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Upcoming photometric lensing surveys will considerably tighten constraints on the neutrino mass and
the dark energy equation of state. Nevertheless it remains an open question of how to optimally extract the
information and how well the matter power spectrum must be known to obtain unbiased cosmological
parameter estimates. By performing a principal component analysis (PCA), we quantify the sensitivity of
3D cosmic shear and tomography with different binning strategies to different regions of the lensing kernel
and matter power spectrum, and hence the background geometry and growth of structure in the Universe.
We find that a large number of equally spaced tomographic bins in redshift can extract nearly all the
cosmological information without the additional computational expense of 3D cosmic shear. Meanwhile a
large fraction of the information comes from small poorly understood scales in the matter power spectrum,
that can lead to biases on measurements of cosmological parameters. In light of this, we define and compute
a cosmology-independent measure of the bias due to imperfect knowledge of the power spectrum. For a
Euclid-like survey, we find that the power spectrum must be known to an accuracy of less than 1% on scales
with k ≤ 7h Mpc−1. This requirement is not absolute since the bias depends on the magnitude of modeling
errors, where they occur in k-z space, and the correlation between them, all of which are specific to any
particular model. We therefore compute the bias in several of the most likely modeling scenarios and
introduce a general formalism and public code, RequiSim, to compute the expected bias from any
nonlinear model.
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I. INTRODUCTION

As photons travel from distant galaxies, their paths are
gravitationally distorted by inhomogeneities in the gravi-
tational field. This changes the ellipticities of observed
galaxies, which on the largest scales is referred to as cosmic
shear. Since this shear signal is sensitive to both the growth
of structure and the background geometry of the Universe,
by measuring the statistics of these distortions over a large
number of galaxies it is possible to constrain cosmological
parameters [1–4].
As the number of source galaxies in most surveys peaks

in the relatively low redshift Universe, below z ¼ 2, cosmic
shear experiments are primarily sensitive to physics
encoded by cosmological parameters that affect the late
Universe. This makes weak lensing an ideal probe to
distinguish between models of dark energy and determine
the sum of the masses of neutrinos [5].
We are entering a golden age of Stage IV weak lensing

experiments [6] as data from Euclid1 [7], WFIRST2 [8], and

LSST3 [9] will be available within the next decade. Before
these data sets arrive, it is important to determine the
optimal method to extract cosmological information.
At present there are two proposed methods that use shear

information in different ways: so-called “tomography” and
“3D cosmic shear”, proposed in [10,11], respectively. The
former refers to identically weighting galaxies at all red-
shifts and compresses the data into tomographic bins,
where all galaxies inside a certain redshift range are
assigned the same redshift; using this approach, the
expected errors on the dark energy equation of state
parameters converge for approximately 10–20 bins [12].
Meanwhile the latter technique refers to a weighting
scheme only, where data along the line of sight are given
the spherical-Bessel weight that depends on radial and
angular wave numbers within a single redshift bin. We
discuss the motivation for this weight in Appendix A.
Comparing these two techniques is the first of objective

of this paper. We compare tomography and 3D cosmic
shear using the new Generalized Lensing and Shear Spectra
(GLaSS) code, soon to be made publicly available [13]
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as part of the Cosmosis [14] modular cosmological
software package.
As no data compression takes place, it has been suggested

that spherical-Bessel weighted lensing is more sensitive to
radial information [11,15,16]. However, in tomography,
compressing the data by coarsely binning in the radial
direction is not strictly necessary. While it is true that for
a very large number of redshift bins, shot noisewill dominate
in the intrabin power spectra (“autocorrelation”) of bins, the
interbin power spectra (“cross-correlation”) between bins is
free of shot noise and will contain the majority of the
information. We investigate these issues in this paper.
In any case, stage IV experiments offer at least an order

of magnitude improvement in precision over existing
surveys. With increasing statistical precision it is important
to keep systematics in check to ensure that measurements
remain unbiased, to avoid far-reaching but incorrect con-
clusions. Potential sources of bias include photometric
redshift errors [17], inaccurate intrinsic alignment models
[18], and instrumental inaccuracies and uncertainties [19].
An additional uncertainty comes from the difficultly in

modeling nonlinearities [20] and baryonic effects [21] at
small scales (high k-modes), leading to inaccurate matter
power spectrum models. There is no easy way to separate
out the signal contributions from these small scales because
small scale perturbations in the matter power spectrum at
low redshift contribute to the same modes in the signal as
larger scale perturbations at higher redshift. To avoid
contamination from these poorly understood scales, it is
imperative to understand how bias in power spectrum
modeling propagates through to bias on the lensing signal
itself. This is the second objective of this work.
In Sec. II we derive expressions for the signal and the

noise for the most general weighted two-point statistic and
show how tomography and 3D cosmic shear are both just
special cases. Next we present a heuristic guide to the
principal component analysis (PCA) formalism that we will
use to assess the information content of these statistics.
A more detailed exposition can be found in Appendix C.
We also show how biases in the matter power spectrum
modeling can be summarized in terms of a “knowledge
matrix” (that encodes the level of knowledge one has about
the matter power spectrum model, including correlations
between k-modes and redshift) and present a cosmological
parameter-independent measure of the bias in the lensing
signal due to matter power spectrum modeling errors. In
Sec. IV, we determine how 3D cosmic shear and tomo-
graphic lensing are sensitive to the matter power spectrum
and the lensing kernel, using the formalism presented in
Sec. II. We show the bias in the lensing statistics induced by
biases in the matter power spectrum for a variety of
knowledge matrices corresponding to realistic cases.
Our code, RequiSim, used in this last part is made

publicly available andcan be used to assesswhether anygiven
matter power spectrum simulation or model is accurate

enough for a Euclid-like lensing survey. Finally in the
Appendices we outline our modeling choices, discuss moti-
vations for the spherical-Bessel weight in 3D cosmic shear,
provide details about PCA formalism, address the challenges
of removing sensitivity to small scales in the matter power
spectrum, and provide information about RequiSim.

II. COSMIC SHEAR FORMALISM

A. The generalized spherical transform

The shear field is defined everywhere, but it can only be
sampled at the position of galaxies. We can transform the
sampled shear field into the spherical-Bessel basis. This is
commonly referred to as “3D cosmic shear” or “3D weak
lensing.” In this case the shear field is given by

γlmðηÞ ¼
ffiffiffi
2

π

r X
g

γgðrg; θgÞjlðηrgÞ2YlmðθgÞ; ð1Þ

where the sum is over all galaxies g, jlðηrgÞ are spherical
Bessel functions and 2YlmðθgÞ are spin-2 spherical harmon-
ics. Motivations for the Bessel weight are discussed in
Appendix A. Here we explicitly write the harmonic variable
as η, so that it is not confused with k, which is used to denote
the wave number in the matter power spectrum only.
As discussed in [22], we could also weight the data by an

arbitrary weight function, W. In [22] this is taken to be a
function of the comoving distance r only, but in general the
weight function can also depend on a radial and angular
wave number η and l: Wlðη; rÞ. Weights were also
considered in [23,24], but we consider a more general
formalism. Replacing the Bessel functions with a general
weight, we define the generalized spherical transform
given by

γlmðηÞ ¼
ffiffiffi
2

π

r X
g

γgðrg; θgÞWlðη; rgÞ2YlmðθgÞ; ð2Þ

where η is a label that can be a wave number or a real-space
quantity. The expression for the lensing matter power
spectrum becomes

Cγγ
l ðη1; η2Þ ¼

9Ω2
mH4

0

16π4c4
ðlþ 2Þ!
ðl − 2Þ!

