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We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls 414 

of diverse ancestry, identifying 40 coding variant association signals (p<2.2x10-7): of these, 415 

16 map outside known risk loci. We make two important observations. First, only five of 416 

these signals are driven by low-frequency variants: even for these, effect sizes are modest 417 

(odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to 418 

fine-map the associated variants in their regional context, accounting for the global 419 

enrichment of complex trait associations in coding sequence, compelling evidence for 420 

coding variant causality was obtained for only 16 signals. At 13 others, the associated 421 

coding variants clearly represent “false leads” with potential to generate erroneous 422 

mechanistic inference. Coding variant associations offer a direct route to biological insight 423 

for complex diseases and identification of validated therapeutic targets: however, 424 

appropriate mechanistic inference requires careful specification of their causal 425 

contribution to disease predisposition. 426 

 427 

Genome-wide association studies (GWAS) have identified thousands of association 428 

signals influencing multifactorial traits such as type 2 diabetes (T2D) and obesity1-7. Most of 429 

these associations involve common variants that map to non-coding sequence, and 430 

identification of their cognate effector transcripts has proved challenging. Identification of 431 

coding variants causally implicated in trait predisposition offers a more direct route from 432 

association signal to biological inference. 433 

The exome occupies 1.5% of overall genome sequence, but for many common diseases, 434 

coding variants make a disproportionate contribution to trait heritability8,9. This enrichment 435 

indicates that coding variant association signals have an enhanced probability of being 436 

causal when compared to those involving an otherwise equivalent non-coding variant. This 437 

does not, however, guarantee that all coding variant associations are causal. Alleles driving 438 

common-variant (minor allele frequency [MAF] ≥5%) GWAS signals typically reside on 439 

extended risk haplotypes that, owing to linkage disequilibrium (LD), incorporate many 440 

common variants10,11. Consequently, the presence of a coding allele on the risk haplotype 441 

does not constitute sufficient evidence that it represents the causal variant at the locus, or 442 

that the gene within which it lies is mediating the association signal. Since much coding 443 

variant discovery has proceeded through exome-specific analyses (either exome-array 444 

genotyping or exome sequencing), researchers have often been poorly-placed to position 445 
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coding variant associations in the context of regional genetic variation. It is unclear how 446 

often this may have led to incorrect assumptions regarding their causal role. 447 

In our recent study of T2D predisposition12, we surveyed the exomes of 34,809 T2D 448 

cases and 57,985 controls, of predominantly European descent, and identified 13 distinct 449 

coding variant associations reaching genome-wide significance. Twelve of these associations 450 

involved common variants, but the data hinted at a substantial pool of lower-frequency 451 

coding variants of moderate impact, potentially amenable to detection in larger samples. 452 

We also reported that, whilst many of these signals fell within common variant loci 453 

previously identified by GWAS, it was far from trivial to determine, using available data, 454 

whether those coding variants were causal or ‘hitchhiking’ on risk haplotypes. 455 

Here, we report analyses that address these two issues. First, we extend the scope of 456 

our exome-array genotyping to include data from 81,412 T2D cases and 370,832 controls of 457 

diverse ancestry, substantially increasing power to detect coding variant associations across 458 

the allele-frequency spectrum. Second, to understand the extent to which identification of 459 

coding variant associations provides a reliable guide to causal mechanisms, we undertake 460 

high-resolution fine-mapping of identified coding variant association signals in 50,160 T2D 461 

cases and 465,272 controls of European ancestry with genome-wide genotyping data. 462 

 463 

RESULTS 464 

 465 

Discovery study overview. First, we set out to discover coding variant association signals by 466 

aggregating T2D association summary statistics in up to 452,244 individuals (effective 467 

sample size 228,825) across five ancestry groups, performing both European-specific (EUR) 468 

and trans-ethnic (TE) meta-analyses (Supplementary Tables 1 and 2). Analysis was 469 

restricted to the 247,470 variants represented on the exome-array. Genotypes were 470 

assembled from: (a) 58,425 cases and 188,032 controls genotyped with the exome-array; (b) 471 

14,608 cases and 174,322 controls from UK Biobank and GERA (Resource for Genetic 472 

Epidemiology on Adult Health and Aging) genotyped with GWAS arrays enriched for exome 473 

content and/or coverage of low-frequency variation across ethnic groups13,14; and (c) 8,379 474 

cases and 8,478 controls with whole-exome sequence from GoT2D/T2D-GENES12 and 475 

SIGMA15 studies. Overall, this represented a 3-fold increase in effective sample size over our 476 

previous study of T2D predisposition within coding sequence12. To deconvolute the impact 477 
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of obesity on T2D-associated variants, association analyses were conducted with and 478 

without body mass index (BMI) adjustment. 479 

We considered p<2.2x10-7 as significant for protein truncating variants (PTVs) and 480 

moderate impact coding variants (including missense, in-frame indel and splice region 481 

variants) based on a weighted Bonferroni correction that accounts for the observed 482 

enrichment in complex trait association signals across sequence annotation16. This threshold 483 

matches those obtained through other approaches such as simple Bonferroni correction for 484 

the number of coding variants on the exome-array (Methods). Compared to our previous 485 

study12, the expanded sample size substantially increased power to detect association for 486 

common variants of modest effect (e.g. from 14.4% to 97.9% for a variant with 20% MAF 487 

and odds ratio [OR]=1.05) and lower-frequency variants with larger effects (e.g. from 11.8% 488 

to 97.5% for a variant with 1% MAF and OR=1.20) assuming homogenous allelic effects 489 

across ancestry groups (Methods). 490 

 491 

Insights into coding variant association signals underlying T2D susceptibility. We detected 492 

significant associations at 69 coding variants under an additive genetic model (either in BMI 493 

unadjusted or adjusted analysis), mapping to 38 loci (Supplementary Fig. 1, Supplementary 494 

Table 3). We observed minimal evidence of heterogeneity in allelic OR between ancestry 495 

groups (Supplementary Table 3), and no compelling evidence for non-additive allelic effects 496 

(Supplementary Fig. 2, Supplementary Table 4). Reciprocal conditional analyses (Methods) 497 

indicated that the 69 coding variants represented 40 distinct association signals (conditional 498 

p<2.2x10-7) across the 38 loci, with two distinct signals each at HNF1A and RREB1 499 

(Supplementary Table 5). These 40 signals included the 13 associations reported in our 500 

earlier publication12, each featuring more significant associations in this expanded meta-501 

analysis (Supplementary Table 6). Twenty-five of the 40 signals were significant in both EUR 502 

and TE analyses. Of the other 15, three (PLCB3, C17orf58, and ZHX3) were significant in EUR, 503 

and all reached pTE<6.8x10-6 in the TE analysis: for PLCB3 and ZHX3, risk allele frequencies 504 

were substantially lower outside European descent populations. Twelve loci 505 

(Supplementary Table 3) were significant in TE alone, but for these (except PAX4 which is 506 

East Asian specific), the evidence for association was proportionate in the smaller EUR 507 

component (pEUR<8.4x10-5). 508 
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Sixteen of the 40 distinct association signals mapped outside regions previously 509 

implicated in T2D susceptibility (Methods, Table 1). These included missense variant signals 510 

in POC5 (p.His36Arg, rs2307111, pTE=1.6x10-15), PNPLA3 (p.Ile148Met, rs738409, pTE BMI-511 

adjusted=2.8x10-11), and ZZEF1 (p.Ile2014Val, rs781831, pTE=8.3x10-11). 512 

In addition to the 69 coding variant signals, we detected significant (p<5x10-8) and 513 

novel T2D-associations for 20 non-coding variants (at 15 loci) that were also assayed on the 514 

exome-array (Supplementary Table 7). Three of these (POC5, LPL, and BPTF) overlap with 515 

novel coding signals reported here. 516 

 517 

Contribution of low-frequency and rare coding variation to T2D susceptibility. Despite 518 

increased power and good coverage of low-frequency variants on the exome-array12, 35 of 519 

the 40 distinct coding variant association signals were common, with modest effects (allelic 520 

ORs 1.02-1.36) (Supplementary Fig. 3, Supplementary Table 3). The five signals attributable 521 

to lower-frequency variants were also of modest effect (allelic ORs 1.09-1.29) 522 

(Supplementary Fig. 3). Two of the lower-frequency variant signals were novel, and in both, 523 

the minor allele was protective against T2D: FAM63A p.Tyr95Asn (rs140386498, MAF=1.2%, 524 

OR= 0.82 [0.77-0.88], pEUR=5.8x10-8) and ANKH p.Arg187Gln (rs146886108, MAF=0.4%, 525 

OR=0.78 [0.69-0.87], pEUR=2.0x10-7). Both variants were very rare or monomorphic in non-526 

