ~100nm.

Next, for each montage, the localizations of the clusters were projected onto the associated 

normalized kymograph. A protein detection map was then calculated by keeping only the 

intensity of the pixels that were part of a cluster (Extended Data Figure 7b). The intensity of 
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all other pixels was set to zero. By superimposing the trajectories of the two cell poles, it 

was then possible to study how the detection of protein clusters was correlated with cell 

displacement. Each row of the map corresponded to a snapshot of the protein localization 

and intensity within the cell at a given time of the experiment. Finally, the co-localization 

map was calculated by multiplying the two detection maps together (Extended Data Figure 

7c). From the distinction performed earlier between stationary and dynamic clusters, we 

could measure how the co-localization intensity varied over time for both types of clusters. 

Two curves were therefore calculated by summing along each row the intensity of the pixels 

associated to either dynamic or stationary clusters. In the end, the total co-localization signal 

was obtained by summing together the two curves.

Correlation between cell movement and co-localization—For each cell, correlation 

between movement and protein colocalization was calculated, taking static and dynamic 
clusters into account separately (Extended Data Figure 7d–e). For each time-point, the 

correlation was set to 1 when the cell was mobile and co-localization was detected or when 

the cell was immobile and no co-localization was measured. In all the other cases, the 

correlation was set to −1 (Extended Data Figure 7f). Then, a correlation score was attributed 

to each cell and each type of cluster (stationary or dynamic) by calculating the mean of all 

the values over time.

To further estimate the connection between cell movement and protein co-localization, a 

more quantitative analysis was performed. For each cell, speeds were first renormalized 

between 0 (no movement) and 1 (maximum velocity) and segmented into 15 equally spaced 

bins. Next, for each bin, we selected all the occurrences associated to a moving cell and 

verified whether static or dynamic co-localized clusters were detected. By repeating this 

analysis on all cells, we could therefore estimate for each bin the percentage of events where 

co-localization was detected. Finally, the percentage of co-localization was plotted 

separately for static and dynamic clusters as a function of the normalized cell speed.

Correlation between cell movement and cluster fluorescence intensity—In 

order to investigate the connection between cell movement and protein recruitment at FA 

complexes, we analyzed how the intensity of AglZ and AglQ clusters changed with cell 

speed. Due to cell-to-cell variability in the measured fluorescence signal, the intensity of 

static clusters was renormalized for each cell. For the cells displaying at least one dynamic 

cluster, the maximum intensity of dynamic clusters was calculated and used as an internal 

reference to normalize the intensity of all detected clusters within the cell. Behind this 

normalization procedure, we make the assumption that dynamic clusters have in average the 

same stoichiometry/composition from cell-to-cell. This assumption was verified since, after 

analyzing >100 cells for AglZ and AglQ proteins, the intensity measured after normalization 

for the dynamic clusters showed a very small dispersion (mean intensity of 1+/−0.15 for 

AglZ and AglQ) while the dispersion for the static clusters was ~3 times higher (mean 

intensity of 1.38+/−0.5 for AglZ and 1.4 +/−0.43 for AglQ). Then, as already described for 

the correlation between cell movement and co-localization, we plotted the intensity of both 

static and dynamic clusters as a function of the normalized cell speed.
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Note that this analysis could only be performed for AglZ and AglQ, as in this case the 

proportion of cells displaying both dynamic and static clusters was large enough to obtain a 

statistically-relevant sample size (59% for AglZ and 64% for AglQ). For GltC and GltD, 

however, very few dynamic clusters were detected and these proportions dropped to 5% and 

8%, respectively, which was insufficient for performing a similar analysis.

Analysis of TADA clusters by astigmatism—Detection of beads from the calibration 

were analyzed using RapidSTORM19. For each axial position (z) of the sample, the PSF of a 

single fluorescent bead was fitted with an elliptical Gaussian function and the x-y widths (wx 

and wy) were calculated in order to produce the calibration curves wx(z) and wy(z).

