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Abstract

The main theme of this thesis is on the push-forward construction of motivic cohomology classes for

Shimura varieties. This strategy was successfully employed in work of Lei-Loeffler-Zerbes et al to

construct new Euler systems for Galois representations attached to certain cohomological automor-

phic forms, which have been used to prove new cases of the Bloch-Kato conjecture. In this thesis,

we describe two new push-forward constructions for Shimura varieties associated to the symplectic

group GSp6 and the unitary group GU(2,2), and their distribution relations.

First, we describe the joint work with Joaquı́n Rodrigues Jacinto on the construction of classes

in the seventh cohomology group of the Shimura variety for GSp6; these classes have coefficients in

a local system associated to an irreducible algebraic representation of GSp6 of arbitrary weight. The

classes are defined as push-forward of elements in the cohomology of a triple product of modular

curves. We prove a trace compatibility result for these classes and use it to deduce Euler system

norm relations in the cyclotomic tower at any rational prime p.

Secondly, we explain the construction of classes in the fifth motivic cohomology group of the

Shimura variety for GU(2,2). They are obtained as the push-forward of GSp4-Eisenstein classes

along the Gysin morphisms of a closed immersion of the Shimura variety for GSp4 inside the one for

GU(2,2). By perturbing the aforementioned immersion, we construct a two variable family of push-

forward classes that satisfies certain norm relations. To derive these, we first prove, more generally,

some distribution relations for the GSp2g-Eisenstein classes and then translate them into those for

the push-forward classes.
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Chapter 1

Introduction

The construction of special elements in the cohomology of Shimura varieties constitutes one of

the main tools to study the arithmetic of Galois representations appearing in the cohomology of

Shimura varieties and their relation to special L-values. It has played a crucial role in proving

cases of Beilinson’s conjecture (e.g. [Beı̆86], [Kin98], [Lem17] etc.), and in studying the structure

of Selmer groups of those Galois representations (e.g. [Kat04], [BDR15b], [LLZ14], [KLZ17],

[DR17], [LSZ17] etc.). In the latter situation, the method of bounding Selmer groups often relies on

the theory of Euler systems.

1.1 Euler Systems
The theory of Euler systems is a powerful tool to prove cases of the Birch and Swinnerton-Dyer

conjecture and generalisations, such as the Bloch-Kato conjecture, and constitutes one of the only

few known approaches to tackle those questions down. In the 1960s, Birch and Swinnerton-Dyer

conjectured a mysterious relation between the rank of the group of Q-rational points of an elliptic

curve E over the field of rational numbers Q and the behaviour at the central critical value s = 1 of

its complex Hasse-Weil L-function L(E,s), which was not known to be defined at s = 1. (Thanks

to the pioneering work of Wiles and successive refinements of Breuil, Conrad, Diamond and Taylor,

we now know that the Hasse-Weil L-function of elliptic curves over Q extends to an entire function

on C). Based on work of Gross and Zagier, in the late 1980s Kolyvagin proved special cases of the

conjecture for modular elliptic curves over Q in [Kol90], by giving a bound of their Selmer group.

Kolyvagin’s method was based on the construction of a system of Galois cohomology classes for

the p-adic Galois representation of the elliptic curve, defined over anticyclotomic extensions of an

imaginary quadratic field. These classes are constructed from a particular family of points of the

elliptic curve, called Heegner points, which are images under the modular parametrisation of CM

points in the modular curve.

Inspired by this construction and Thaine’s method to bound ideal class groups of real abelian

extensions of Q using cyclotomic units, in [Rub00] Karl Rubin proposed a general machinery to

bound Selmer groups associated to p-adic representations V of Gal(Q̄/K), for K number field.
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His method is subject to the existence of an Euler system for V , which is a collection of Galois

cohomology classes for V defined over abelian extensions of K satisfying certain relations under the

corestriction maps, with non-zero bottom class (i.e. the class defined over K). Rubin showed that

the existence of such an Euler system has important Iwasawa-theoretic applications.

Independently, in [Kat04] Kato discovered similar techniques to bound Selmer groups using

Euler systems, and he constructed an Euler system for the p-adic representation Vp( f ) of Gal(Q̄/Q),

for a normalised cuspidal eigenform f of weight k ≥ 2 and level N: his starting point are objects

of geometric nature, namely cup products of Siegel units in K2 of modular curves. Siegel units

are algebraic realisations of meromorphic functions on complex elliptic curves. The values of their

logarithmic derivatives at torsion points are related to Eisenstein series and values of the Hasse-

Weil L-function (by the so-called “Kroenecker’s second limit formula”). Kato proves an explicit

reciprocity law, by relating the non-vanishing of the bottom class to the non-vanishing of the L-

function of the modular form f at the point s = 1. In the case when this value is non-zero, he obtains

bounds on Selmer groups, giving a different proof of some cases of the Birch and Swinnerton-

Dyer conjecture proved by Kolyvagin, and he proves partial results on the Iwasawa Main conjecture

for modular elliptic curves over Q. The construction of Kato relies on the fact that the p-adic

representation attached to f “comes from geometry”, in the sense that its dual (Vp f )∗ can be realised

as a quotient of the first étale cohomology group of the modular curve over Q̄ with coefficients in an

opportune étale local system.

Despite the differences between the construction of Kolyvagin and the one of Kato, both fam-

ilies of Galois cohomology classes have the property that they arise in a geometric fashion from

objects (points, resp. units) on the modular curve which already satisfy distribution relations in the

“geometric world” (as elements of group of rational points, resp. as elements of the étale/motivic

cohomology of the modular curve). Thus, these constructions suggest that a good starting point for

constructing new Euler systems is the case of p-adic Galois representations which can be realised as

subquotients of (a twist of) étale cohomology groups of schemes Y defined over number fields with

a rich supply of geometric objects on them.

Because of their incredible applications, it turns out that Euler systems are extremely difficult

to construct, and soon after the construction of Kato there was little progress in this direction for

about ten years. Building upon the seminal work of Bertolini, Darmon and Rotger ([BDR15a],

[BDR15b]) on Beilinson-Flach classes in the étale cohomology of a product of modular curves,

Lei, Loeffler and Zerbes constructed in [LLZ14] the Euler system of Beilinson-Flach elements for

a certain twist of the tensor product of p-adic representations associated to two modular forms of

weights bigger or equal than 2. These p-adic representations are realised as subquotients of a suitable

étale cohomology group of a product of modular curves, and the Euler system construction relies

again on the existence of Siegel units. The Beilinson-Flach classes are obtained as pushforward

along perturbations of the diagonal embedding of a Siegel unit, which can be regarded as an element
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in the cohomology of one modular curve. Remarkably, in [KLZ17] Kings, Loeffler and Zerbes

studied the variation of the Euler system in p-adic families of modular forms and were able to

establish an explicity reciprocity law; thus, they deduced certain cases of a refined version of the

Birch and Swinnerton-Dyer conjecture ([KLZ17], [KLZ15]). Building on these new ideas, new

Euler systems have been recently constructed in the case of Hilbert modular forms (see [LLZ16])

and genus 2 Siegel forms ([LSZ17]), and this strategy has also successfully been applied in various

contexts (e.g [LZ16]).

Independently, in [Jet14], [BBJ15], progress has been made in building Euler systems for Ga-

lois representations of cohomological automorphic representations of certain products of unitary

groups from special cycles, which fit in the context of Gross-Zagier type conjectures (e.g. [Zha17,

Conjectures 2.3 and 3.4]) and are the natural higher dimensional analogue of the Euler system of

Heegner points.

1.1.1 An orientative definition

Fix a prime number p and let V be a finite dimensional Qp-vector space with a continuous action

of GQ = Gal(Q̄/Q), which is unramified outside a finite set of primes Σ containing p. Denote

by V ∗(1) the Qp-dual of V twisted by the cyclotomic character, and by SelBK(V ) its Bloch-Kato

Selmer group, which is a subgroup of H1(Q,V ∗(1)) cut out by local conditions (cf. [BK90]). By

H i(Q,V ∗(1)) we denote continuous group cohomology of the absolute Galois group of Q acting on

V ∗(1). The (weak) Bloch-Kato conjecture predicts that

ords=0 L(V,s) = dimQp(SelBK(V ))−dimQp(H
0(Q,V ∗(1))).

Non-trivial Euler systems are used to give bounds of Bloch-Kato Selmer groups which, if in possess

of information on the behaviour of L(V,s) around s = 0, are used to prove cases of this conjec-

ture. The construction of Euler systems amounts to showing the existence of a family of Galois

cohomology classes satisfying precise distribution relations.

Following the definition of Rubin in [Rub00, §1], an Euler system ES for a GQ-stable Zp-lattice

T of V is a collection of Galois cohomology classes {ESm}m≥1, where ESm ∈H1(Q(ζm),T ∗(1)) and

coresQ(ζm`)
Q(ζm)

ESm` =

ESm, if ` | m or ` ∈ Σ;

P̀ (Frob−1
` )ESm otherwise,

where P̀ (X) := det(1−Frob−1
` X |V ) ∈ Zp[X ] is the characteristic polynomial of the inverse of the

arithmetic Frobenius Frob`.

We remark that the Euler system of Heegner points are excluded from this definition. It is also

worth mentioning that there are cases (e.g. [DR14], [DR17]) where only the “bottom” class z1 is

used to bound the Selmer group by an argument using Hida Theory.
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1.1.2 The push-forward construction

Suppose that a twist of T ∗(1) appears as a sub-quotient of

H i
ét(ShG(U)Q̄,L ( j)), for some i, j ≥ 0

where ShG(U) denotes the canonical model over Q of a Shimura variety associated to a reductive

group G of level U ⊂ G(A f ) and L is an étale Zp-sheaf. This is not a restrictive condition; such

condition will indeed be satisfied in the cases discussed.

In this setting, we can try to build an Euler system as follows. Consider the projection map

prT : H i
ét(ShG(U)Q̄,L ( j))−→ T ∗(1).

We want to construct classes in H1(Q(ζm),H i
ét(ShG(U)Q̄,L ( j))) satisfying the Euler system norm

relations; the Euler system for T ∗(1) will be the images of these classes under the projection

prT . By using the Hochschild-Serre spectral sequence (and eventually killing the Galois in-

variant classes in H i+1
ét (ShG(U)Q̄,L ( j))), we reduce the problem to the construction of classes

zm ∈ H i+1
ét (ShG(U)Q(ζm),L ( j)), satisfying the norm relations under trace maps.

Suppose there exists a sub-variety ι : Y ↪→ ShG(U) with the following properties:

1. If we let d be the codimension of Y in ShG(U), then we have k + 2d = i+ 1, so that the

pushforward along ι gives

ι∗ : Hk
ét(Y, ι

∗L ( j−d))−→ H i+1
ét (ShG(U),L ( j));

2. There exists a supply of geometric classes in Hk
ét(Y, ι

∗L ( j−d)).