European descent individuals. 527 

In Fuchsberger et al.12, we highlighted a set of 100 low-frequency coding variants 528 

with allelic ORs between 1.10 and 2.66, which despite relatively large estimates for liability-529 

scale variance explained, had not reached significance. In this expanded analysis, only five of 530 

these variants, including the two novel associations at FAM63A p.Tyr95Asn and ANKH 531 

p.Arg187Gln, attained significance. More precise effect-size estimation in the larger sample 532 

size indicates that OR estimates in the earlier study were subject to a substantial upwards 533 

bias (Supplementary Fig. 3). 534 

To detect additional rare variant association signals, we performed gene-based 535 

analyses (burden and SKAT17) using previously-defined “strict” and “broad” masks, filtered 536 

for annotation and MAF12,18 (Methods). We identified gene-based associations with T2D 537 

susceptibility (p<2.5x10-6, Bonferroni correction for 20,000 genes) for FAM63A (10 variants, 538 

combined MAF=1.9%, pEUR=3.1x10-9) and PAM (17 variants, combined MAF=4.7%, 539 

pTE=8.2x10-9). On conditional analysis (Supplementary Table 8), the gene-based signal at 540 
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FAM63A was entirely attributable to the low-frequency p.Tyr95Asn allele described earlier 541 

(conditional p=0.26EUR). The gene-based signal for PAM was also driven by a single low-542 

frequency variant (p.Asp563Gly; conditional pTE=0.15). A second, previously-described, low-543 

frequency variant, PAM p.Ser539Trp19, is not represented on the exome-array, and did not 544 

contribute to these analyses. 545 

 546 

Fine-mapping of coding variant association signals with T2D susceptibility. These analyses 547 

identified 40 distinct coding variant associations with T2D, but this information is not 548 

sufficient to determine that these variants are causal for disease. To assess the role of these 549 

coding variants given regional genetic variation, we fine-mapped these association signals 550 

using a meta-analysis of 50,160 T2D cases and 465,272 controls (European-descent only; 551 

partially overlapping with the discovery samples), which we aggregated from 24 GWAS. 552 

Each component GWAS was imputed using appropriate high-density reference panels (for 553 

most, the Haplotype Reference Consortium20; Methods, Supplementary Table 9). Before 554 

fine-mapping, distinct association signals were delineated using approximate conditional 555 

analyses (Methods, Supplementary Table 5). We included 37 of the 40 identified coding 556 

variants in this fine-mapping analysis, excluding three (those at the MHC, PAX4, and ZHX3) 557 

that were, for various reasons (see Methods), not amenable to fine-mapping in the GWAS 558 

data. 559 

For each of these 37 signals, we first constructed “functionally-unweighted” credible 560 

variant sets, which collectively account for 99% of the posterior probability of association 561 

(PPA), based exclusively on the meta-analysis summary statistics21 (Methods, 562 

Supplementary Table 10). For each signal, we calculated the proportion of PPA attributable 563 

to coding variants (missense, in-frame indel, and splice region variants; Figure 1, 564 

Supplementary Fig. 4 and 5). There were only two signals at which coding variants 565 

accounted for ≥80% of PPA: HNF4A p.Thr139Ile (rs1800961, PPA>0.999) and RREB1 p. 566 

Asp1171Asn (rs9379084, PPA=0.920). However, at other signals, including those for GCKR 567 

p.Pro446Leu and SLC30A8 p.Arg276Trp, for which robust empirical evidence has established 568 

a causal role22,23, genetic support for coding variant causation was weak. This is because 569 

coding variants were typically in high LD (r2>0.9) with large numbers of non-coding variants, 570 

such that the PPA was distributed across many sites with broadly equivalent evidence for 571 

association. 572 
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These functionally-unweighted sets are based on genetic fine-mapping data alone, 573 

and do not account for the disproportionate representation of coding variants amongst 574 

GWAS associations for complex traits8,9. To accommodate this information, we extended the 575 

fine-mapping analyses by incorporating an “annotation-informed prior” model of causality. 576 

We derived priors from estimates of the enrichment of association signals by sequence 577 

annotation from analyses conducted by deCODE across 96 quantitative and 123 binary 578 

phenotypes16 (Methods). This model “boosts” the prior, and hence the posterior 579 

probabilities (we use ‘aiPPA’ to denote annotation-informed PPAs) of coding variants. It also 580 

takes account (in a tissue-non-specific manner) of the GWAS enrichment of variants within 581 

enhancer elements (as assayed through DNase I hypersensitivity) when compared to non-582 

coding variants mapping elsewhere. The annotation-informed model generated smaller 99% 583 

credible sets across most signals, corresponding to fine-mapping at higher resolution 584 

(Supplementary Table 10). As expected, the contribution of coding variants was increased 585 

under the annotation-informed model. At these 37 association signals, we distinguished 586 

three broad patterns of causal relationships between coding variants and T2D risk. 587 

 588 

Group 1: T2D association signal is driven by coding variants. At 16 of the 37 distinct signals, 589 

coding variation accounted for >80% of the aiPPA (Fig. 1, Table 2, Supplementary Table 10). 590 

This was attributable to a single coding variant at 12 signals and multiple coding variants at 591 

four. Reassuringly, group 1 signals confirmed coding variant causation for several loci (GCKR, 592 

PAM, SLC30A8, KCNJ11-ABCC8) at which functional studies have established strong 593 

mechanistic links to T2D pathogenesis (Table 2). T2D association signals at the 12 remaining 594 

signals (Fig. 1, Supplementary Table 10) had not previously been shown to be driven by 595 

coding variation, but our fine-mapping analyses pointed to causal coding variants with high 596 

aiPPA values: these included HNF4A, RREB1 (p. Asp1171Asn), ANKH, WSCD2, POC5, TM6SF2, 597 

HNF1A (p.Ala146Val; p.Ile75Leu), GIPR, LPL, PLCB3, and PNPLA3 (Table 2). At several of 598 

these, independent evidence corroborates the causal role of the genes harbouring the 599 

associated coding variants. For example, rare coding mutations at HNF1A and HNF4A are 600 

causal for monogenic, early-onset forms of diabetes24; and at TM6SF2 and PNPLA3, the 601 

associated coding variants are implicated in the development of non-alcoholic fatty liver 602 

disease (NAFLD)25,26. 603 
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The use of priors to capture the enrichment of coding variants seems a reasonable 604 

model, genome-wide. However, at any given locus, strong priors (especially for PTVs) might 605 

elevate to apparent causality, variants that would have been excluded from a causal role on 606 

the basis of genetic fine-mapping alone. Comparison of the annotation-informed and 607 

functionally-unweighted credible sets for group 1 signals indicated that this scenario was 608 

unlikely. For 11 of the 16 (GCKR, PAM, KCNJ11-ABCC8, HNF4A, RREB1 [p.Asp1171Asn], 609 

ANKH, POC5, TM6SF2, HNF1A [p.Ala146Val], PLCB3, PNPLA3), the coding variant had the 610 

highest PPA in the fine-mapping analysis (Table 2) even under the functionally-unweighted 611 

model. At SLC30A8, WSCD2, and GIPR, the coding variants had similar PPAs to the lead non-612 

coding SNPs under the functionally-unweighted prior (Table 2). At these 14 signals 613 

therefore, coding variants have either greater or equivalent PPA to the best flanking non-614 

coding SNPs under the functionally-unweighted model, but receive a boost in PPA after 615 

incorporating the annotation weights. 616 

The situation is less clear at LPL. Here, fine-mapping resolution is poor under the 617 

functionally-unweighted prior, and the coding variant sits on an extended haplotype in 618 

strong LD with non-coding variants, some with higher PPA, such as rs74855321 (PPA=0.048) 619 

(compared to LPL p.Ser474* [rs328, PPA=0.023]). However, LPL p.Ser474* is annotated as a 620 

PTV, and benefits from a substantially-increased prior that boosts its annotation-informed 621 

ranking (Table 2). Ultimately, decisions regarding the causal role of any such variant must 622 

rest on the amalgamation of evidence from diverse sources including detailed functional 623 

evaluation of the coding variants, and of other variants with which they are in LD. 624 

 625 

Group 2: T2D association signals are not attributable to coding variants. At 13 of the 37 626 

distinct signals, coding variation accounted for <20% of the PPA, even after applying the 627 

annotation-informed prior model. These signals are likely to be driven by local non-coding 628 

variation and mediated through regulatory mechanisms. Five of these signals (TPCN2, MLX, 629 

ZZEF1, C17orf58, and CEP68) represent novel T2D-association signals identified in the 630 

exome-focused analysis. Given the exome-array discoveries, it would have been natural to 631 

consider the named genes at these, and other loci in this group, as candidates for mediation 632 

of their respective association signals. However, the fine-mapping analyses indicate that 633 

these coding variants do not provide useful mechanistic inference given low aiPPA (Fig. 1, 634 

Table 2). 635 
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The coding variant association at the CENTD2 (ARAP1) locus is a case-in-point. The 636 

association with the p.Gln802Glu variant in ARAP1 (rs56200889, pTE=4.8x10-8 but 637 

aiPPA<0.001) is seen in the fine-mapping analysis to be secondary to a substantially stronger 638 

non-coding association signal involving a cluster of variants including rs11603334 639 

