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ABSTRACT

We train a machine learning algorithm to learn cosmological structure formation from N-body
simulations. The algorithm infers the relationship between the initial conditions and the final
dark matter haloes, without the need to introduce approximate halo collapse models. We gain
insights into the physics driving halo formation by evaluating the predictive performance of
the algorithm when provided with different types of information about the local environment
around dark matter particles. The algorithm learns to predict whether or not dark matter
particles will end up in haloes of a given mass range, based on spherical overdensities.
We show that the resulting predictions match those of spherical collapse approximations
such as extended Press—Schechter theory. Additional information on the shape of the local
gravitational potential is not able to improve halo collapse predictions; the linear density
field contains sufficient information for the algorithm to also reproduce ellipsoidal collapse
predictions based on the Sheth—Tormen model. We investigate the algorithm’s performance
in terms of halo mass and radial position and perform blind analyses on independent initial
conditions realizations to demonstrate the generality of our results.
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1 INTRODUCTION

Dark matter haloes are the fundamental building blocks of cos-
mic large-scale structure, and galaxies form by condensing in their
cores. Understanding the structure, evolution, and formation of dark
matter haloes is an essential step towards understanding how galax-
ies form and ultimately to test cosmological models. However, this
is a difficult problem due to the highly non-linear nature of the
haloes’ dynamics. Dark matter haloes originate from random per-
turbations seeded in the early Universe and grow via mass accretion
and mergers with smaller structures throughout their assembly his-
tory. N-body simulations provide the only practical tool to compute
non-linear gravitational effects starting from an initial random field
(e.g. Springel, Yoshida & White 2001; Springel 2005; Kuhlen, Vo-
gelsberger & Angulo 2012).

Analytic approximations of structure formation yield useful phys-
ical interpretations of these detailed numerical studies. Generally,
analytic techniques assume dark matter collapse occurs once the
smoothed linear density contrast exceeds a threshold value. Com-
bined with excursion set theory, this ansatz provides a tool to ana-
lytically predict the final halo mass of an initially overdense region.

* E-mail: luisa.lucie-smith.15@ucl.ac.uk

© 2018 The Author(s)

This can be used to infer useful quantities such as the abundance of
dark matter haloes in the Universe, or the halo mass function, based
on properties of a Gaussian random field alone (Press & Schechter
1974; Bond et al. 1991; Bond & Myers 1996). The halo mass func-
tion is the quantity most often used to assess the accuracy of different
analytic frameworks against numerical simulations. The original
form of the halo mass function proposed by Press & Schechter
(1974), although qualitatively correct, is known to underestimate
the abundance of the most massive haloes, and overestimate the
abundance of the less massive ones. The need for precision mass
functions led to modifications of the original halo mass function in
the form of parametric functions calibrated with cosmological sim-
ulations (Jenkins et al. 2001; Reed et al. 2003; Tinker et al. 2008).
Pure analytic extensions of the excursion set ansatz have also been
constructed that yield better agreement with numerical simulations
(Sheth, Mo & Tormen 2001; Maggiore & Riotto 2010; Paranjape
& Sheth 2012; Farahi & Benson 2013; Borzyszkowski, Ludlow &
Porciani 2014). Given these successful predictions, the excursion
set description has become an accepted physical interpretation of
the process of structure formation itself.

We present a machine learning approach to learn cosmologi-
cal structure formation directly from N-body simulations. The ma-
chine learning algorithm is trained to learn the relationship between
the initial conditions and final halo population that results from
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non-linear evolution. Using the resulting initial conditions-to-haloes
mapping, we aim to provide new physical insights into the process
of dark matter halo formation, and compare with existing inter-
pretations gained from widely investigated analytic frameworks. In
contrast to existing analytic theories, our approach does not require
prior assumptions about the physical process of halo collapse; the
haloes’ non-linear dynamics is learnt directly from N-body simu-
lations rather than approximated by an excursion set model in the
presence of a collapse threshold.

We provide the machine learning algorithm with a set of infor-
mative properties about the dark matter particles extracted from the
initial conditions. Machine learning algorithms are sufficiently flex-
ible to include a wide range of initial conditions properties that may
contain relevant information about halo formation, without chang-
ing the training process of the algorithm. We choose these properties
to be aspects of the initial density field in the local surroundings
of the dark matter particles’ initial position. By quantifying their
impact on the learning accuracy of the algorithm, we can investigate
which aspects of the early universe density field contain relevant
information on the formation of dark matter haloes. The trained ini-
tial conditions-to-haloes mapping can then also be used to predict
the mapping for new initial conditions, without the need to run a
further simulation.

The highly non-linear nature of dark matter evolution makes it
a problem well suited to machine learning. Machine learning is
a highly efficient and powerful tool to learn relationships that are
too complex for standard statistical techniques (Witten et al. 2016).
In the context of structure formation, machine learning techniques
have also been shown to be effective, for example, in learning the
relationship between dark and baryonic matter from semi-analytic
models (Kamdar, Turk & Brunner 2016; Agarwal, Davé & Bassett
2018; Nadler et al. 2018).