Only gliding cells displaying a bright and well-defined TADA cluster were selected for the 

analysis. First, the calibration curves were used to infer the axial positions of the clusters 

using RapidSTORM. Then, the cell outline was calculated on each image using the bright-

field images. The cell outline was used to reconstruct the complete trajectory of the cell 

during the time-lapse and infer the lateral position of the TADA cluster. From the trajectory, 

we precisely determined for each image the total distance travelled by the cell since the 

beginning of the acquisition. Finally, the 3D position of the TADA clusters was plotted as a 

function of the distance travelled by the cell.

Principal component analysis and statistical tests—The PCA analysis was 

performed using Matlab 2014 and the Statistics and Machine Learning Toolbox. We started 

by defining a data matrix Ci for each mutant (WT, dA, dB, dC, …) and reporter (AglZ, AglQ 

and GltI). For example, in the case of AglZ as a reporter, we defined one array CWT for the 

wild-type strain and twelve others (CdA,CdB,CdC,…) for each mutant. Each row of an array 

Ci corresponded to a single observation of a cluster measured by fluorescence microscopy. 

The columns corresponded to the variables used to describe the properties of the clusters and 

of the associated strain: (i) Longitudinal position of the cluster (0 at the leading pole, 1 at the 

lagging pole); (ii) Lateral position (0 at the center, 1 on the edge); (iii) Total number of 

clusters detected simultaneously in the same cell; and (iv) Proportion of cells containing at 

least one cluster for the selected strain and reporter.

For each reporter, the PCA calculation was performed by combining all the data collected 

(wild type and mutated strains). Therefore, a single set of principal components were 

defined and subsequently used to illustrate the differences between the wild type and the 

mutated strains. The analysis was performed in three steps. First, all the data-matrix Ci were 

concatenated in a single matrix Call and the values of each column were centered (mean was 

equal to 0) and standardized using the inverse variance. Then, the PCA analysis was 

performed and returned the coefficients of the Principal Components (PC, Extended Data 

Figure 4a–c) as well as the amount of variance accounted by each of them (Extended Data 

Figure 4d). Independently of the nature of the reporter, we observed that the three first 

components accounted for more than 87% of the total variance (>68% for the two first 

components). Therefore, the clusterization calculation were performed later using only the 

three first PCs.
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In a second step, the values of the PCs were used to calculate the representations Ci
PC of 

each data-matrix Ci in the principal component space. Using a system of axis defined by the 

three first PCs, we could represent each array Ci
PC by a scatter plot where each point 

represented the properties/localization of one single cluster in the PC space (Extended 

Figure data 4e). To improve the readability of the plots, we only represented the median 

position of each scatter plot (Extended Data Figure 4e). We also used the standard deviation 

to illustrate the dispersion of the data along each PCs. Finally, in order to make the 

comparison between wild type and mutated strains easier, we arbitrarily placed the wild type 

at the origin.

Statistics and replicates—By default we used the Wilcoxon (two-sided) test to 

significantly separate the different samples. For each experiment, the number of times it was 

independently replicated in the laboratory (biological replicate) is indicated either in the 

figure legend or in the corresponding Methods section. All errors calculated on values are 

determined using the deviation standard formula.

Data and code Availability—Code used for two-colour TIRF and astigmatism 

experiments was written using Matlab 2015. Scripts are available upon request. The data that 

support the findings of this study are available from the corresponding author upon request.
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Extended Data

Extended Data Figure 1. Dynamic AglZ-YFP clusters in non-motile cells
(a) Dynamic AglZ-YFP clusters in a non-motile cell observed by TIRFM. Kymograph 

representation of cluster movement captured every 0.5 s. Note that the clusters form at the 

cell pole and move directionally towards the opposite cell pole where they are dispersed. 

Scale bar = 2 μm. (b) Distribution of cluster speeds between and within cells. Note that 

clusters can move at different speeds in a cell and that the speed between cells generally 

varies between 2–4 μm.min-1. (c) Number of AglZ–YFP clusters per cell per minute in WT 

and A22 treated cells (2 technical replicates). (d) AglZ–YFP cluster speed in WT and A22 

treated cells (2 technical replicates). Statistics as in (c). (e) Trajectory angles in WT and A22 

treated cells (2 technical replicates). Statistics Wilcoxon tests. *: p<0.1; **: p<0.01; ***: 

p<0.001. Statistics as in (c).
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Extended Data Figure 2. Myxococcus cells rotate along their long axis during motility
(a) TADA-bright clusters form in Myxococcus cells subjected to a brief osmotic shock. 

