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Gravimetry through non-linear optomechanics
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Precision gravimetry is key to a number of scientific and industrial applications, including

climate change research, space exploration, geological surveys and fundamental investiga-

tions into the nature of gravity. A variety of quantum systems, such as atom interferometry

and on-chip-Bose–Einstein condensates have thus far been investigated to this aim. Here, we

propose a new method which involves using a quantum optomechanical system for mea-

surements of gravitational acceleration. As a proof-of-concept, we investigate the funda-

mental sensitivity for gravitational accelerometry of a cavity optomechanical system with a

trilinear radiation pressure light-matter interaction. The phase of the optical output encodes

the gravitational acceleration g and is the only component which needs to be measured. We

prove analytically that homodyne detection is the optimal readout method and we predict an

ideal fundamental sensitivity of Δg= 10−15 ms−2 for state-of-the-art parameters of opto-

mechanical systems, showing that they could, in principle, surpass the best atomic inter-

ferometers even for low optical intensities. Further, we show that the scheme is strikingly

robust to the initial thermal state of the oscillator.

DOI: 10.1038/s41467-018-06037-z OPEN

1 Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom. Correspondence and requests for
materials should be addressed to S.Q. (email: sofia.qvarfort.15@ucl.ac.uk)

NATURE COMMUNICATIONS |  (2018) 9:3690 | DOI: 10.1038/s41467-018-06037-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-2281-1042
http://orcid.org/0000-0003-2281-1042
http://orcid.org/0000-0003-2281-1042
http://orcid.org/0000-0003-2281-1042
http://orcid.org/0000-0003-2281-1042
mailto:sofia.qvarfort.15@ucl.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The practise of measuring the gravitational acceleration g—
also known as gravimetry—has led to important advances
in both fundamental science and industry. For example,

local gravity variations due to mass redistribution driven by cli-
mate change have been mapped with the GRACE satellite1–3, and
more recently, the Juno spacecraft mission reported the mea-
surement of the gravity harmonics of Jupiter4. Furthermore,
precise measurements of g can test for small deviations from
Newtonian gravity on extremely small scales, which may provide
indications of a deeper theory of quantum gravity5. In industry,
precision accelerometry is extensively used in inertial navigation
technologies and for conducting geological surveys.

While classical systems have long been utilised to perform
accurate measurements of g, quantum systems offer several useful
advantages, including reduced noise levels, a compact setup and
most importantly an increased measurement sensitivity achieved
through the power of coherence and interferometry. Over the
past decade, a variety of quantum systems have been explored to
this aim, in both theory and practice. The largest research effort
to date has focused on atom interferometry6–9, for which the
highest achieved sensitivity currently stands at Δg= 4.3 × 10−9

ms−29. A similar investigation has been carried out for both on-
chip and fountain Bose–Einstein condensate (BEC) inter-
ferometry with best sensitivity Δg= 7.8 × 10−10 ms−210. Finally, a
proposal for using magnetically levitated spheres that predicts
sensitivities of 2.2 × 10−9 ms−2 Hz−1/2 has been put forward in11.
For comparison, the current commercial standard is set by the
LaCoste FG5-X gravimeter which can achieve a measurement
sensitivity of 1.5 × 10−9 ms−2 Hz−1/212. More generally, the
broader topic of using quantum systems to probe relativistic
phenomena is currently being pursued with great interest (see for
example13–20).

A key advantage to quantum systems are their interferometric
properties. The following question arises: How can these inter-
ferometric properties be enhanced in order to improve the
measurement sensitivity? One possibility is to place a quantum
system in the form of a mechanical oscillator in an optical cavity,
a research area known as quantum optomechanics21. See Fig. 1
for an illustration of a nanodiamond trapped in an optical cavity
as an example of a class of optomechanical systems. The addition
of the cavity allows for a strong coherent coupling between light
and oscillator which, as we shall see, cancels out any initial
thermal noise and fundamentally improves the measurement
sensitivity of the device.

Within classical optomechanics, the idea of gravimetry and
accelerometry by optically detecting the mechanical oscillator has
been experimentally realised by Cervantes et al.22. Other avenues,
such as the detection of high-frequency gravitational waves
through the driving of resonant mechanical elements was pro-
posed also in23. In the related field of electromechanics, Schrö-
dinger cat states and a Kerr nonlinearity have recently been found
to be useful for the same applications24. However, the ensuing
fundamental limits on the measurement sensitivity of gravimetry
in the quantum regime of optomechanics using its trilinear
radiation pressure interaction is yet to be investigated. Here we
undertake this task and obtain some striking results: Firstly, it is
possible, in principle, to surpass the sensitivity Δg that has been
obtained in atom interferometers and other implementations to
date. Secondly, due to the periodic decoupling of light and
mechanics, the mechanical element does not require initial
cooling to the ground state to improve the fundamental sensi-
tivity of the gravimeter and, finally, the best possible sensitivity is
achieved by a simple homodyne measurement of the cavity field,
while only a low photon number in the cavity is required. That is,
no measurement on the mechanical oscillator is required. Unlike
the case of atomic interferometers, in optomechanics the inter-
action of light and matter is continuous, and we will see that our
Hamiltonian cyclically entangles and disentangles the light and
mechanics, leading to their decoupling. It follows that the
experimental challenge will be to maintain the quantum coher-
ence of the field and mechanics over the duration of each run of
the experiment, which we set as one oscillation period of the
mechanical element. This requirement, on which the plausibility
of the scheme hinges, will be discussed in some detail.

Results
Optomechanics and Newtonian gravity. Let us begin by con-
sidering a general optomechanical system consisting of a
mechanical oscillator coupled to a light-field in the cavity. The
non-gravitational Hamiltonian that describes the dynamics of an
optomechanical system is given by:25,26

Ĥ ¼ �hωc â
yâþ �hωm b̂yb̂� �hk âyâðb̂y þ b̂Þ; ð1Þ

where â; ây are the annihilation and creation operators for the
cavity field with frequency ωc, b̂; b̂y are the annihilation and
creation operators for the mechanical oscillator with frequency
ωm, and k (usually denoted g in the literature, but this we shall
here reserve for gravity) is a coupling constant that determines
the interaction strength between the photon number âyâ and
the position x̂o / ðb̂y þ b̂Þ of the oscillator.