We choose random forests (Breiman et al. 1984; Breiman 2001),
a popular algorithm that has been shown to outperform other classi-
fiers in many problems (Niculescu-Mizil & Caruana 2005; Caruana
& Niculescu-Mizil 2006; Douglas et al. 2011; Lochner et al. 2016).
Random forests also lend themselves to physical interpretation, as
they provide measures that allow the user to infer which of the in-
puts are predominantly responsible for the learning outcomes of the
algorithm. Random forests are ensembles of decision trees, each
following a set of simple decision rules to predict the class of a
sample (Ball & Brunner 2010). The prediction of the random forest
is given by the average of the probabilistic predictions of the indi-
vidual trees, where the variance of the forest predictions is greatly
reduced compared to that of a single tree.

To apply this approach, we must turn the process of dark matter
evolution into a supervised classification problem. We chose to fo-
cus on the simplest case of a binary classification task to illustrate
the approach and allow for a cleaner understanding of the physics
behind the learning process of the algorithm. We distinguish be-
tween dark matter particles that end up in haloes of mass above
a threshold, and those that belong either to lower mass haloes or
to no halo at all. This defines two classes: the former set of parti-
cles belongs to the IN haloes class, while the latter forms the OUT
haloes class. The machine learning algorithm is trained to predict
whether the dark matter particles in the initial conditions will end
up in IN class haloes or in the OUT class at z = 0. The training
is performed on an existing N-body simulation where we already
know the associated halo for each particle (if any).

The predictive accuracy of the algorithm crucially depends on the
choice of features extracted from the initial conditions and used as
input to the machine learning algorithm. We first train the random
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forest with the initial linear density field as features and subse-
quently add information on the tidal shear field. We are able to
quantify the physical relevance of such properties in the halo col-
lapse process, based on their respective impact on the classification
performance of the random forest. Our results demonstrate the util-
ity of machine learning in gaining insights into the physics of struc-
ture formation, as well as providing a fast and efficient classification
tool.

The paper is organized as follows. We present an overview of the
classification pipeline and describe how we extract features from
the linear density field and train the machine learning algorithm in
Section 2. In Section 3, we interpret the classification output and
present our results in Section 4. We then extend the feature set to
include the tidal shear field in Section 5 and discuss the resulting
implications. We study the algorithm’s performance as a function
of halo properties in Section 6. We perform two blind tests of our
pipeline on independent simulations in Section 7, demonstrating the
generality of our results, and finally conclude in Section 8.

2 METHOD

We trained and tested the random forest with an existing dark-
matter-only simulation produced with p-GADGET-3 (Springel et al.
2001; Springel 2005) and a 5-year Wilkinson Microwave Anisotropy
Probe (WMAPS) A cold dark matter (ACDM) cosmological model
(Dunkley et al. 2009): Q5 = 0.721, @, = 0.279, 2, = 0.045, 05 =
0.817, h =0.701, and ny = 0.96. The comoving softening length of
the simulation is € = 25.6kpc. The simulations evolve 256 dark
matter particles, each of mass Mpyicle = 8.24 x 108 M@, in a box
of comoving size L = 50! Mpc from z = 99 to 0.!

The haloes were identified using the suBFIND halo finder (Springel
et al. 2001), a friends-of-friends method with a linking length of
0.2, with the additional requirement that particles in a halo be grav-
itationally bound. While susrIND also identifies substructure within
haloes, we consider the entire set of bound particles to make up
a halo and do not subdivide them further. The simulation contains
18 801 haloes at z = 0, ranging from masses of ~10° to ~10" M.

We used the final snapshot (z = 0) to label each particle with its
corresponding class. At z = 0, we split the dark matter particles
between two classes: IN haloes and OUT haloes. We chose the IN
class to contain all particles in haloes of mass M > 1.8 x 10'? Mg
at z = 0 (401 haloes), and the OUT class to contain all remaining
particles, including those in haloes of mass M < 1.8 x 10'? M@
and those that do not belong to any halo.? This choice was made
in order to split the haloes into the two classes at an intermediate
scale within the mass range probed by the simulation. Our pipeline
allows the selection of any mass threshold that would ultimately
allow us to extend the binary classification to a multiclass one.

Each particle, with its associated class label, was traced back
to the initial conditions (z = 99) where we extracted features to
be used as input for the random forest as described below. The
random forest was trained based on these input features and the
known output class for a training subset of particles. We tested
the algorithm using the remaining dark matter particles, where the
random forest’s class prediction was compared to their respective

'We make use of the pyTHON package pynBopY (Pontzen et al. 2013) to
analyse the information contained in the simulation snapshots.

2The mass scale M = 1.8 x 10'2 Mg, corresponds to the mass of a particular
halo of the simulation and was chosen as the class boundary for convenience.
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true class label. The robustness of the algorithm was tested further
on independent N-body simulations (Section 7).

2.1 Density field features

Most machine learning algorithms, including random forests, re-
quire a feature extraction process to extract key properties of the
dark matter particles. The classification performance crucially de-
pends on whether or not the chosen features provide meaningful
information to allow for a clean separation between the IN and
OUT classes.

We extracted machine learning features from the linear density
field. This choice was motivated by the work of Press & Schechter
(1974, PS) who developed a model to predict the (comoving) num-
ber density of dark matter haloes as a function of mass based on
properties of the linear density field. The ansatz is that a Lagrangian
patch will collapse to form a halo of mass M at redshift z if its linear
density contrast exceeds a critical value §.(z). An improved theo-
retical footing for PS theory was developed by Bond et al. (1991)
based on the excursion-set formalism, known as extended Press—
Schechter (EPS). The crucial assumption is that the final halo mass
corresponds to the matter enclosed in the largest possible spherical
region with density contrast §;, = §.. This method yields a halo
mass function qualitatively consistent with numerical simulations,
suggesting that a useful mapping between Lagrangian regions and
final collapsed haloes can be obtained from spherical overdensities.
This motivates our choice of machine learning features from the
initial linear density field as follows.