We then define the class z1 as the image under ι∗ of a suitable geometric class in Hk
ét(Y, ι

∗L ( j−d)).

To construct classes over Q(ζm), we use the right-translation action of G(A f ) on the Shimura variety

ShG to perturb the embedding ι . Precisely, we define maps {ιm}m≥1, where

ιm = um ◦ ι : YQ(ζm) −→ ShG(U)Q(ζm),

for certain um ∈ G(A f ) such that ShG(U)Q(ζm) ' ShG(u−1
m Uum) as Q-schemes. We then take the

push-forward along ιm of the appropriate class in Hk
ét(YQ(ζm), ι

∗L ( j−d)). Notice that the choice of

um is very delicate and ensures that the class constructed is not a simple base-change to Q(ζm) of z1.

In many cases in the literature, one constructs classes

zU
m ∈ H i+1

ét (ShG(U)Q(ζm),L ( j)),

which are compatible under push-forwards as U varies in a certain family of level subgroups of
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G(A f ). This is achieved by taking push-forward along ιU : YU → ShG(U) of classes, each in

Hk
ét(YU , ι

∗
UL ( j − d)), which are compatible under push-forward of morphisms φU

U ′ : YU → YU ′

for U ′/U finite étale. The family of subvarieties {YU}U is required to satisfy the following: if

πU
U ′ : ShG(U)→ ShG(U ′) is finite étale, we have a commutative diagram

YU

φU
U ′
��

ιU // ShG(U)

πU
U ′
��

YU ′
ιU ′ // ShG(U ′).

The push-forward compatibility of zU
m as U varies follows immediately from the fact that

π
U
U ′,∗ ◦ ιU,∗ = ιU ′,∗ ◦φ

U
U ′,∗,

and the compatibility of the geometric classes under φU
U ′,∗.

These push-forward relations are used in the proof of Euler system norm relations and are employed

in a crucial way in the study of variation of Euler systems in p-adic families.

1.1.3 Some examples

Finding suitable subvarieties with a rich supply of cohomology classes is quite a hard task to accom-

plish in general and it is usually dictated by properties of the underlying L-function of the represen-

tation. At present, the majority of cases where this strategy has been successful are characterised

either by having Y a modular curve or a fibre product of modular curves and as associated cohomol-

ogy classes étale realisations of Siegel units and Eisenstein classes of the modular curve, pull-back

or cup-product of them ([Kat04], [BDR15b], [LLZ14], [LLZ16], [LSZ17] etc.), or by taking the

étale realisation of special cycles ([DR17], [Jet14] etc.).

For instance, the motivic class underlying the construction in [LLZ14] of the Euler system

of Beilinson-Flach elements (studied in [Beı̆85], [Fla92], [BDR15a], [BDR15b] etc.) is given by

the push-forward to H3
mot(ShGL2(K1(N))2,Z(3)) along the diagonal embedding ShGL2 ↪→ Sh2

GL2
of

a Siegel unit cgN ∈ O(ShGL2(K1(N)))∗. The image under the Beilinson regulator rD to Deligne

cohomology of this class is intimately connected to values of the Rankin-Selberg L-function of the

convolution of two modular forms ([Beı̆85, §6]).

On the other hand, the use of the étale realisation of cycles coming from subvarieties of ap-

propriate co-dimension has given extraordinary results towards the Bloch-Kato conjecture of the

corresponding representation. These cases give Kolyvagin type Euler systems, which consist of

a collection of Galois cohomology classes with distribution relations over a tower of ramified ex-

tensions of the base field which differs from the cyclotomic one. Examples are given by Heegner

points, i.e. CM points of the modular curve ShGL2(K0(N)), as in [Kol90], [Gro91], or by special CM

cycles (e.g. [Jet14], [BBJ15], [Cor09]). In [Jet14], distribution relations over the anti-cyclotomic
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tower of a CM field E of certain cycles on a unitary Shimura variety for U(2,1)×U(1,1) of re-

flex field E are taken under observation. For instance, if [E : Q] = 2, the motivic bottom class in

H4
mot(ShG(K)/E ,Z(2)) is the push-forward of the cycle 1Y ∈ H0

mot(ShU(1,1)(K ∩U(1,1))/E ,Z) cor-

responding to the identity connected component Y of the Shimura variety ShU(1,1) under a diagonal

embedding ShU(1,1) ↪→ ShU(2,1)×ShU(1,1). This cycle appears naturally in the setting of the arith-

metic Gan-Gross-Prasad conjecture (e.g. [Zha17, §3.1, 3.2]).

Finally, it is worth mentioning the work of Darmon and Rotger, who intensively studied (e.g. in

[DR14], [DR17]) the arithmetic significance of diagonal cycles constructed as the push-forward ∆

of 1ShGL2
∈ H0

mot(ShGL2 ,Z) to H4
mot(Sh3

GL2
,Z(2)) along the diagonal embedding ShGL2 ↪→ Sh3

GL2
.

These elements do not satisfy distribution relations as in the previous cases, but, by Hida theoretic

methods, are used to prove new cases of the equivariant Birch and Swinnerton-Dyer conjecture. If

f ,g,h are three modular forms of weight 2, the height of the ( f ,g,h)-isotypic component of ∆ can be

related to the first derivative of the triple product L-function L( f ×g×h,s) at s = 2 ([YZZ], building

on the integral formula of [Ich08]).

All these constructions are supported by an intimate connection to special values of the cor-

responding L-function. This should be seen as a sort of guideline to whether expect interesting

arithmetic applications from the construction in exam.

1.1.4 New constructions

The main theme of this thesis is testing the push-forward construction in two new cases:

1. The first construction arises from Siegel units and gives classes in the motivic cohomology

of the Shimura variety for the symplectic similitude group GSp6. Via the étale regulator, we

obtain Galois cohomology classes for representations appearing in the middle degree étale

cohomology of the Shimura variety. There is evidence that suggests that our motivic class

is related to values of the spin L-function for certain cuspidal automorphic representations of

GSp6 ([PS18b]).

2. The second one uses the push-forward of GSp4 Eisenstein classes ([Kin98], [Wil06], and

[Fal05]) to the cohomology of a Shimura variety associated to the unitary group GU(2,2).

The relation of this motivic class with values of the exterior square L-function of certain

automorphic representations of GU(2,2) is yet unknown. We intend to investigate it in a

future project.

Before describing the two constructions, we would like to stress the importance of exploring

the technique for Eisenstein classes attached to symplectic groups larger than GL2. Unfortunately,

there are cases where either the construction of an Euler system from Eisenstein classes for GL2 or

special cycles might not be possible, or where results from the theory of automorphic forms would

suggest that we might expect different and conceptually more suitable constructions. For instance,
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there are integral representations of automorphic L-functions which use Eisenstein series associated

to higher rank groups:

• In [BG92] the integral representation of Bump and Ginzburg of the spin L-function of auto-

morphic forms of GSp10 is obtained by integrating over GSp4�GSp6 a Siegel Eisenstein

series for GSp6;

• The integral in [PSR87] of Piatetski-Shapiro and Rallis gives a representation of the (triple

product) L-function associated to the natural 8-dimensional representation of GL2�GL2�

GL2 by restricting a Siegel Eisenstein series for GSp6.

We would like to remark that the construction of motivic classes in the cohomology of symplec-

tic Shimura varieties, whose realisation under the Beilinson regulator is related to Siegel Eisenstein

series is still an open problem. Moreover, at present little is known on the range of possible appli-

cations of the Eisenstein classes for GSp2g of [Kin99] to the study of the arithmetic of automorphic

forms. Nevertheless, Lemma has proved that the motivic Eisenstein classes for GSp2g are non-zero,

by studying their residue to the dimension zero component of the Baily-Borel-Satake compactifica-

tion of ShGSp2g (see [Lem16]). The p-adic theory of these classes has been extensively explored by

Kings in [Kin15c], extending previous results of [Kin15a] in the GL2-setting.

1.2 Towards an Euler system for GSp6

Together with Joaquı́n Rodrigues Jacinto, we construct elements in the cohomology of the Shimura

variety of the symplectic similitude group G = GSp6. These classes are defined over cyclotomic

extensions of Q and satisfy norm compatibility relations in the cyclotomic tower at p, which differ

from the Euler system norm relations because a Hecke operator appears. This phenomenon is present

in the constructions of [LLZ14], [LLZ16], and [LSZ17], and it has a conjectural explanation ([LZ17,

§5]).

1.2.1 Setting

We consider the subgroup

H = GL2×det GL2×det GL2 = {(A,B,C) : A,B,C ∈GL2,detA = detB = detC} ⊂G,

which, after a suitable choice of maps from the Deligne torus to HR, denoted by XH, induces an em-

bedding ι : ShH = Sh(H,XH) ↪→ Sh(G,XG) = ShG. By pulling back Beilinson’s Eisenstein symbol

in the motivic cohomology of the modular curve associated to the first GL2-copy of H, we get ele-

ments in the first motivic cohomology group of ShH. Their push-forward along ι thus gives elements

in the seventh motivic cohomology group of ShG. One then uses the natural action of G(A f ) on the

Shimura variety ShG to perturb these classes and obtain a whole compatible system of cohomology

classes defined over ramified extensions of the base field.



1.2. Towards an Euler system for GSp6 18

1.2.2 Motivation

Let π be a cohomological automorphic cuspidal representation of G(A f ). After projecting to the

π-isotypic component, the motivic classes that we construct are expected, according to Beilinson’s

conjectures, to be related to special values of the degree eight spin L-function L(s,π,spin) associated

to π . This is motivated by recent work of Pollack and Shah ([PS18b]), who have given (under certain

hypotheses on π) an integral representation of the (partial) spin L-function of π , by integrating over

H a GL2-Eisenstein series against a cusp form ϕ in the space of π .

1.2.3 Main results

By applying the étale regulator map and employing the action of the Hecke algebra of G, we prove

the following.

Theorem 1.2.1. Let LZp be the Zp-local system associated to the irreducible algebraic representa-

tion of G of highest weight λ = (λ1 ≥ λ2 ≥ λ3). For each integer k such that |λ1−λ2−λ3| ≤ k ≤

λ1−λ2 +λ3 and ∑i λi ≡ k (mod 2), there exists a family of étale cohomology classes

zL ,k
n,m ∈ H7

ét(ShG(Kn,0)/Q(ζpm ),LZp(4+q)),

for q = k−∑i λi
2 , which satisfies the following norm relations:

1. For n≥ 1, (pr
Kn+1,0
Kn,0

)∗(z
L ,k
n+1,m) = zL ,k

n,m ;

2. For n,m≥ 1, norm
Q(ζpm+1 )

Q(ζpm )
(zL ,k

n,m+1) =
U ′p
σ3

p
· zL ,k

n,m ,

where U ′
p is the Hecke operator associated to the double coset of diag(p−3, p−2, p−2, p−1, p−1,1) ∈

G(Qp)⊂G(A f ), and σp is the image of p−1 under the Artin map Q∗p ↪→ A∗f → Gal(Q(ζpm)/Q).