In order to introduce a coupling to a gravitational potential in
the Hamiltonian, we add a term of the form mg x̂ocos θ. Here,m is
the mass of the mechanical oscillator, g is the gravitational
acceleration, x̂o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=2mωm

p ðb̂y þ b̂Þ is the position operator
acting on the mechanical oscillator and θ is an angle from the
vertical axis that we include in order to describe inclined systems,
similar to27. Note that while the mass m appears as a coupling in
the Hamiltonian, we will later see that measurements of g are
mass-independent, which is what we expect from the equivalence
of inertial and gravitational mass. With the addition of
Newtonian gravity, the Hamiltonian of the system thus becomes

ĤG ¼ �hωc â
yâþ �hωm b̂yb̂� �hk âyâ ðb̂y þ b̂Þ

þcos θ g
ffiffiffiffiffiffi
�hm
2ωm

q
ðb̂y þ b̂Þ�

ð2Þ
Fig. 1 An example of an optomechanical system. A nanodiamond is trapped
and laser-cooled to milliKelvin temperatures in an optical cavity
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Optomechanical couplings. While we will keep the subsequent
discussion general, let us here provide three examples of common
optomechanical systems and their respective coupling constants.
For a a Fabry–Perot cavity with a mechanical oscillator mirror, k
takes the form25,26

kFP ¼ ωc

L

ffiffiffiffiffiffiffiffiffiffiffiffi
�h

2mωm

s
; ð3Þ

where L is the length of the cavity and m is the mass of the
mirror. A levitated nano- or micro-crystal (e.g. a diamond or
silicon bead), on the other hand, has a k given by28,29

kLev ¼
P

4Vc 20

ffiffiffiffiffiffiffiffiffiffiffiffi
�h

2mωm

s
kcωc; ð4Þ

where ε0 is the permittivity of free space, Vc is the cavity mode
volume, and kc is the wavevector of the laser, given by 2π/λ, where
λ is the laser wavelength. P= 3Vϵ0(ϵ – 1)/(ϵ+ 2) is the polariz-
ability of the levitated object of volume V and ϵ is the relative
electric permittivity. Alternatively, we can also consider a BEC
trapped in a cavity. Here, the collective motion of the ensemble
acts as the massive oscillator. For this system, the coupling con-
stant is given by30,31

kBEC ¼
ffiffiffiffi
N

p
g20 k1

Δca

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2Mωm

s
; ð5Þ

where N is the number of atoms in the ensemble, g0 is the single-
atom cavity QED coupling rate, M=Nm is the collective mass of
all the trapped atoms with individual mass m, kl is the wavevector
of the laser and Δca= ωp – ωc with pumping frequency ωp. We
will return to these expressions when computing the fundamental
sensitivity limits for each system in the latter part of the paper.

System dynamics. In order to simplify the time evolution
operator ÛðtÞ corresponding to the above Hamiltonian, we
rescale ĤG by dividing all terms by the oscillator frequency ωm.
As a result, the time parameter t now represents the labframe
time multiplied by ωm, such that the oscillator has undergone a
full oscillation cycle at t= 2π. The operator ÛðtÞ can then
be written in the following decoupled form (see ref. 26 for details
of the derivation in the absence of gravity):

ÛðtÞ ¼ exp �irâyâ t
� �

exp ið�kâyâ� �gÞ2 t � sin tð Þ� �

´ exp ð�kâyâ� �gÞðηb̂y � η�b̂Þ
o
exp �ib̂yb̂ t
nn o

;

ð6Þ

where r= ωc/ωm, η= 1 – e−it, �k ¼ k=ωm, and

�g ¼ cos θ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m= 2�hω3

m

� �q
. As a rule, we will denote any dimen-

sionless quantity with a bar. For time-dependent variables, such
as dissipation rates, this means they have been rescaled with
respect to ωm.

We now assume that the cavity field mode and the mechanical
oscillator are initially in coherent states ǀα〉C and ǀβ〉O respectively.
For laser light injected into the cavity, this is the natural
assumption. The oscillator, on the other hand, will in reality be
initialised as a thermal state, which corresponds to a random
coherent state ǀβ〉O according to a thermal distribution. However,
by starting out with a coherent state we will later argue that the
gravimetric phase accumulated by the light does not depend on
jβiO so that our procedure works equally well for an arbitrary
thermal state. A formal proof of this statement can be found in

Supplementary Note 1. The initial state at t= 0 is then given by
jΨ 0ð Þi ¼ jαiC�jβiO, and under ÛðtÞ it gives us the following
state

Ψ tð Þj i ¼ e�jαj2=2 P1
n¼0

αnffiffiffi
n!

p eið�k
2n2�2�k�gnÞτ

h
´ eð�kn��gÞ ηβ�η�β�ð Þ=2 nj iC� ϕn tð Þ�� �

O

i
:

ð7Þ

where τ= t – sin t, and ǀϕn(t)〉O are coherent states of the
oscillator given by ϕn tð Þ�� �

O
¼ e�itβþ �kn� �g

� �
1� e�itð Þ�� �

. In the
derivation of this state, we have adopted a rotating frame for the
cavity field, thus ignoring the free evolution induced by the term
exp{–ira†a}.

The state in Eq. 7 show us that light and mechanics will
entangle and disentangle periodically, with maximum entangle-
ment occurring at t= π. At t= 2π, the oscillator state ϕn

�� �
O

returns to βj iO regardless of the values of �k; �g and β, and therefore
by extension a thermal state also returns to its initial state because
it will undergo the same compact evolution. This means that the
initial oscillator state does not impact the fundamental sensitivity
of this scheme. As already mentioned, a formal proof of this can
be found in Supplementary Note 1. Most importantly however, at
t= 2π the cavity state is completely decoupled from the oscillator,
meaning that all information about g is transferred to the phase of
the cavity state. As a result, any measurement scheme only needs
to consider the cavity state after one oscillation period, meaning
that direct or indirect access to the oscillator state is not required.
This will greatly simplifies an experimental implementation, as
measuring the oscillator state is generally difficult. This
convenient property arises from the interferometric properties
of the oscillator; its quantum nature allows it to acts as an
interferometer to ensure that any initial thermal noise is removed
from the cavity field, and thereby our scheme does not require
cooling of the oscillator to a pure ground state. In other words,
our results are valid for both coherent and thermal states. Note
however that decoherence ensuing from damping to the oscillator
motion during the state evolution will adversely affect the final
measurement sensitivity and cause the oscillator state to grow
increasingly mixed. We will not consider this kind of decoherence
in this work, and instead assume that the mechanical element
remains coherent over one oscillation period.

We can visualise some of the dynamics of the state in Eq. 7 by
computing the expectation values of the field quadratures X̂c ¼ðây þ âÞ= ffiffiffi

2
p

and P̂c ¼ iðây � âÞ= ffiffiffi
2

p
32. We focus on the cavity

state, which we obtain by tracing out the oscillator. The traced-
out cavity state is given by

ρC tð Þ ¼ e�jαj2 P1
n;n′

αn α�ð Þn′ffiffiffiffiffiffiffi
n!n′!

p eið
�k2 n2�n′2ð Þ�2�k�g n�n′ð ÞÞτ

h
´ eð�k n�n′ð Þ��gÞ ηβ�η�β�ð Þ=2

´ e�jϕnj2=2�jϕn′ j2=2þϕ�n′ϕn nj i n′h j
i
:

ð8Þ

For decoherence-free evolution, the trajectories traced out by
the system in phase space can be seen for different values of �g in
Fig. 2a with �k ¼ �g ¼ 1 and Fig. 2b with �k ¼ 1; �g ¼ 2. Both figures
are plotted with α= β= 1. We observe that the system performs
increasingly complex trajectories for larger values of �g.