We smoothed the density contrast 6(x) = [p(x) — p]/p, where
p is the mean matter density of the universe, on a smoothing scale
R,

8(x;R) = /a (x') Wiy (x —x";R) &x’, (1
where Wrp(x, R) is a real space top-hat window function:
for |[x| < R,
Wrn(x, R) = § 4R’ 2
0 for |x| > R.

The convolution (1) was carried out in Fourier space, which natu-
rally accounts for the periodicity of simulations. A window func-
tion W(x, R) of characteristic radius R corresponds to a mass scale
M mootning = PV (R), where in the case of a top-hat window function
Vru(R) = 4/37tR3. The feature for machine learning then consists
of the density contrast smoothed with a top-hat window function of
mass scale Mmooting (O, smoothing scale R) centred on the parti-
cle’s position in the initial conditions.

We repeated the smoothing for 50 mass scales evenly spaced in
log M within the range allowed by the volume and resolution of the
simulation box, i.e. 3 x 10" < Minooming/Mo < 1 x 10'3, yielding
a set of 50 features per particle. We found that using a larger number
of smoothing scales did not yield improvement in the classification
performance, meaning that 50 smoothing scales were sufficient to
capture the relevant information carried by the density field.

In the context of excursion set theory, the density contrast of
a particle as a function of smoothing scale is known as a density
trajectory. Fig. 1 shows examples of density trajectories of particles
belonging to the true IN and OUT classes. The trajectories describe
whether particles are found in overdense or underdense regions as
a function of increasing mass scale. As one approaches the largest
mass scales probed by the simulation box, the trajectories start to
converge to 6(x, 0co) = 0, where the density coincides with the mean
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Figure 1. Examples of density trajectories corresponding to particles be-
longing to the IN and OUT classes. The linear density field is smoothed
with a real space top-hat filter centred on each particle’s initial position.
We calculate the smoothed overdensity § as the smoothing mass scale M is
increased.

density of the Universe. The ensemble of trajectories constitutes the
full feature set we used to first train then test the random forest.

2.2 Training the random forest

We make use of the random forest implementation in the scIKIT-
LEARN (Pedregosa et al. 2011) pyTHON package. The random forest
was trained using a set of 50 000 randomly selected particles from
the simulation, each carrying its own set of density features and
corresponding IN or OUT class label. The size of the training set
was chosen to form a subset of particles representative of the full
simulation box. To test for representativeness, we checked the per-
formance of the algorithm for training sets of different sizes and
found no improvement for training sets larger than 50 000 particles.
Therefore, we concluded that 50 000 randomly selected particles are
sufficient to form a training set representative of the full simulation
box. The remaining particles in the simulation were used as a test
set; the trained random forest predicts the class label of the particles
in the test set, which is then compared to the particles’ true labels to
assess the algorithm’s performance. Note also that random forests
are robust to correlated features (Breiman 2001), meaning that the
high correlation present in our density features does not affect the
predictive performance of the algorithm.

Like most machine learning algorithms, random forests have
hyperparameters that need to be optimized for a given training set.
These include the number of trees and the maximum depth of the
forest, the maximum number of particles at the end node of a tree,
and the size of the subset of features to select at a node split. We
used a grid search algorithm combined with k-fold cross-validation
(Kohavi 1995) to optimize the random forest’s hyperparameters.
In k-fold cross-validation, the training set is divided into k equally
sized sets where k — 1 sets are used for training and one is used as
a validation set, on which the algorithm is tested. This procedure
is repeated k times so that each set is used as a validation set once.
For each validation set we evaluate a score based on a chosen
scoring metric [here we use the area under the receiver operating
characteristic (ROC) curve, see Section 3] and average scores over
all k validation sets to obtain the final score of a training set. Here,
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Table 1. Confusion matrix for two classes: positives and negatives. We use
this to quantify the performance of the machine learning algorithm, where
the positives are particles of the IN class and the negatives are particles of
the OUT class.

True class
P N

True positive (TP)
N False negative (FN)

False positive (FP)

Predicted class True negative (TN)

we performed a fivefold cross-validation for all combinations of
hyperparameters and retained the combination that achieved the
best score.

3 INTERPRETING THE CLASSIFICATION
ouTPUT

A random forest (like most machine learning algorithms) outputs a
probabilistic measure of belonging to a class for every particle. For
practical use this must be mapped onto a concrete class for each
particle. Many approaches exist for such a mapping; we choose
to consider different probability thresholds at which a particle is
considered to belong to a class. A high probability threshold will
contain a very pure sample of particles but also will be incom-
plete. As the probability threshold decreases, one allows for a more
complete set of particles at the expense of including misclassified
ones.