By Kn,0 we mean a tower of sufficiently small level subgroups of G(Ẑ) defined by certain

congruences modulo powers of p (cf. §4.2.3). The proof of the Theorem 1.2.1 is an adaptation of

the methods used in [LLZ14].

By using the theory of Λ-adic Eisenstein classes developed in [Kin15b], we also show that

the classes vary p-adically in families as the local system LZp varies. We thus obtain a universal

class interpolating them all. Taking specialisations of this universal class, one obtains further étale

cohomology classes which do not a priori come from a geometric construction. These aspects will

appear in [CRJ18].

Let us briefly mention some immediate applications of our theorem. Using results from

[MT02], one can project our classes to the groups

H1(Q(ζpm),Vπ(q)),

where π is a suitable automorphic representation of G(A f ), Vπ is the p-adic Galois representation
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associated to π ([KS16, §8]), and q is as in Theorem 1.2.1. After imposing a U ′
p-ordinarity condition

on Vπ , in Theorem 4.3.3 we modify the classes above constructed to define Galois cohomology

classes in the Iwasawa cohomology of Vπ . Applying the general machinery of Perrin-Riou, this

allows to define a p-adic spin L-function for this automorphic representation.

1.2.4 Towards new Euler systems

We finally mention that this work should be seen as a starting point and that there are still many

unsolved questions about these classes. The crux is the proof of the so-called tame norm relations,

comparing classes over fields Q(ζm`) and Q(ζm) where ` does not divide m. At the moment, it seems

very hard to adapt the technique introduced in [LSZ17], which relies on the local Gan-Gross-Prasad

conjecture for the pair (SO4,SO5). This is due to the fact that, if π is an unramified principal series

representation of G(Q`) and ρ is a principal series representation of GL2(Q`), the space of bilinear

forms

HomH(Q`)((ρ�1�1)⊗π,C)

fails to be one dimensional. It also seems to be very difficult to show that these classes are non-zero.

The relation between the special values of the p-adic spin L-function and the complex L-

function are still mysterious. We expect an explicit reciprocity law to hold, relating values of Bloch-

Kato’s dual exponential maps of our Iwasawa class to certain values of the complex spin L-function.

One should also be able to calculate the complex regulator of the motivic classes in terms of the

complex spin L-function using the techniques of [Kin98] and [Lem17]. We are at the moment work-

ing on some of these points and we expect this work to be the first one of a series devoted to the

study of the arithmetic of automorphic forms for the group G.

1.3 Norm compatible elements for GU(2,2)

In Chapter 5, we construct a two variable family of cohomology classes in the fifth degree motivic

and étale cohomology of the Shimura variety ShGU(2,2) attached to a similitude unitary group G =

GU(2,2) of signature (2,2), which satisfy certain compatibility relations.

1.3.1 Setting

We consider the subgroup H := GSp4 ⊂ G (via the natural map H ⊂ GL4) and an embedding of

Shimura data (H,XH) ↪→ (G,XG). It induces an embedding of the corresponding Shimura varieties

ι : ShH ↪→ ShG of co-dimension 1. The motivic constituents of our family are the push-forward

along ι of Eisenstein classes for H, as defined by [Kin99] and [Fal05]. By using the action of G(A f )

on ShG, we obtain a compatible system of cohomology classes over a certain two variable tower of

level subgroups.

This constitutes the first example in literature where Eisenstein classes for H are employed

in a push-forward construction, and it presents an unexpected behaviour, which we believe to be
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always present in any push-forward construction of this kind, that obstructs the method employed

in [KLZ17], [LLZ16], [CRJ18], [LZ18] to give a norm-compatible system of cohomology classes

defined over ramified extensions of the base field.

1.3.2 Main results

Fix a prime p, which is either split or inert in the imaginary quadratic field defining G. By employing

the action of the Hecke algebra of G and the étale regulator, we define a family of cohomology

classes

zn,m ∈ H5
ét(ShG(Ũn,m),Zp(3)).

By Ũn,m we mean a sufficiently small open compact subgroup of G(Ẑ) formed by elements whose

reduction modulo pn is in a mirabolic subgroup of the Klingen subgroup of G (Definition 5.1.6),

and whose reduction modulo pm lies in a one dimensional subgroup of the maximal torus of G. We

show the following.

Theorem 1.3.1. There exists a family of cohomology classes zn,m ∈ H5
ét(ShG(Ũn,m),Zp(3)), which

satisfies the norm relations

(pr
Ũn+1,m
Ũn,m

)∗(zn+1,m) = zn,m;

(pr
Ũn,m+1
Ũn,m

)∗(zn,m+1) = U ′
p · zn,m,

whenever m ≥ 1 and n ≥ 3m + 3; U ′
p is the Hecke operator associated to the double coset of

diag(p−3, p−2, p−1,1) ∈G(Qp)⊂G(A f ).

The compatibility with respect to n follows from the analogous statement for the Eisenstein

classes for H. This is the subject of §3.4, where we show, more generally, that the Eisenstein

classes for GSp2g are compatible in the mira-Klingen tower (Proposition 3.4.8) and then deduce

compatibility relations for any push-forward of them (Corollaries 3.4.11 and 3.4.12). Proposition

3.4.8 generalises a method used in [Sch98] for the g = 1 case. As a direct consequence of these

compatibility relations, we can construct Λ-adic Eisenstein classes for GSp2g , which arise from

the integral construction of [Fal05, §3], and compare them with the Eisenstein-Iwasawa classes

introduced in [Kin15c].

The proof of Theorem 1.3.1 for the compatibility with respect to m is more elaborate and it is

based on ideas which have been employed in the proof of [KLZ17, Theorem 5.4.1] for the vertical

Euler system norm relation of the Beilinson-Flach classes.

1.3.3 Cyclotomic norm relations

In §5.4 we discuss the obstruction we face when trying to deduce from Theorem 1.3.1 an Euler

system norm compatibility of these classes in the cyclotomic tower at p and discuss a few similar

cases where the same obstruction appears.
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Finally, we would like to remark that one expects to prove a relation between our classes and values

of the exterior square L-function of automorphic representations of G appearing in the middle degree

cohomology of ShG.

1.4 Future directions
We intend to generalise the work of this thesis in many different directions; in this section, we briefly

describe some of the questions we intend to tackle in the near future.

1.4.1 Tame norm relations for GSp6

In Chapter 4, we construct a system of cohomology classes compatible in the cyclotomic tower at p

for p-adic Galois representations appearing in the middle degree cohomology of ShGSp6 . However,

in order to apply the Euler system machine of [Rub00] and, thus, obtain bounds (under standard

assumptions) on Bloch-Kato Selmer groups of these Galois representations, we need to establish

the cyclotomic norm relations of our cohomology classes at tame primes. We are currently working

on these relations, by exploring two different directions. On the one hand, we are analysing a very

interesting approach, suggested by Dimitar Jetchev, based on adapting techniques used in the case of

special cycles on unitary Shimura varieties in [Jet14] and [BBJ15]. On the other hand, we intend to

understand how to reduce the problem to a local statement involving the unramified calculations in

[PS18b], thus modelling techniques [LSZ17] for a setting which lacks of a local Gan-Gross-Prasad

conjecture.

1.4.2 Vertical norm relations for GSp�2
2g

Constructing non-trivial elements in the Iwasawa cohomology of Galois representations has highly

sophisticated arithmetic consequences, such as the construction of p-adic L-functions (e.g. [Kat04],

[Col00]); the method introduced in [KLZ17] and axiomatised in [LZ18] gives a recipe for building

classes in the Iwasawa cohomology of Galois representations appearing in the étale cohomology of

Shimura varieties.

Recently, we have been investigating a new push-forward construction involving Siegel units

for representations appearing in the middle degree étale cohomology of GSp�2
2g . At present, we can

construct classes defined over cyclotomic fields, and use the method of loc.cit. to show the Euler

system norm relation in the cyclotomic tower at p for small g cases. We are working on extending

the result in general.

1.4.3 Archimedean regulator formula for GU(2,2)

There are various aspects of the theory of Eisenstein classes that are still unexplored. For example,

it would be very useful to explicitly calculate the residue at the boundary of the Baily-Borel-Satake

compactification of the motivic Eisenstein classes for GSp2g , extending Lemma’s recent results in

[Lem16]. This would possibly lead to an Archimedean regulator formula for the motivic classes of

Chapter 5, by generalising methods used in [Lem17] and [PS18a]. As a first step towards it, we
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intend to give a representation for the exterior square L-function of certain automorphic representa-

tions π of GU(2,2), integrating a cusp form in the space of π with a GSp4-Klingen Eisenstein series

over the automorphic quotient ZGSp4(A)\[GSp4].

1.4.4 Euler Systems for GU(2,2)

At present, the classes constructed in Chapter 5 from push-forward of GSp4-Eisenstein classes do not

give norm compatible elements over cyclotomic extensions of Q. Nevertheless, we aim to construct

an Euler system for Galois representations appearing in the middle degree étale cohomology group

of ShGU(2,2). Similarly to the case of GSp6 treated in this thesis, the construction is based on taking

pull-back and push-forward of Siegel units and Eisenstein classes for modular curves. Precisely, we

have an embedding of H := GL2�GL2 ↪→GSp4 ↪→GU(2,2) =: G which induces a morphism of

Shimura varieties ιU : ShH(U ∩H)−→ ShG(U) of codimension 2 for sufficiently small U ⊂G(A f ).

Then, we can construct classes in the fifth degree cohomology group of ShG by first pulling back

Beilinson’s Eisenstein symbol for ShGL2 to ShH and then taking the push-forward under the Gysin

morphism of ι . This construction is motivated by the following facts.

• Recent (yet unpublished) work of Aaron Pollack and Shrenik Shah on an Archimedean reg-

ulator formula for the corresponding motivic classes by giving a representation of the exte-

rior square L-function of cuspidal automorphic representations π (supporting the appropriate

Fourier coefficient) of G by integrating a GL2-Eisenstein series against a cusp form ϕ ∈ π

over the automorphic quotient ZH(A)\[H].

• The technique of [LZ18] applies to this setting and enables us to construct classes defined over

cyclotomic extensions, which satisfy the Euler system norm relations in the cyclotomic tower

at p.
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1.5 General Notation
For the readers’ convenience, we collect here some of the notation used in the thesis.