We noted above that the light and mechanics periodically
entangle and disentangle during its evolution. In order to see this
more clearly, we can compute the linear entropy S(t) for the
traced-out cavity state ρc(t) in Eq. 8. The linear entropy is defined
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as

SðtÞ ¼ 1� tr ρ2CðtÞ
	 


: ð9Þ

The linear entropy tells us about the entanglement between the
cavity and oscillator states. The results can be found in Fig. 3a for
pure state and in Fig. 3b for states undergoing decoherence with
photon dissipation rate �κ ¼ κ=ωm. We see that S(t) increases until
the state is maximally entangled at t= π. While a pure state
completely decouples the light and mechanics at t= 2π for any
values of �k and �g, a decohering state becomes increasingly mixed
and does not return to its original state.

Quantum metrology. We now come to our main results which
concern the use of optomechanical systems as gravimeters. The
question we wish to answer is: what is the best fundamental
sensitivity Δg with which an optomechanical system can measure
the gravitational acceleration g? Here, Δg denotes the standard
deviation of a gravimetric measurement. We can directly predict
Δg from the system’s dynamics by calculating the Fisher infor-
mation IF(t) which provides a natural lower bound on the var-
iance Var(g) of an unknown parameter, in our case g. This

relationship is captured by the Cramér-Rao inequality33–35

Var gð Þ � 1
N IFðtÞ

; ð10Þ

where N is the number of measurements. Thus if we maximise
IF(t), we minimise the measurement spread of g.

Quantum Fisher information. The Fisher information comes in
two forms: the measurement-specific classical Fisher information
(CFI) and the quantum Fisher information (QFI). The QFI,
which we denote HQ(t), is computed by optimising over all
possible positive-operator valued measures (POVMs) and their
resulting CFI36. Thus HQ represents the ultimate bound on
obtainable information from a system, but it does not reveal
which specific measurement is required to achieve it. For a gen-
eral mixed quantum state ρ(t) the QFI is given by
HQðtÞ ¼ ρðtÞL2	 


, where L is the symmetric logarithmic deri-
vative. In general, it is difficult to obtain L analytically, especially
for noisy systems. There are however methods for finding a noisy
bound on the Cramér-Rao inequality37. A similar method for
many-body systems was proposed in38, and numerical methods
were shown to be effective for a class of specific systems39. We
shall not be using these methods here, as we shall instead
investigate specific measurements for the noisy scenario to better
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approximate an experimental setting. This will later allow us to
prove the optimality of the homodyne measurement.

Let us start by deriving a fundamental bound to the sensitivity.
We specialise to the simpler case where the state ρ(t) is pure.
Setting ρ(t)= ǀΨ(t)〉〈Ψ(t)ǀ the QFI becomes

HQðtÞ ¼ 4 ∂gΨ tð Þj ∂gΨ tð Þ
D E

� Ψ tð Þj ∂gΨ tð Þ
D E��� ���2� �

; ð11Þ

where we have used the notation ∂g= ∂/∂g.
At first glance, the QFI of the global system might not seem

very relevant as the mechanical part of the optomechanical
system cannot easily be measured directly. However, we recall
that the coherent state ϕn tð Þ�� �

O
returns to βj iO at t= 2π, so that

all information about g is transferred to the phase of the pure,
decoupled cavity state. Since the decoupling time does not depend
on β, this is also the case for a thermal state that may be written as
a statistical mixture of coherent states (see Supplementary Note 1
for a proof of this statement). Calculating the QFI for this state
will therefore provide an experimentally accessible notion of the
fundamental sensitivity of the device. We find the following
expression for HQ(t) at t= 2π:

HQ 2πð Þ ¼ 32π2�k2mjαj2 cos2 θ
�hω3

m
: ð12Þ

Note that the mass term m is cancelled by the appearance of
√m in the coupling constant �k, so that the final accelerometry

measurement will be mass-independent. We also note the strong
dependence on �k and ωm, and that the expression scales linearly
with the number of photons αj j2.

To find HQ(t) for the global state at any time t we resort to
numerical calculations. We consider the case �k ¼ �g ¼ 1 to allow
for future comparisons with subsequent numerical evaluation of
the CFI, which will be restricted to the same narrow parameter
range. The resulting HQ(t) as a function of t can be found in
Fig. 4a with �k ¼ �g ¼ 1 and β= 1 for various values of jαj2. We
note that HQ(t) reaches its maximum value at t= 2π, which
means that Eq. 12 returns the largest possible value during one
oscillation period for any choice of system.

Classical Fisher information. Let us now consider a specific
measurement of g. The CFI IF(t) determines the minimum
standard deviation of a parameter estimator once we have chosen
a single specific measurement with POVM elements fΠxg. The
CFI is given by the expression

IFðtÞ ¼
Z

dx
1

p xjgð Þ
∂p xjgð Þ

∂g

 �2

; ð13Þ

where p xjgð Þ ¼ tr ΠxρðgÞ½ � is a conditional probability
distribution.

We now consider a general homodyne measurement on the
traced-out cavity state ρC. For notational convenience, we use a
general Hermitian operator x̂λ ¼ ðâ exp �iλf g þ âyexp iλf gÞ= ffiffiffi

2
p

,
where λ denotes a label that rotates between the field
quadratures40. Any two operators that differ by λ= π/2 form a
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conjugate pair which satisfies the position-momentum commu-
tator relation. In the following, we shall refer to the choices λ= 0
and λ= π/2 as a position and momentum measurement
respectively. In order to calculate IF(t) we must find the
probability distribution pðxλjgÞ ¼ tr½jxλihxλjρcðgÞ�, where
jxλihxλj are the eigenstate of x̂λ. While the position eigenstates
themselves are not proper vectors, we can make use of a standard
result from the quantum harmonic oscillator: hnjxλi ¼
π�1=42�n=2ðn!Þ�1=2exp �x2λ=2

� �
HnðxλÞexp inλf g40, to write

p xλjgð Þ ¼ e�jαj2 P
n;n′

αnðα�Þn′ffiffiffiffiffiffiffi
n!n′!

p eið�k
2ðn2�n′2Þ�2�k�gðn�n′ÞÞ τ

h

´ e
�x2

λ

π1=2
HnðxλÞHn′ðxλÞ e�iλðn�n′Þ

2ðnþn′Þ=2 ffiffiffiffiffiffiffin!n′!
p

´ eð�kðn�n′Þ��gÞ ηβ�η�β�ð Þ=2

´ e�jϕnj2=2�jϕn′j2=2þϕ�n′ϕn
i
;

ð14Þ

where Hn(x) are the Hermite polynomials of order n. These
probabilities in turn gives rise to a CFI of the form