Once the probability-to-class mapping is established, we quantify
the performance of the algorithm making use of a confusion matrix
for binary classification problems as shown in Table 1. Throughout
this analysis we always take the positives to be particles of the IN
class and negatives to be particles of the OUT class. The perfect
classifier consists of true positives and true negatives only. A more
realistic classifier will include a number of incorrectly classified
particles: misclassified positives fall in the false negative category,
yielding a loss of completeness, and misclassified negatives fall in
the false positive category, yielding an increase in contamination.
We measure the true positive rate (TPR), the ratio between the
number of particles correctly classified as positives and the total
number of positives in the data set,

TP
" TP+ FEN’

and the false positive rate (FPR), the ratio between the number of
particles incorrectly classified as positives and the total number of
negatives in the data set,
FP
FPR= ————. C))
FP + TN

ROC curves (Green & Swets 1966; Hilden 1991; Fawcett 2006)
are a tool to graphically represent the balance between complete-
ness and contamination at various probability thresholds. A ROC
curve compares the true positive rate to the false positive rate as
a function of decreasing probability threshold. As one lowers the
probability threshold, one allows for a more complete set of IN
particles (increase in true positive rate) at the expense of a larger
contamination of misclassified particles (increase in false positive
rate). The area under the curve (AUC) of a ROC curve is a useful
quantity to compare classifiers. The perfect classifier would have an
AUC of 1, whereas a random assignment of classes would obtain an
AUC of 0.5. Typically, algorithms are considered to be performing
well if AUC >0.8.

TPR 3)
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Figure 2. ROC curves for the density feature set and the combined shear
and density feature set. The machine learning algorithm is able to learn the
information contained in the density trajectories to match the EPS predic-
tion. The Sheth—Tormen (ST) prediction represents an extension of standard
excursion set developed by Sheth & Tormen (1999), which adopts a moving
collapse barrier motivated by tidal shear effects. The comparison between
the two ROC curves shows little improvement in the test set classification
once information on the shear field is added. The ST analytic prediction
also does not provide an overall improvement compared to the EPS predic-
tion; the false positive rate (or, contamination) decreases at the expense of
decreasing the true positive rate (or, completeness). The machine learning
algorithm is able to recover the ST analytic prediction when presented with
information on the density field alone by altering the probability threshold.

We use ROC curves and AUCs to evaluate and compare the per-
formance of the random forest for different feature sets (Sections 4
and 5), different halo mass and radial position ranges (Section 6),
and different simulations (Section 7).

4 DENSITY FIELD CLASSIFICATION

Fig. 2 shows the ROC curve for the density feature set resulting
from classifying all particles in the simulation that were not used
for training the random forest. The random forest achieves an AUC
score of 0.876.

In order to assess whether machine learning can learn as much
as human-constructed models, we wish to compare its performance
to existing theories. In particular, the EPS formalism motivated our
choice of density features and has been demonstrated to infer ap-
proximately correct number densities of collapsed haloes from a
Gaussian random field (Bond et al. 1991). Although EPS is com-
monly used to predict the dark matter halo mass function, we make
use of it to predict an independent set of class labels for the test set
particles and compare their accuracy to that of the machine learning
predictions.

Following EPS, the fraction of haloes of mass M are equivalent
to the fraction of density trajectories with a first upcrossing of the
density threshold barrier §y, at mass scale M. We take the density
threshold to be the spherical collapse threshold adopted by Bond
et al. (1991): §u(z) = (D(2)/D(0))8s., where 85 =~ 1.686. The pre-
dicted halo mass of each particle is given by the smoothing mass
scale of the particle’s first upcrossing. We then assign to each par-
ticle an IN or OUT label depending on whether its predicted halo
mass falls in the mass range of the IN or OUT class. We emphasize
that the labels inferred from the EPS framework are independent
from the predictions of the random forest.
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We plot in Fig. 2 the resulting true positive rate and false positive
rate inferred from the EPS predicted labels and find that the EPS
prediction lies on the ROC curve of the random forest. In other
words, the random forest is able to ‘learn’ EPS and the EPS results
correspond to a ~42percent probability threshold on the ROC
curve. Machine learning adds the flexibility to trade contamination
for completeness along the ROC curve as we vary the probability
threshold. Instead, EPS results in a single point in true positive rate—
false positive rate space since it gives a single prediction for each
particle rather than a probability associated with a class.

4.1 Physical interpretation

The algorithm’s performance depends on whether or not the input
features contain relevant information to separate particles between
classes. For example, the ideal feature would split a set of parti-
cles into two pure sets, each containing only particles of one class.
By contrast, irrelevant features are not able to distinguish between
classes, yielding a poor class separation in the two resulting sets.
Therefore, we can determine which features contain the most infor-
mation in mapping particles into the correct halo mass range, based
on their ability to separate classes when training the random forest.

There are many metrics designed to measure the relevance of
the inputs to a machine learning algorithm; here we use feature
importances (Louppe et al. 2013). The importance of a feature X is
a weighted sum of the impurity decrease® at all nodes ¢ where the
feature is used, averaged over all trees T in the forest:

1
Imp(X) = - > > i), 5)
T

teT

where Ny is the number of trees, p(7) is the fraction of particles
reaching node ¢, and Ai(7) is the impurity decrease, i.e. the difference
in entropy between the parent node and the child nodes.

We calculate the relative importances in the density feature set to
find the most relevant features in distinguishing between the IN and
OUT classes. Fig. 3 shows the relative importance of each density
feature as a function of its smoothing mass scale. The importances
are normalized such that the sum of all importances is 1 and the
errors are computed by training the random forest multiple times,
each with a randomly drawn set of training particles. The largest
halo mass in the simulation is marked by a grey line. We find that
most of the information lies in mass ranges of 10'2~10'* M, just
above the boundary between the IN and OUT classes.