We fix an algebraic closure Q̄ of the field of rational numbers Q. For a rational prime p, we

denote by Qp the p-adic completion of Q and by Zp the ring of p-adic integers; we also fix an

embedding Q̄ ↪→ Q̄p. We denote by Q(ζm) the m-th cyclotomic extension of Q, where ζm denotes

a primitive m-th root of unity. Let µm denote the subgroup of the m-th roots of unity in Q̄∗. We

denote the inverse limit lim←−n
µpn by Zp(1) and for any Zp-module T and integer j, we denote T ⊗Zp

(Zp(1)⊗ j) by T ( j). We also fix a basis of Zp(1), by choosing a system of compatible pn-th roots

of unity ζ = (ζpn)n, for any rational prime p. For a finite or empty set S of finite primes, we denote

ẐS = ∏p6∈S Zp and ZS = ∏p∈S Zp.

For a number field E, we denote by GalE = Gal(Q̄/E) its absolute Galois group and by AE

the ring of adeles of E. Moreover, Galab
E is the Galois group of the maximal abelian extension of

E. In the case of E = Q, we will simply denote by A and A f the adeles and the finite adeles of Q,

respectively.

For an integer n, we denote by GLn the general linear group over Z; in the case of n = 1, we

identify GL1 with the multiplicative group Gm. For a ring homomorphism R→ S and a scheme

X over S, we denote by ResS/R(X) the R-scheme given by the restriction of scalars of X/S. In

particular, we denote by S the Deligne torus ResC/R(Gm). For a reductive group G over Z, we

denote by KG(N) or K(N) the kernel of the reduction modulo an integer N:

KG(N) ↪→ G(Ẑ)−→ G(Z/NZ)→ 0.

For two reductive groups G1,G2 with multiplier maps νi : Gi→Gm, we sometimes denote by G1�

G2 their fibre product G1×ν1,ν2 G2.

By an abelian scheme A over a base S, we mean a proper, smooth S-scheme with geomet-

rically connected fibres. For an abelian scheme π : A→ S, we denote by A[N] the kernel of the

multiplication-by-N morphism and by TpA or HZp its p-adic Tate module (R1π∗Zp)
∨. We some-

times denote by µN/S the S-scheme of primitive N-th roots of unity.

For a commutative ring R and an R-module M, we denote by Symk(M) the module of Σk-

coinvariants of the k-fold tensor product of M and by TSymk(M) the module of Σk-invariants of the

k-fold tensor product of M, where Σk denotes the symmetric group on k elements. There is a natural

morphism Symk(M)→ TSymk(M), which becomes an isomorphism after inverting k!.



Chapter 2

Preliminaries

In this chapter, we recall results on Shimura varieties and on the motivic and étale cohomology

theories, which will be extensively used in the later chapters.

In particular, in §2.1.5, we study a certain tower of level structures for symplectic Shimura varieties,

which is crucially needed for proving distribution relations of Eisenstein classes in the cohomology

of symplectic Shimura varieties in §3.4.

2.1 Shimura varieties
In the following, we give a very brief introduction to some aspects of the theory of Shimura varieties.

We mainly follow [Del71], [Mil05], and [Moo98].

2.1.1 Definitions

Let S denote the Deligne torus ResC/R(Gm,C) and denote by Gad the adjoint group of a group G.

A Shimura datum is a pair (G,XG), consisting of a reductive group G/Q and a G(R)-orbit XG

in the set of morphisms of R-algebraic groups Hom(S,GR), such that, for all h ∈ XG, we have:

SV1. Lie(G)R is of type {(−1,1),(0,0),(1,−1)};

SV2. Inn(h(i)) is a Cartan involution of Gad
R ;

SV3. for every Q-factor H of Gad, the composition of h with GR→ HR is non-trivial.

Remark 2.1.1. These conditions imply that connected components of XG are Hermitian symmetric

domains and that XG has a unique structure of a complex manifold such that every faithful represen-

tation ρ : G→GL(V ) induces a variation (V,ρ ◦h)h∈XG of polarisable Q-Hodge structures.

All the Shimura data we work with are of PEL-type.

Definition 2.1.2. A PEL-datum is a tuple (B,?,V,〈 , 〉,h), where B is a semi-simple Q-algebra, ?

is a positive involution on B, (V,〈 , 〉) is a finite dimensional symplectic B-module with a Q-valued

pairing 〈 , 〉 such that

〈bu,v〉= 〈u,b?v〉, for b ∈ B and u,v ∈V,



2.1. Shimura varieties 25

and h : C→ EndBR(VR) is an R-algebra homomorphism such that

1. 〈h(z)u,v〉= 〈u,h(z̄)v〉, for z ∈ C, u,v ∈V ;

2. The pairing (u,v) 7→ 〈u,h(i)v〉 is positive definite.

Let G denote the subgroup of GL(V ), which preserves the pairing 〈 , 〉 up to scaling; (G,h)

defines a Shimura datum (cf. Proposition [Mil05, Proposition 8.14]). Any Shimura datum arising

from a PEL-datum in this fashion is said to be of PEL-type.

Given a Shimura datum (G,XG) and an open compact subgroup K of G(A f ), we make G(Q)

act on the left on X ×G(A f ) by left multiplication on both factors and K act on the second one by

right multiplication on G(A f ). Thus, we can consider the double coset space G(Q)\X×G(A f )/K.

Recall that an element g ∈ G(Q) is neat if the subgroup of Q∗ generated by the eigenvalues

of G with respect to some faithful representation of G is torsion free, while a subgroup of G(Q) is

defined to be neat if all its elements are. One can extend this notion to subgroups G(A f ), as follows

(see [Pin90], p.12).

Definition 2.1.3. For each g = (gp)p ∈ G(A f ), denote by Γp the subgroup of Q∗p generated by the

eigenvalues of gp w.r.t. some faithful representation of G; for each p, fix an embedding Q ↪→ Qp.

Then, g ∈ G(A f ) is neat if ⋂
p
(Q∩Γp)tors = 1,

where (•)tors denotes the torsion part of •. A subgroup of G(A f ) is called neat if all its elements are.

Definition 2.1.3 does not depend on either the choice of representation of G or the embeddings

Q ↪→Qp (cf. [Pin90]). The kernel KG(d) of reduction modulo d ≥ 3, i.e. the subgroup defined by

KG(d) ↪→ G(Ẑ)−→ G(Z/dZ)→ 0

is neat (e.g. [Pin90, p.13]). Indeed, a large family of neat subgroups of G(A f ) is given by congruent

sufficiently small open compact subgroups:

Definition 2.1.4. A compact open subgroup K ⊂ G(A f ) is said to be sufficiently small if it acts

faithfully on G(Q)\XG×G(A f ).

Whenever K is neat or sufficiently small, G(Q)\XG×G(A f )/K has a unique structure of a

quasi-projective complex algebraic variety, which we denote by ShG(K). As a matter of convention,

in the sequel we work with sufficiently small level subgroups rather than neat ones.

Right multiplication by g ∈ G(A f ) induces a morphism

g : ShG(K)→ ShG(g−1Kg), [h,m] 7→ [h,mg].
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Thus, we define the Shimura variety ShG of infinite level to be the projective system of varieties

(ShG(K))K (under the natural projections), where K runs through sufficiently small compact open

subgroups. It has a natural right action of G(A f ) induced at each finite level K by the morphisms

g : ShG(K)→ ShG(g−1Kg), for each g ∈ G(A f ).

Definition 2.1.5. A morphism of Shimura data (H,XH)→ (G,XG) is a morphism H→G of groups

sending XH to XG.

In the following chapters, we will repeatedly use that morphisms of Shimura data induce mor-

phisms of the corresponding Shimura varieties.

Theorem 2.1.6 ([Mil05], Theorem 5.16). A morphism of Shimura data (H,XH)→ (G,XG) defines

a morphism ShH → ShG of Shimura varieties, which is a closed immersion if H→ G is injective.

2.1.2 Canonical models

The arithmetic significance of Shimura varieties is supported by the existence of canonical models

for them over number fields. We refer to [Mil05, §14] and [Moo98, §2].

To a Shimura datum (G,XG), one can associate a number field E = E(G,XG), which is called

the reflex field. It is defined as follows. For each h ∈ XG, we define a co-character of GC by

µh : Gm→ SC→ GC, z 7→ hC(z,1).

Since two different h,h′ ∈ XG are conjugate, XG defines an element

(µh)h∈XG ∈ G(C)\Hom(Gm,GC).

We can regard (µh)h∈XG as an element of G(Q)\Hom(Gm,GQ) (c.f. [Mil05, p. 344]).Thus, we

define the reflex field E of (G,XG) to be the fixed field of the subgroup of Gal(Q/Q) which fixes

(µh)h∈XG . In several occasions, we will use the following:

Remark 2.1.7 ([Mil05], Remark 12.3(c)). Let (H,XH)→ (G,XG) be a morphism of Shimura data

with injective H→ G. Then, E(H,XH)⊇ E(G,XG).

2.1.2.1 The case of tori

Before discussing the general case, it is useful to analyse the case of tori. Let T/Q be a torus and

h : S→ TR be any morphism of tori, then (T,{h}) is a Shimura datum. For every compact open

subgroup K ⊂ T (A f ), ShT (K) consists of finitely many points. To define a model of ShT (K) over

E = E(T,{h}), it suffices to give an action of GalE = Gal(Q/E). Since T is commutative, it is

enough to describe an action of the Galois group Galab
E of the maximal abelian Galois extension of

E. Recall that, by Class field theory, we have a surjective and continuous homomorphism

ArtE : A∗E → Galab
E
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such that, for every finite abelian extension L/E, we have a commutative diagram

E∗\A∗E
ArtE //

��

Galab
E

σ 7→σ|L

��
E∗\A∗E/NormL

E(A∗L)
∼ // Gal(L/E).

On the other hand, the co-character µh defines

r(T,h) : ResE/Q(Gm)
Res(µh)−−−−→ ResE/Q(TE)

NormE
Q−−−−→ T. (2.1)

We define a model of ShT (K)E , by choosing the action of σ ∈GalE , given by sending [h,g]∈ ShT (K)

to [h,r(T,h)(a) · g], for a ∈ A∗E such that ArtE(a) = σ|
Galab

E
. Thus, we define the canonical model of

ShT /E to be the inverse limit of these models as K varies.

2.1.2.2 Canonical models

We are now ready to treat the general case. For a Shimura datum (G,XG) and for each sufficiently

small open compact K, ShG(K) admits a canonical model over E (e.g. [Moo98, Theorem 2.18]), i.e.

there exists an E-scheme ShG(K)E such that

1. ShG(K) = ShG(K)E ×E C;

2. the right-multiplication action of G(A f ) on ShG descends to E, i.e. we have E-morphisms

g : ShG(K)E −→ ShG(g−1Kg)E , for any g ∈ G(A f );

3. it is canonical, i.e. for every injective morphism (T,{h}) ↪→ (G,XG) of Shimura data, where T

is a torus, the induced C-morphism ShT (K∩T )→ ShG(K) descends to a morphism between

the canonical model of ShT (K∩T ) over E(T,{h}) and ShG(K)E ×E E(T,{h}).

Remark 2.1.8.