(pTE=9.5x10-18, aiPPA=0.0692) and rs1552224 (pTE=2.5x10-17, aiPPA=0.0941). The identity of 640 

the effector transcript at this locus has been the subject of detailed investigation, and some 641 

early studies used islet expression data to promote ARAP127. However, a more recent study 642 

integrating human islet genomics and murine gene knockout data establishes STARD10 as 643 

the gene mediating the GWAS signal, consistent with the reassignment of the ARAP1 coding 644 

variant association as irrelevant to causal inference28. 645 

Whilst, at these loci, the coding variant associations represent “false leads”, this 646 

does not necessarily exclude the genes concerned from a causal role. At WFS1 for example, 647 

coding variants too rare to be visible to the array-based analyses we performed, and 648 

statistically independent of the common p.Val333Ile variant we detected, cause an early-649 

onset form of diabetes that renders WFS1 the strongest local candidate for T2D 650 

predisposition. 651 

 652 

Group 3: Fine-mapping data consistent with partial role for coding variants. At eight of the 653 

37 distinct signals, the aiPPA attributable to coding variation lay between 20% and 80%. At 654 

these signals, the evidence is consistent with “partial” contributions from coding variants, 655 

although the precise inference is likely to be locus-specific, dependent on subtle variations 656 

in LD, imputation accuracy, and the extent to which global priors accurately represent the 657 

functional impact of the specific variants concerned. 658 

This group includes PPARG for which independent evidence corroborates the causal 659 

role of this specific effector transcript with respect to T2D-risk. PPARG encodes the target of 660 

antidiabetic thiazolidinedione drugs and harbours very rare coding variants causal for 661 

lipodystrophy and insulin resistance, conditions highly-relevant to T2D. The common variant 662 

association signal at this locus has generally been attributed to the p.Pro12Ala coding 663 

variant (rs1801282) although empirical evidence that this variant influences PPARG function 664 

is scant29-31. In the functionally-unweighted analysis, p.Pro12Ala had an unimpressive PPA 665 

(0.0238); after including annotation-informed priors, the same variant emerged with the 666 

highest aiPPA (0.410), although the 99% credible set included 19 non-coding variants, 667 
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spanning 67kb (Supplementary Table 10). These credible set variants included rs4684847 668 

(aiPPA=0.0089), at which the T2D-associated allele has been reported to impact PPARG2 669 

expression and insulin sensitivity by altering binding of the homeobox transcription factor 670 

PRRX132. These data are consistent with a model whereby regulatory variants contribute to 671 

altered PPARG activity in combination with, or potentially to the exclusion of, p.Pro12Ala. 672 

Future improvements in functional annotation for regulatory variants (gathered from 673 

relevant tissues and cell types) should provide increasingly granular priors that allow fine-674 

tuned assignment of causality at loci such as this. 675 

 676 

Functional impact of coding alleles. In other contexts, the functional impact of coding 677 

alleles is correlated with: (i) variant-specific features, including measures of conservation 678 

and predicted impact on protein structure; and (ii) gene-specific features such as extreme 679 

selective constraints as quantified by the intolerance to functional variation33. To determine 680 

whether similar measures could capture information pertinent to T2D causation, we 681 

compared coding variants falling into the different fine-mapping groups for a variety of 682 

measures including MAF, Combined Annotation Dependent Depletion (CADD) score34, and 683 

loss-of-function (LoF)-intolerance metric, pLI33 (Methods, Fig. 2). Variants from group 1 had 684 

significantly higher CADD-scores than those in group 2 (Kolmogorov-Smirnov p=0.0031). 685 

Except for the variants at KCNJ11-ABCC8 and GCKR, all group 1 coding variants considered 686 

likely to be driving T2D association signals had CADD-score ≥20. On this basis, we predict 687 

that the East-Asian specific coding variant at PAX4, for which the fine-mapping data were 688 

not informative, is also likely causal for T2D. 689 

 690 

T2D loci and physiological classification. The development of T2D involves dysfunction of 691 

multiple mechanisms. Systematic analysis of the physiological effects of known T2D-risk 692 

alleles has improved understanding of the mechanisms through which they exert their 693 

primary impact on disease risk35. We obtained association summary statistics for diverse 694 

metabolic traits (and other outcomes) for 94 T2D-associated index variants. These 94 were 695 

restricted to sites represented on the exome-array and included the 40 coding signals plus 696 

54 distinct non-coding signals (12 novel and 42 previously-reported non-coding GWAS lead 697 

SNPs). We applied clustering techniques (Methods) to generate multi-trait association 698 

patterns, allocating 71 of the 94 loci to one of three main physiological categories 699 
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(Supplementary Figs. 6, Supplementary Table 11). The first category, comprising nine T2D-700 

risk loci with strong BMI and dyslipidemia associations, included three of the novel coding 701 

signals: PNPLA3, POC5 and BPTF. The T2D associations at both POC5 and BPTF were 702 

substantially attenuated (>2-fold decrease in -log10p) after adjusting for BMI (Table 1, 703 

Supplementary Table 3, Supplementary Fig. 7), indicating that their impact on T2D-risk is 704 

likely mediated by a primary effect on adiposity. PNPLA3 and POC5 are established NAFLD25 705 

and BMI6 loci, respectively. The second category featured 39 loci at which multi-trait profiles 706 

indicated a primary effect on insulin secretion. This set included four of the novel coding 707 

variant signals (ANKH, ZZEF1, TTLL6, ZHX3). The third category encompassed 23 loci with 708 

primary effects on insulin action, including signals at the KIF9, PLCB3, CEP68, TPCN2, 709 

FAM63A, and PIM3 loci. For most variants in this category, the T2D-risk allele was associated 710 

with lower BMI, and T2D association signals were more pronounced after adjustment for 711 

BMI. At a subset of these loci, including KIF9 and PLCB3, T2D-risk alleles were associated 712 

with higher waist-hip ratio and lower body fat percentage, indicating that the mechanism of 713 

action likely reflects limitations in storage capacity of peripheral adipose tissue36. 714 

 715 

DISCUSSION 716 

 717 

The present study adds to mounting evidence constraining the contribution of lower-718 

frequency variants to T2D-risk. Although the exome-array interrogates only a subset of the 719 

universe of coding variants, it captures the majority of low-frequency coding variants in 720 

European populations. The substantial increase in sample size in the present study over our 721 

previous effort12 (effective sample sizes of 228,825 and 82,758, respectively), provides more 722 

robust evaluation of the effect size distribution in this low-frequency variant range, and 723 

indicates that previous analyses are likely, if anything, to have overestimated the 724 

contribution of low-frequency variants to T2D-risk. 725 

The present study is less informative regarding rare variants. These are sparsely 726 

captured on the exome-array. In addition, the combination of greater regional diversity in 727 

rare allele distribution and the enormous sample sizes required to detect rare variant 728 

associations (likely to require meta-analysis of data from diverse populations) acts against 729 

their identification. Our complementary genome and exome sequence analyses have thus 730 

far failed to register strong evidence for a substantial rare variant component to T2D-risk12. 731 
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It is therefore highly unlikely that rare variants missed in our analyses are causal for any of 732 

the common or low-frequency variant associations we have detected and fine-mapped. On 733 

the other hand, it is probable that rare coding alleles, with associations that are distinct 734 

from the common variant signals we have examined and detected only through sequence 735 

based analyses, will provide additional clues to the most likely effector transcripts at some 736 

of these signals (WFS1 provides one such example). 737 

Once a coding variant association is detected, it is natural to assume a causal 738 

connection between that variant, the gene in which it sits, and the phenotype of interest. 739 