IFðtÞ ¼ cos2 θ m
2�hω3

m
ð�4�k2τ2Þ e�jαj2

´
R
dxλ

P
n;n′

ðn�n′Þcn;n′dn;n′ðxλÞfn;n′

� �2

P
n;n′

cn;n′dn;n′ðxλÞfn;n′
;

ð15Þ

where

cn;n′ ¼
ðα�Þn′αnffiffiffiffiffiffiffiffiffiffi

n!n′!
p eið

�k2ðn2�n′2Þ�2�k�gðn�n′ÞÞτ ; ð16AÞ

dn;n′ðxλÞ ¼
e�x2λ

π1=2

HnðxλÞHn′ðxλÞ e�iλðn�n′Þ

2ðnþn′Þ=2 ffiffiffiffiffiffiffiffiffiffi
n!n′!

p ; ð16BÞ

fn;n′ ¼ eð
�kðn�n′Þ��gÞ ηβ�η�β�ð Þ=2 ´ e�jϕn′j2=2�jϕnj2=2þϕ�n′ϕn : ð16CÞ

Timescales of measurements. Let us analyse the expression for
IF(t). We immediately note that any terms in the sum with n= n′
do not contribute to the Fisher information. The remaining
behaviour of IF can be inferred from the second exponential in fn,
n′, namely exp �jϕn′j2=2� jϕnj2=2þ ϕ�n′ϕn

� �
as this will dom-

inate the entire expression for large �k. If we simplify the
expression in the exponential, we find that it is equal to

exp ��k2ðn� n′Þ2ð1� cos tÞ þ
�kðn� n′Þ

2
βη� β�η�½ �

� �
: ð17Þ

For n≠ n′ and large �k, the first term will dominate, and the
exponential will be small for any t that is not a multiple of 2π. In
other words, the Fisher information for a homodyne measure-
ment becomes significant only when light and mechanics are
completely decoupled. Figure 4c shows how the CFI for a
momentum measurement (with λ= π/2) for �g ¼ α ¼ β ¼ 1 and
�k ¼ 1; 2; 5 becomes increasingly narrow as �k grows larger. For
clarity, we have rescaled IF with �k in the plot. Note that for small �k
we still find large IF at times t ≠ 2π.

We saw earlier that the QFI scales with �k2, which mean that the
scheme favours systems with a large single-photon coupling. We
shall soon show that the CFI coincides with the QFI at t= 2π, but
in the meantime we must explore what the narrowing of the CFI
at t= 2π entails for our measurement scheme. The narrow peak
of the CFI will require the homodyne measurement to be
performed within an increasingly narrow time-window. We can
estimate the timescale in question by finding the full-width-half-
maximum (FWHM) of the peak. To do so, we consider only the
dominant first term ��k2ðn� n′Þ2ð1� cos tÞ for small perturba-
tions in t around t= 2π, thus cosð2π þ t′Þ � 1� t′2=2. That
brings the first term into the form ��k2ðn� n′Þ2 t′2=2, which is
now a Gaussian distribution. For a Gaussian function with
exp �ðx � x0Þ2=ð2σ2Þ
� �

, the FWHM is given by 2
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
σ. In

our case, we find σ2 ¼ ð2�k2ðn� n′Þ2Þ�1. We already noted that
terms with (n− n′) will not contribute to the CFI, and any term
with jn� n′ 	 1 will just cause the peak to narrow further. Thus
we only consider the terms with jn� n′j ¼ 1, leaving us with
σ ¼ ð2�kÞ�1, and so we conclude that any measurement must be
performed roughly on a timescale of ðωm

�kÞ�1 ¼ k�1.

Optimality of homodyne detection. Let us see if we can simplify
the expression for IF(t) even further and whether it bears any
semblance to the QFI. At t= 2π, ϕn(2π)= β and η= 0. Then
setting �k and �g to integer values causes IF(2π) to lose all depen-
dence of �g. The coefficients reduce to cn;n′ ¼ ðα�Þn′αn= ffiffiffiffiffiffiffiffiffiffi

n!n′!
p

and
fn;n′ ¼ 1. We now consider the generating function for the Her-
mite polynomials e2xt�t2 ¼P1

n¼0 t
nHn=n!. Taking the derivative

of both sides results in
ð2x � 2tÞe2xt�t2 ¼P1

n¼n′ t
n�n′Hn=ðn� n′Þ!, which we can use to

show that Eq. 15 reduces to the compact expression

IFð2πÞ ¼
8π2�k2m
�hω3

m
ie�iλα� ieiλα�
� �2

: ð18Þ

This expression coincides precisely with the QFI in Eq. 12 for
complementary choices of λ and α. To better see why, we rewrite the
term in the brackets as ðe�iλ � eiλÞiRe αf g � ðe�iλ þ eiλÞIm αf g	 
2

.
We now note that when λ= 0, only Im αf g contributes to the CFI,
whereas at λ= π/2, only Refαg contributes. For both of these
specific choices of λ, and when matched by α being either entirely
real or imaginary, the CFI coincides precisely with the QFI in Eq. 12
because the term in the brackets reduces to 4Refαg2 or 4Im αf g2,
respectively. We conclude that the homodyne measurement
saturates the QFI limit up to a phase dependence of α, which can
always be accounted for by changing the quadrature of the
homodyne measurement. Note, however, that at other times than
t= 2π. the homodyne measurement will be zero for all choices of λ
and α, and so it only saturates the QFI when the light and mechanics
have decoupled.

Finally, the absence of �g from IF(2π) is not a problem for
sensing g—it just means that the sensitivity at times t= 2π is
independent of the actual value of g. Numerical analysis suggests
that larger values for �g causes the CFI to oscillate increasingly
quickly before reaching its maximum value (see Supplementary
Note 2). The optimality of the homodyne detection for sensing
within our scheme is greatly advantageous as it is a routine
measurement which is easy to accomplish. It has in fact also been
shown to be an optimal measurement41 in other contexts.

Decoherence. The calculation above is valid for pure states, but in
practice every measurement will suffer various forms of deco-
herence. We will here investigate the effects of decoherence on the
CFI for a narrow parameter range, as realistic parameters are very
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difficult to simulate numerically. We shall later use these results
as indications of the behaviour of realistic systems.

There exists a large variety of decoherence effects for
optomechanical systems, such as decoherence due to photons
leaking from the cavity, or phonons gradually being lost from the
mechanical element. The latter manifests as a gradual damping of
the oscillator motion, which moves the state towards a mixture in
the coherent state basis42–45. This problem has previously been
treated analytically, which is possible because the decoherence
operators commute with the Hamiltonian. Thus we refer to these
works and will not treat the mechanical decoherence here.
Instead, we make the assumption that the phonon decoherence is
negligible over one oscillation period of the oscillator.