• The existence of the (canonical) model is proved by showing that the variety is defined over

Q̄ and then by descending it to E, using the (continuous) action of Gal(Q̄/E) on the variety

determined by 3. above. Indeed, recall that the functor S 7→ S×E Q defines an equivalence of

categories (cf. [Moo98, §2.15.1])

{ quasi-projective schemes S/E}→
{

quasi-pr. schemes S/Q
with a continuous semi-linear action of Gal(Q/E)

}
.

• One of the key advantages of working with this Deligne-Shimura formalism of Shimura vari-

eties is that ShG(K) has a canonical model over E, which does not depend on the level group

K.
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In the sequel, we will denote this canonical model by ShG(K) without explicit reference to the

field E. Finally, the Shimura variety ShG at infinite level admits a unique canonical model over

E, being the projective limit of canonical models at finite levels. In other words, the canonical

models of (ShG(K))K , for each sufficiently small open compact K, are constructed in such a way

that the Hecke action of G(A f ) and the Galois action commute, endowing ShG,Q with an action of

G(A f )×Gal(Q̄/E).

2.1.3 Symplectic Shimura varieties

In this thesis, we will mainly work with Shimura varieties associated to similitude symplectic groups,

which we now define.

2.1.3.1 Symplectic groups

Denote by I′g the g× g anti-diagonal matrix with all entries 1 and J =
(

I′g
−I′g

)
. Let GSp2g be the

group scheme over Z defined by

GSp2g(R) = {(h,mh) ∈ (GL2g×Gm)(R) : htJh = mhJ},

for any commutative ring R with 1. Define the symplectic multiplier to be the homomorphism

ν : GSp2g −→Gm, h 7→ mh.

It has kernel the symplectic group Sp2g. Denote by ZGSp2g the center of GSp2g.

2.1.3.2 Shimura datum

Define h : S→GSp2g/R as follows. Let

X :=
{

M ∈ Sp2g(R) : M2 =−I, 〈u,Mv〉 := utJMv is± -definite
}

be the set of positive or negative definite symplectic complex structures on the real vector space

given by the standard representation of GSp2g/R. The set X can be identified with the set of homo-

morphisms

h : S−→GSp2g/R,

by sending M ∈X to h such that h(a+ ib)= aI+bM. Every GSp2g(R)-conjugacy class in X defines a

Shimura datum and, since two symplectic complex structures are GSp2g(R)-conjugate, we conclude

that X consists of a single GSp2g(R)-conjugacy class. In what follows, we ”twist” X by considering

the GSp2g(R)-conjugacy class of

h̃ : S−→GSp2g/R, a+ ib 7→ 1
a2+b2 h(a+ ib),
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for h ∈ X . This has the effect of changing a sign on the Galois action on the connected components

(cf. [LSZ17, Remark 5.1.2]).

The pair (GSp2g,X) defines a Shimura datum with reflex field Q. The attached Shimura variety

is a moduli space of polarised abelian schemes of relative dimension g with extra level structures, as

we discuss below. Note that this Shimura datum naturally arises from a PEL-datum of type C (e.g.

see [Mil05], Definition 8.15 and Example 8.6).

2.1.3.3 Galois action on connected components

A canonical model over Q of ShGSp2g defines an action of Galab
Q on the connected components

π0(ShGSp2g), as described in [Mil05, p. 349]; since the derived subgroup Sp2g is simply connected,

the space π0(ShGSp2g) admits the following description. Note that the multiplier map ν : GSp2g→

Gm induces a map of Shimura data (GSp2g,X)→ (Gm,y), where y is the Gm(R)-conjugacy class of

ν ◦ h̃. Denote by Gm(Q)† the intersection of Gm(Q) with Im(ZGSp2g(R)→ Gm(R)), then [Mil05,

Theorem 5.17] gives the following

Proposition 2.1.9. Let U be a sufficiently small level subgroup; the map

GSp2g(Q)\X×GSp2g(A f )/U →Gm(Q)†\Gm(A f )/ν(U)

induces an isomorphism

π0(ShGSp2g(U))(C)'Gm(Q)†\Gm(A f )/ν(U).

It follows that π0(ShGSp2g)(C) ' Q∗>0\A∗f ' Ẑ∗; thus, if we normalise the Artin reciprocity

map

Art : Q∗>0\A∗f → Galab
Q ,

such that Art(x), for x ∈ Ẑ∗ ⊂ A∗f , acts on roots of unity by ζ 7→ ζ x, we have the following (cf.

[LSZ17, Proposition 5.4.2]).

Proposition 2.1.10. The right-multiplication action of u∈GSp2g(A f ) on π0(ShGSp2g)(C) coincides

with the action of Art(ν(u)−1).

2.1.3.4 Moduli of abelian schemes for GSp2g

For any open compact subgroup U of GSp2g(Ẑ), we can associate the set-valued functor FU from the

category Sch/Q of schemes over Q, which parametrises (isomorphism classes of) abelian schemes of

relative dimension g with principal polarisation and U-level structure (whose definition is discussed

in §2.1.4). Recall that if U is sufficiently small, then FU is known to be representable by a smooth

quasi-projective scheme Sg(U) over Q (for instance, see [Lan13] Theorem 1.4.1.11)

Remark 2.1.11.
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• The very existence of Sg(U) gives a model of ShGSp2g(U) over Q; by using the main theorem

of complex multiplication of abelian varieties ([Mil05, Theorem 11.2]), one shows that this is

a canonical model, thus Sg(U) is isomorphic to the previously defined ShGSp2g(U)/Q.

• Every Shimura variety of PEL-type admits a similar description as moduli of abelian schemes

with extra structure ([Mil05, Theorem 8.17]). For instance, in Chapter 5, we discuss properties

of a unitary Shimura variety of PEL-type.

2.1.4 Integral symplectic level structures

In the following, we review the definition of level structures for any open compact subgroup U of

GSp2g(Ẑ). We closely follow [Lan13]. We will denote these structures as symplectic level structures

simply to remark that we are dealing with the symplectic group GSp2g. Consider an abelian scheme

A of relative dimension g over a locally Noetherian Q-scheme S and fix a principal polarisation λ on

it; a ”naive” candidate for the definition of a full level N-structure is the following.

Definition 2.1.12. A naive symplectic full level N structure on (A,λ )/S is an isomorphism

αN : (Z/NZ)2g
/S
−→ A[N],

which respects the symplectic forms defined by J on (Z/NZ)2g and the one induced by the Weil

pairing eλ and λ on A[N].

Remark 2.1.13. The isomorphism αN respects the two symplectic forms in the following sense.

There exists an isomorphism βN : (Z/NZ)/S −→ µN/S which makes the diagram

(Z/NZ)2g
/S
×S(Z/NZ)2g

/S

J //

αN×αN

��

(Z/NZ)/S

βN

��
A[N]×SA[N]

eλ // µN/S

commutative.

For each geometric point s̄ of S, define the Tate module (at s̄) of A to be the Ẑ-module

Ts̄(A) := lim←−
N

A[N](s̄).

Since S is a Q-scheme, Ts̄(A) is a free Ẑ-module of rank 2g. There is another way to define sym-

plectic full level N structures, at the level of Tate modules (after passing to geometric fibres of A/S),

which is equivalent to the one of Definition 2.1.12, due to the following classical result.

Lemma 2.1.14. Let S be a connected locally Noetherian scheme and fix a geometric point s̄→

S; there is an equivalence between the category of locally constant constructible étale sheaves of
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abelian groups over S and the one of finite continuous π1(S, s̄)-modules, given by sending G to its

geometric fibre Gs̄.

In particular, since A[N] is a locally constant constructible étale sheaf on S, A[N](s̄) has the

structure of a π1(S, s̄)-module. The Ẑ-module Ts̄(A) acquires an action of π1(S, s̄) from the one of

each group of N-torsion points.

Let K(N) := KGSp2g(N)⊂GSp2g(Ẑ) be the kernel of reduction modulo N. In view of Lemma

2.1.14, we can translate the information given by a naive symplectic full level N structure αN in

terms of a π1(S, s̄)-equivariant isomorphism at the geometric fibre, say αN s̄. Note that αN s̄ is the

reduction modulo K(N) of a symplectic isomorphism

αs̄ : Ẑ2g −→ Ts̄(A),

and such a lift is unique up to the action of K(N). We assume that the element h ∈GSp2g(Ẑ) acts on

the isomorphism αs̄ by αs̄ ◦h, while σ ∈ π1(S, s̄) acts on the left. Hence, we can give the following

definition.

Definition 2.1.15. A symplectic full level N-structure on (A,λ )/S (at s̄) is a π1(S, s̄)-invariant K(N)-

orbit of a symplectic isomorphism

αs̄ : Ẑ2g −→ Ts̄(A).

Thus, a symplectic level N-structure on (A,λ )/S is a collection of symplectic full level N-structures

at each geometric point {αs̄}s̄, such that if two geometric points s̄, r̄ are in the same connected

component, then

αs̄ = αr̄.

In Definition 2.1.15, the π1(S, s̄)-invariance of the K(N)-orbit of αs̄ is equivalent to asking the

symplectic full level N structure in the sense of Definition 2.1.12 to be defined over S and hence it is

an essential ingredient to compare the two definitions, as the next proposition shows.

Proposition 2.1.16 ([Lan13] 1.3.6.5-1.3.6.6). Let (A,λ )/S be as above; a symplectic level N-

structure on (A,λ )/S is equivalent to a tower

(tM : SM −→ S)N|M

of finite étale surjective maps such that:

1. SN = S and for any N|M|L there are finite étale surjective maps

gL,M : SL −→ SM

such that tL = tM ◦gL,M;
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2. Over each SM , we have a symplectic isomorphism

α/SM
: (Z/MZ)2g

/SM
−→ A[M]/SM

,

such that, if N|L|M, the pullback of α/SL
under gM,L is the reduction modulo L of α/SM

.

The proposition above suggests an alternative (and more convenient to us) way to define level

structures for general open compact subgroups of GSp2g(Ẑ).

Definition 2.1.17. Let U be an open compact subgroup of GSp2g(Ẑ) and for any integer M such that

K(M) ⊂U denote by UM the quotient U/K(M). Then, a symplectic level U-structure of (A,λ )/S

is a collection {αUM}M , where M varies among the integers such that K(M) ⊂U , of elements αUM

such that

1. αUM is a locally étale defined UM-orbit of a naive symplectic full level M-structure;

2. If L|M, αUL corresponds to the reduction modulo L of αUM .

We finally note that passing to geometric fibres, a symplectic level U-structure gives a π1(S, s̄)-

invariant U-orbit of a symplectic isomorphism

α : Ẑ2g −→ Ts̄(A),

at each geometric point.

2.1.5 Tower of symplectic level structures at p

The main result of Chapter 3 involves the computation of distribution relations for Eisenstein classes

attached to moduli of abelian schemes with certain level structures at a prime p. Here, we define and

study these level structures in order to prepare the territory for proving Lemma 3.4.3.