TADA is only incorporated in the Myxococcus cell envelope when the cells are subjected to 

NaCl treatment (see Methods).

(b–c) TADA-bright clusters are not dynamic in non-motile cells. TADA-bright cluster 

movements are not detectable in non-motile cells (c, red dots, n=14 ; 2 technical replicates) 

and only detectable in moving cells (c, blue dots, n=17 ; 2 technical replicates). MSD: Mean 

Square displacement. Scale bar = 2 μm.
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(d) TADA-bright clusters are inert. Fluorescence Recovery After Photobleaching (FRAP) 

analysis reveals the absence of fluorescent molecule exchange in TADA-bright clusters 

(n=6 ; 1 technical experiment). Scale bar = 2 μm.

(e) TADA-bright cluster rotation reflects rotation of the cell during movement. A cell on 

which four TADA-bright clusters were tracked is shown. The radial velocity of each cluster 

calculated by projection of the 2D images on the model 3D cell cylinder (left panel, β angle) 

is plotted against the linear displacement of the cell. Each TADA cluster moved at the same 

radial speed and proportionally to the speed of the cell, indicating that TADA clusters are 

inert objects reporting on the rigid-body movement of the cell.

(f) 3D-trajectories of TADA-bright clusters reconstructed by astigmatism. We note that -in 

absence of astigmatism- the size of TADA clusters corresponds to the diffraction limit of 

light, and that they are circular (i.e. the size of the PSF is the same in perpendicular 

directions), making the astigmatic analysis of axial position possible.

(g) TADA-bright clusters rotate in the clockwise direction. Cluster intensity fluctuations and 

positions relative to the cell axis are shown over time (left) in a representative cell (right). 

The black arrow points to the analysed cluster. A representative cell is shown in the right 

panel which was isolated from others in the field with a black mask (n=10 ; 3 technical 

replicates).
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Extended Data Figure 3. Analysis of AglZ-YFP, GltI-YFP and AglQ-mCherry in agl and glt 
mutant backgrounds
(a) Each fluorescent functional fusion was introduced in place of the WT gene in each 

genetic background shown. Typical examples are shown for each strain. Crossed boxes 

indicated genetic backgrounds that were not obtained for this study. Scale bar = 2 μm.

(b) Cluster detection and analysis chart. Phase contrast and fluorescence images were 

processed so as to respectively extract cell masks of isolated cells (compared edited mask to 

raw mask) and the position of fluorescence clusters following the application of a 
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fluorescence bandpass filter. Note that the intensity of the fluorescence clusters was not 

exploited due to a lack of robustness and day-to-day fluctuations. The cluster coordinates 

were then defined relative to cell coordinates with the Microbe J plugin (http://

www.indiana.edu/~microbej/) in Fiji, compiled in R sheets and further analyzed by Principal 

Component Analysis using custom-written code in Matlab.

Extended Data Figure 4. Principal Component Analysis (PCA) of AglZ-YFP, GltI-YFP and 
AglQ-mCherry in agl and glt mutant backgrounds
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(a–c) Coefficients of the principal components (PC) for AglZ-YFP, GltI-YFP and AglQ-

mCherry. PCs are the eigenvectors of the correlation matrix calculated from the four 

parameters indicated in the first column of the tables. Taken together, PCs form an 

orthogonal basis where the vectors are uncorrelated. PCs are sorted according to the amount 

of variability in the data they describe, PC1 having the largest effect (i.e. variance) and PC4 

the least.

(d) Scree plots displaying the variance associated to each PC. Bar plot represents the 

variance associated to each PC for a given fusion (from left to right : AglZ-YFP, GltI-YFP 

and AglQ-mCherry). The cumulative variance is also plotted (light-blue line). Note that 

PC1-2 describe in average 70% of the total variance and PC1-3 more than 87%.