Whilst such assignments may be robust for many rare protein-truncating alleles, we 740 

demonstrate that this implicit assumption is often inaccurate, particularly for associations 741 

attributable to common, missense variants. A third of the coding variant associations we 742 

detected were, when assessed in the context of regional LD, highly unlikely to be causal. At 743 

these loci, the genes within which they reside are consequently deprived of their implied 744 

connection to disease risk, and attention redirected towards nearby non-coding variants 745 

and their impact on regional gene expression. As a group, coding variants we assign as 746 

causal are predicted to have a more deleterious impact on gene function than those that we 747 

exonerate, but, as in other settings, coding annotation methods lack both sensitivity and 748 

specificity. It is worth emphasising that empirical evidence that the associated coding allele 749 

is “functional” (i.e. can be shown to influence cognate gene function in some experimental 750 

assay) provides limited reassurance that the coding variant is responsible for the T2D 751 

association, unless that specific perturbation of gene function can itself be plausibly linked 752 

to the disease phenotype. 753 

Our fine-mapping analyses make use of the observation that coding variants are 754 

globally enriched across GWAS signals8,9,16 with greater prior probability of causality 755 

assigned to those with more severe impact on biological function. We assigned diminished 756 

priors to non-coding variants, with lowest support for those mapping outside of DNase I 757 

hypersensitive sites. The extent to which our findings corroborate previous assignments of 758 

causality (often substantiated by detailed, disease-appropriate functional assessment and 759 

other orthogonal evidence) suggests that even these sparse annotations provide valuable 760 

information to guide target validation. Nevertheless, there are inevitable limits to the 761 

extrapolation of these ‘broad-brush’ genome-wide enrichments to individual loci: 762 

improvements in functional annotation for both coding and regulatory variants, particularly 763 
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when gathered from trait-relevant tissues and cell types, should provide more granular, 764 

trait-specific priors to fine-tune assignment of causality within associated regions. These will 765 

motivate target validation efforts that benefit from synthesis of both coding and regulatory 766 

mechanisms of gene perturbation. It also needs to be acknowledged that, without whole 767 

genome sequencing data on sample sizes comparable to those we have examined here, 768 

imperfections arising from the imputation may confound fine-mapping precision at some 769 

loci, and that robust inference will inevitably depend on integration of diverse sources of 770 

genetic, genomic and functional data. 771 

The term “smoking gun” has often been used to describe the potential of functional 772 

coding variants to provide causal inference with respect to pathogenetic mechanisms37. This 773 

study provides a timely reminder that, even when a suspect with a smoking gun is found at 774 

the scene of a crime, it should not be assumed that they fired the fatal bullet. 775 
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FIGURE LEGENDS 926 

 927 

Figure 1 | Posterior probabilities for coding variants across loci with annotation-informed 928 

priors. Fine-mapping of 37 distinct association signals was performed using European 929 

ancestry GWAS meta-analysis including 50,160 T2D cases and 465,272 controls. For each 930 

signal, we constructed a credible set of variants accounting for 99% of the posterior 931 

probability of driving the association, incorporating an “annotation informed” prior model 932 

of causality which “boosts” the posterior probability of driving the association signal that is 933 

attributed to coding variants. Each bar represents a signal with the total probability 934 

attributed to the coding variants within the 99% credible set plotted on the y-axis. When the 935 

probability (bar) is split across multiple coding variants (at least 0.05 probability attributed 936 

to a variant) at a particular locus, these are indicated by blue, pink, yellow, and green 937 

colours. The combined probability of the remaining coding variants is highlighted in grey. 938 

RREB1(a): RREB1 p. Asp1171Asn; RREB1(b): RREB1 p.Ser1499Tyr; HNF1A(a): HNF1A 939 

p.Ala146Val; HNF1A(b): HNF1A p.Ile75Leu; PPIP5K2 : PPIP5K2 p.Ser1207Gly; MTMR3: 940 

MTMR3 p.Asn960Ser; IL17REL: IL17REL p.Gly70Arg; NBEAL2: NBEAL2 p.Arg511Gly, KIF9: 941 

KIF9 p.Arg638Trp. 942 

 943 

Figure 2 | Plot of measures of variant-specific and gene-specific features of distinct coding 944 

signals to access the functional impact of coding alleles. Each point represents a coding 945 

variant with the minor allele frequency plotted on the x-axis and the Combined Annotation 946 

Dependent Depletion score (CADD-score) plotted on the y-axis. Size of each point varies 947 

with the measure of intolerance of the gene to loss of function variants (pLI) and the colour 948 

represents the fine-mapping group each variant is assigned to. Group 1: signal is driven by 949 

coding variant. Group 2: signal attributable to non-coding variants. Group 3: consistent with 950 

partial role for coding variants. Group 4: Unclassified category; includes PAX4, ZHX3, and 951 

signal at TCF19 within the MHC region where we did not perform fine-mapping. Inset: plot 952 

shows the distribution of CADD-score between different groups. The plot is a combination 953 

of violin plots and box plots; width of each violin indicates frequency at the corresponding 954 

CADD-score and box plots show the median and the 25% and 75% quantiles. P value 955 

indicates significance from two-sample Kolmogorov-Smirnov test. 956 

 957 
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Table 1 | Summary of discovery and fine-mapping analyses of the 40 index coding variants associated with T2D (p<2.2x10-7). 958 

Discovery meta-analysis using exome-array component: 81,412 T2D cases and 370,832 controls from diverse ancestries 
Fine-mapping meta-analysis using GWAS: 50,160 T2D 
cases and 465,272 controls from European ancestry 

Locus Index variant rs ID Chr Pos 
Alleles 

RAF 
BMI unadjusted BMI adjusted 

RAF OR L95 U95 p-value Group 
R/O OR L95 U95 p-value OR L95 U95 p-value 

 Previously reported T2D associated loci 

MACF1 MACF1 p.Met1424Val rs2296172 1 39,835,817 G/A 0.193 1.06 1.05 1.08 6.7x10-16 1.04 1.03 1.06 5.9x10-8 0.22 1.08 1.06 1.1 1.6x10-15 3 

GCKR GCKR p.Pro446Leu rs1260326 2 27,730,940 C/T 0.630 1.06 1.05 1.08 5.3x10-25 1.06 1.04 1.07 3.2x10-18 0.607 1.05 1.04 1.07 9.1x10-10 1 

THADA THADA p.Cys845Tyr rs35720761 2 43,519,977 C/T 0.895 1.08 1.05 1.1 4.6x10-15 1.07 1.05 1.10 8.3x10-16 0.881 1.1 1.07 1.12 3.4x10-12 2 

GRB14 COBLL1 p.Asn901Asp rs7607980 2 165,551,201 T/C 0.879 1.08 1.06 1.11 8.6x10-20 1.09 1.07 1.12 5.0x10-23 0.871 1.08 1.06 1.11 3.6x10-10 2 

PPARG PPARG p.Pro12Ala rs1801282 3 12,393,125 C/G 0.887 1.09 1.07 1.11 1.4x10-17 1.10 1.07 1.12 2.7x10-19 0.876 1.12 1.09 1.14 3.7x10-17 3 

IGF2BP2 SENP2 p.Thr291Lys rs6762208 3 185,331,165 A/C 0.367 1.03 1.01 1.04 1.6x10-6 1.03 1.02 1.05 3.0x10-8 0.339 1.02 1.01 1.04 0.01 2 

WFS1 WFS1 p.Val333Ile rs1801212 4 6,302,519 A/G 0.748 1.07 1.06 1.09 1.1x10-24 1.07 1.05 1.08 7.1x10-21 0.703 1.07 1.05 1.09 4.1x10-13 2 

PAM-PPIP5K2 PAM p.Asp336Gly rs35658696 5 102,338,811 G/A 0.045 1.13 1.10 1.17 1.2x10-16 1.13 1.09 1.17 7.4x10-15 0.051 1.17 1.13 1.22 2.5x10-17 1 

RREB1 
RREB1 p.Asp1171Asn rs9379084 6 7,231,843 G/A 0.884 1.08 1.06 1.11 1.1x10-13 1.10 1.07 1.13 1.5x10-17 0.888 1.09 1.06 1.12 1.1x10-9 1 

RREB1 p.Ser1499Tyr rs35742417 6 7,247,344 C/A 0.836 1.04 1.03 1.06 5.5x10-8 1.04 1.02 1.06 2.2x10-7 0.817 1.04 1.02 1.07 0.00012 2 

MHC TCF19 p.Met131Val rs2073721 6 31,129,616 G/A 0.749 1.04 1.02 1.05 1.6x10-10 1.04 1.02 1.05 2.3x10-9 N/A N/A N/A   N/A N/A N/A 

PAX4 PAX4 p.Arg190His rs2233580 7 127,253,550 T/C 0.029 1.36 1.25 1.48 1.8x10-12 1.38 1.26 1.51 4.2x10-13 0 N/A  N/A N/A  N/A N/A 

SLC30A8 SLC30A8 p.Arg276Trp rs13266634 8 118,184,783 C/T 0.691 1.09 1.08 1.11 1.9x10-47 1.09 1.08 1.11 1.3x10-47 0.683 1.12 1.1 1.14 8.2x10-36 1 

GPSM1 GPSM1 p.Ser391Leu rs60980157 9 139,235,415 C/T 0.771 1.06 1.05 1.08 3.2x10-16 1.06 1.05 1.08 6.6x10-16 0.756 1.06 1.04 1.09 8.3x10-8 3 

KCNJ11-ABCC8 KCNJ11 p.Lys29Glu rs5219 11 17,409,572 T/C 0.364 1.06 1.05 1.07 5.7x10-22 1.07 1.05 1.08 1.5x10-22 0.381 1.07 1.05 1.09 8.1x10-16 1 

CENTD2 ARAP1 p.Gln802Glu rs56200889 11 72,408,055 G/C 0.733 1.04 1.02 1.05 4.8x10-8 1.05 1.03 1.06 5.2x10-10 0.727 1.05 1.03 1.07 2.3x10-8 2 

KLHDC5 MRPS35 p.Gly43Arg rs1127787 12 27,867,727 G/A 0.850 1.06 1.04 1.08 1.4x10-11 1.05 1.03 1.07 1.5x10-8 0.842 1.06 1.04 1.09 2.2x10-7 2 