5 ADDING THE TIDAL SHEAR TENSOR

Peaks in Gaussian random fields are inherently triaxial (Doroshke-
vich 1970; Bardeen et al. 1986). Therefore, extensions of the stan-
dard spherical model were made in order to incorporate the dy-
namics of ellipsoidal collapse. The impact of the tidal shear on
properties of collapsed regions has been extensively studied (Bond
& Myers 1996; Sheth & Tormen 1999; Sheth et al. 2001). Sheth &
Tormen (1999, ST) have studied how ellipsoidal collapse modifies
the mass function of dark matter haloes in the excursion set formal-
ism. Spheres are distorted into an ellipsoid due to tidal shear effects

3We use Shannon entropy to measure the impurity at a node ig(r) =

— > p(j,t)log, p(j, 1), where p(j, 1) is the proportion of particles that
i=

belong to class j at node ¢ and c is the total number of classes.
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and the collapse time of a halo therefore depends explicitly on the
ellipticity and prolateness of the tidal shear field.

We extended the original density feature set to incorporate addi-
tional information on the local tidal shear field around particles. We
studied the impact on the halo classification performance and quan-
tified the shear’s relevance in the training process via the feature
importances. The advantage of studying tidal shear effects with ma-
chine learning is that these can be straightforwardly translated into
features and used as input to the same machine learning algorithm.
On the other hand, analytic models usually require incorporating
approximations to the tidal shear within the excursion set formal-
ism. In general, any potentially relevant physical property can be
added in the form of a feature without adding complexity to the
algorithm.

We will first describe how we constructed features from the tidal
shear field, then present the classification results of the full density
and shear feature sets.

5.1 Tidal shear features

The deformation tensor is given by the Hessian of the gravitational

potential:

D . O®
Y E)xi 0x j ’

Q)

where ®(x) is the peculiar gravitational potential at position x and
is related to the density contrast via Poisson’s equation V>® = §.

The ordered eigenvalues of Dy, A; > A, > A3, can be
reparametrized in terms of the ellipticity, e, and prolateness, p (Bond
& Myers 1996):

A= A3
= N 7
e %5 (7
A= 2% + Az
= — ) 8
2% (®)

where A; + X, + A3 = § and § is the smoothed overdensity used
as a density feature. In order to minimize redundancy between the
features, we removed the density dependence from the ellipticity
and prolateness. We computed the eigenvalues of the traceless de-
formation tensor, known as the tidal shear tensor, t; = A; — 8/3, now
satisfying #; + t, + t3 = 0. The ellipticity and prolateness in terms
of the traceless eigenvalues ¢, take the form

e =1 — 13, (9)

=3 +18). (10)

For each particle we assigned two new features e, and p, evaluated at
each smoothing mass scale. Therefore, the original 50-dimensional
feature set of density contrasts was augmented to a 150-dimensional
feature set given by the density contrast, ellipticity, and prolateness.
To test the robustness of random forests to a high-dimensional fea-
ture space, we used principal component analysis (PCA) to reduce
the 150-dimensional feature set to a 10-dimensional space retaining
98 per cent of the information contained in the original feature set.
We found identical predictive performance, meaning that random
forests are robust to a 150-dimensional feature set.

5.2 Results

The ROC curve of the density and shear feature set is overplotted
in Fig. 2. We find that adding information on the tidal shear tensor
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Figure 3. The importance ranking of the density features, shown as a function of their smoothing mass scales. The most relevant information in the training
of the random forest comes from the density contrast smoothed at mass scales 10'>~10'3 M, scales, within the mass range of the IN class haloes. The largest

halo mass in the simulation is marked by a grey line.

shows little improvement compared to the case of the density-only
feature set. We find an improvement of only 2 per cent in the AUC
of the ROC curve. Fig. 4 demonstrates the low impact of the shear
features in the classification process. The three panels show the rel-
ative importance in the training process of the random forest of the
density, ellipticity, and prolateness features as a function of smooth-
ing mass scales. The most relevant features are the density contrasts
smoothed on mass scales in the range 10'>-10'3 M, similar to what
was found in the case of the density-only feature set (Fig. 3). The
distributions of the density importances in the two feature sets are
consistent despite minor variations in the peak and variance of the
distributions. The changes are due to the change in the range of
hyperparameters when increasing the dimensionality of the feature
set from 50 to 150 features. The ellipticity and prolateness have
low feature importance scores confirming that the information they
contain is irrelevant to the training process of the machine learning
algorithm compared with that of the density field.

As with the density feature set, we can compare the machine
learning predictions to existing analytic predictions based on the
same set of properties of the initial conditions. The ST formalism
provides a prescription to predict the final halo mass of a particle
based on the density field and the shear field, which we can use to
compare to the machine learning output.

ST accounts for the effect of the shear field in the context of
the excursion set formalism by adopting a moving collapse barrier
rather than the spherical collapse barrier adopted by Bond et al.
(1991). The ST collapse barrier b(z) varies as a function of the mass
variance o >(M) and is given by

2 M Y
b(2) = Vabe(2) {1 + (ﬂ;i (2;) } ,

(11)

where §,.(0) ~ 1.686, the parameters § = 0.485 and y = 0.615
incorporate an approximation to ellipsoidal dynamics, and a =
0.707 is a normalization constant. These values are the best-fitting
parameters found in Sheth et al. (2001). The predicted halo mass
of each particle follows the excursion-set framework as for the
EPS case; the largest mass scale at which the particle’s trajectory
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upcrosses the collapse barrier in equation (11) gives the predicted
halo mass.