The effect of photons leaking from a cavity on a state ρ(t) can
be modelled using a Lindblad master equation of the form

∂ρðtÞ
∂t

¼ � i
�h

Ĥ; ρðtÞ	 
þ L̂ρðtÞL̂y � 1
2

ρðtÞ; L̂yL̂� �
; ð19Þ

where f�; �g denotes the anti-commutator, L̂ ¼ ffiffiffi
�κ

p
â are Lindblad

operators and �κ ¼ κ=ωm is the decoherence rate κ with respect to
the rescaled time t. This equation cannot easily be solved
analytically since the operator â does not commute with the
Hamiltonian ĤG in Eq. 2. Some solutions have been found for
specific cases, for example when assuming that the photon
leakage occurs only during the injection of the state into the
cavity. The decoherence can then be modelled as a series of
beamsplitters46. We will not consider these modifications here,
but instead solve the Lindblad master equation numerically and
compute the Fisher information IF(t) for the resulting mixed
state.

In all subsequent numerical evaluations, we will set �k ¼ �g ¼ 1
and α= 1 (note the choice of α 2 R, which will optimise the CFI
for λ= π/2). Larger values will cause the system to quickly grow
numerically unstable due to the inclusion of non-linear terms
such as (a†a)2 in the evolution in Eq. 6. While �k ¼ 1 is
experimentally achievable with the right choice of parameters, we
can justify setting �g ¼ 1 by noting that it physically corresponds
to a heavily inclined cavity with θ ≈ π/2. Since we are interested in
the general behaviour of the CFI under decoherence, we will here
be working with the dimensionless Fisher information �IFðtÞ (see
the Methods section). Thus these numerical investigations should
only be seen as a indication as to how decoherence will affect
IF(t), and not as predictions for the sensitivity of a realised device.
We shall later extrapolate from these results to make a prediction
for realistic systems.

The behaviour of �IFðtÞ can be found in Fig. 4b for a
momentum measurements with λ= π/2. A measurement with
λ= 0 and α= i would show the same results. We note that larger
values of �κ do affect the CFI adversely, but setting �κ ¼ 0:1 implies
that about 10% of the pure-state CFI is still accessible.

Measurements of leaking photons. In practise, a homodyne
measurement is performed by monitoring and measuring the
photons that continuously leak from the cavity. Aside from the
experimental considerations, such a scheme also negates part of
the photon dissipation considered above. We briefly estimate the
CFI obtained through such a setup by using a simplified model
where a pure vacuum state of the environment ǀ0〉E is added to
our original state ǀΨ(t)〉CO, giving us the combined initial state
jΨðtÞiCO�j0iE. We then add a rotating wave interaction term ĤI
to the Hamiltonian ĤG in Eq. 2, of the form

ĤI ¼ γðâyĉþ âĉyÞ; ð20Þ

where γ is the interaction strength and ĉ and ĉy are the creation
and annihilation operators of the environment. The effect of this

interaction Hamiltonian is to couple the cavity state to the
environment which causes information about g to slowly leak out
from the cavity into j0iE.

As before, we evolve the full state for a single-photon jαj2 ¼ 1
and with parameters �k ¼ �g ¼ 1. To maximise the CFI, we choose
α 2 R and λ= π/2. The results can be found in Fig. 4d for a
rescaled coupling strength �γ ¼ 0:1, where �γ ¼ γ=ωm. As evident
from Fig. 4d, we suffer a 10-2 reduction in the information that
can be extracted from the system. Note also that the behaviour of
IF(t) for this scenario will most likely also resemble a delta
function centred around t= 2π for realistic parameters. Addi-
tional plots for this simplified model can be found in
Supplementary Note 3.

Ideal sensitivities. In this section we shall first calculate the ideal
Fisher information for the three optomechanical systems con-
sidered above, and then discuss the experimental challenges and
advantages to an optomechanical gravimeter. As we here calculate
the fundamental sensitivity, which is unlikely to be realised, we
will only concern ourselves with order-of-magnitude estimates.
These results are meant to showcase the potential of opto-
mechanical systems, and to do so we have chosen state-of-the-art
parameters that have been implemented in a variety of systems.
For discussions of an experimental implementation including
noise, see the Discussion.

Starting with the Fabry–Perot cavity system, we choose a fully
vertical cavity with θ= 0 and use the following state-of-the-art
experimental parameters: We choose a mass m= 10−6 kg,
oscillator frequency ωm= 103 Hz, cavity frequency ωc= 1014

Hz, cavity length L= 10−5 m and a photon number of jαj2 ¼ 106.
For these values, the rescaled coupling constant in Eq. 3 becomes
�kFP � 2:30, which gives us a Fisher information of IF= 1.58 ×
1028 m−2 s4. This implies a sensitivity of Δg ≈ 7.96 × 10−15 ms−2.

Next, we look at a levitated micro-object confined in an ion
trap interacting with an optical cavity, as demonstrated very
recently in refs47,48. Again setting θ= 0 for maximal effect, we use
mass m= 10−14 kg, oscillator frequency ωm= 102 Hz, cavity
frequency ωc= 1014 Hz, volume V= 10−18 m3, cavity mode
volume Vc= 10−14 m3, electric permittivity ε= 5.7 for nanodia-
monds, laser wavelength λ= 1064 × 10−9 m and a photon
number of jαj2 ¼ 106. From these values we obtain
�kLev ¼ 1963, which leads to IF =1.15 × 1029 m−2s4. This gives
us a final sensitivity of Δg ≈ 2.94 × 10−15 ms−2 for levitated
nanospheres.

Finally, let us also consider cold atoms trapped in a cavity.
Based on30, we choose the following parameters: a wavelength λ
= 780 nm, implying ωc= 1015 Hz, a single-atom coupling of g0=
107 Hz, an atomic oscillation frequency ωm= 102 Hz, a single-
atom mass m= 10−25 kg, a detuning of Δca= 1011 Hz, and a laser
wavevector of kl= 108 m−1. With N= 105 atoms trapped in the
cavity, we find that �kBEC ¼ 2:30´ 106 and IF = 1.58 × 1019 m−2

s4, giving a sensitivity of Δg ≈ 2.5 × 10−10 ms−2. The reason for
this disparity seems to be that the polarisability of the collection
of cold atoms is not high enough to match the polarisability
exhibited by the nanosphere. The number of trapped atoms can
hardly match the number of atoms in a single nanosphere. One
would either have to increase the number of atoms trapped in the
cavity or increase the single-atom coupling strength to increase
the Fisher information.

Comparison of theoretical results. Let us briefly compare the
results obtained here with the performance of other quantum
systems in the literature. In Table 1 we have listed a variety of
experimentally implemented gravimeter systems with their best
achieved sensitivity to date. Table 2, on the other hand, lists the
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ideal fundamental limits to sensitivities calculated in this work
and others. The values for Δg and Δg=

ffiffiffiffiffiffi
Hz

p
are presented in units

of ms−2 and ms−2 Hz−1/2, respectively. The last column in
Table 1 lists the integration time for each experiment, whereas in
Table 2 the last column lists the experimental cycle time set by the
oscillation frequency of the system in question. For atom inter-
ferometry, it is suggested in49 that sensitivities of Δg ~ 10−12 ms−2

might be achieved, and a study of the fundamental limits has very
recently been presented in50.