Z
dk
k2

Gγ
lðη1; kÞGγ

lðη2; kÞ;

ð3Þ

where Ωm is the fractional energy density of matter, c is the
speed of light in a vacuum, and H0 is the present day
Hubble constant. The G-matrix is defined as

Gγ
lðη; kÞ≡

Z
dzpdz0nðzpÞpðz0jzpÞ

×Wlðη; r½z0�ÞUlðr½z0�; kÞ ð4Þ
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and the U-matrix, which contains all the cosmological
information, is given by

Ulðr½z�;kÞ≡
Z

r

0

dr0
FKðr;r0Þ
aðr0Þ jlðkr0ÞP1=2ðk;r0Þ: ð5Þ

In the above expressions nðzÞ is the radial distribution of
galaxies; photometric uncertainty pðzjz0Þ gives the prob-
ability that a galaxy has a redshift z, given a photometric
redshift measurement z0; Pðk; rÞ is the matter power
spectrum; r is the comoving distance; and the lensing
kernel, FKðr; r0Þ, is defined as

FKðr; r0Þ≡ r − r0

rr0
; ð6Þ

for a flat cosmology. We are implicitly assuming an equal-
time power spectrum throughout. This has been found to be
a good approximation [25].
The weights also propagate to the shot noise [22], which

becomes

Nee
l ðη1;η2Þ¼

σ2e
2π2

Z
dznðzÞWlðη1;rÞWlðη2;rÞ; ð7Þ

where σ2e is the variance of the intrinsic ellipticities in
galaxies. We take σe ¼ 0.3 throughout [26].
When taking the weight function, Wlðη; rðzÞÞ ¼ jlðηrÞ

in Eqs. (4) and (7), the normal 3D cosmic shear equations
are recovered. For the bin associated with redshift region I,
in the tomographic case, we take the weight function, WI ,
in Eq. (4) as a top hat function in redshift only, so that

WIðzÞ≡
�
1 if z ∈ I

0 if z ∉ I
ð8Þ

and the shot noise reduces to

Nij ¼
σ2e
2π2

Niδij; ð9Þ

where i and j label the bin numbers andNi is the number of
galaxies in bin i.
The expressions above can be simplified further. As

found in [27], the extended Limber approximation, given
in [28], is sufficiently accurate for l > 100. Then the
U-matrix becomes

Ulðr; kÞ ¼
Fkðr; νðkÞÞ
kaðνðkÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2ðlþ 1=2Þ
r

P1=2ðk; νðkÞÞ; ð10Þ

where νðkÞ≡ lþ1=2
k . This implies that for fixed l-modes

above l ≈ 100, the signal is sensitive to the power spectrum
only along the curve lþ 1=2 ¼ kr [28]. We refer to these
curves as “Limber lines” in the ðk; r½z�Þ plane (they are
plotted in Fig. 9 for different l-modes).

The prefactors used in the equations above for the signal
and noise do not follow the standard notation. However
once we have made the Limber approximation [given in
Eq. (10)], our expressions reduce to the usual ones given in
[10,29]. Our convention is taken to be consistent with the
one used in [11].

B. A review of cosmic shear likelihood analyses

We review the details of the likelihood analysis used to
extract cosmological information from cosmic shear data.
This has been used successfully to constrain cosmological
parameters in [2,4,30].
Assuming the likelihood is Gaussian, the likelihood for a

set of parameters, p, is

lnLðpÞ ¼ −
1

2

X
a;b

½Da − TaðpÞ�C−1
ab ½Db − TbðpÞ�; ð11Þ

where Da is a data vector, Ta is a theory vector, and C−1
ab is

the inverse covariance matrix between elements of the data
vector.
The covariance can be computed from ray-tracing

simulations [2], bootstrapped directly from the data [31],
computed from fast lognormal simulations [4,32,33], or by
approximating the shear field as a Gaussian random field
[34]. A thorough discussion of the relative merits of each of
these approaches is given in [2].
In a power spectrum analysis, the data vector is the

spectrum of the observed generalized spherical-
transformed shear field defined in Eq. (2). Meanwhile
the theory vector is computed from Eq. (3).
In practice it is difficult to account for the impact of

mask on the theory vector. For this reason, most analyses
take the data and theory vectors as two-point correlation
functions ξ�. This data vector is readily computed from a
shear catalogue and the theory vector is found by first
computing the raw lensing spectrum and then applying a
filter. More details can be found in [27]. The filter
preferentially weights the sensitivity to certain modes in
the lensing spectrum. We ignore this complication in this
work and focus on the information contained in the raw
lensing power spectrum.
Once the covariance matrix is known, we can sample to

compute the posterior of the cosmological parameters. The
computation time is dominated by the calculation of the
lensing spectrum and in particular the computation of
the matter power spectrum. It is infeasible to run a full
N-body simulation at each point in parameter space so we
must resort to fast emulator simulations to compute the
matter power spectrum. These suffer from a loss of
accuracy at small scales.
In the remainder of this paper we try to answer the

following two questions:
(i) Assuming that the covariance matrix can be com-

puted to sufficient accuracy, what is the optimal
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transform weight in Eq. (2)? If we further restrict our
attention just to the tomographic case, what is the
optimal binning strategy?

(ii) Since the theory vector depends on the matter
power spectrum, to what accuracy does this have
to be known to obtain an unbiased cosmological
measurement?

C. Tomographic binning strategy

In this paper we investigate two different tomographic
binning schemes: equal galaxies per bin and equally spaced
redshift bins. These are shown for 10-bin tomography in
Fig. 1. We have overlaid the bin boundaries onto the
predicted Euclid wide-field differential galaxy distribution,
defined by ∂NðzÞ

∂z ≡ Ng
∂nðzÞ
∂z , where Ng is the number of

galaxies in the survey. An equal number of galaxies per bin
is the convention; and for less than 20 bins, it captures more
information than equally spaced bins in redshift (see Fig. 4
and the discussion in Secs. IVA and IV B). However, to
completely capture the 3D information, around 100 bins
must be used (see Secs. IVA and IV B). This presents two
challenges for the equal number of galaxies per bin scheme:

(i) Since the distribution of galaxies, nðzÞ, falls sharply
for high redshifts, the last bin will span a large
z-range. Thus high redshift information will be lost
unless an incredibly large number of bins are used.

(ii) Meanwhile if more than 20 bins are used, thewidth of
the tomographic bins near the peak of nðzÞ becomes
very small. Placing an equal number of galaxies into
each bin would require globally increasing the
resolution, slowing the computation time.