HNF1A 
HNF1A p.Ile75Leu rs1169288 12 121,416,650 C/A 0.323 1.04 1.03 1.06 1.1x10-11 1.04 1.02 1.06 1.9x10-10 0.33 1.05 1.04 1.07 4.6x10-9 1 

HNF1A p.Ala146Val rs1800574 12 121,416,864 T/C 0.029 1.11 1.06 1.15 6.1x10-8 1.10 1.06 1.15 1.3x10-7 0.03 1.16 1.1 1.21 5.0x10-9 1 

MPHOSPH9 SBNO1 p.Ser729Asn rs1060105 12 123,806,219 C/T 0.815 1.04 1.02 1.06 5.7x10-7 1.04 1.02 1.06 1.1x10-7 0.787 1.04 1.02 1.06 3.6x10-5 2 

CILP2 TM6SF2 p.Glu167Lys rs58542926 19 19,379,549 T/C 0.076 1.07 1.05 1.10 4.8x10-12 1.09 1.06 1.11 3.4x10-15 0.076 1.09 1.05 1.12 2.0x10-7 1 

GIPR GIPR p.Glu318Gln rs1800437 19 46,181,392 C/G 0.200 1.03 1.02 1.05 7.1x10-5 1.06 1.04 1.07 6.8x10-12 0.213 1.09 1.06 1.12 4.6x10-9 1 

HNF4A HNF4A p.Thr139Ile rs1800961 20 43,042,364 T/C 0.032 1.09 1.05 1.13 2.6x10-8 1.10 1.06 1.14 5.0x10-8 0.037 1.17 1.12 1.22 1.4x10-12 1 

MTMR3-ASCC2 ASCC2 p.Asp407His rs28265 22 30,200,761 C/G 0.925 1.09 1.06 1.11 2.1x10-12 1.09 1.07 1.12 4.4x10-14 0.916 1.1 1.07 1.14 9.6x10-11 3 

Novel T2D associated loci 

FAM63A FAM63A p.Tyr95Asn rs140386498 1 150,972,959 A/T 0.988 1.21 1.14 1.28 7.5x10-8 1.19 1.12 1.26 6.7x10-7 0.986 1.15 1.06 1.25 0.00047 3 

CEP68 CEP68 p.Gly74Ser rs7572857 2 65,296,798 G/A 0.846 1.05 1.04 1.07 8.3x10-9 1.05 1.03 1.07 6.6x10-7 0.830 1.06 1.03 1.08 6.6x10-7 2 

KIF9 KIF9 p.Arg638Trp rs2276853 3 47,282,303 A/G 0.588 1.02 1.01 1.04 8.0x10-5 1.03 1.02 1.05 5.3x10-8 0.602 1.04 1.02 1.05 2.6x10-5 3 

ANKH ANKH p.Arg187Gln rs146886108 5 14,751,305 C/T 0.996 1.29 1.16 1.45 1.4x10-7 1.27 1.13 1.41 3.5x10-7 0.995 1.51 1.29 1.77 3.5x10-7 1 

POC5 POC5 p.His36Arg rs2307111 5 75,003,678 T/C 0.562 1.05 1.04 1.07 1.6x10-15 1.03 1.01 1.04 2.1x10-5 0.606 1.06 1.05 1.08 1.1x10-12 1 

LPL LPL p.Ser474* rs328 8 19,819,724 C/G 0.903 1.05 1.03 1.08 6.8x10-9 1.05 1.03 1.07 2.3x10-7 0.901 1.08 1.05 1.11 7.1x10-8 1 

PLCB3 PLCB3 p.Ser778Leu rs35169799 11 64,031,241 T/C 0.071 1.05 1.02 1.08 1.3x10-5 1.06 1.03 1.09 1.8x10-7 0.065 1.07 1.04 1.11 3.8x10-5 1 

TPCN2 TPCN2 p.Val219Ile rs72928978 11 68,831,364 G/A 0.890 1.05 1.02 1.07 5.2x10-7 1.05 1.03 1.07 1.8x10-8 0.847 1.03 1.00 1.05 0.042 2 

WSCD2 WSCD2 p.Thr113Ile rs3764002 12 108,618,630 C/T 0.719 1.03 1.02 1.05 3.3x10-8 1.03 1.02 1.05 1.2x10-7 0.736 1.05 1.03 1.07 8.1x10-7 1 

ZZEF1 ZZEF1 p.Ile402Val rs781831 17 3,947,644 C/T 0.422 1.04 1.03 1.05 8.3x10-11 1.03 1.02 1.05 1.8x10-7 0.407 1.04 1.02 1.05 2.1x10-5 2 

MLX MLX p.Gln139Arg rs665268 17 40,722,029 G/A 0.294 1.04 1.02 1.05 2.0x10-8 1.03 1.02 1.04 1.1x10-5 0.280 1.04 1.02 1.06 5.2x10-6 2 
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TTLL6 TTLL6 p.Glu712Asp rs2032844 17 46,847,364 C/A 0.754 1.04 1.02 1.06 1.2x10-7 1.03 1.01 1.04 0.00098 0.750 1.04 1.02 1.06 9.5x10-5 3 

C17orf58 C17orf58 p.Ile92Val rs9891146 17 65,988,049 T/C 0.277 1.04 1.02 1.06 1.3x10-7 1.02 1.00 1.04 0.00058 0.269 1.05 1.03 1.07 1.7x10-7 2 

ZHX3 ZHX3 p.Asn310Ser rs17265513 20 39,832,628 C/T 0.211 1.05 1.03 1.07 9.2x10-8 1.04 1.02 1.05 2.9x10-6 0.208 1.02 1.00 1.04 0.068 N/A 

PNPLA3 PNPLA3 p.Ile148Met rs738409 22 44,324,727 G/C 0.239 1.04 1.03 1.05 2.1x10-10 1.05 1.03 1.06 2.8x10-11 0.230 1.05 1.03 1.07 5.8x10-6 1 

PIM3 PIM3 p.Val300Ala rs4077129 22 50,356,693 T/C 0.276 1.04 1.02 1.05 1.9x10-7 1.04 1.02 1.06 3.5x10-8 0.280 1.04 1.02 1.06 8.7x10-5 3 

 959 

Chr: chromosome. Pos: Position build 37. RAF: risk allele frequency. R: risk allele. O: other allele. BMI: body mass index. OR: odds ratio. L95: lower 95% confidence interval. 960 

U95: upper 95% confidence interval. GWAS: genome wide association studies.Summary statistics from European ancestry specific meta-analyses of 48,286 cases and 961 

250,671 controls. Fine-mapping group 1: signal is driven by coding variant, group 2: signal attributable to non-coding variants, and group 3: consistent with partial role for 962 

coding variants. p-values are based on the meta-analyses of discovery stage and fine-mapping studies as appropriate. 963 

 964 

 965 

 966 

 967 

 968 

 969 
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Table 2 | Posterior probabilities for coding variants within 99% credible set across loci 970 

with annotation-informed and functionally-unweighted prior based on fine-mapping 971 

analysis performed using 50,160 T2D cases and 465,272 controls of European ancestry. 972 

 973 

  974 

Chr: chromosome. Pos: Position build 37. PPA: functionally-unweighted prior; aiPPA: annotation informed prior. Index 975 

coding variants are highlighted in bold.   976 

Locus Variant rs ID Chr Position 
Posterior probability 

Cumulative posterior probability attributed 
to coding variants 

PPA aiPPA PPA aiPPA 

MACF1 

MACF1 p.Ile39Val rs16826069 1 39,797,055 0.012 0.240 

0.032 0.628 MACF1 p.Met1424Val rs2296172 1 39,835,817 0.011 0.224 

MACF1 p.Lys1625Asn rs41270807 1 39,801,815 0.008 0.163 

FAM63A FAM63A p.Tyr95Asn rs140386498 1 150,972,959 0.005 0.129 0.012 0.303 

GCKR GCKR p. Pro 446Leu rs1260326 2 27,730,940 0.773 0.995 0.773 0.995 

THADA 
THADA p.Cys845Tyr rs35720761 2 43,519,977 <0.001 0.011 

0.003 0.120 
THADA p.Thr897Ala rs7578597 2 43,732,823 0.003 0.107 

CEP68 CEP68 p.Gly74Ser rs7572857 2 65,296,798 <0.001 0.004 <0.001 0.004 

GRB14 COBLL1 p.Asn901Asp rs7607980 2 165,551,201 0.006 0.160 0.006 0.160 

PPARG PPARG p.Pro12Ala rs1801282 3 12,393,125 0.023 0.410 0.024 0.410 

KIF9 

SETD2 p.Pro1962Lys rs4082155 3 47,125,385 0.008 0.171 

0.018 0.384 NBEAL2 p.Arg511Gly rs11720139 3 47,036,756 0.005 0.097 

KIF9 p.Arg638Trp rs2276853 3 47,282,303 0.003 0.059 

IGF2BP2 SENP2 p.Thr291Lys rs6762208 3 185,331,165 <0.001 <0.001 <0.001 <0.001 

WFS1 WFS1 p.Val333Ile rs1801212 4 6,302,519 <0.001 0.001 <0.001 0.004 

ANKH ANKH p.Arg187Gln rs146886108 5 14,751,305 0.459 0.972 0.447 0.972 

POC5 POC5 p.His36Arg rs2307111 5 75,003,678 0.697 0.954 0.702 0.986 

PAM-PPIP5K2 
PAM p.Asp336Gly rs35658696 5 102,338,811 0.288 0.885 

0.309 0.947 
PPIP5K2 p.Ser1207Gly rs36046591 5 102,537,285 0.020 0.063 

RREB1 p.Asp1171Asn RREB1 p.Asp1171Asn rs9379084 6 7,231,843 0.920 0.997 0.920 0.997 