(e) Projection of the data in the space defined by the three first PCs. For each mutant, data 

are represented by a scatter plot of a specific colour (see inset for a detailed description of 

color code). For each direction and each mutant, the average and standard deviation of the 

data are symbolized by a single bold line : the center of the line represents the average and 

its length the standard deviation.

Extended Data Figure 5. Motility is propelled by cyclic interactions between the IM-localized 
motor and OM-localized adhesins of the motility complex
(a) Epifluorescence analysis of AglZ-YFP- AglQ/GltD/GltC-mCherry expressing 

representative cells. In each case, fluorescent functional fusions are expressed in place of the 

wild type gene. Note that while AglZ-YFP and AglQ-mCh clusters can be detected, GltC-

mCh and GltD-mCh appear mostly diffuse around the cell envelope with these imaging 

conditions. 40 cells were imaged for AglZ-YFP/AglQ with 2 biological replicates; 232 cells 

were imaged for AglZ-YFP/AglD with 3 biological ; and 55 cells were imaged for AglZ-

YFP/AglC with 3 biological. Scale bar = 2 μm.
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(b) Protein co-localization in static clusters. For each cell analyzed, a percentage of 

colocalization is computed for proteins detected only in static clusters. Values range from 0 

when no colocalization between the two proteins was detected in the cell to 100% when the 

two proteins were always detected together. For the left panel, the percentage of 

colocalization is represented for AglQ/GltD/GltI with respect to AglZ. Single data are 

represented by a scatter plot (o), the median colocalization value is symbolized by a blue 

line and the standard deviation by light-grey boxes. In average, 96% of AglQ clusters 

colocalized with AglZ (n=153 clusters ; 2 biological replicates), 96% for GltD (n=120 ; 7 

biological replicates) and 83% for GltC (n=100 ; 3 biological replicates). Inversely, the right 

panel represents the percentage of colocalization of AglZ with respect to AglQ (97%, 

n=152 ; 2 biological replicates), GltD (91%, n=120 ; 7 biological replicates) and GltC (69%, 

n=100 ; 3 biological replicates), respectively.

(c) Protein co-localization in mobile clusters. Box-plots read as in (b) and describe the 

percentage of colocalization for proteins detected only in dynamic clusters. Left panel 

illustrates the colocalization of AglQ/GltD/GltI with respect to AglZ (76% n=106 ; 2 

biological replicates, 39% n=11; 7 biological replicates and 0% n=4 respectively; 

3biological replicates). Right panel describes the percentage of colocalization of AglZ with 

respect to AglQ (41%, n=125 ; 2 biological replicates), GltD (0%, n=72 ; 7 biological 

replicates) and GltC (0%, n=41 ; 3 biological replicates). Colocalization in dynamic clusters 

in only significative between AglZ and AglQ.

(d) AglZ-YFP clusters localize within adhesive contact zones. Left panel - RICM of a 

representative gliding cell (n=10 ; 2 biological replicates, 30 seconds time frames. Scale bar 

= 2 μm.) showing intimate connection with the chitosan-coated glass surface (dark zone). 

Right panel - Adhesions and AglZ-YFP cluster localization in detaching cells by RICM and 

combined epifluorescence microscopy (Time frames: 30 s. Scale bar = 2μm). The graph 

represents the distribution of RICM intensities at AglZ-YFP cluster positions (red line) 

compared to the average intensity along the whole cell body (black line). Data obtained for 

n=20 cells ; 2 biological replicates.

(e) Gliding Myxococcus cells deposit outer-membrane vesicles in their wake. TIRFM 

images of a motile cell expressing both an outer-membrane sfGFP and an inner membrane 

mCherry. OM vesicles are deposited suggesting that the cell is firmly adhered to the 

underlying surface. Shown is a representative cell (n=60 ; 12 technical replicates).