For the later reason, we will only consider tomography with
an equal number of galaxies per bin, up to 20 bins.
While it is unconventional to use over 20 bins in a

likelihood analysis, we stress that it barely increases the
computation time of the theory vector. Using our algorithm,
it takes 1.55 seconds to compute the lensing spectrum
once the matter power spectrum has been computed for 100
bins, compared to 1.40 seconds for 10 bins on a single
2.7 GHz Intel i5 Core on a 2015 Macbook Pro with 8 GB
of RAM. We stress that although it is easy to compute
the theory vector with a large number of bins, it may be
difficult to compute a significantly accurate inverse covari-
ance due to numerical noise [2].

III. PRINCIPLE COMPONENTS AND BIAS

A. A heuristic guide to principle component analysis

Assuming a fiducial cosmology it is possible to compute
the lensing spectra given in Eq. (3). Then for any set of
parameters, fθig, we can estimate the constraining power
of a lensing survey using the Fisher matrix formalism.
Details are given in Appendix B.
The parameters are often degenerate. For example, the

purple oval in Fig. 2 represents the 2σ confidence limit on

parameters θ1 and θ2 estimated from a Fisher matrix
analysis. Nevertheless, it is possible to rotate into a new
basis of parameters, fAig, which are independent, as in the
second panel of Fig. 2.
In this paper we will divide the comoving distance rðzÞ

and the temporally evolving power spectrum Pðk; zÞ into
cells in z and z-k, respectively, closely following the
analysis of [35]. We estimate constraints on the amplitude
of these cells from cosmic shear using the Fisher matrix
formalism. As in the example above, the amplitudes of
these cells are expected to be degenerate, so we find new
linear combinations of these cells called components,
whose amplitude are independent. Thus the components
extract independent information.

FIG. 1. Differential number of galaxies as a function of redshift
for two different tomographic binning strategies. Top: 10 bins
with an equal number of galaxies per bin. Equal galaxy binning
captures most of the information with a small number of bins (see
Fig. 4), but an extremely large number of bins would be needed to
capture the high-redshift information since the highest redshift
bin is so wide. For a larger number of bins, near the peak of the
distribution the bin width would fall below the resolution of the
computation grid. Bottom: 10 bins spaced equally in redshift.
This binning strategy does not capture as much information for a
small number of bins (see Fig. 4), but it is easy to increase the
number of bins.
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The components that are most tightly constrained are
called the principle components (PCs). The sum of the
inverse variance of each of the components, which we write
as Itot, is called the “total information content” and is a
figure of merit for the constraining power of an experiment.
We investigate how many PCs are needed to extract the

majority of the information. Ordering the components from
the most to the least tightly constrained, we compute the
information fraction, extracted as a function of the number
of principle components.
Since we are interested in where information from the

lensing kernel [Eq. (6)] and power spectrum come from in
k-z space, we compute the Cramer-Rao bound on the
amplitude inside each cell [σCRBðrðzÞÞ and σCRBðPðk; zÞÞ
for comoving distance and power spectrum cells, respec-
tively]. We also compute the variance weighted sum (Svw)
on the amplitude of each cell. The first measures the inverse
conditional error on each cell, while the second measures
how tightly different regions of the comoving distance and
power spectrum are constrained, while accounting for
correlations between cells. More details can be found in
the Appendices C and D.
Since the information about the comoving distance is

contained in the lensing kernel, we refer to the comoving
distance PCs as lensing kernel PCs for the remainder of
the text.

B. Review of the overlap integral formalism

As well as understanding where lensing information
originates, we must also understand the bias. The statistical
error expected from upcoming surveys is fixed by the
survey volume and the number of observed galaxies. To
obtain unbiased results without increasing the statistical
error, contributions from all sources of bias must be kept
below a certain threshold. We review the formalism in [19]
(hereafter M12), which defines this threshold.
M12 considered an experiment which measured a

parameter with a Gaussian likelihood and statistical

uncertainty σ. The bias, b, shifted the likelihood distribu-
tion, but did not change its shape. The distance between the
two distributions was quantified by the overlap integral
between the shifted and unshifted distributions:

poverlapðbÞ ¼ 1 − erf

�
1

2
ffiffiffi
2

p jbj
σ

�
: ð12Þ

If this was greater than 0.95 (or less conservatively 0.90),
then the results are said to be unbiased.
However, if the exact value of the bias was known, it

could be subtracted off, so the authors of M12 reinterpreted
b as a 95% confidence limit on the true bias. If the
knowledge of the bias is also normally distributed, its
standard deviation is then σb ¼ b=2. Marginalizing over
poverlapðbÞ by drawing b values from this distribution and
using the same overlap criteria as before defines require-
ments on the magnitude of the bias jbj. These are jbj <
0.31σð0.62σÞ for a 95%(90%) overlap.
M12 used this formalism to place requirements on the

total systematic bias needed for an unbiased measurement
of the dark energy equation of state. However, stage IV
cosmic shear experiments will place new constraints on
other interesting parameters like the sum of neutrino
masses and wa in the Chevalier-Polarski-Linder paramet-
rization [36,37]. We need to ensure that these, and
parameters in any other cosmological parametrization,
will not be biased from inaccurate models of the power
spectrum.
Perturbations to the lensing kernel and matter power

spectrum will not have the same impact on the lensing
spectrum. Thus we assume that these two varieties of PCs
are only weakly correlated. Then, to check whether
inaccurate power spectrum models induce bias, it is
sufficient to ensure that power spectrum PCs are unbiased,
and we can ignore bias propagating into the lensing kernel
PCs. This is done by generalizing the 1D overlap integral
formalism to higher dimensions in the next section.

FIG. 2. This figure illustrates the procedure of calculating the principle components (see Sec. III A) and the variance weighted
overlap (see Sec. III C), which measures the bias in higher-dimensional spaces. Left: Parameter constraints for two degenerate
parameters θ1 and θ2 from a cosmic shear experiment. Middle: Rotation into a new basis of parameters that are independent. Right:
A bias, b, is drawn from the dark hashed oval representing the covariance on our modeling uncertainty. The new shifted covariance,
centered on b, is represented by the red oval. The overlap integral between the shifted and unshifted distribution marginalized onto
each direction is shown. Weighting these by the inverse variance on parameters A1 and A2 and marginalizing over all shifts defines
the variance weighted overlap RðPVWOÞ.
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C. The variance weighted overlap

In analogy with the 1D case, we compute a higher-
dimensional overlap integral between a biased and
unbiased distribution. We envision a high-dimensional
parameter space of PC amplitudes and we will measure
a generalization of the overlap between biased and
unbiased probability distributions of these amplitudes.
Since the parameters of interest are the power spectrum

PCs, the distribution of biases in the unbiased case is taken
to be the multivariate Gaussian with a mean of zero and a
covariance calculated from inverting the diagonal Fisher
matrix in PCA space.
The distribution in the biased case has a shift in the mean