RREB1 p.Ser1499Tyr RREB1 p.Ser1499Tyr rs35742417 6 7,247,344 <0.001 0.013 0.005 0.111 

LPL LPL p.Ser474* rs328 8 19,819,724 0.023 0.832 0.023 0.832 

SLC30A8 SLC30A8 p.Arg276Trp rs13266634 8 118,184,783 0.295 0.823 0.295 0.823 

GPSM1 GPSM1 p.Ser391Leu rs60980157 9 139,235,415 0.031 0.557 0.031 0.557 

KCNJ11-ABCC8 

KCNJ11 p.Val250Ile rs5215 11 17,408,630 0.208 0.412 

0.481 0.951 KCNJ11 p.Lys29Glu rs5219 11 17,409,572 0.190 0.376 

ABCC8 p.Ala1369Ser rs757110 11 17,418,477 0.083 0.163 

PLCB3 PLCB3 p.Ser778Leu rs35169799 11 64,031,241 0.113 0.720 0.130 0.830 

TPCN2 TPCN2 p.Val219Ile rs72928978 11 68,831,364 <0.001 0.004 0.006 0.140 

CENTD2 ARAP1 p.Gln802Glu rs56200889 11 72,408,055 <0.001 <0.001 <0.001 <0.001 

KLHDC5 MRPS35 p.Gly43Arg rs1127787 12 27,867,727 <0.001 <0.001 <0.001 <0.001 

WSCD2 WSCD2 p.Thr113Ile rs3764002 12 108,618,630 0.281 0.955 0.282 0.958 

HNF1A p.Ile75Leu 
HNF1A_Gly226Ala rs56348580 12 121,432,117 0.358 0.894 

0.358 0.894 
HNF1A p.Ile75Leu rs1169288 12 121,416,650 <0.001 <0.001 

HNF1A p.Ala146Val HNF1A p.Ala146Val rs1800574 12 121,416,864 0.269 0.867 0.280 0.902 

MPHOSPH9 SBNO1 p.Ser729Asn rs1060105 12 123,806,219 0.002 0.054 0.002 0.057 

ZZEF1 ZZEF1 p.Ile402Val rs781831 17 3,947,644 <0.001 0.001 <0.001 0.018 

MLX MLX p.Gln139Arg rs665268 17 40,722,029 0.002 0.038 0.002 0.039 

TTLL6 

TTLL6 p.Glu712Asp rs2032844 17 46,847,364 <0.001 <0.001 

0.016 0.305 CALCOCO2 p.Pro347Ala rs10278 17 46,939,658 0.0100 0.187 

SNF8 p.Arg155His rs57901004 17 47,011,897 0.005 0.092 

C17orf58 C17orf58 p.Ile92Val rs9891146 17 65,988,049 <0.001 0.009 <0.001 0.009 

CILP2 
TM6SF2 p.Glu167Lys rs58542926 19 19,379,549 0.211 0.732 

0.263 0.913 
TM6SF2 p.Leu156Pro rs187429064 19 19,380,513 0.049 0.172 

GIPR GIPR p.Glu318Gln rs1800437 19 46,181,392 0.169 0.901 0.169 0.901 

ZHX3 ZHX3 p.Asn310Ser rs17265513 20 39,832,628 <0.001 0.003 0.003 0.110 

HNF4A HNF4A p.Thr139Ile rs1800961 20 43,042,364 1.000 1.000 1.00 1.000 

MTMR3-ASCC2 

ASCC2 p.Asp407His rs28265 22 30,200,761 0.011 0.192 

0.028 0.481 
ASCC2 p.Pro423Ser rs36571 22 30,200,713 0.007 0.116 

ASCC2 p.Val123Ile rs11549795 22 30,221,120 0.006 0.107 

MTMR3 p.Asn960Ser rs41278853 22 30,416,527 0.004 0.065 

PNPLA3 
PNPLA3 p.Ile148Met rs738409 22 44,324,727 0.112 0.691 

0.130 0.806 
PARVB p.Trp37Arg rs1007863 22 44,395,451 0.017 0.103 

PIM3 

IL17REL p.Leu333Pro rs5771069 22 50,435,480 0.041 0.419 

0.047 0.475 IL17REL p.Gly70Arg rs9617090 22 50,439,194 0.005 0.054 

PIM3 p.Val300Ala rs4077129 22 50,356,693 <0.001 0.002 
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ONLINE METHODS 977 

 978 

Ethics statement. All human research was approved by the relevant institutional review 979 

boards, and conducted according to the Declaration of Helsinki. All participants provided 980 

written informed consent. 981 

 982 

Derivation of significance thresholds. We considered five categories of annotation16 of 983 

variants on the exome array in order of decreasing effect on biological function: (1) PTVs 984 

(stop-gain and stop-loss, frameshift indel, donor and acceptor splice-site, and initiator codon 985 

variants, n1=8,388); (2) moderate-impact variants (missense, in-frame indel, and splice 986 

region variants, n2=216,114); (3) low-impact variants (synonymous, 3’ and 5’ UTR, and 987 

upstream and downstream variants, n3=8,829); (4) other variants mapping to DNase I 988 

hypersensitive sites (DHS) in any of 217 cell types8 (DHS, n4=3,561); and (5) other variants 989 

not mapping to DHS (n5=10,578). To account for the greater prior probability of causality for 990 

variants with greater effect on biological function, we determined a weighted Bonferroni-991 

corrected significance threshold on the basis of reported enrichment16, denoted wi, in each 992 

annotation category, i: w1=165; w2=33; w3=3; w4=1.5; w5=0.5. For coding variants 993 

(annotation categories 1 and 2): 994 

 995 

𝛼 =
0.05∑ 𝑛𝑖𝑤𝑖

2
𝑖=1

(∑ 𝑛𝑖
2
𝑖=1 )(∑ 𝑛𝑖𝑤𝑖

5
𝑖=1 )

= 2.21x10−7. 996 

 997 

We note that this threshold is similar to a simple Bonferroni correction for the total number 998 

of coding variants on the array, which would yield: 999 

 1000 

𝛼 =
0.05

224502
= 2.23x10−7 . 1001 

 1002 

For non-coding variants (annotation categories 3, 4 and 5) the weighted Bonferroni-1003 

corrected significance threshold is: 1004 

 1005 

𝛼 =
0.05∑ 𝑛𝑖𝑤𝑖

5
𝑖=3

(∑ 𝑛𝑖
5
𝑖=3 )(∑ 𝑛𝑖𝑤𝑖

5
𝑖=1 )

= 9.45x10−9. 1006 
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DISCOVERY: Exome-array study-level analyses. Within each study, genotype calling and 1007 

quality control were undertaken according to protocols developed by the UK Exome Chip 1008 

Consortium or the CHARGE central calling effort38 (Supplementary Table 1). Within each 1009 

study, variants were then excluded for the following reasons: (i) not mapping to autosomes 1010 

or X chromosome; (ii) multi-allelic and/or insertion-deletion; (iii) monomorphic; (iv) call rate 1011 

<99%; or (v) exact p<10-4 for deviation from Hardy-Weinberg equilibrium (autosomes only). 1012 

 We tested association of T2D with each variant in a linear mixed model, 1013 

implemented in RareMetalWorker17, using a genetic relationship matrix (GRM) to account 1014 

for population structure and relatedness. For participants from family-based studies, known 1015 

relationships were incorporated directly in the GRM. For founders and participants from 1016 

population-based studies, the GRM was constructed from pair-wise identity by descent 1017 

(IBD) estimates based on LD pruned (r2<0.05) autosomal variants with MAF≥1% (across 1018 

cases and controls combined), after exclusion of those in high LD and complex regions39,40, 1019 

and those mapping to established T2D loci. We considered additive, dominant, and 1020 

recessive models for the effect of the minor allele, adjusted for age and sex (where 1021 

appropriate) and additional study-specific covariates (Supplementary Table 2). Analyses 1022 

were also performed with and without adjustment for BMI (where available Supplementary 1023 