The triangle labelled ‘ST prediction’ in Fig. 2 shows the true and
false positive rates predicted by ST. In our study, the ST formalism
does not yield an absolute improvement to EPS theory; the false
positive rate decreases at the expense of a decrease in the true
positive rate. Therefore ST predicts a less contaminated but more
incomplete set of IN class particles compared to EPS, corresponding
to a probability threshold of 73 per cent on the ROC curve. We find
that the random forest is able to reproduce the ST result with both
the density-only feature set and the shear and density feature set.
This shows that there is sufficient information in the density field
for the random forest to match the analytic ST prediction.

Overall, we find that shear effects do not contain additional phys-
ical information to improve the classification output of the ran-
dom forest. The learning process of the algorithm is predominantly
driven by the local overdensity around dark matter particles and un-
affected by the surrounding tidal shear. The analytic ST prediction,
interpreted as an improvement to standard EPS due to the inclusion
of tidal shear effects, can be reproduced by the random forest when
trained on the density field only. In conclusion, these results show
that the physical processes leading to dark matter halo formation
for our choice of mass scale splitting the two classes are insensitive
to tidal shear effects in the initial conditions.

6 CLASSIFICATION DEPENDENCE ON HALO
MASS AND RADIAL POSITION

We now investigate how properties of particles such as the position
within a halo and the halo mass affect the accuracy of classification
when the algorithm is trained on density features only. To do this we
split the test particles into categories based on their radial and halo
mass properties to study their respective classification performance.

First, we subdivided particles of the IN class into three mass
ranges: particles in cluster-sized haloes (1 x 10" < My,o/Mg <
4 x 10'), particles in group-sized haloes (1 x 10" < Mjp,o/Mg
< 1 x 10'"), and particles in galaxy-sized haloes (1.2 x 102 <
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Figure 4. Relative importance of the density features (upper panel), ellipticity features (middle panel), and prolateness features (lower panel) in the full
shear and density feature set. The density features are more relevant than the ellipticity and prolateness features. This confirms that the shear field adds little
information in distinguishing whether particles will collapse in haloes of mass above the class boundary mass scale or not, compared with the density field.

Mpo/Mg < 1 x 10"3). We combined each of these subsets in turn
with all the OUT particles to form three distinct test sets.

The ROC curves for the three mass range categories of haloes are
shown in the right-hand panel of Fig. 5, where the ROC curve of the
full original test set is shown for comparison (dashed line). We find
that particles in cluster-sized haloes reach an AUC of 0.913, whilst
particles in group-sized haloes and galaxy-sized haloes are increas-
ingly more difficult to classify. We overplotted the ST (triangles)
and EPS (dots) predictions for each halo mass category of particles,
again showing results consistent with those of the machine learning
algorithm.

It is likely that the decrease in performance as a function of halo
mass is a result of the choice of mass scale used to split haloes into
classes, M = 1.8 x 10'> M. This was a necessary step in order to
define the two classes of the binary classification problem. Haloes
of mass just above and below the IN/OUT mass boundary belong to
different classes although they originate from Lagrangian regions
with similar properties reflecting their similarity in mass. Therefore,
the closer the haloes of different classes are in mass, the harder it is
for the random forest to distinguish whether their particles belong to
one class or the other. Fig. 6 further demonstrates that haloes of mass
approaching the IN/OUT mass boundary from above and below
contain a larger fraction of misclassified particles. In the upper
(lower) panel, we show the false positive (negative) rate, i.e. the
ratio of misclassified OUT (IN) particles over all particles contained
in each halo mass bin, for four different probability thresholds. The
true halo mass of each particle is shown on the horizontal axis in
terms of its distance from the IN/OUT mass boundary. We find that
the false positive and negative rates increase for particles in haloes
of mass approaching the IN/OUT mass boundary.

We next investigated possible correlations between the particles’
position within the haloes and the random forest’s classification
performance. Here, we subdivided particles of the true IN class into
three radial ranges, subject to their radial position in the halo with
respect to the halo’s virial radius ry;,. We defined particles in the
inner radial range (r/ry;; < 0.3), particles in the mid radial range

(0.3 < riry; < 0.6), and particles in the outer radial range (0.6 <

rlryir < 1). Similar to the mass range study, each subset of haloes
was combined with all the OUT class particles from the original set
to form three distinct sets.

The left-hand panel of Fig. 5 shows the ROC curves for the
three radial categories, together with that of the original test set
again shown for comparison (dashed line). Particles in the inner-
most regions of haloes are the best classified by the random forest,
achieving an AUC of 0.937 that is greater than that obtained when
classifying all particles in the simulation. The classification perfor-
mance of the random forest decreases as we move from the halo’s
centre-of-mass towards the virial radius.

We first tested whether the decrease in performance when classi-
fying particles of the outer radial range was due to underrepresen-
tativeness in the training set. Indeed, if the training particles of the
outer radial range are not representative of the entire simulation,
the classifier’s performance on the outer radial range test set would
be strongly affected. To test this, we retrained the machine learning
algorithm with a training set containing equal number of particles
for each radial range category. We found identical ROC curves and
AUC:s as in the left-hand panel of Fig. 5, therefore excluding the
possibility that the higher misclassification rate of outer radial range
particles is due to non-representativeness in the training set.