Discussion
In this work, we investigated a new scheme for measurements of
the gravitational acceleration g using a compact cavity opto-
mechanical system with the usual trilinear optomechanical cou-
pling to the cavity field. We derived a fundamental limit to the
sensitivity Δg by computing the QFI and showed that the optimal
sensitivity is achieved by a homodyne detection scheme per-
formed on the cavity state at time t= 2π. That is, no direct
measurement of the mechanical oscillator is required. Using the
expression in Eq. 13 and state-of-the-art experimental para-
meters, we predict a upper bound on the sensitivity of order Δg ~
10−15 ms−2 for both a Fabry–Perot cavity and a levitated
microsphere cavity, and Δg ~ 10−10 ms−2 for trapped cold atoms.
These values compare favourably to all other currently available
experimental and theoretical gravimetry proposals (see Tables 1
and 2). Furthermore, the quantum nature of the oscillator ensures
that any thermal distribution in its initial state does not affect the
fundamental sensitivity. However, as our scheme relies on
superpositions involving distinct coherent states, we require
thermal decoherence during one period of the oscillator motion
to be negligible, which we estimate requires a Q-factor of at least
106 for the case of a Fabry–Perot cavity (see below). To explore
the effects of photons leaking from the cavity, we numerically

explored a narrow parameter range with �k ¼ �g ¼ 1, which phy-
sically corresponds to a nearly horizontally aligned cavity. We
found that this form of decoherence does affect the system’s
performance, but not severely. Finally, we briefly investigated
what proportion of Δg we retain by performing measurements on
the photons that leak from the cavity. Using a simplified noise
model, we found a reduction of 10−2 in the resulting Fisher
information. Given these results, we believe that there is sig-
nificant potential in the use of quantum optomechanical systems
for measurements of gravity and acceleration.

Let us now address some of the experimental challenges related
to this scheme. Due to measurement inefficiencies and additional
sources of decoherence not considered here, the final perfor-
mance of optomechanical systems will naturally be expected to be
lower than the values presented in Table 2. While we have shown
that the initial optomechanical state does not need cooling to the
ground state, thermal noise due to external influences during the
evolution will gradually decohere the oscillator motion. We
estimate that in the case of a Fabry–Perot cavity cooled to a
temperature of milliKelvin, a number of ħωm/(kBTth)=N pho-
nons are present in the system at any time. Here, kB is Boltz-
mann’s constant and Tth is the system’s temperature. To retain
coherence throughout the evolution, we require that κmN 
 ωm,
where κm is the phonon dissipation rate. In other words, the
timescale of phonon decoherence κm must be much less than the
characteristic timescale of the system. With ωm= 1 kHz, as we
assumed for Fabry–Perot cavities, we find N= 105 and κm= 10-2

Hz. A cavity which achieves such a decoherence rate must have a
mechanical Q-factor of at least Q= ωm/κm~106 to retain coher-
ence, a regime which is not unprecedented.

Next, let us discuss which parameters yield the best sensitiv-
ities. Firstly, we note that the QFI in Eq. 12 ultimately scales with
ω�6
m . In addition to the factor ω�3

m in the denominator, we acquire
an extra ω�2

m from the rescaled coupling constant �k ¼ k=ωm. The
final factor of ωm comes from the dependence of ωm in k2. Given
this scaling, we require ωm to be as small as possible. At the same
time, we also require the photon dissipation rate κ to be low.
From our simulations, we saw that we require at least
�κ ¼ κ=ωm ¼ 0:1. This combination is difficult to achieve as low
ωm means the cavity must remain coherent over longer time-
scales. Therefore, the main experimental challenge of this scheme
is to reduce ωm and κ at the same time. Taking our numerical
results as guidance, we essentially require that �κ ¼ κ=ωm 
 1,
which is nothing but the resolved side-band regime28.

In the above, we used state-of-the-art parameters to calculate
the ideal QFI for a variety of systems. However, as we just saw,
the photon dissipation rate κ must be very low for these sensi-
tivities to be achieved, and this has not yet been experimentally
demonstrated for the parameters we used in Table 2. As tech-
nology improves we expect that this to be possible in future
experiments, but for now, let us estimate the sensitivities that
could be achieved today already. One of the best coherence times
to date was demonstrated in51, which achieved a cavity linewidth
of κ= 660 Hz. To achieve a rescaled photon rate of �κ ¼ 0:1 for
this system, we let ωm= 6600 Hz and use L= 9.4 cm as reported
in the paper. We keep m= 10−6 kg (since the QFI is ultimately
independent of mass) and let ωc= 1014 Hz as before. Because the
oscillation frequency ωm is rather high, we choose to calculate IF
for the Fabry–Perot cavity with a mechanical mirror, as this sys-
tem performed slightly better for higher ωm. The resulting cou-
pling constant is �kFP ¼ 1:44´ 10�5, and the Fisher information is
IF ≈ 2.16 × 1015 m−2 s4. This leads to Δg ≈ 2.15 × 10−8 ms−2. If we
now assume that decoherence causes a similar proportion of the
Fisher information to dissipate at these parameters compared to
the ones chosen in our numerical simulations, we see that we
retain about 10% of the pure-state Fisher information. Using this

Table 2 Comparison between sensitivities obtained by
theoretical predictions for a variety of systems

Theoretical predictions

System Δg Δg/
ffiffiffiffiffiffi
Hz

p
Cycle time

Magnetomech11 2.2 × 10−7 2.2 × 10−9 10−4 s
Fabry–Perot optomecha 10−15 10−16 10−3 s
Levitated optomecha 10−15 10−16 10−2 s
Cold atomsa 10−10 10−11 10−2 s

These include magnetomechanics, a Fabry–Perot optomechanical system, a levitated
nanosphere optomechanical system and trapped cold atoms. The second column lists the
sensitivity Δg in ms−2 and the third column lists the

ffiffiffiffiffiffiffi
Hz

p
-noise Δg=

ffiffiffiffiffiffi
Hz

p
in ms−2Hz−1/2. The

last column indicates the cycle time or oscillation frequency ωm for each system
aValues calculated in this work are denoted

Table 1 Comparison between gravimetry sensitivities
obtained by various experimental systems

Experiments

System Δg Δg/
ffiffiffiffiffiffi
Hz

p
Int. time

LaCoste FG5-X12 1 × 10−9 1.5 × 10−7 6.25 h
Atom intf9. 5 × 10−9 4.2 × 10−8 100 s
On-chip BEC10 7.8 × 10−10 5.3 × 10−9 100 s
Optomech. accel22. 3.10 × 10−5 9.81 × 10−7 10−3 sa

These include the commercial LaCoste FG5-X, atom interferometry, gravimetry through on-chip
Bose–Einstein condensate (BEC) and classical optomechanical accelerometry. The second
column lists the sensitivity Δg in ms−2 and the third column lists the

ffiffiffiffiffiffiffi
Hz

p
-noise Δg=

ffiffiffiffiffiffi
Hz

p
in ms

−2Hz−1/2. The last column indicates the integration time needed to achieve each sensitivity
aThis value was provided to us by the authors of ref.22
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assumption, we find Δg ≈ 6.80 × 10−8 ms−2 and a
ffiffiffiffiffiffi
Hz

p
-noise of

8.37 × 10−10 ms−2/
ffiffiffiffiffiffi
Hz

p
. This is directly comparable with the

values in Table 1, and so we believe that this scheme could be
experimentally realised today, although the experimental chal-
lenges are of course substantial.