(the multivariate equivalent of jbj) that is drawn from a
Gaussian with mean zero and covarianceK. We refer to this
covariance as the “knowledge matrix”, since it describes
our confidence in our knowledge of the power spectrum.
The 2σ confidence region from this covariance is repre-
sented by the dark hashed ellipse in Fig. 2. We interpret bi
as a 95% confidence limit on the true bias on principal
component i.4 The elements of K are then defined by

Kij ≡ bi
2

bj
2
: ð13Þ

The values of the resulting marginalized overlap integral
are uninformative because they depend on the number
of PCs included beyond those which contain 99% of the
information (intuition about hypervolumes in higher-
dimensional spaces is often wrong [38]).
We instead define a new measure called the variance

weighted overlap (PVWO), which reduces to the margin-
alized overlap integral in 1D used in [19]. We draw shifts in
the mean from a multivariate Gaussian with the covariance
given by the knowledge matrix. Then, instead of computing
the hypervolume of the overlap region, we marginalize to
compute the 1D overlaps in each direction, forming a set of
1D overlap volumes fpig for each principal component i.
Since not all PCs are equally important, we take an

inverse variance weighted average over this set to form the
variance weighted probability overlap given by

PVWO ≡
P

iwipiP
iwi

; ð14Þ

where wi is the inverse variance on principal component i.
Keeping consistency with M12, if PVWO > 95%, then the
result is said to be unbiased. The requirements using this
formalism are described in Sec. IV C.
This procedure is illustrated in the right panel of Fig. 2.

The blue oval represents the unshifted measured covariance

centered on the origin O. A bias, b, is drawn from the dark
hashed oval representing the covariance on our modeling
uncertainty. The new shifted covariance, centered on b, is
represented by the red oval. Marginalizing onto each axis,
we compute the overlap integral between the shifted and
unshifted distribution on each parameter. After weighting
these by the inverse variance on each component and
marginalizing over all shifts, we find the variance weighted
overlap (PVWO).

IV. RESULTS

A. Lensing kernel PCs

We determine the lensing kernel PCs for tomography
with an equal number of galaxies per bin, tomography
with equally spaced z bins and 3D cosmic shear with
lmax ¼ 3000. We will refer to equally spaced z-bin tomog-
raphy with 100 bins as “supertomography”. The PCAs for
supertomography with smaller l-mode cuts are also found.
Our modeling choices (see Appendix E) mimic the Euclid
wide survey. The PCs are found in 40 redshift slices
with z ∈ ð0.; 3.0�.
The supertomographic PCs are shown in Fig. 3, along

with the fiducial comoving distance which is actually being
constrained, the Cramer-Rao bound, the variance weighted
sum, and a plot of the fraction of the information content
captured by the first N PCs. From the Cramer-Rao bound
and variance weighted sum, it is clear that Euclid will
primarily be sensitive to the lensing kernel for redshifts in
the range z ∈ ð0.1; 1.0Þ. Also, only three PCs are needed to
capture 92% of the information.
The PCs for 10-bin tomography with an equal number

of galaxies per bin and 3D cosmic shear look nearly
identical to the supertomographic ones plotted in Fig. 3.
However, slightly less information is captured for both
of the other analyses. This is summarized in Table I,
Case I.
3D cosmic shear should capture as much information as

supertomography since no radial data compression takes
place. This is not the case in our analysis, where 3D cosmic
shear captures 6% less information than supertomography.
This is because in order to calculate the lensing spectra
quickly, we use a low-resolution computation grid. In
Appendix F, we investigate using a higher-resolution
computation grid using lower-resolution PCs. At the high-
est resolution we considered, only 3% of the information is
lost to numerical noise (Table I, Case II).
In 10-bin tomography, 6% of the lensing kernel infor-

mation is lost due to inherent data compression. Using
more bins would help reduce this number and we examine
the convergence of the total information content for differ-
ent binning strategies in Fig. 4. Initially an equal number
of galaxies per bin converges more quickly, but it is
infeasible for a large number of bins and information is
lost at high redshifts (see Sec. II C). Meanwhile an equal

4In practice the knowledge matrix should be found in k-z
space, where it is known for a given simulation, and rotated into
PCA space.
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redshift spacing binning strategy captures 99%(99.9%)
with 50(90) bins.
The relative difference in the Cramer-Rao bound

between tomography and supertomography is shown in
Fig. 5. This confirms that 10-bin tomography loses infor-
mation at high redshifts, beyond z ¼ 1, as expected. This
difference is unimportant for constraining the dark energy
equation of state parameters—that only become relevant
below z ∼ 1, explaining the quick convergence of dark
energy constraints with the number of tomographic bins
found in [12]. However, these higher redshifts are precisely

where we expect a cross-correlation signal with CMB
lensing. Cross-correlating with the CMB lensing signal will
help bring lensing systematics under control [39] to
substantially improve the dark energy and neutrino mass
figure of merit [15].
Finally we assess the impact of angular scale cuts.

Taking l-cuts reduces the sensitivity to the lensing kernel.
This is shown in Table II. When taking l-cuts, information
is primarily lost at intermediate redshifts, near z ¼ 0.5. This
can be seen from Fig. 6, where the Cramer-Rao bounds on
the lensing kernel for different l-cuts are plotted.

TABLE I. The total information content, Itot [see Eq. (C3)], in the lensing kernel and the matter power spectrum.
Specifically we compare 3D cosmic shear, supertomography (100 equally space bins in redshift), and 10-bin
tomography in GLaSS. Case I: High-resolution PCA grid and low-resolution computation grid. Supertomography
outperforms 10-bin tomography because there is no data compression in the former case. It also outperforms 3D
cosmic shear due, but only due to slow convergence of the latter technique (see Case II). Case II: Low-resolution
PCA grid and high-resolution computation gird. Numerically, 3D cosmic shear has converged to within 3% of
supertomography.

Case I Case II

PCA run statistic Supertomography 3Da Supertomography 3Da 10-bin tomography

Itot (lensing kernel) 1.00 0.94 0.94 1.00 0.97
Itot (power spectrum) 1.00 0.77 0.99 1.00 0.97

aDue to the slow numerical convergence of 3D cosmic shear, the total information content of is not fully
converged for 3D lensing case (see Appendix F and Fig. 13).