For representability issues, we work with open compact subgroups U which decompose

as Up ·U (p) ⊂ GSp2g(Ẑ), where Up ⊂ GSp2g(Zp) and U (p) ⊂ GSp2g(Ẑ(p)). We suppose that

U =U (p)GSp2g(Zp) is sufficiently small, thus ShGSp2g(U)/Q is a moduli which parametrises (iso.

classes of) p.p. abelian schemes of rel. dim. g with U-level structure. Let A = Ag(U) denote

its universal abelian scheme and consider the following functor G1(pm) : Sch/ShGSp2g
(U)
−→ Sets,

defined by

S/ShGSp2g(U) 7→ {points of exact order pm of A ×ShGSp2g (U) S/S}.

Remark 2.1.18. Since we are working in characteristic zero, by point of exact order pm of A/S, we

simply mean a section S→ A whose pull-back to each geometric fibre is a point of exact order pm.

Lemma 2.1.19. The functor G1(pm)/ShGSp2g(U) is representable by a finite étale ShGSp2g(U)-

scheme.
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Proof. The question boils down to show that G1(pm) is an étale sheaf on ShGSp2g(U). Indeed,

if this is the case, G1(pm) is a lcc (i.e. locally constant constructible) sub-sheaf of the lcc étale

sheaf A [pm] (the natural transformation between the two sheaves is given by the obvious inclusion).

Hence, G1(pm) is representable by a finite étale ShGSp2g(U)-scheme G1(pm)/ShGSp2g(U), by the

characterisation of étale lcc sheaves as the ones representable by finite étale schemes. The fact that

G1(pm) is an étale sheaf follows by observing that, since we are working in characteristic zero,

points of exact order pm of A can’t have “many exact orders”. Indeed, G1(pm) is an étale sheaf if

for any étale S→ ShGSp2g(U) and any étale covering {Si}i∈I of S, the diagram

G1(pm)(S) // ∏i G1(pm)(Si) //// ∏(i, j) G1(pm)(Si×S S j)

is exact, i.e. the left map is an injection onto the set of I-tuples (ci) ∈∏i G1(pm)(Si) such that

ci|Si×SS j
= c j|Si×SS j

,

for all i, j ∈ I. Note that such a I-tuple comes from an element c ∈AS[pm](S) such that c|Si
is a point

of exact order pm of ASi . Therefore, since {Si} is an étale covering of S, all geometric points of s

factor through one of the Si so that c must have exact order pm, i.e. c ∈ G1(pm)(S).

We now compare G1(pm) with the sheaf induced by the following open compact subgroups of

GSp2g(Zp).

Definition 2.1.20. For any integer m≥ 1, define the subgroup U1(pm)⊂GSp2g(Zp) as follows:

U1(pm) := {M ∈GSp2g(Zp)|R2g(M)≡ (0, · · · ,0,1) mod pm} (2.2)

where Ri(M) denotes the i-th row of M. For any integer N, then U1(N)⊂GSp2g(Ẑ) is defined to be

the subgroup of elements (gp)p such that gp ∈U1(pvp(N)).

Remark 2.1.21. Recall that the Klingen parabolic of GSp2g is the parabolic associated to the flag

variety of lines in the symplectic vector space defining GSp2g. Then, U1(pm) is the subgroup of

GSp2g(Zp) of elements whose reduction modulo pm are in the mirabolic subgroup of the Klingen

parabolic of the form  ∗ ∗ ∗ ∗ ··· ∗∗ ∗ ∗ ··· ∗
∗ ∗ ∗ ··· ∗
∗ ∗ ∗ ··· ∗
∗ ∗ ∗ ··· ∗

1

 .

Lemma 2.1.22. Let A/S be an abelian scheme of relative dimension g over a Q-scheme S, with a

fixed principal polarisation on it. Then, there is a bijection between points of exact order pm of A

and symplectic level U1(pm)-structures.

Proof. Denote by Upm the image of U1(pm) under reduction mod pm. Since A is of finite presentation
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over S, we can reduce to work over a locally Noetherian base S ([FC13, I.1.2(a)]); thus, since now S

is the disjoint union of its connected components and étale sheaves send co-products into products,

it is sufficient to work over a connected locally Noetherian S. Finally, by replacing S by an étale

finite surjective cover of it if necessary, we can assume

A[pm]' (Z/pmZ)2g
/S.

A point t ∈ A(S) of exact order pm lifts to a symplectic ”naive” level pm-structure and such a lift is

unique up to action of Upm . Indeed, t defines a monomorphism over S

t : (Z/pmZ)/S ↪→ A[pm],

and it can be completed to a full isomorphism

(Z/pmZ)2g
/S −→ A[pm]

uniquely up to the action of Upm .

After passing to a suitable étale cover of S, we can lift t to a point of exact order pm+1 of A,

which is mapped to t under (the abstract group homomorphism) reduction modulo pm. Repeating

this procedure for any l ≥ m uniquely defines a level U1(pm)-structure of A. The converse is proved

similarly.

This result directly implies the following.

Corollary 2.1.23. The scheme G1(pm) which represents G1(pm) is isomorphic to

ShGSp2g(U
(p)U1(pm)) as a covering of ShGSp2g(U

(p)GSp2g(Zp)).

This generalises a well-known result for modular curves (e.g. [KLZ17, Theorem 4.3.3]), which

plays an important role in the study of the pushforward relations of Eisenstein classes for GL2. As

in loc. cit., we use Corollary 2.1.23 to prove push-forward relations of the Eisenstein classes for

GSp2g in Proposition 3.4.6.

Remark 2.1.24. As a consequence of the Chinese Remainder Theorem, if N = ∏
r
i=1 pei

i ,

ShGSp2g(U
(N)U1(N)) parametrises p.p. abelian schemes of relative dimension g with level structure

U (N) and r different points each of exact order pei
i .

2.1.5.1 Integral models

In the following, we recall the existence of integral models for the symplectic Shimura variety

ShGSp2g of level U (p)U1(pr). We refer to [Moo98, Section 3] or [Hid04, Section 6.4.1] for further

details.
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By [MFK94, Theorem 7.10], there exists a (fine) moduli space over Z[ 1
d p ], for an auxiliary in-

teger d ≥ 3 coprime to p, of isomorphism classes of principally polarised abelian schemes with sym-

plectic level U(pr) :=U (p)KGSp2g(pr)-structure, which we (again) denote by ShGSp2g(U(pr))/Z[ 1
d p ]

.

Let ShGSp2g(U
(p)U1(pr))/Z[ 1

d p ]
be its quotient by U1(pr)/KGSp2g(pr).

Similarly to the previous subsection, let G1(pr) be the finite étale sheaf over ShGSp2g(U
(p))/Z[ 1

d p ]

associated to points of exact order pr of the universal abelian scheme of ShGSp2g(U
(p))/Z[ 1

d p ]
. Then,

Corollary 2.1.23 is still true in this setting.

Lemma 2.1.25. The scheme G1(pr) is isomorphic to ShGSp2g(U
(p)U1(pr))/Z[ 1

d p ]
as a covering of

ShGSp2g(U
(p))/Z[ 1

d p ]
.

Proof. Since p is invertible in ShGSp2g(U
(p))/Z[ 1

d p ]
, the proof is identical to the one of Corollary

2.1.23.

2.2 Cohomology theories
In this text, we will often work with motivic and étale cohomology groups with non-trivial coeffi-

cients of Shimura varieties. In what follows, we quickly list some of the definitions and properties,

which we make use of in the upcoming chapters.

2.2.1 Continuous étale cohomology

In this section, we recall the definition of continuous étale cohomology for schemes over a general

base, introduced by Jannsen in [Jan88].

Definition 2.2.1. For an inverse system (Fn) of constructible étale Z/pn-sheaves over a scheme X ,

define H i
ét(X ,(Fn)) to be the i-th derived functor of (Fn) 7→ lim←−n

H0
ét(X ,Fn). In particular, for p

invertible on X and an integer j, we define

H i
ét(X ,Zp( j)) := H i

ét(X ,(Z/pnZ( j))).

Note that if H i−1
ét (X ,Fn) is finite for all n, then

H i
ét(X ,(Fn))' lim←−

n
H i

ét(X ,Fn).

Remark 2.2.2. For instance, this last condition is satisfied whenever X is a scheme over S, where the

base S is an algebraically closed field or it is a scheme of finite type over Z.

Finally, for FZp = (Fn)n as in Definition 2.2.1, we denote FZp ⊗Zp Qp by FQp and define

H i
ét(X ,FQp) := H i

ét(X ,F )⊗Zp Qp.



2.2. Cohomology theories 36

2.2.2 Étale coefficient sheaves on Shimura varieties

Let (G,XG) be a Shimura datum, where G is a reductive group G over Q, and denote by RepQ(G)

the category of representations of G over Q.

For any prime p, to V ∈ Ob(RepQ(G)) we can associate a p-adic étale sheaf VZp (cf. [Pin90] or

[LLZ16]) on ShG(U)/E, where E denotes the reflex field of (G,XG) and U is any sufficiently small

level subgroup of G(A f ). The construction is motivated by the fact that if S is a finite set with a

continuous left action of U , we can define a finite étale covering S of ShG(U) by taking any open

normal subgroup V of U which acts trivially on S and defining S to be

(U/V )\(ShG(V )×S)

w.r.t. the left action given by h · (x,s) = (xh−1,hs). This construction extends to representations of

U on finite-rank Zp-modules (cf. [LSZ17, §6.1]) and is functorial in the sense that if we have an

injection ι : (H,XH) ↪→ (G,XG) of Shimura data, the pull-back on étale sheaves over the associated

Shimura varieties corresponds to restriction of algebraic representation from G to H (cf. loc.cit.).

2.2.3 Relative Chow motives and Ancona’s functor

Let us briefly recall the main properties of the functor defined in [Anc15]. For a reductive group G

over Q, recall we have denoted by RepQ(G) the category of representations of G over Q.

For a smooth quasi-projective scheme S over a field of characteristic zero, let CHMQ(S) denote

the Q-linear tensor pseudo-abelian category of relative Chow motives over S. Recall that there is a

functor M from the category of smooth projective schemes over S to CHMQ(S); let 1S := M(S), and

denote by LS the Lefschetz motive appearing in the decomposition of M(P1
S) as 1S⊕LS. For any

positive integer m and V ∈ Ob(CHMQ(S)), we denote by V (−m) and V (m) the tensor products of

V with L⊗m
S and (L∨S )⊗m. In order to define Ancona’s functor, recall the following.

Proposition 2.2.3 ([DM91]). Let π : A→ S be an abelian scheme of relative dimension g; there

exists a decomposition in CHMQ(S)

M(A) =
2g⊕

i=0

hi(A),

where [n]∗ acts on hi(A) as multiplication by ni and the `-adic realisation of hi(A) is Riπ∗Q`.