Let us briefly discuss ways in which we can decrease κ further
and how this might affect the Fisher information. A heuristic
estimate for κ can be given by considering the number of times
per second that a single photon traverses the cavity. Each time the
photon is reflected at the mirror, it has a T= 1—R chance of
being transmitted instead of reflected. Here, T is the proportion of
transmissions and R is the proportion of the number of reflec-
tions. The photon bounces off a mirror c/L times per second,
where c is the speed of light. Thus we can take the dissipation rate
to be κ= Tc/L, which means that increasing L decrease the
photon dissipation rate κ, as the photon is effectively spending
longer inside the cavity. However, increasing L also decreases the
single-photon coupling constant, as we saw in the calculation
above. This is true for all couplings we quote here, but it is
perhaps most clearly seen for the case of the mechanical mirror
and a Fabry–Perot cavity, with kFP given by Eq. 3. kFP scales with
L−1, and so do the other couplings, through their dependence on
the cavity volume Vc or the single-photon coupling g0. We recall
that the Fisher information depends on �k2, which means that it
ultimately scales with L−2. Thus, changing L by an order of 10
will decrease the Fisher information by an order of 102. This
contributes to the challenges of realising this scheme. However, it
is important to note that there are realistic ways of increasing L
without changing the single-photon coupling: One such method
was explored in52, where L was increased by adding an optical
fibre to the cavity.

Furthermore, in the above we proved the optimality of a
homodyne detection scheme, but we also found that such a
measurement must be performed within a rather narrow tem-
poral window, of timescale 1/k. Let us here estimate how quickly
these measurements have to be performed based on the values we
calculated for the coupling constant k. The nanospheres displayed
the highest single-photon coupling with �kLev ´ωm ¼ 105 Hz for
the choice of ωm= 102 Hz. Thus any homodyne measurement
must be performed within 10−5 s, so we require at most micro-
second precision, which is perfectly achievable. In comparison, we
calculated �kFP ¼ 2:30 for the levitated microsphere, which allows
for a very comfortable ≈0.19 s window.

In spite of these challenges, optomechanical systems come with
a number of advantages. They can remain stationary while per-
forming the measurement, in contrast to on-chip BECs or BEC
fountains which need to be launched, and the short cycle time of
optomechanical systems allows for a large number of measure-
ments to be performed very quickly. An additional point which
we did not elaborate on above is that the spatial resolution of
optomechanical systems will be extremely high since the oscilla-
tor is displaced only by a minuscule distance. As a result, it will be
possible to determine very fine local variations in g, something
which is not possible using larger systems. The scheme presented
in this work also allows for the creation of macroscopic spatial
superpositions, which, as pointed out in11, is of great interest to
testing gravitational collapse models (see for example53–55).

Before we conclude, let us now briefly discuss the underlying
physical differences between atom interferometry and opto-
mechanical systems for the purpose of gravimetry. We estimate
that the QFI for atom interferometry is given by HQðTÞ � n2T4k2c
up to an unknown geometric factor, where n is the number of
photons that deliver a momentum kick to the atoms, T is the total
time over which the gravimetric phase is accumulated, and kc is
the laser wavevector. See Supplementary Note 4 for the deriva-
tion. If we compare this to the Fisher information for

optomechanical systems, we find that the Fabry–Perot cavity has
a QFI that is larger by an enhancement factor ξFP � c2=ðnL2ω2

mÞ,
with c being the speed of light. This is due to the cavity con-
finement, whereby each photon interacts with the oscillator c/
(2Lωm) times per oscillation cycle, which is also the time period
over which the gravimetric phase is accumulated. For the levi-
tated nanosphere, we find a ξLev ¼ ξFPP

2=ðε0VcÞ2, where, again,
for a micro-object containing ~1013 atoms, the polarizability P is
much higher than that of a single atom. In practice, however,
both of the enhancement factors will be damped by a factor ~1/
(ωmT)4 with respect to atom interferometry as the time of atomic
interferometry T is typically larger than the time 1/ωm of our
scheme. Thus the sensitivity Δg is seen to improve by a factor offfiffiffi
n

p
Lω3

mT
2=c � ffiffiffi

n
p

´ 10�4 in our optomechanical scheme with
respect to atomic interferometers. As n increases, the differences
level out. However, different initial states in an optomechanical
system, such as the superposition of two Fock states, will also
scale with n2 (see Supplementary Note 5). Strictly speaking, the
enhancement is valid for when the cavity field remains coherent
for the time 1/ωm over which our phase accumulation, i.e., κ«ωm

(the resolved side-band regime). However, our numerical results
indicate that even in the presence of finite decoherence, say,
κ~0.1×ωm, the Fisher information is lowered only by a factor of
about 10 compared to the case of loss-less cavities. Finally, we can
also compare the treatment presented in this work to a position
measurement of a classical oscillator that has been displaced due
to gravity. While a classical treatment of the problem returns a
preliminary measurement sensitivity similar to what we have
derived in this work, it fails to take into account effects such as
radiation pressure and the full quantum nature of the cavity field.
Most importantly, a classical treatment does not utilise the
coherent nature of the oscillator, which as we saw above negates
any initial thermal noise in the state, and does not allow for the
inclusion of other quantum states, such as squeezed states. After
completing this work, the authors became aware of similar work
carried out by Armata, Latmiral, Plato and Kim 58.

Methods
Dimensionless Fisher Information. For any numerical calculations, we must
ensure that the numerical quantities are dimensionless. In order to calculate IF(t)
under decoherence, we separate Eq. 13 above into a dimensionful and dimen-
sionless part by writing

IFðtÞ ¼
∂�g
∂g

 �2Z
dxλ

1
pðxλjgÞ

∂pðxλjgÞ
∂�g

 �2

: ð21Þ

Here, ∂�g=∂g ¼ cos θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ð2�hω3

mÞ
p

is a dimensionful prefactor. The remaining
integral

�IFðtÞ ¼
Z

dxλ
1

pðxλjgÞ
∂pðxλjgÞ

∂�g

 �2

; ð22Þ

is now dimensionless and is what we will evaluate numerically. A final estimate
for Δg can then be obtained by multiplying the value for �IFðtÞ by cos2 θm=ð2�hω3

mÞ,
but as this is only a rescaling we chose to only present the results for �IFðtÞ for
clarity. Note that for the choice of �k ¼ �g ¼ 1, this dimensional prefactor is equal to
cos2 θm=ð2�hω3

mÞ ¼ 1=g.