FIG. 3. The first two supertomographic lensing kernel principal components, the transverse comoving distance for the fiducial
cosmology, the Cramer-Rao bound, the variance weighted sum, and the information fraction for the number of principal components.
See Sec. III A for an explanation of the terminology. From Svw and the Cramer-Rao bound, this method is primarily sensitive to
z ∈ ½0.; 1.5�. Three PCs capture the majority of the information.
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B. Power spectrum PCs

We compute the power spectrum PCs for tomography
with an equal number of galaxies per bin, tomography
with equally spaced z bins, and 3D cosmic shear with

lmax ¼ 3000. PCs for supertomography with lower l-cuts
are also found. To save time, we compute these on a coarse
grid before zooming in on the region of primary sensitivity
by first perturbing the matter power spectrum on a 5 × 5
grid logarithmically spaced in k and linearly spaced in z.
More than 95% of the signal is contained in the first two z
bins and the last two k bins. The PCs are then computed on
a 10 × 10 grid just inside this region.
The resulting PCs for supertomography are shown in

Fig. 7 and the total information content is displayed in
Table I, Case I. A high-resolution supertomography PCA
run, on a 20 × 20 grid, is plotted in Fig. 9. Due to memory
constraints, a high-resolution run is not done for 3D
cosmic shear.
The supertomographic PCs look very similar to those

of 3D cosmic shear (not shown), but since the eigenvalues
are larger, more information is extracted (see Table I) in
the former case, but just like in the lensing kernel case,
this is due to the slow numerical convergence of 3D
cosmic shear. The ratio of the information contents of 3D
cosmic shear and supertomography is plotted in Fig. 13
on a two-by-two PCA grid. By a resolution of N ¼ 5000,
the relative information content of 3D cosmic shear is
within 3% of supertomography. This is displayed in
Table I, Case II.

FIG. 4. Fraction of the total information content, Itot, of super-
tomography for different binning strategies as a function of the
number of tomographic bins. Red: Equally spaced bins in redshift.
Blue: Equal number of galaxies per bin. Solid lines: Power
spectrum information fraction. Dashed lines: Lensing kernel
information fraction. An equal number of galaxies per bin initially
converges faster, but this binning scheme loses information at high
z and is intractable for a large number of bins (see Sec. II C). A
total of 99%(99.9%) of the information is captured from both the
lensing kernel and the power spectrum with 50(90) bins.

FIG. 5. The relative difference in the Cramer-Rao bounds, on the
lensing kernel, between supertomography and 10-bin tomography
with an equal number of galaxies per bin. 10-bin tomography
primarily loses information at high z (see Sec. II C). At redshifts
above z ¼ 2, more than half the lensing kernel information is lost
in the 10 bin case. The difference in the total information content
extracted remains small since most of the information comes from
redshifts below z ¼ 1.5. The small peak in the plot at z ¼ 1.3 is
due to the coarseness of 10-bin tomography, and we have checked
that this feature disappears when more bins are used.

TABLE II. Relative information content, Itot [see Eq. (C3)], for
the lensing kernel and the power spectrum for 10-bin tomography
with different l-cuts. The maximum values of l are denoted as
lmax. For cuts below l ¼ 1000, ∼50% of the information is lost.

lmax 3000 2500 2000 1500 1000 500

Itot (lensing kernel) 1.00 0.94 0.86 0.75 0.60 0.38
Itot (power spectrum) 1.00 0.94 0.84 0.71 0.51 0.26

FIG. 6. The supertomographic Cramer-Rao bound on the
lensing kernel with different l-cuts. Information is primarily
lost at intermediate redshifts, near z ¼ 0.5, and catastrophically
lost below lmax < 1000.
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The shape of the PCs is not surprising. The first principal
component is a relatively broad feature following the
Limber line l ∼ 1500. Meanwhile the higher PCs show
multiple broad features tracing multiple Limber lines. This
is particularly noticeable for the higher-resolution PCs in
Fig. 9. In the absence of shot noise, each l-mode is
independent and sensitive to the power spectrum along the
Limber lines. However, shot noise induces correlation
between Limber lines (l-modes), as the uncertainty on
neighboring bins in the power spectrum is correlated,
causing the broad features in the PCs. We have performed
a test without shot noise, and the principal components
trace separate Limber lines exactly, without broadening, as
expected.
The lensing kernel ensures that cosmic shear experi-

ments are most sensitive to regions of the matter power
spectrum that are at half the comoving distance of the
bulk of the source galaxies in the survey. Along with the
temporally evolving amplitude of the power spectrum,
this ensures that lensing is primarily sensitive to the
power spectrum in the redshift range z ∈ ½0.1; 0.6�
(see Fig. 7).
The convergence of total information content with

different binning strategies is plotted in Fig. 4. For an
equal redshift spacing binning strategy, 99%(99.9%) of the
power spectrum information is captured in 20(60) bins.

Meanwhile, around half of the signal to the power
spectrum lies above k ¼ 1.5 hMpc−1. At such small
scales, the power spectrum is difficult to model, and
there is usually a modeling error of around 10% [40].
High- and low-k bins are correlated along the PCs, so a
modeling error on the former will induce a bias in the
later. We quantify the bias for different l-mode cuts in
Sec. IV D.
Taking an l-mode cut removes sensitivity above a

given k-cut. This is because low-l Limber lines only lie
above the k-cut at low redshift, where the sensitivity is
suppressed by the lensing kernel, which peaks at half
the distance to the peak of the galaxy distribution near
z ¼ 0.7. This is shown in Fig. 9, where we project the
inverse error onto the z- and k-axes, taking the average.
Cuts below l ¼ 1000 significantly reduce the sensitivity
to scales smaller than k ¼ 1.5h Mpc−1, but around half
the sensitivity to the power spectrum is lost (see also
Table II). Meanwhile, the amount of information gained
by including more l-modes slows rapidly above
l ¼ 2500.

C. Correlations in power spectrum bias

We use PCs for supertomography for the remainder of
Sec. IV, since these fully capture the 3D information.

FIG. 7. The first two supertomographic lensing power spectrum PCs, the power spectrum of the fiducial cosmology, the Cramer-Rao
bound, the variance weighted sum, and the information fraction. See Sec. III A for an explanation of the terminology. Cosmic shear is
primarily sensitive to the power spectrum at large scales above 0.5h Mpc−1 and at low redshift. Nearly half the signal lies above
k ¼ 1.5 hMpc−1, where the power spectrum becomes hard to model. Within principal components, bins are strongly correlated across
this cut so power spectrum modeling errors at high k induces bias at low k.
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It is clear that for cosmic shear studies not all regions of
the matter power spectrum are equally important. Since
lensing is barely sensitive to the power spectrum above
k ¼ 10h Mpc−1, modeling errors at smaller scales can be
large without inducing bias on parameters inferred from
cosmic shear. Meanwhile, accurately modeling the power
spectrum near k ¼ 1.5h Mpc−1, where the sensitivity
peaks, is extremely important. However there is a more
subtle effect that can dramatically change the requirement
on the accuracy of power spectrum models. This is the
degeneracy in modeling errors between regions in the
power spectrum.
In Sec. III C we defined the variance weighted overlap

(PVWO) as a measure of bias, which depends on the
correlation between biases in different regions. These
correlations describe what we call the “shape of the
knowledge matrix”. This is illustrated in two dimensions
by the ellipticity and orientation of the dark hashed ellipse
in Fig. 2. We plot the effect of having differently shaped
knowledge matrices in Fig. 10. Here the PVWO as a function

of the variance is plotted as a function of the bias
normalized against the statistical variance: hb2i=hσ2i.5
Four cases are considered. The first two are extremes,

while the second two are more realistic:
(i) K has the same shape as the PC covariance C,

appropriately normalized. PVWO > 0.95 requires
hb2i=hσ2i < 0.15.

(ii) K has the same shape as the inverse PC covariance,
C−1. PVWO > 0.95 requires hb2i=hσ2i < 0.005.