(f) GltD-mCherry, a periplasmic Glt protein, is not released by gliding cells at FA complexes 

Upper panel - TIRFM snapshots are shown for a representative cell expressing both GltD-

mCherry (red) and AglZ-YFP (green). The position of the GltD clusters on the surface 

coincides with position of FA complexes (white asterisk). Time frames: 15s. Scale bar = 

2μm. Lower panel - variation of intensity for GltD-mcherry (red) and AglZ-YFP (green) as a 

function of time before (negative time) and after (positive time) the cell moved away from 

the FA position, shown for n=10 cells (2 biological replicates).
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Extended Data Figure 6. Image analysis for TIRFM experiments
(a) Temporal RGB image computed from fluorescence images (mCherry for this example). 

Images were summed together and color coded from blue (first image) to red (last image). 

Immobile cells appeared uniformly white while moving cells showed colored extremities. 

Cell trajectory is represented by a yellow dotted line.

(b) For the two imaging channels (YFP and mCherry), a kymograph and a montage were 

calculated. Kymograph read from top (first image) to bottom (last image), each line 

representing the average fluorescent intensity computed along the cell trajectory. The 
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montage showed for each acquisition an image of the cell after applying a straightening 

algorithm. Clusters of proteins (AglZ-YFP or AglQ/GltD/GltI-mCherry) appeared as bright 

spots at the center of the cell.

(c) Kymographs after applying a denoising algorithm. The cell outline was depicted by 

either a dotted white line when the cell was immobile or by a continuous white line when the 

cell was gliding on the surface.

(d) Cell speed as a function of acquisition time. For each cell, a threshold was defined that 

depended on the signal-to-noise ratio and the sample lateral stability during TIRFM 

acquisition. When the cell-speed was below this threshold (horizontal dotted line), the cell 

was considered immobile. Phases associated to cell movement are highlighted in blue.
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Extended Data Figure 7. Colocalization estimation and correlation with cell movement
(a) Co-localization between YFP-tagged and mCherry-tagged proteins was calculated in 

three steps. For each channel (YFP and mCherry), a threshold was applied to the montage in 

order to detect protein clusters (clusterization). When the same cluster was observed in 

successive images, its localizations were stitched together manually and finally classified as 

either static (red) or dynamic/mobile (blue).

(b) For each channel, a protein-detection map was computed from the kymograph and the 

positions of the detected clusters. The cell outline was depicted by two white lines.
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(c) The co-localization map was obtained by multiplying the two protein-detection maps. In 

the inset, the cumulative intensity associated to static (red) and dynamic (blue) clusters were 

plotted as a function of time.

(d) Cell-speed as a function of acquisition time. Blue boxes represent regions where cell 

speed is higher than the threshold.

(e) Cumulative co-localization intensity (static and dynamic) as a function of acquisition 

time. Blue boxes represent regions with high cell speed.

(f) Curves from (d) and (e) were binarized. For the cell-speed, the value was set to ‘0’ when 

the speed was below the threshold (immobilie cell) and to ‘1’ when it was above (gliding 

cell) (left panel). For the colocalization, the value was set to ‘1’ when co-localization was 

detected, ‘0’ otherwise (left panel). A correlation curve (right panel) was then computed by 

comparing the two curves. At each time-point, if the values of the two binarized curves were 

equal (1/1 or 0/0, green highlighted areas), the correlation was set to ‘1’. Else, it was set to 

‘−1’ (red highlighted area). Finally, the correlation score was defined as the average of all 

the correlation values.

Extended Data Figure 8. Bionformatics analysis of AglQ/S and GltF
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(a) AglQ and AglS carry a potential PG-binding site. Multiple Alignment of AglQ, AglS 

and their paralogs with TolR(5by4A) and ExbD (2pfuA). The gene name, organism name 

and GI are given. The structure is shown on top and the 80% consensus is shown below the 

alignment.

(b) Cartoon view of the structures are shown below with the residues known or predicted to 

bind peptidoglycan shown as sticks.

(c) The GltF family of proteins found in deltaproteobacteria. Multiple Alignment of the GltF 

family is shown and labeled using gene name, organism name and GI are given. The 

potential TonB box analog is indicated. The TonB box can be most generally defined as an 

extended region i.e. forming a beta strand-like structure that is not paired with other beta 

strands into a structural unit. The TonB-Box typically has two polar residues T/S and 

classically and acidic/amide residue. The GltF sequence profile analysis shows that GltF is 

related to the N-terminal region of certain OMP barrels that do contain a potential TonB-box 

like peptide.