Now, consider a Shimura datum (G,X) of PEL-type. For any sufficiently small level subgroup

U ⊆G(A f ) there is a Shimura variety ShG(U), which admits a model over the reflex field of (G,X),

and a universal abelian scheme A /ShG(U) with PEL structure.

Proposition 2.2.4 ([Anc15]). There is a tensor functor

µ
G
U : RepQ(G)−→ CHMQ(ShG(U)),
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which respect duals and satisfies the following:

1. If V is the standard representation of G, then µG
U (V ) = h1(A );

2. If ν : G→Gm is the multiplier, then µG
U (ν) = LShG(U);

3. for any prime p, the p-adic étale realisation of µG
U (V ) is the étale sheaf associated to V ⊗Qp,

with U acting on the left via U ↪→ G(A f )→ G(Qp).

Remark 2.2.5. We have adopted conventions used in [LSZ17]. This is coherent with the fact that, in

the case of GL2, the p-adic Tate module TpE of the universal elliptic curve E corresponds to the dual

of the standard representation of GL2(Zp). Thus, TpE gives a lattice in the p-adic étale realisation

of h1(E )∨.

As explained in [LSZ17], there is a canonical G(A f )-equivariant structure on µG
U (V ) for every

V in RepQ(G), which is compatible with the G(A f )-equivariant structure on the corresponding p-

adic étale realisations. Thus, we have a functor

µ
G : RepQ(G)−→ CHMQ(ShG)

G(A f ),

where ShG = lim←−U
ShG(U). Now, let ι : H ⊂ G induce a morphism of Shimura data of PEL type.

Then, Ancona’s functor satisfies the following:

Proposition 2.2.6. There is a commutative diagram of functors

RepQ(G)
µG

//

•|H
��

CHMQ(ShG)
G(A f )

ι∗

��
RepQ(H)

µH
// CHMQ(ShH)

H(A f ),

where ι∗ denotes pull-back.

Proof. This is stated in [LSZ17, Proposition 6.2.5] and a proof will appear in forthcoming work of

Alex Torzewski.

2.2.4 Motivic cohomology

We now recall the definition of the motivic cohomology group associated to a scheme X . We re-

strict to the case where X is a smooth quasi-projective scheme over a characteristic zero field. Let

DMB,c(X) be the triangulated category of constructible Beilinson motives over X with Q-coefficients

as defined in [CD12, Definition 15.1.1]; then, one can define the following.

Definition 2.2.7.

H•mot(X ,Q(?)) := HomDMB,c(X)(1X ,1X (?)[•]).



2.2. Cohomology theories 38

This is compatible with the definition of motivic cohomology by using Quillen’s K-groups (see

[Qui73, §7]). Recall that Quillen’s K-groups admit a γ-filtration (cf. [Wei13, IV.5])

Proposition 2.2.8 ([CD12], Corollary 14.2.14). We have

H•mot(X ,Q(?))' Gr?γ K2?−•(X)⊗Q,

where Gr?γ K2?−•(X) denotes the ?-th graded piece of the γ-filtration on K2?−•(X).

In Chapter 4, we will work with motivic cohomology groups with coefficients given by relative

Chow motives. These cohomology groups can be defined similarly to the trivial case. First, notice

that an element VQ ∈ Ob(CHMQ(X)) is a constructible Beilinson motive; indeed, we have a fully

faithful embedding CHMQ(X) ↪→ DMB,c(X) (e.g. [CD12, Corollary 16.1.6] and [CD12, 11.3.8], or

[CD12, Proposition 15.2.3]). Thus, it makes sense to define

Definition 2.2.9. Let VQ ∈ Ob(CHMQ(X)); define

H•mot(X ,VQ(?)) := HomDMB,c(X)(1X ,VQ(?)[•]).

2.2.5 Operations

The triangulated category of constructible Beilinson motives satisfies the Grothendieck 6 functor

formalism and duality (in the sense of [CD12, §A.5]), thus, by [CD12, Theorem 7], we have the

following operations in cohomology. Let f : X → Y be a morphism of schemes, with X ,Y smooth,

quasi-projective over a characteristic zero field, and let VQ and WQ be relative Chow motives for X

and Y respectively.

• Pullbacks: f ∗ : H i
mot(Y,VQ( j))−→ H i

mot(X , f ∗VQ( j)), for any f .

• Gysin morphisms: f∗ : H i
mot(X , f ∗WQ( j))−→ H i+2c

mot (Y,WQ( j+ c)), for a closed immersion

f : X → Y of co-dimension c.

• Traces:

f∗ : H i
mot(X ,VQ( j))

ϕ−→ H i
mot(X , f ∗WQ( j))

∼−→ H i
mot(Y, f∗ f ∗WQ( j))

Tr f−−→ H i
mot(Y,WQ( j)),

for a finite étale f and a morphism ϕ : VQ→ f ∗WQ.

• Cup-products: ∪ : H i
mot(X ,VQ( j))×H i′

mot(X ,V ′Q( j′))→ H i+i′
mot (X ,VQ⊗V ′Q( j+ j′)).



2.2. Cohomology theories 39

• Projection formula: Cup-products and traces satisfy the following

f∗(a∪ f ∗(b)) = f∗(a)∪b.

• Compatibility in Cartesian diagrams: Suppose we have a Cartesian diagram

X
f ′ //

π ′

��

Y

π

��
X ′

f // Y ′,

where f , f ′ are closed immersions and π,π ′ are finite étale, then

f ∗ ◦π∗ = π
′
∗ ◦ f ′∗

π
∗ ◦ f∗ = f ′∗ ◦π

′∗.

Remark 2.2.10.

• We use the same notation for push-forwards and Gysin morphisms since, by construction, they

commute with each other.

• The same (opportunely translated) properties are true in étale cohomology.

2.2.6 Gysin morphisms and branching laws

In this section, we consider two Shimura data (H,XH) and (G,XG) of PEL-type and the correspond-

ing Shimura varieties ShH and ShG such that ι : H ↪→ G induces a closed embedding

ι : ShH ↪→ ShG .

By functoriality of Ancona’s functor µ ( Proposition 2.2.6), we have the following.

Take an irreducible algebraic representation W of G over Q and consider it as an H-representation

W|H (using ι). The H-representation W|H might not be irreducible anymore, but it admits a decom-

position as sum of its H-irreducible constituents, i.e.

W|H =⊕iVi,

where Vi are irreducible algebraic representations for H. Thus, we have morphisms ϕi : Vi →W|H
in RepQ(H). After applying Ancona’s functor and Proposition 2.2.6, we get morphisms of relative

Chow motives

ϕi : Vi,Q→ ι
∗WQ.
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Thus, by composing the corresponding map in cohomology with the Gysin morphism associated to

ιU (for U a sufficiently small open compact of G(A f )), we have morphisms

Hr
mot(ShH(U ∩H),Vi,Q( j))

ϕi−→ Hr
mot(ShH(U ∩H), ι∗WQ( j))

ιU,∗−−→ Hr+2c
mot (ShG(U),WQ( j+ c)).

Remark 2.2.11. Exactly the same story applies in p-adic étale cohomology, so that we have mor-

phisms

Hr
ét(ShH(U ∩H),Vi,Zp( j))→ Hr+2c

ét (ShG(U),WZp( j+ c)).

This observation has been crucially used to construct push-forward classes in the cohomology

with non-trivial coefficients in several circumstances ([LLZ16], [Lem17], [LSZ17] etc.).



Chapter 3

Siegel units and Eisenstein classes

The construction of motivic classes in the cohomology of Shimura varieties has played a funda-

mental role in understanding the arithmetic of zeta values. Siegel units and Eisenstein classes are a

fascinating source of such cohomology classes, due to their connection to Eisenstein series and their

distribution relations.

In this chapter, we discuss their properties and prove a distribution relation for Eisenstein classes in

the cohomology of the Shimura variety for GSp2g, generalising a result known in the case of g = 1,

which has found various applications in the theory of Euler systems. Notably, these distribution

relations are used for proving the norm relations of Kato’s Euler system (e.g. [Kat04], [Sch98]).

We proceed as follows.

First, we give a brief account of the properties of Siegel units in §3.1, mainly following [Kat04];

then, we discuss the construction of their higher weight and dimension analogues in motivic coho-

mology of general abelian schemes, as in [Kin99], [KR17], and [HK15].

In §3.3, we discuss two constructions in the étale cohomology with integral coefficients, appearing

in [Fal05] and [Kin15c], and compare them.

Finally, in §3.4, we prove distribution relations for Eisenstein classes in the cohomology of the

Shimura variety for GSp2g, by generalising the method adopted in [Sch98], and discuss some im-

mediate consequences.

3.1 Siegel units
Let π : E→ S be an elliptic curve over a scheme S of characteristic coprime to 2,3. For any integer c,

consider πc : ErE[c]→ S. In [Kat04], Kato defines Siegel units as the evaluation at torsion points of

certain canonical functions in O(E rE[c])∗. The motivation behind this construction is of analytic

nature and it relies on the more classic study of modular units and their relations to Eisenstein series

and values of L-functions.

Siegel units are constructed from Cartier divisors which are invariant under norm maps. Recall

we have the following.
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Theorem 3.1.1 ([Kat04], Proposition 1.3). Let E be an elliptic curve over a scheme S and fix an

integer c prime to 6. Then, there exists a unique element cθE ∈ O(E rE[c])∗ such that:

1. cθE has divisor c2(0)− E[c] on E, where the zero-section (0) of E and the kernel of the

multiplication-by-c morphism E[c] are regarded as Cartier divisors;

2. for any integer a coprime to c, cθE is compatible under the norm map Na : O(E rE[ac])∗→

O(ErE[c])∗ associated to the pullback of the multiplication-by-a map ErE[ac]→ ErE[c],

i.e.

Na(cθE) = cθE .

Proof. Uniqueness. Suppose that f and g are two distinct elements of O(E rE[c])∗ satisfying (1)

and (2), then

g = u f , for u ∈ O(S)×.

Hence, by (2), for any a coprime to c

u f = g = Na(g) = Na(u f ) = Na(u) f = ua2
f .

This is necessary to force u to be 1. Indeed, for a = 2,3 (which is coprime to c by hypothesis) we

have that u3−1 = 0 and u8−1 = 0, conditions that imply u = 1.

Existence. Once uniqueness is proved, we can verify the existence locally and then glue the

local pieces to obtain the required unit. The proof essentially relies on Abel’s isomorphism, which

explains how to give the group structure to E/S ([KM85], Theorem 2.1.2). In particular, we use the

isomorphism on the S-rational points

Pic(0)(E/S)−̃→E(S),

which reads as
{invertible sheaves of degree 0 divisors on E}

{pullback of ones on S}
−̃→E(S).