(iii) Lensing PCs are completely independent of the
techniques used to generate power spectra, so it is
reasonable to assume that the biases on individual
PCs are uncorrelated, in which case K is propor-
tional to the identity. PVWO > 0.95 requires
hb2i=hσ2i < 0.02.

(iv) In the limit of linear growth, all k-modes are
independent and the power spectrum grows accord-
ing to a growth factor. It is then reasonable to assume
that the biases are uncorrelated for different k bins,
but maximally correlated at different redshifts for
fixed k. K is computed in k − z and then rotated to
PCA space. We refer to this as the “fiducial shape”
and use this shape in all that follows. PVWO > 0.95
requires hb2i=hσ2i < 0.01.

Even in the last two most realistic cases, the degeneracy
between modeling errors in different regions changes the
requirements on the modeling bias by a factor of 2.

D. Simulation requirements

We now put constraints on the magnitude of the bias, jbj,
for a Euclid-like survey, assuming K has the fiducial shape
(modeling assumptions are listed in Appendix E). In
practice a knowledge matrix should be estimated from a
real simulation, but in this section we examine a few test
cases which are motivated above. For applications to real
simulations, our code, RequiSim, is made public.
Figure 11 shows the PVWO as a function of jbj, assumed

to be constant everywhere, for different l-mode cuts.
Ensuring that PVWO > 0.95 requires jbj < 1%ð3%Þ for
lcut ¼ 3000ð500Þ. In practice, there are other contributions
to the error budget beyond modeling the power spectrum,
so the requirement on PVWO should be made more
stringent.
Finally in Fig. 12, we consider the more realistic case in

which the bias varies across some transition wave number:
k ¼ kb. We assume 10% bias above kb and 1% below. If the
power spectrum can be modeled to within 1% down to
scales kb ¼ 7h Mpc−1, then PVWO > 0.95 for all l-cuts.

FIG. 8. The average Cramer-Rao projected onto the z-axis
(above) and k-axis (below) for different l-mode cuts in 10-bin
tomography. Cuts below l ∼ 1000 significantly reduce the
sensitivity to k-modes above 1.5h Mpc−1.

5These are computed by rescaling each element of C by a
constant factor so that TrðCÞ ¼ d, where d is the number of
dimensions in the PCA basis so that hσ2i ¼ 1. Then K is
normalized so that TrðKÞ ¼ db2=4 in the basis where K is
diagonal. In 1D, this reduces to the normalization convention
used in M12.
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However, as kb is decreased corresponding to lowering the
k-mode above which one feels confident in the accuracy of
a simulation, PVWO starts to fall off. This is particularly
noticeable if we use a large lmax. In fact if there is a 10%
bias above kb ¼ 1.1h Mpc−1 and only 1% below, then we
would need to take an lcut < 1000 to get an unbiased result.

Meanwhile, since the lensing signal is extremely insen-
sitive to large k-modes, models of the power spectrum
at large k can be extremely inaccurate without biasing
results. For example, using an lcut ¼ 3000 assuming a bias
of 50% above kb ¼ 7h Mpc−1 and 0.5% below still yields
PVWO > 0.95.
With these constraints, accurately modeling baryonic

effects that affect large scales below k ¼ 1h Mpc−1, like
AGN feedback [41], must take priority. Accurately model-
ing small scale effects, like radiative gas cooling [41],

FIG. 10. PVWO for different covariance K. Correlation between
bias in different k-z regions has a large effect on simulation
requirements. Factor of 3 difference on hb2i=hσ2i requirements
for PVWO > 0.95. For extreme K, K is correlated with lensing
PCs covariance C (blue) and anticorrelated with C (green). For
realistic K, K is diagonal and constrains all PCs equally well
(red). Cyan shows the fiducial K-shape (see Fig. 11).

FIG. 11. PVWO as a function of jbj for different l-mode cuts.
Bias is naively assumed to be maximally correlated in k and
constant everywhere. To ensure PVWO > 0.95 for lmax ¼
3000ð500Þ requires the bias to be less than 1%(3%).

FIG. 9. The first three high-resolution supertomographic power spectrum PCs, the Cramer-Rao bound, the variance weighted sum, and
the information fraction. The PCs follow Limber lines [see discussion below Eq. (10)] plotted for different l-modes in black.

PREPARING FOR THE COSMIC SHEAR DATA FLOOD: … PHYS. REV. D 98, 043532 (2018)

043532-11



which only becomes important beyond k ¼ 5h Mpc−1, is
less important for cosmic shear studies.

V. CONCLUSION

We have compared the sensitivity of tomographic
lensing with different binning strategies and 3D cosmic
shear to the power spectrum and lensing kernel, independ-
ently from any assumptions about the underlying cosmo-
logical model. We draw the following conclusions:

(i) While 3D cosmic shear captures the full 3D in-
formation content, it is slow and difficult to
compute.

(ii) While tomography using an equal number of gal-
axies per bin captures the majority of the informa-
tion with very few bins and is computational
straightforward, this technique loses information
at high redshifts. This is where the cross-correlations
with CMB lensing will be strongest.

(iii) Tomography using equally spaced redshift bins
does not capture as much information as tomog-
raphy using an equal number of galaxies per bin
with very few bins; however, it incurs little com-
putational cost to increase the number of bins to
capture all the 3D information. We estimate that
99%ð99.9%Þ of the information from both the
lensing kernel and the power spectrum will be
captured with 50(90) bins.

Nevertheless, the large covariance produced with a
large number of bins may pose a challenge for a full
likelihood analysis. Using our generalized formalism it
should be possible to construct a weight function
that retains the speed advantage of tomography while

capturing the majority of information in just a few modes.
This is left to a future work. Meanwhile, the majority of
the structure growth information is extracted from the
power spectrum in the region k ∈ ½1h Mpc−1; 7h Mpc−1�
and z ∈ ½0.1; 1.0�.
Sensitivity to such high-k modes poses a problem.

Nonlinear and baryonic physics which are hard to model
become important at these scales. We have investigated
how bias from incorrectly modeling these scales propagates
to bias in the signal.
Generalizing the analysis in [19] to higher dimensions,

we have shown that requirements depend not only on the
magnitude of the bias but where they occur in k − z space
and on the correlation between biases at different scales and
redshifts.
Assuming that the biases are maximally correlated in

redshift along fixed k, and uncorrelated for different
k-modes, as they would be in the limit of linear growth,
and that the bias is the same everywhere, we find the power
spectrum must be modeled to at least 1% accuracy for
k ≤ 7h Mpc−1. There are also other sources of bias, so the
power spectrum should be modeled more accurately than
this so that it does not subsume all of its error budget
allocation. This will depend on the extent to which other
systematics are brought under control.
Unless correlations between errors in different regions of