One other possible reason may be that particles living in outer
regions of haloes are more likely to have been affected by late-
time halo mergers, tidal stripping, or accretion events. Therefore,
the final halo mass prediction for such particles is the result of
a more complicated dynamical history involving these late-time
effects. Conversely, particles near the halo’s centre-of-mass are less
sensitive to the halo’s assembly history and their final halo mass
prediction correlates more strongly with the local overdensity in
the initial conditions. This hypothesis could be verified by adding
features sensitive to the particles’ dynamical history (for instance
a particle’s initial distance to the nearest density peak) and testing
whether this information improves the classification of particles
located at the boundary of the halo’s virial region. In addition to this,
the further particles are from the centre of haloes, the closer they are
to the boundary between the IN and OUT classes, where particles
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Figure 5. Left-hand panel: the IN class particles are split into inner (r/ryi; < 0.3), mid (0.3 < r/ryir < 0.6), and outer (0.6 < r/ryir < 1) radial ranges according to
their distance from the centre of the halo. The ROC curves for each category show that the classification performance improves for particles closer to the halo’s
centre of mass. Right-hand panel: the IN class particles are split into cluster-sized (1 x 10 < Mhpao/Mg < 4 X 104, group-sized (1 x 108 < Mha0/Mg
<1 x 10", and galaxy-sized (1.2 x 102 < Mha1o/Mp < 1 % 10'3) haloes, and the ROC curves show the random forest’s performance in classifying each
category. Particles in higher mass haloes are increasingly better classified by the random forest. The ROC curve of the full test set of particles is shown as a
dashed line in both panels for comparison. The EPS and ST predictions, labelled by dots and triangles respectively, are also overplotted for each halo mass and

radial position category.
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Figure 6. Fraction of misclassified particles in haloes of each mass bin
range, where the halo mass bins are labelled as a function of their distance
from the IN/OUT boundary mass scale. The upper (lower) panel shows the
fraction of misclassified OUT (IN) particles, i.e. the false positive (negative)
rate in each mass bin. We consider four distinct probability thresholds for
assigning a particle’s (IN or OUT) class, where higher thresholds imply
lower contamination. The misclassification rate increases as the true mass
approaches the classification boundary for all choices of the completeness-
to-contamination trade-off.

are harder to classify for the machine learning algorithm. This also
translates into a larger uncertainty in the halo mass prediction for
particles at the edge of haloes compared to those in the innermost
regions of haloes. As a result, the overall uncertainty in the halo
mass predictions of centre-of-mass particles is smaller than for
particles in the outskirts of haloes. This result is also consistent
with excursion set predictions, where ST demonstrated that centre-
of-mass particles provide a better estimate of the final halo mass
compared to inferences made from the full ensemble of particles in
the simulation. To confirm this, we overplotted the EPS (dots) and
ST (triangles) predictions for the three radial test sets in the left-
hand panel of Fig. 5, demonstrating that analytic formalisms also
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perform increasingly well for particles that are close to the halo’s
centre-of-mass. The machine learning algorithm again shows its
ability to match the excursion set predictions at fixed probability
thresholds for each radial range category.

For completeness, we also explored the misclassification rate of
OUT particles that do not belong to any halo. We find that overall
these particles have very low misclassification rates compared to
particles in haloes. For example, if we consider probability thresh-
olds of 70, 60, 50, and 40 per cent to assign particles to the IN class
(as in the upper panel of Fig. 6), the fraction of misclassified over
all particles that do not belong to haloes are 2.45, 4.3, 6.58, and
10.11 per cent, respectively. Therefore, the OUT particles predicted
by the random forest form a highly pure and complete set.

In conclusion, we find that the best classified categories of parti-
cles are those that are further away from the classification boundary,
both in terms of mass and radius: particles in the most massive and
least massive haloes in the simulation; particles in the innermost re-
gions of haloes; and those furthest away in voids. We further tested
whether the addition of the tidal shear information could improve
the classification performance of poorly classified particles, such
as those in the outskirts of haloes and in galaxy-sized haloes. We
find no significant improvement in the classification performance
of such particles, other than the 2 per cent improvement found for
the whole ensemble and reflected in each mass and radial category.

7 BLIND TESTS ON INDEPENDENT
SIMULATIONS

Up to this point we have trained and tested the machine learning
algorithm on a single dark-matter-only simulation. To test whether
the machine learning algorithm trained on one simulation also gives
robust results for different N-body simulations without retraining,
we performed blind tests of our pipeline on two independent simu-
lations from the one used for training.