Numerical methods. To evolve the system, we use the Python library Qutip56 and
a 4th order Runge–Kutta–Fehlberg method57 for verification.

If we wish to compute the CFI for states undergoing decoherence, Eq. 15 is no
longer valid and we must evolve the state numerically. We do so by computing the
dimensionless part �IFðtÞ in Eq. 20 for a mixed state ρ(t). The probability
distribution p(x|g) is easy to obtain numerically, since any operator has a finite
matrix representation from which we can obtain the eigenstates and use these as
our POVM elements. For example, we can define a position operator x̂C as a finite-
dimensional matrix and solve for its eigenstates.

To obtain �IFðtÞ we must also compute the derivative ∂pðxjgÞ=∂�g. This can be
done in a number of ways. The simplest one is to use a higher-order method of the
central difference theorem. We obtained good and accurate results with the 4th
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order five-point method. For a function f(x) with parameter x and step-size h, the
first derivative with this method is given by

f ′ðxÞ ¼ �f ðx þ 2hÞ þ 8f ðx þ hÞ½

�8f ðx � hÞ þ f ðx � 2hÞ�=ð12hÞ þ Oðh4Þ:

ð23Þ

As this method requires five data point, it is an expensive computation. This
was our preferred numerical method as computing the CFI can still be done within
reasonable timescales using the optimised master equation solver provided by the
Qutip library. It does however contain two different sources of numerical errors:
errors in the solver and errors that originate from the cut-off in the numerical
derivative.

To verify that the error introduced by the numerical differentiation is not
severely affecting the results, we used an additional method which provides an
exact result. We reproduce it here for completion and in the hope that it might
benefit others. We start by noting that as long as the POVM element Пx does not
depend on �g, we can write the derivative as

∂pðg; xÞ
∂�g

¼ ∂ρðgÞ
∂�g

Πx ; ð24Þ

Note that we are differentiating with respect to �g instead of g and that we have
suppressed the dependence of t for clarity. This statement also holds for subsystems
of ρ(g), which we can see by noting that the derivative distributes over a joint
separable system ρAB ¼ ρA � ρB as

∂ρAB
∂�g

¼ ∂ρA
∂�g

� ρB þ ρA � ∂ρB
∂�g

: ð25Þ

Performing a measurement with Пx that only acts on subsystem A then gives

trB
∂ρAB
∂�g Πx

h i
¼ trB

∂ρA
∂�g Πx � ρB

h i
þ trB ρAΠx � ∂ρB

∂�g

h i
:

ð26Þ

The second term reduces to zero because tr½∂�gρB� ¼ ∂�g tr ½ρB� ¼ 0. While we
have shown this for separable states, the same argument can be extended to
entangled states by linearity.

In order to obtain the evolution for this state, we must now solve a modified
version of the master equation. That is, given the Lindblad equation in Eq. 19,

_ρð�gÞ ¼ � i
�h

Ĥð�gÞ; ρð�gÞ	 
þ L̂ρð�gÞL̂y � 1
2
fρð�gÞ; L̂yL̂g; ð27Þ

where f�; �g denotes the anti-commutator, we now differentiate both sides with
respect to �g to obtain

∂�g _ρð�gÞ ¼ � i
�h ∂�g Ĥð�gÞ; ρð�gÞ
h i

� i
�h Ĥð�gÞ; ∂�gρð�gÞ
h i

� 1
2 f∂�gρð�gÞ; L̂yL̂g;

ð28Þ

where we have again used the notation ∂�g ¼ ∂=∂�g. A more complicated form is
obtained if the Lindblad operators L̂ depend on �g, which here is not the case. In
coupled form, we can write

d
dt

ρ

∂�gρ

 !
¼

� i
�h Ĥ; ρ
	 
þ L̂ρL̂y � 1

2 fρ; L̂yL̂g
� �

� i
�h ∂�g Ĥ; ρ
h i

þ Ĥ; ∂�gρ
h i� �

þ L̂∂�gρL̂
y � 1

2 f∂�g ; ρL̂yL̂g

0
@

1
A: ð29Þ

The system can be solved using any standard higher-order method, such as the
family of Runge–Kutta ODE solvers. Note that the Qutip Master Equation solver
cannot be used as Eq. 27 is not in standard Hamiltonian form.

Once the time-evolved state ∂ρ=∂�g has been obtained, we proceed as usual to
compute the probability distribution with the set of POVM elements {Пx}. With
this method, we avoid round-off errors that appear in the five-point numerical
derivative above.

Numerical stability. Let us make a few remarks regarding the numerical stability
of the simulation. We start by considering the nature of coherent states and how
they are represented numerically. Coherent states have support on infinite Hilbert
spaces, whereas numerically we must work with finite matrices. It is therefore
necessary to introduce a cut-off in the dimension used to represent the state. This
leads to a gradual loss of coherence as information is pushed beyond the cut-off. In
other words, numerically we use a finite Hilbert space H, meaning that we truncate

the space by letting âyjN � 1i ¼ 0, where dimðHÞ ¼ N . Furthermore, the
appearance of ðâyâÞ2 in ÛðtÞ causes the system to become anharmonic and
numerical instabilities grow fast for Hilbert spaces with small dimension N < 50.

The amount of information lost when using smaller Hilbert spaces is difficult to
assess, since any good ODE solver will preserve the purity of the state throughout
the simulation. Rather, the loss of information can be noted as a gradual
deterioration of the trajectory in phase space, with the effect that states fail to
return to their original position in phase space at t= 2π. That is, we require that
hx̂ð0Þi � hx̂ð2πÞi and hp̂ð0Þi � hp̂ð2πÞi for the simulation to be deemed stable.
This is however only true for noiseless evolution.

The system dynamics depend strongly on the dimensionless constants �k and �g.
Larger �k and �g will cause the system to evolve more rapidly, as evident from their
appearance in the phase of the state in Eq. 7. This in turn causes the numerical
inaccuracies to accumulate more rapidly. When computing the CFI for mixed
states, we restrict our investigations to the parameter range �k ¼ �g ¼ 1 for precisely
this reason.

Finally, it should be noted that we have not provided a full error estimate for
any of the results computed here. However, since we are only interested in the
general behaviour of the CFI, any small inaccuracies in the numerical estimates will
not matter for the results obtained in this work.

Data availability. The datasets generated during and/or analysed during the
current study are available in the Coherent-states-Fisher-information repository on
Github at (https://github.com/sqvarfort/Coherent-states-Fisher-information).
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