the power spectrum are extremely anticorrelated with the
lensing PCs, then current simulations are not at the stage
where they can be used without taking an l-cut. The stated
accuracy of HALOFIT [42] is 5% for k ≤ 1h Mpc−1 and
10% for k ≤ 10h Mpc−1. Meanwhile, COSMIC EMU [43]
reports 4% accuracy for k ∈ ½0.1h Mpc−1; 10h Mpc−1� and
HMCode [40] reports 5% accuracy for k ∈ ½0.1h Mpc−1;
10h Mpc−1�.
Our assumptions are likely oversimplistic, so we provide

the public code, RequiSim, to compute the bias on the
lensing signal from inaccurate power spectrum models
produced by any simulation.
Although we have not computed the bias on the

lensing signal for existing power spectrum codes, we
can provide a qualitative road map forward for simulators.
Since the power spectrum is largely insensitive to scales
k > 7h Mpc−1, simulators should focus on accurately
modeling scales of k < 7h Mpc−1 first.
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FIG. 12. PVWO assuming a 10% error above the transition wave
number k ¼ kb and 1% below, for different l-cuts. In this
scenario, to avoid taking an l-cut, the power spectrum should
be known up to k ∼ 4h Mpc−1 for unbiased results. Increasing
our knowledge of the power spectrum at scales smaller than
k ∼ 7h Mpc−1 does not significantly change the bias on the
lensing signal.
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APPENDIX A: MOTIVATION FOR THE
BESSEL WEIGHT

There are in general three reasons to write a signal in
spherical-Bessel space:
(1) Spherical-Bessel functions follow an orthogonality

relation [44].
(2) Spherical-Bessel functions and spherical harmonics

are eigenfunctions of the Laplace operator in spheri-
cal coordinates. This ostensibly comes from the
Laplacian used to relate the lensing potential and
hence the shear in terms of the density field through
the power spectrum.

(3) If the observed signal traces the cosmological
density field directly, e.g., as is the case in galaxy
clustering, then at a redshift z, the projected power
spectrum of the signal in a spherical-Bessel repre-
sentation, Clðk; zÞ, is related to the matter power
spectrum, Pðk; zÞ, by an equality [44]:

Clðk; zÞ ¼ Pðk; zÞ: ðA1Þ

This implies that cutting out high k-modes from the
observed projected spectrum should cleanly remove
sensitivity to small, poorly understood, high-k mode
scales in the matter power spectrum [45].

The first consideration is a valid reason to use a
spherical-Bessel basis set for weak lensing as it ensures
that the shot noise [see Eq. (7)] is uncorrelated and does
not become too large. However, any orthogonal set of
functions will suffice in Eq. (1), and the Bessel functions
are needlessly expensive to compute compared to other
choices.
The second consideration is not relevant here because

only the Newtonian potential must be expressed in this
basis to relate it to the cosmological density field, through a
Poisson equation; this is where the Bessel functions in
Eq. (5) originate [44].
Meanwhile, the lensing power spectrum, Cl, traces all

matter power below a certain redshift, weighted by a
lensing kernel; i.e., the power spectrum is always enclosed
within an integral over the line of sight. Hence, there is no
reason that taking an η-cut should preferentially remove
sensitivity to small scales in the matter power spectrum.
However, confusion can arise by labeling both the lensing
spectrum and the power spectrum wave number with k, and
equating the two. We further discuss directly removing
sensitivity to small scales in Appendix H.

APPENDIX B: FISHER MATRIX FORMALISM

Before conducting an experiment, the Fisher matrix can
be used to estimate constraints and predict degeneracies
for a set of parameters, fθig [46]. We use it to estimate
constraints on different regions of the matter power

spectrum and lensing kernel and to predict correlations
between them.
Provided the likelihood is Gaussian, the Fisher matrix for

cosmic shear is

Fij ¼
X
l

2lþ 1

2
Tr½C−1

l Cl;iC−1
l Cl;j�; ðB1Þ

where Cl;i is the derivative of the lensing spectrum with
respect to parameter θi.
Normally the sensitivity to the original parameters is

given by the covariance matrix, C, found by inverting the
Fisher matrix. However, in our analysis we produce many
large, ill-conditioned, and nearly singular Fisher matrices,
so inversion introduces too many numerical artifacts.
Instead we use the Cramer-Rao bound. Defining σi as
the conditional error on θi, the Cramer-Rao bound is

1

σi
≤

ffiffiffiffiffiffi
Fii

p
; ðB2Þ

assuming all other parameters are known [46]. This
measure of uncertainty does not account for the correlations
between parameters. An alternative measure, which does, is
defined in Appendix C.

APPENDIX C: PRINCIPAL COMPONENT
ANALYSIS

For any experiment we can choose a set of parameters
and estimate their covariance. A PCA finds a smaller set
of independent parameters that capture the majority of the
information. Informally these can be thought of as the
parameters that are actually being measured, or that the data
are in fact sensitive to.
For a set of N parameters, fθig, the covariance matrix,

C≡ F−1, encodes parameter degeneracies. Since it is
symmetric, it can be rotated into an eigenbasis where there
are no degeneracies:

C ¼ PTDP; ðC1Þ

where D is a diagonal matrix of N nonzero eigenvalues, P
is a matrix formed of real eigenvectors of C, and PT is the
transpose of P.
These new parameters, fζig, are related to the old

parameters by

ζi ¼
X
j

ðviÞjθj; ðC2Þ

where vi is the ith eigenvector of C and the ith row of the
matrix P. When we apply this formalism to the power
spectrum and lensing kernel, the set fζig will correspond
to the amplitudes of a set of step functions, ffig, which
can be formed from fvig. We refer to these functions as
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“components” and the value of the jth element of vi
denotes the height of cell j in component i. For power
spectrum and lensing kernel PCs, the cells will define
regions in k − z space and z space, respectively (see the
next Appendix for more details).
The components with the smallest eigenvalues are the

most tightly constrained and hence they contain the most
information. Arranging the components according to
ascending order in the corresponding eigenvalues, λi,
and also the diagonal components of D, we define the
fractional information content of the first m eigenvalues as

IðmÞ ¼
P

i<mλi
Itot

; ðC3Þ

where Itot ≡P
iλi. The first few components, which con-

tain the majority of the information, are called the principal
components (PCs). Meanwhile, the total information con-
tent, Itot, is also occasionally referred to as the “figure
of merit” (FoM). This measure will be useful to compare
the total constraining power of 3D and tomographic
cosmic shear.
To avoid inverting the Fisher matrix which may be ill

conditioned, we will calculate the PCs directly. Inverting C
in Eq. (C1), we find

F ¼ PTD−1P; ðC4Þ

and the PCs correspond to the largest eigenvalues along the
diagonal of D−1.
The total sensitivity to different regions can also be

found without inverting F by taking a weighted sum of the
components, fi, in terms of the information content of
each. This is given by the variance weighted sum defined as

Svw ¼
X
i

λijfij: ðC5Þ

The absolute value is taken because individual components
have positive and negative values. Since Svw is computed in
PCA space, it naturally takes into account correlations
between components, unlike the Cramer-Rao bound.