Extended Data Figure 9. Bioinformatics analysis of the GltABH system
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(a) Multiple alignment of the beta-barrel OMP proteins GltA, GltB and GltH and their 

paralogs with NspA (1p4tA). Note the presence of TonB-Box analogs in GltA and GltB but 

not in GltH.

(b) Cartoon view of the inferred trimer of beta barrels based on the NspA structure with the 

residues predicted to form a trimeric interaction interface shown in spheres.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Myxococcus motility complex moves directionally along a helical path
(a) Spatial regulation of the Myxococcus motility complex. A motile AglZ-YFP expressing 

cell showing a complete assembly cycle is shown at 30 s time intervals. A current view of an 

Agl (blue)-Glt (yellow) complex at a focal adhesion site (FA) is shown2,7,19. Assembly 

occurs at the leading cell pole following interactions between MglA-GTP, MreB and AglZ 

(right panel, blue,8). The position of the Glt proteins is drawn based on published 

works2–5,7,20.

(b) Immobilization of AglZ-YFP clusters correlates with cell movement. TIRFM of AglZ-

YFP in a cell that shifts to motility on a chitosan-treated surface. Images were acquired 

every 0.5 s. Selected time frames and the corresponding high-resolution kymograph are 

shown. Two dynamic (orange) clusters are shown. Note that cell movement (indicated by the 

dashed line showing the initial cell position) is only observed when a cluster becomes 

stationary (see orange/blue cluster). Scale bar = 2 μm. Lower panel: calculation of the 

correlation coefficient (ß) between the presence of a cluster and cell movement. The fixed 

cluster (blue) is highly correlated with cell movement (ß=1), whilst the dynamic cluster 

(orange) is partially anti-correlated (ß=−0.3).

(c) Distribution of the correlation coefficient ß for fixed (blue) and dynamic clusters 

(orange), n=95 (6 biological replicates).

(d) AglZ-YFP clusters move along helical trajectories. TIRFM selected time frames of a 

dynamic AglZ-YFP cluster in a non-motile cell are shown. Scale bar = 2 μm.

(e) Measurement of the trajectory angle (φA) from n= 54 (8 biological replicates) single 

trajectories of dynamic AglZ-YFP clusters (top panels). Histogram of φAand Gaussian fit 

(grey line) are in the panel below. The mean angle is shown with a dashed vertical line and 

corresponds to counterclockwise trajectories.
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Figure 2. Myxococcus cells rotate during motility
(a) The helical movement of intracellular motors predicts rotation of the cell during 

movement.

(b) Rotation of a TADA-bright cluster in a motile cell (30s intervals) and in a sum-type 

projection (right). The cartoon representation shows the position of the centroid of the 

cluster relative to the cell outline.

(c) 3D positions of a TADA-bright cluster measured by astigmatism (orange dots) 

illustrating the clockwise rotation of the motile cell (n=8 ; 5 biological replicates). Snapshots 

of the cell are displayed, illustrating the deformation of the PSF as a function of the axial 

position.

(d) Rotation angle of TADA-bright clusters (φT) as a function of cell velocity from 

astigmatism (filled circles, 83.9° ± 2.5 n=8 ; 5 biological replicates) and intensity variations 

(open circles 82.0° ± 2.6 n=17 ; 3 technical replicates).
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Figure 3. Functional architecture of the Agl-Glt machinery
(a) The localization of AglZ-YFP is affected to different extents in agl-glt mutants. The 

number and position (longitudinal and radial) of clusters was determined in each mutant 

background and their effect analyzed by PCA (see Methods). Scale bar = 1 μm.

(b–d) The effect of mutations in assembly dynamics of AglZ-YFP, GltI-YFP and AglQ-

mCherry plotted in PC coordinates. Triangles represent IM group proteins, squares motor 

components and circles the rest (periplasm-OM). Right panels show schematic 

representations of the projections of the defined gene groups with respect to their predicted/
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shown localization from2–5,7,20. Color code represents distance to the WT in PC space. 