The first independent test simulation (W test) is a different re-
alization of the same WMAPS5 ACDM cosmology adopted in the
training simulation, for a box of also same size and resolution (see
Section 2). The second independent test simulation (P test) is a
realization of a different cosmological model, a Planck ACDM
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Figure 7. We perform a blind test of the trained machine learning algo-
rithm on two independent N-body simulations: a different realization of the
WMAPS cosmology used in the training simulation, and a realization of
a Planck cosmological model. The ROC curves are consistent in all three
simulations for both the density feature set and the density and shear feature
set, with differences in the AUCs of order ~1 percent. The EPS and ST
predictions in each simulation match the machine learning performance at
different probability thresholds, such that the ST formalism always predicts
a less contaminated but more incomplete set of IN particles. These blind
tests demonstrate the robustness of the results from a machine learning al-
gorithm trained on one simulation, and applied to different realizations of
the same cosmology or realizations of different cosmologies.

cosmology* (Planck Collaboration XIII 2016) in a box of comov-
ing size L = 50 Mpc containing N = 5123 particles. Moreover, in
the P-test simulation we identify haloes at z = 0 using the AMIGA
Halo Finder (anr; Gill, Knebe & Gibson 2004; Knollmann & Knebe
2009), instead of the surIND halo finder used in both the training
simulation and the W-test simulation. This allows us to simultane-
ously test the sensitivity of the machine learning algorithm to the
choice of halo finder. For each test simulation, we extracted the
input features from the initial conditions and used the pre-trained
machine learning algorithm to predict the class labels of the simu-
lations’ dark matter particles.

In Fig. 7, we compare the performance of the machine learning
algorithm for the independent W- and P-test simulations with that
of the test set of particles in the training simulation. The upper panel
shows the ROC curves obtained from predictions based on the den-
sity features only, whilst the lower panel shows the case of density
and shear features. The machine learning algorithm produces con-
sistent ROC curves in all three simulations for both feature sets.
The P-test simulation yields a difference in AUC with the train-
ing simulation of 0.2 per cent for the density-only feature set and
1.1 percent for the density and shear feature set. For the W-test
simulation, the AUC difference with the training simulation is of

4The cosmological parameters are 24 = 0.6914, Q;, =0.3086, 2, = 0.045,
og =0.831, h = 0.6727, and ng = 0.96.
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1.3 per cent for the density-only feature set and 1.6 per cent for the
density and shear feature set. Such differences between the test and
training simulations are consistent with uncertainties in the AUC
due to statistical noise.

The EPS and ST predicted labels are calculated from the first
upcrossings of each simulation’s respective particles’ trajectories.
In all three simulations, the machine learning algorithm is able to
match the analytic predictions at different probability thresholds,
such that the ST formalism consistently predicts a less contami-
nated but more incomplete set of IN class particles. For the W-test
simulation, the EPS and ST predictions match the machine learn-
ing predictions at probability thresholds of 41.5 and 74.5 per cent,
respectively, differing only slightly to the 42.8 and 74.7 per cent
probability thresholds of the training simulation. For the P-test
simulation, the match to the EPS and ST predictions is found at
the lower probability thresholds of 40 and 56 per cent, respectively.
This is because the change in cosmological parameters in the Planck
simulation results in a slightly lower EPS collapse barrier and a sig-
nificantly lower ST collapse barrier compared to those in a WMAP5
cosmological setting. Therefore, trajectories in the P-test simula-
tion upcross the collapse barriers at larger smoothing mass scales,
resulting in more complete but also less pure sets of predicted IN
particles. The change in completeness and contamination is such
that both the ST and EPS predictions still match the machine learn-
ing ROC curves of the P-test simulation, but for lower probability
thresholds than the WMAPS5 simulations.

We conclude that the mapping learnt by the algorithm on one
simulation can be generalized to different simulations based on the
same or different cosmological parameters, without the need for
retraining, and that the results are insensitive to simulation settings.

8 CONCLUSIONS

We have presented a machine learning approach to investigate the
physics of dark matter halo formation. We trained the algorithm on
N-body simulations, from which it learns to predict whether regions
of an initial density field later collapse into haloes of a given mass
range. This generated a mapping between the initial conditions and
final haloes that would result from non-linear evolution, without the
need to adopt halo collapse approximations. Our approach provided
new physical insight into halo collapse, in particular in understand-
ing which aspects of the initial linear density field contain relevant
information on the formation of dark matter haloes.

We provided the algorithm with a set of properties describing
the local environment around dark matter particles. By studying
the performance of the algorithm in response to different inputs,
insights can be gained into the physics relevant to dark matter halo
formation. When the algorithm was trained on spherical overden-
sities from the linear density field, we found that it matched pre-
dictions based on EPS theory. When providing the algorithm with
additional information on the tidal shear field (motivated by el-
lipsoidal collapse approximations), the classification performance
of the machine learning was not enhanced. We showed that, for
the mass threshold considered in our classification problem, the ST
ellipsoidal collapse model can be recovered from spherical overden-
sities alone, with predictions that differ from those of EPS theory
only in the completeness-to-contamination trade-off. By performing
blind analyses of our pipeline, we confirmed the generality of our
results for independent initial conditions realizations and variations
in cosmological parameters. We conclude that the linear density
field contains sufficient information to predict the formation of dark
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matter haloes at the accuracy of existing spherical and ellipsoidal
collapse analytic frameworks.

While the focus of this paper has been on the density field and
tidal shear field, any additional property of interest can be extracted
from the initial conditions and used as input to the same machine
learning algorithm. This allows for straightforward extensions of
the present work to investigate the physics of dark matter halo
formation further. Future work could also extend the binary classi-
fication problem presented in this work into multiclass classification
or regression problems. Potential applications of such an extended
framework include a new approach to obtaining a halo mass func-
tion, which can be directly tested against existing fitting formulae
adopted by analytic approaches. More sophisticated machine learn-
ing algorithms such as deep learning offer the ability to learn from
the training data that features are the most relevant to cosmological
structure formation, and future work will investigate their suitability
for structure formation studies.
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