APPENDIX D: POWER SPECTRUM AND
LENSING KERNEL PRINCIPAL COMPONENTS

To determine how 3D and tomographic cosmic shear are
sensitive to the matter power spectrum and the lensing
kernel, we perform a PCA, closely following the procedure
in [35]. Our analysis assesses the sensitivity to the growth
of structure and background evolution independently from
any assumption of the underlying cosmological model.
To find the power spectrum PCs, we divide the power

spectrum, Pðk; zÞ, into logarithmically and linearly spaced
grid cells in k and z, respectively. Inside each grid cell, i, we
compute the fractional amplitude change in the power:

Piðk;z;AÞ≡
�ð1þAÞPðk;zÞ if ðk;zÞ in cell i
Pðk;zÞ otherwise;

ðD1Þ

where A is a fixed small amplitude change. Defining each
of these transformations as a parameter, θi, we compute a
two-sided derivative:

∂P
∂θi ¼

Piðk; z;AÞ − Piðk; z;−AÞ
2A

: ðD2Þ

From these we compute the Fisher matrix, and hence the
PCs. In [35], the authors computed the PCs on a low-
resolution matter power spectrum grid, before smoothly
interpolating to higher resolution. Therefore it is unclear
how much of the structure seen in their PCs is due to
interpolation errors. Our method avoids this issue since the
matter power spectrum is perturbed only after interpolation.
Interpolation errors can thus be seen as a small change to
the fiducial power spectrum.
We find the lensing kernel PCs by dividing the comoving

distance into equally spaced redshift slices and making the
perturbation:

riðz;AÞ≡
� ð1þAÞrðzÞ if zin slice i

rðzÞ otherwise:
ðD3Þ

Hence the perturbed lensing kernel is

ðFkÞiðAÞ ¼ riðz;AÞ − r0iðz;AÞ
riðz;AÞr0iðz;AÞ : ðD4Þ

Again treating each perturbation as a separate parameter, θi,
we define the two-sided derivative as

∂Fk

∂θi ¼
ðFkÞiðAÞ − ðFkÞið−AÞ

2A
; ðD5Þ

and compute the Fisher matrix as before.
In theory there are correlations between power spectrum

PCs and lensing kernel PCs inside a much larger Fisher
matrix. However, perturbations to the power spectrum have
a very different effect on the lensing signal to perturbations
to the lensing kernel so we assume that the two types of PCs
are uncorrelated.

APPENDIX E: MODELING CHOICES

We assume a Gaussian distribution for the photometric
redshift error given by

pðzjzpÞ≡ 1

2πσzðzpÞ
e
−ðz−ccalzpþzbiasÞ2

2σzp ; ðE1Þ

with ccal¼1, zbias ¼ 0, and σzp ¼ Að1þ zpÞwith A ¼ 0.05
[47] and
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nðzpÞ ∝
a1
c1

e
−ðz−0.7Þ2

b2
1 þ e

−ðz−1.2Þ2
d2
1 ; ðE2Þ

with ða1=c1;b1;d1Þ¼ð1.5=0.2;0.32;0.46Þ [48]. We assume
a 15 000 degree survey with 30 galaxies per arcmin2.
We use a fiducial lambda cold dark matter cosmology

with ðΩm;Ωk;Ωb;h0;ns;As;τÞ¼ð0.315;0.0;0.04;0.67;0.96;
2.1×109;0.08Þ throughout. The power spectrum is gen-
erated using CAMB [49] and the nonlinear part is generated
using HALOFIT [42], produced as part of the Cosmosis
[14] pipeline, each run with the default setting given in the
demo1 tutorial in Cosmosis.

APPENDIX F: CONVERGENCE CHECKS

To reduce computation time, we compute the Fisher
matrix sampling sparsely in l, taking

Fij ¼
X
l∈L

Δl
2lþ 1

2
Tr½C−1

l Cl;iC−1
l Cl;j�; ðF1Þ

where l is sampled at ½2; 12; 25; 50; 75� below 100, then at
intervals of 50 to l ¼ 2000, and finally intervals of 100 to
l ¼ 3000. This cuts the computation time by nearly an
order of magnitude. For 10-bin tomography this leads to a
<7% error inside the variance weighted sum in the largest
power spectrum PCA bin and <0.1% average error across
all bins, compared to the Fisher where every l-mode is
sampled.
The lensing power spectrum is computed on an N × N

grid logarithmically spaced in k and linearly space in z. For

our analysis, tomography and supertomography are fully
converged for N ¼ 400, which we have used throughout.
As 3D cosmic shear converges slowly, we test the con-
vergence of 3D cosmic shear on a coarse PCA grid: two by
two and two by one for the power spectrum and lensing
kernel, respectively. The convergence of the information
content as a function of N, relative to supertomography, is
shown in Fig. 13.

APPENDIX G: COMPARISON
WITH OTHER WORK

Tomographic and 3D cosmic shear were recently
compared in [16] (hereafter SM18) which reports a
decrease in the error on some modified gravity param-
eters of 20–30% for 3D cosmic shear compared to 6 bin
tomography with an equal number of galaxies per bin.
Meanwhile, we only find a 15% and 2% increase in the
total information, Itot, for the lensing kernel and power
spectrum, respectively, when going from this regime to
supertomography.
The slightly smaller gains in our analysis are expected

due to two differences in modeling assumptions. SM18
used lmax ¼ 1000, while we used lmax ¼ 3000. The higher
l-cut used in our analysis means we are relatively more
sensitive to lower redshifts below z ¼ 0.5 (see Fig. 8).
However, tomography with an equal number of galaxies
per bin primarily loses information at higher redshifts,
beyond z ¼ 1 (see Fig. 5). SM18 used a linear power
spectrum, while we used a nonlinear which relatively
boosts our sensitivity to high-k modes in the power
spectrum. Again these modes are primarily probed at
low z (see Fig. 9), where tomography with an equal
number of galaxies per bin loses information.

APPENDIX H: DIRECTLY REMOVING
SENSITIVITY TO SMALL SCALE POWER

As small scales, modeling errors introduce bias. Ideally it
would be possible to remove sensitivity to these modes
above some kcut. We split the matter power spectrum into
two parts: Pk>kcut and Pk<kcut , where the former contains
only power above the cut and the later power below. The
resulting lensing spectra, Ck>kcut

l and Ck<kcut
l , were calcu-

lated. The spectra have power at nearly identical modes,
making it difficult to reduce the sensitivity to small scales
without also losing sensitivity to the signal.

APPENDIX I: REQUISIM

RequiSim is available for download from https://
github.com/astro-informatics/RequiSim. Using precom-
puted PCs and a user-provided knowledge matrix,
RequiSim computes the PVWO for a Euclid-like survey.
PCs for other surveys can be computed on request.

FIG. 13. Convergence of 3D cosmic shear total information
content, Itot [see Eq. (C3)], relative to supertomography as a
function of the resolution of the computation grid. Both the lensing
kernel and power spectrum Itot converge towithin 3%at a resolution
of N ¼ 5000 and 20% at N ¼ 2000. Itot’s were computed on a
coarse PCA grid sampled very sparsely in l. Due to memory
constraints, N ¼ 2000 throughout the rest of the paper.
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