Table 2). 1024 

 For single-variant association analyses, variants with minor allele count ≤10 in cases 1025 

and controls combined were excluded. Association summary statistics for each analysis 1026 

were corrected for residual inflation by means of genomic control41, calculated after 1027 

excluding variants mapping to established T2D susceptibility loci. For gene-based analyses, 1028 

we made no variant exclusions on the basis of minor allele count.   1029 

 1030 

DISCOVERY: Exome-sequence analyses. We used summary statistics of T2D association 1031 

from analyses conducted on 8,321 T2D cases and 8,421 controls across different ancestries, 1032 

all genotyped using exome sequencing. Details of samples included, sequencing, and quality 1033 

control are described elsewhere12,15 (http://www.type2diabetesgenetics.org/). Samples 1034 

were subdivided into 15 sub-groups according to ancestry and study of origin. Each sub-1035 

group was analysed independently, with sub-group specific principal components and 1036 

genetic relatedness matrices. Association tests were performed with both a linear mixed 1037 

model, as implemented in EMMAX42, using covariates for sequencing batch, and the Firth 1038 
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test, using covariates for principal components and sequencing batch. Related samples were 1039 

excluded from the Firth analysis but maintained in the linear mixed model analysis. Variants 1040 

were then filtered from each sub-group analysis, according to call rate, differential case-1041 

control missing-ness, or deviation from Hardy-Weinberg equilibrium (as computed 1042 

separately for each sub-group). Association statistics were then combined via a fixed-effects 1043 

inverse-variance weighted meta-analysis, at both the level of ancestry as well as across all 1044 

samples. P-values were taken from the linear mixed model analysis, while effect sizes 1045 

estimates were taken from the Firth analysis. Analyses were performed with and without 1046 

adjustment for BMI. From exome sequence summary statistics, we extracted variants 1047 

passing quality control and present on the exome array. 1048 

 1049 

DISCOVERY: GWAS analyses. The UK Biobank is a large detailed prospective study of more 1050 

than 500,000 participants aged 40-69 years when recruited in 2006-201013. Prevalent T2D 1051 

status was defined using self-reported medical history and medication in UK Biobank 1052 

participants43. Participants were genotyped with the UK Biobank Axiom Array or UK BiLEVE 1053 

Axiom Array, and quality control and population structure analyses were performed 1054 

centrally at UK Biobank. We defined a subset of “white European” ancestry samples 1055 

(n=120,286) as those who both self-identified as white British and were confirmed as 1056 

ancestrally “Caucasian” from the first two axes of genetic variation from principal 1057 

components analysis. Imputation was also performed centrally at UK Biobank for the 1058 

autosomes only, up to a merged reference panel from the 1000 Genomes Project (multi-1059 

ethnic, phase 3, October 2014 release)44 and the UK10K Project9. We used SNPTESTv2.545 to 1060 

test for association of T2D with each SNP in a logistic regression framework under an 1061 

additive model, and after adjustment for age, sex, six axes of genetic variation, and 1062 

genotyping array as covariates. Analyses were performed with and without adjustment for 1063 

BMI, after removing related individuals. 1064 

 GERA is a large multi-ethnic population-based cohort, created for investigating the 1065 

genetic and environmental basis of age-related diseases [dbGaP phs000674.p1]. T2D status 1066 

is based on ICD-9 codes in linked electronic medical health records, with all other 1067 

participants defined as controls. Participants have previously been genotyped using one of 1068 

four custom arrays, which have been designed to maximise coverage of common and low-1069 

frequency variants in non-Hispanic white, East Asian, African American, and Latino 1070 
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ethnicities46,47. Methods for quality control have been described previously14. Each of the 1071 

four genotyping arrays were imputed separately, up to the 1000 Genomes Project reference 1072 

panel (autosomes, phase 3, October 2014 release; X chromosome, phase 1, March 2012 1073 

release) using IMPUTEv2.348,49. We used SNPTESTv2.545 to test for association of T2D with 1074 

each SNP in a logistic regression framework under an additive model, and after adjustment 1075 

for sex and nine axes of genetic variation from principal components analysis as covariates. 1076 

BMI was not available for adjustment in GERA. 1077 

For UK Biobank and GERA, we extracted variants passing standard imputation quality 1078 

control thresholds (IMPUTE info≥0.4)50 and present on the exome array. Association 1079 

summary statistics under an additive model were corrected for residual inflation by means 1080 

of genomic control41, calculated after excluding variants mapping to established T2D 1081 

susceptibility loci: GERA (λ=1.097 for BMI unadjusted analysis) and UK Biobank (λ=1.043 for 1082 

BMI unadjusted analysis, λ=1.056 for BMI adjusted analysis). 1083 

 1084 

DISCOVERY: Single-variant meta-analysis. We aggregated association summary statistics 1085 

under an additive model across studies, with and without adjustment for BMI, using 1086 

METAL51: (i) effective sample size weighting of Z-scores to obtain p-values; and (ii) inverse 1087 

variance weighting of log-odds ratios. For exome-array studies, allelic effect sizes and 1088 

standard errors obtained from the RareMetalWorker linear mixed model were converted to 1089 

the log-odds scale prior to meta-analysis to correct for case-control imbalance52. 1090 

 The European-specific meta-analyses aggregated association summary statistics 1091 

from a total of 48,286 cases and 250,671 controls from: (i) 33 exome-array studies of 1092 

European ancestry; (ii) exome-array sequence from individuals of European ancestry; and 1093 

(iii) GWAS from UK Biobank. Note that non-coding variants represented on the exome array 1094 

were not available in exome sequence. The European-specific meta-analyses were corrected 1095 

for residual inflation by means of genomic control41, calculated after excluding variants 1096 

mapping to established T2D susceptibility loci: λ=1.091 for BMI unadjusted analysis and 1097 

λ=1.080 for BMI adjusted analysis. 1098 

 The trans-ethnic meta-analyses aggregated association summary statistics from a 1099 

total of 81,412 cases and 370,832 controls across all studies (51 exome array studies, exome 1100 

sequence, and GWAS from UK Biobank and GERA), irrespective of ancestry. Note that non-1101 

coding variants represented on the exome array were not available in exome sequence. The 1102 



40 
 

trans-ethnic meta-analyses were corrected for residual inflation by means of genomic 1103 

control41, calculated after excluding variants mapping to established T2D susceptibility loci: 1104 

λ=1.073 for BMI unadjusted analysis and λ=1.068 for BMI adjusted analysis. Heterogeneity 1105 

in allelic effect sizes between exome-array studies contributing to the trans-ethnic meta-1106 

analysis was assessed by Cochran’s Q statistic53. 1107 

 1108 

DISCOVERY: Detection of distinct association signals. Conditional analyses were 1109 

undertaken to detect association signals by inclusion of index variants and/or tags for 1110 

previously reported non-coding GWAS lead SNPs as covariates in the regression model at 1111 

the study level. Within each exome-array study, approximate conditional analyses were 1112 

undertaken under a linear mixed model using RareMetal17, which uses score statistics and 1113 

the variance-covariance matrix from the RareMetalWorker single-variant analysis to 1114 

estimate the correlation in effect size estimates between variants due to LD. Study-level 1115 

allelic effect sizes and standard errors obtained from the approximate conditional analyses 1116 

were converted to the log-odds scale to correct for case-control imbalance52. Within each 1117 

GWAS, exact conditional analyses were performed under a logistic regression model using 1118 

SNPTESTv2.545. GWAS variants passing standard imputation quality control thresholds 1119 

(IMPUTE info≥0.4)50 and present on the exome array were extracted for meta-analysis. 1120 

 Association summary statistics were aggregated across studies, with and without 1121 

adjustment for BMI, using METAL51: (i) effective sample size weighting of Z-scores to obtain 1122 

p-values; and (ii) inverse variance weighting of log-odds ratios.  1123 

 We defined novel loci as mapping >500kb from a previously reported lead GWAS 1124 

SNP. We performed conditional analyses where a novel signal mapped close to a known 1125 

GWAS locus, and the lead GWAS SNP at that locus is present (or tagged) on the exome array 1126 

(Supplementary Table 5).  1127 

 1128 

DISCOVERY: Non-additive association models. For exome-array studies only, we aggregated 1129 

association summary statistics under recessive and dominant models across studies, with 1130 

and without adjustment for BMI, using METAL51: (i) effective sample size weighting of Z-1131 

scores to obtain p-values; and (ii) inverse variance weighting of log-odds ratios. Allelic effect 1132 

sizes and standard errors obtained from the RareMetalWorker linear mixed model were 1133 

converted to the log-odds scale prior to meta-analysis to correct for case-control 1134 
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imbalance52. The European-specific meta-analyses aggregated association summary 1135 

statistics from a total of 41,066 cases and 136,024 controls from 33 exome-array studies of 1136 