Letters represent each protein subunit of the Agl/Glt complex.

(e) The compilation of PCA (panels b-d) superimposed to available data2–5,7,20 suggests that 

the motility machinery consists of a molecular motor (dark blue), an IM-cytosolic group 

(light blue) and a large periplasm-OM group (orange).
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Figure 4. Dynamic interactions between the intracellular and outer-membrane complexes 
generate propulsion
(a) Simultaneous dynamics of AglZ-YFP and AglQ-mCherry and correlation to the motility 

phases. TIRFM images of a time lapse and corresponding kymographs are shown for 

individual fluorescent fusions and in a heat map showing the computed co-localization 

scores.

(b) AglZ and AglQ co-localize in the IM trafficking complex (n=156 cells ; 2 biological 

replicates). Correlations scores reflect the correlation between cell movement and static co-

localized clusters.

(c–d) Simultaneous dynamics of AglZ-YFP and GltD-mCherry and correlation to the 

motility phase (n=121 cells ; 7 biological replicates). Legend reads as in a–b.

(e–f) Simultaneous dynamics of AglZ-YFP and GltC-mCherry and correlation to the 

motility phase (n=100 cells ; 3 biological replicates). Legend reads as in a–b.

(g) Correlation between cell velocity and number of active complexes. For a given value of 

the cell speed (V), the percentage of co-localized clusters represents the proportion of events 

where a cell was moving at speed V and an active cluster containing both AglZ and AglQ/

GltD/GltC was detected. The percentage of co-localization is shown as a function of 

normalized cell speed (where 1 is the maximum cell speed).

(h) Correlation between cell velocity and intensity of AglZ and AglQ clusters. Intensity was 

normalized with respect to the average intensity measured for dynamic clusters and shown 

as a function of normalized cell speed. Error bars represents the standard error of the mean 
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and was calculated according to the total number of cells analyzed (n=114 cells for AglZ, 

n=100 for AglQ).
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Figure 5. Cyclic contacts between the IM motor and OM adhesins drive propulsion
(a) GltC-mCherry, is released by gliding cells at FA complexes. Upper panel - TIRFM 

snapshots are shown for a representative cell expressing both GltC-mCherry (red) and AglZ-

YFP (green). The position of the GltC clusters on the surface coincides with position of FA 

complexes (white asterisk). Time frames: 15s. Scale bar = 2μm. Lower panel - variation of 

intensity for GltC-mcherry (red) and AglZ-YFP (green) as a function of time before 

(negative time) and after (positive time) the cell moved away from the FA position, shown 

for n=10 (2 technical replicates).

(b) Predicted domain architecture of the Agl-Glt machinery based on bioinformatics 

prediction, sequence analysis and previous literature. The different proteins of the complex 

are represented based on their domain structures from bioinformatics predictions 

(Supplementary Table S1). Each protein is represented as a single copy in the complex.

(c) A fixed contractile (FC) zone is observed in motile sporulating cells where peptidoglycan 

is profoundly remodeled. Motile cells in the early phases of sporulation are shown at 1 min 

intervals. AglQ-sfGFP and GltC-mCherry are specifically enriched at the constriction site. 

Representative cells are shown for WT (n=10), AglQ-sfGFP (n=2) and GltC-mCherry (n=4) 

each obtained from 2 biological replicates.

(d) Possible mechanism of propulsion. The structure of the Agl-Glt machinery is simplified 

to its core components for clarity. The proton flow through a PG-bound TolQR-type channel 

(yellow) is proposed to energize cyclic interactions between a flexible IM-anchored 

periplasmic protein (GltG/J, black-yellow) and TonB-box proteins in the OM (orange). 

Combined with the rigid anchoring to PG and link with MreB, this activity would push the 

OM protein laterally (red arrow) because PG counteracts the exerted traction force (grey 

Faure et al. Page 37

Nature. Author manuscript; available in PMC 2017 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



arrow). The protein stoichiometries are not known and it is possible that the complex 

contains several coordinated legs, facilitating the processivity and directionality of the 

movements.
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