European ancestry. The European-specific meta-analyses were corrected for residual 1137 

inflation by means of genomic control41, calculated after excluding variants mapping to 1138 

established T2D susceptibility loci: λ=1.076 and λ=1.083 for BMI unadjusted analysis, under 1139 

recessive and dominant models respectively, and λ=1.081 and λ=1.062 for BMI adjusted 1140 

analysis, under recessive and dominant models respectively. The trans-ethnic meta-analyses 1141 

aggregated association summary statistics from a total of 58,425 cases and 188,032 controls 1142 

across all exome-array studies, irrespective of ancestry. The trans-ethnic meta-analyses 1143 

were corrected for residual inflation by means of genomic control41, calculated after 1144 

excluding variants mapping to established T2D susceptibility loci: λ=1.041 and λ=1.071 for 1145 

BMI unadjusted analysis, under recessive and dominant models respectively, and λ=1.031 1146 

and λ=1.063 for BMI adjusted analysis, under recessive and dominant models respectively. 1147 

 1148 

DISCOVERY: Gene-based meta-analyses. For exome-array studies only, we aggregated 1149 

association summary statistics under an additive model across studies, with and without 1150 

adjustment for BMI, using RareMetal17. This approach uses score statistics and the variance-1151 

covariance matrix from the RareMetalWorker single-variant analysis to estimate the 1152 

correlation in effect size estimates between variants due to LD. We performed gene-based 1153 

analyses using a burden test (assuming all variants have same direction of effect on T2D 1154 

susceptibility) and SKAT (allowing variants to have different directions of effect on T2D 1155 

susceptibility). We used two previously defined filters for annotation and MAF18 to define 1156 

group files: (i) strict filter, including 44,666 variants; and (ii) broad filter, including all variants 1157 

from the strict filter, and 97,187 additional variants. 1158 

 We assessed the contribution of each variant to gene-based signals by performing 1159 

approximate conditional analyses. We repeated RareMetal analyses for the gene, excluding 1160 

each variant in turn from the group file, and compared the strength of the association 1161 

signal. 1162 

 1163 

Fine-mapping of coding variant association signals with T2D susceptibility. We defined a 1164 

locus as mapping 500kb up- and down-stream of each index coding variant (Supplementary 1165 

Table 5), excluding the MHC. Our fine-mapping analyses aggregated association summary 1166 
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statistics from 24 GWAS incorporating 50,160 T2D cases and 465,272 controls of European 1167 

ancestry from the DIAGRAM Consortium (Supplementary Table 9). Each GWAS was imputed 1168 

using miniMAC12 or IMPUTEv248,49 up to high-density reference panels: (i) 22 GWAS were 1169 

imputed up to the Haplotype Reference Consortium20; (ii) the UK Biobank GWAS was 1170 

imputed to a merged reference panel from the 1000 Genomes Project (multi-ethnic, phase 1171 

3, October 2014 release)44 and the UK10K Project9; and (iii) the deCODE GWAS was imputed 1172 

up to the deCODE Icelandic population-specific reference panel based on whole-genome 1173 

sequence data19. Association with T2D susceptibility was tested for each remaining variant 1174 

using logistic regression, adjusting for age, sex, and study-specific covariates, under an 1175 

additive genetic model. Analyses were performed with and without adjustment for BMI. For 1176 

each study, variants with minor allele count<5 (in cases and controls combined) or those 1177 

with imputation quality r2-hat<0.3 (miniMAC) or proper-info<0.4 (IMPUTE2) were removed. 1178 

Association summary statistics for each analysis were corrected for residual inflation by 1179 

means of genomic control41, calculated after excluding variants mapping to established T2D 1180 

susceptibility loci. 1181 

We aggregated association summary statistics across studies, with and without 1182 

adjustment for BMI, in a fixed-effects inverse variance weighted meta-analysis, using 1183 

METAL51. The BMI unadjusted meta-analysis was corrected for residual inflation by means of 1184 

genomic control (λ=1.012)41, calculated after excluding variants mapping to established T2D 1185 

susceptibility loci. No adjustment was required for BMI adjusted meta-analysis (λ=0.994). 1186 

From the meta-analysis, variants were extracted that were present on the HRC panel and 1187 

reported in at least 50% of total effective sample size.  1188 

We included 37 of the 40 identified coding variants in fine-mapping analyses, 1189 

excluding three that were not amenable to fine-mapping in the GWAS data sets: (i) the locus 1190 

in the major histocompatibility complex because of the extended and complex structure of 1191 

LD across the region, which complicates fine-mapping efforts; (ii) the East Asian specific 1192 

PAX4 p.Arg190His (rs2233580) signal, since the variant was not present in European 1193 

ancestry GWAS; and (iii) ZHX3 p.Asn310Ser (rs4077129) because the variant was only 1194 

weakly associated with T2D in the GWAS data sets used for fine-mapping.  1195 

To delineate distinct association signals in four regions, we undertook approximate 1196 

conditional analyses, implemented in GCTA54, to adjust for the index coding variants and 1197 

non-coding lead GWAS SNPs: (i) RREB1 p. Asp1171Asn (rs9379084), p.Ser1499Tyr 1198 
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(rs35742417), and rs9505118; (ii) HNF1A p.Ile75Leu (rs1169288) and p.Ala146Val (rs1800574); 1199 

(iii) GIPR p.Glu318Gln (rs1800437) and rs8108269; and (iv) HNF4A p.Thr139Ile (rs1800961) 1200 

and rs4812831. We made use of summary statistics from the fixed-effects meta-analyses 1201 

(BMI unadjusted for RREB1, HNF1A, and HNF4A, and BMI adjusted for GIPR as this signal 1202 

was only seen in BMI adjusted analysis) and genotype data from 5,000 random individuals 1203 

of European ancestry from the UK Biobank, as reference for LD between genetic variants 1204 

across the region. 1205 

 For each association signal, we first calculated an approximate Bayes’ factor55 in 1206 

favour of association on the basis of allelic effect sizes and standard errors from the meta-1207 

analysis. Specifically, for the jth variant, 1208 

 1209 

𝛬𝑗 = √
𝑉𝑗

𝑉𝑗+𝜔
exp [

𝜔𝛽𝑗
2

2𝑉𝑗(𝑉𝑗+𝜔)
], 1210 

 1211 

where βj and Vj denote the estimated allelic effect (log-OR) and corresponding variance 1212 

from the meta-analysis. The parameter ω denotes the prior variance in allelic effects, taken 1213 

here to be 0.0455.   1214 

We then calculated the posterior probability that the jth variant drives the 1215 

association signal, given by 1216 

 1217 

𝜋𝑗 =
𝜌𝑗𝛬𝑗

∑ 𝜌𝑘𝛬𝑘𝑘
. 1218 

 1219 

In this expression, ρj denotes the prior probability that the jth variant drives the association 1220 

signal, and the summation in the denominator is over all variants across the locus. We 1221 

considered two prior models: (i) functionally unweighted, for which ρj = 1 for all variants; 1222 

and (ii) annotation informed, for which ρj is determined by the functional severity of the 1223 

variant. For the annotation informed prior, we considered five categories of variation16, such 1224 

that: (i) ρj = 165 for PTVs; (ii) ρj = 33 for moderate-impact variants; (iii) ρj = 3 for low-impact 1225 

variants; (iv) ρj = 1.5 for other variants mapping to DHS; and (v) ρj = 0.5 for all other variants. 1226 

 For each locus, the 99% credible set21 under each prior was then constructed by: (i) 1227 

ranking all variants according to their posterior probability of driving the association signal; 1228 
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and (ii) including ranked variants until their cumulative posterior probability of driving the 1229 

association attained or exceeded 0.99. 1230 

 1231 

Functional impact of coding alleles. We used CADD34 to obtain scaled Combined Annotation 1232 

Dependent Depletion score (CADD-score) for each of the 40 significantly associated coding 1233 

variants. The CADD method objectively integrates a range of different annotation metrics 1234 

into a single measure (CADD-score), providing an estimate of deleteriousness for all known 1235 

variants and an overall rank for this metric across the genome. We obtained the estimates 1236 

of the intolerance of a gene to harbouring loss-of-function variants (pLI) from the ExAC data 1237 

set33. We used the Kolmogorov-Smirnov test to determine whether fine-mapping groups 1 1238 

and 2 have the same statistical distribution for each of these parameters.  1239 

 1240 

T2D loci and physiological classification. To explore the different patterns of association 1241 

between T2D and other anthropometric/metabolic/endocrine traits and diseases, we 1242 

performed hierarchical clustering analysis. We obtained association summary statistics for a 1243 

range of metabolic traits and other outcomes for 94 coding and non-coding variants that 1244 

were significantly associated with T2D through collaboration or by querying publically 1245 

available GWAS meta-analysis datasets. The z-score (allelic effect/SE) was aligned to the 1246 

T2D-risk allele. We obtained the distance matrix amongst z-score of the loci/traits using the 1247 

Euclidean measure and performed clustering using the complete agglomeration method. 1248 

Clustering was visualised by constructing a dendogram and heatmap.  1249 
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