Fix now an integer a coprime to c; then, the image of c2(0)−E[c] under multiplication by a is

c2(0)−E[c] itself. Note that for a = 2, this means that

Lc2(0)−E[c]⊗Lc2(0)−E[c] = Lc2(0)−E[c] in Pic(0)(E/S),

where L• denotes the invertible sheaf associated to the divisor •. Under Abel’s isomorphism, this

means that the image of c2(0)−E[c] in E(S) is 0. In other words, this implies that c2(0)−E[c] is

locally principal on S ( note that we have that c2(0)−E[c] is locally principal on E by definition, but

this is a much stronger result), so locally on S there exists f ∈O(ErE[c])∗, with divisor c2(0)−E[c].
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Similarly as above, the divisor of Na( f ) is c2(0)−E[c], hence

Na( f ) = ua f , for ua ∈ O(S)∗.

In order to get units invariant under the norm maps Na, we simply take g := u−3
2 u3 f . This function

has the required property, since ub2−1
a = ua2−1

b for a,b coprime to c (the equality comes from the fact

that Nb ◦Na = Na ◦Nb):

Na(g) = u−3a2

2 ua2

3 ua f

= (ua2−1
2 )−3ua2−1

3 ua(u−3
2 u3 f )

= u−9
a u8

auag = g.

The local existence and uniqueness guarantee the global existence of cθE .

Remark 3.1.2. Let E be an elliptic curve over a field K of characteristic 0. Then, the invariance under

the norm map Na(cθE) = cθE explicitly tells us that for any point Q ∈ E(K) which is not [c]-torsion,

cθE(Q) = ∏
T∈E(K̄)
[a]T=Q

cθE(T ).

The following result states some of the fundamental properties of these functions, which will

be relevant later.

Proposition 3.1.3 ([Kat04] Proposition 1.3(2)-(4); [Sch98] Theorem 1.2.1 (iv),(ii),(iii)). Let d be

an integer prime to 6 and let E/S,c be as in Theorem 3.1.1, then we have the following properties:

1. In O(E rE[cd])∗,

(dθE)
c2
([c]∗(dθE))

−1 = (cθE)
d2
([d]∗(cθE))

−1.

2. The functions cθE are invariant under base-change, i.e. for any morphism S′→ S and g : E ′ =

E×S S′→ E,

g∗cθE = cθE ′ .

3. If h : E→ E ′ is an isogeny between elliptic curves over S with degree prime to c, then the norm

map Nh sends cθE to cθE ′ .

Proof. 1. Note that the divisor of (dθE)
c2
([c]∗(dθE))

−1 is

c2(d2(0)−E[d])− (d2E[c]−E[cd]) = (cd)2(0)+E[cd]− (c2E[d]+d2E[c]).

Of course, (cθE)
d2
([d]∗(cθE))

−1 has the same divisor, hence their ratio is an element u ∈
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O(S)∗. We now conclude the proof using Theorem 3.1.1 (ii), which tells us that

Na(u) = ua2
= u.

In particular, for a = 2,3, we get

u3 = 1, u8 = 1⇒ u = 1.

2. In order to prove the result, recall that points of order exact c of E are sent under base-change

to points of exact order c in E ′ ([KM85] (1.4)). Thus, the pullback of the Cartier divisor

c2(0)−E[c] is c2(0′)−E ′[c] and g∗cθE satisfies the properties of Theorem 3.1.1.

3. Let us consider any integer a prime to c; then, since h is an isogeny

Na(Nh(cθE)) = Nh(Na(cθE)) = Nh(cθE),

by Theorem 3.1.1(ii). In course of the proof of the existence of Siegel units, we showed that,

for any integer a coprime to c, the image of the divisor c2(0)−E[c] under multiplication by

a is c2(0)−E[c] itself. Since the degree of h is prime to c, the same argument applies in this

case, i.e.

div(Nh(cθE)) = c2(0′)−E ′[c].

Hence, Nh(cθE) satisfies the qualifying properties of cθE ′ and, by uniqueness of such a func-

tion, we have

Nh(cθE) = cθE ′ .

Kato defines Siegel units as pullback by torsion sections of the units cθE , associated to the

universal elliptic curve E /ShGL2(K(N)).

Definition 3.1.4. Fix an integer N ≥ 3 and an integer c coprime to 6N and let (α,β ) = ( a
N ,

b
N ) ∈

( 1
N Z/Z)2 r {(0,0)}, for a,b ∈ Z. Let (E ,e1,e2) be the universal elliptic curve over the modular

curve ShGL2(K(N)) with full level N structure. We define the Siegel unit

cgα,β := ι
∗
α,β (cθE ) ∈ O(ShGL2(K(N)))∗, for ια,β = ae1 +be2.

Moreover, consider an integer r > 1 such that

• (r,6) = 1,

• r ≡ 1 (mod N),



3.1. Siegel units 45

and define the element gα,β ∈ O(ShGL2(K(N)))∗⊗Z Q as

rgα,β ⊗
1

r2−1
.

Lemma 3.1.5. Keep the same notation of Definition 3.1.4, then

1. gα,β is independent of the choice of such an r;

2. For any integer c such that (c,6N) = 1, then

cgα,β = (gα,β )
c2
/gcα,cβ ∈ O(ShGL2(K(N)))∗⊗Z Q.

Proof. 1. The proof relies on Proposition 3.1.3(1). Indeed, fix r,s 6= ±1 integers coprime to 6

and congruent to 1 modulo N. Then,

rgα,β ⊗
1

r2−1
= rgα,β ⊗

s2−1
(r2−1)(s2−1)

= (rgα,β )
s2−1⊗ 1

(r2−1)(s2−1)

=
(sgα,β )

r2
i∗
α,β ([s]

∗(rθE ))

rgα,β i∗
α,β ([r]

∗(sθE ))
⊗ 1

(r2−1)(s2−1)
(∗)
=

(sgα,β )
r2

rgα,β

rgα,β sgα,β
⊗ 1

(r2−1)(s2−1)

= (sgα,β )
r2−1⊗ 1

(r2−1)(s2−1)
= sgα,β ⊗

1
s2−1

.

Note that we crucially use that r,s ≡ 1 (mod N) for (∗). Indeed, since the sections e1,e2 are

killed by N, then [s]◦ iα,β = iα,β and [r]◦ iα,β = iα,β .

2. In a similar manner, we prove (ii). Let r be as before, then by Proposition 3.1.3(1), we have

(gα,β )
c2

gcα,cβ

=
(rgα,β )

c2

rgcα,cβ

⊗ 1
r2−1

=
(cgα,β )

r2
i∗
α,β ([c]

∗(rθE ))

(cgα,β )(rgcα,cβ )
⊗ 1

r2−1

=
(cgα,β )

r2
(rgcα,cβ )

(cgα,β )(rgcα,cβ )
⊗ 1

r2−1

= (cgα,β )
r2−1⊗ 1

r2−1
= cgα,β .

Implicitly, we used that [c]◦ iα,β = icα,cβ .

Before discussing further properties of Siegel units, we wish to make a remark towards the

construction of motivic and étale cohomology classes associated to general abelian schemes. The

idea behind Theorem 3.1.1 relies on the fact that a Cartier divisor, which by definition is locally

principal, that satisfies the rigid condition given by Theorem 3.1.1(2) is globally principal. Once
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we work with an abelian scheme A of dimension g higher than 1, this strategy does not apply since

c2g(0)−A[c] is not a Cartier divisor. We can state Theorem 3.1.1 in a more convenient way for our

purposes.

Notation 3.1.6. The motivic residue map for E/S is the map

res : H1
mot(E rE[c],Z(1))−→ H0

mot(E[c],Z)
deg=0,

which comes from the long exact (Gysin) sequence associated to the triple E rE[c] ↪→ E ←↩ E[c],

where deg denotes the map

deg : H0
mot(E[c],Z)→ H2

mot(E,Z(1)).

Recall that H1
mot(E rE[c],Z(1)) = O(E rE[c])∗ and that H0

mot(E[c],Z)deg=0 is identified with

the group of degree 0 divisors supported in E[c], i.e. formal linear combinations of points in E[c]

with coefficients in Z.

We can re-interpret Theorem 3.1.1 as follows.

Theorem 3.1.7. Let E be an elliptic curve over S and let c be an integer prime to 6. The divisor

c2(0)−E[c] lifts canonically under the residue map

res : H1
mot(E rE[c],Z(1))−→ H0

mot(E[c],Z)
deg=0

to an element cθE ∈ H1
mot(E rE[c],Z(1)) such that, for any integer a coprime to c,

Na(cθE) = cθE .

This cohomological interpretation extends to other cohomology theories and, as we will see

below, to higher dimension abelian varieties.

3.1.1 Distribution relations

In the following section, we describe some of the compatibility relations that the Siegel units satisfy.

For more details, we refer to [Kat04] §2.11-13. These are used essentially in the proof of the norm

relations of the Euler Systems constructed from Siegel units. In §3.4, we will give a proof of Propo-

sition 3.1.9, following [Sch98, Lemma 2.3.1], which generalises to the case of Eisenstein classes for

arbitrary symplectic Shimura varieties.

Proposition 3.1.8 ([Kat04] 1.7(2)). Let (α,β )∈ ( 1
N Z/Z)2r{(0,0)} and let a be a non-zero integer.



3.1. Siegel units 47

Then

cgα,β = ∏
α ′,β ′

cgα ′,β ′ ,

gα,β = ∏
α ′,β ′

gα ′,β ′ ,

where c is an integer prime to 6Na and α ′,β ′ run through all the elements of Q/Z such that aα ′ = α

and aβ ′ = β .

Proof. The distribution relations can be seen as a consequence of how the norm map attached to

multiplication-by-a morphism is defined. Indeed, consider the universal elliptic curve (E ,ε1,ε2) of

ShGL2(K(N)) and take any geometric point p : Spec(F) −→ ShGL2(K(N)), for F an algebraically

closed field. By universality of the triple (E ,ε1,ε2), the section iα,β : ShGL2(K(N))→ E is base-

changed to an N-torsion point pα,β of the elliptic curve E = E ×p Spec(F) over the field F . More

precisely, if we denote by e1 and e2 the pull-backs by p of ε1 and ε2, then pα,β can be written in the

form me1 +ne2, for certain m,n ∈ Z/NZ. By Remark 3.1.2, we have

cθE(pα,β ) = ∏
T∈E(F)

[a]T=pα,β

cθE(T ). (3.1)

Note that T is a torsion point which is killed by aN since it is mapped to pα,β by [a], i.e. it can be

written as

m′t1 +n′t2,

where t1, t2 ∈ E(F) form a basis of E[aN], and m′,n′ ∈ Z/aNZ such that

[a](m′t1 +n′t2) = me1 +ne2.

Denote the point m′t1 +n′t2 by pα ′,β ′ , for (α ′,β ′) = ( m′
aN ,

n′
aN ) ∈ (Q/Z)2. Then, (3.1) is

cθE(pα,β ) = ∏
α ′,β ′∈Q/Z

aα ′=α

aβ ′=β

cθE(pα ′,β ′),

which is what we are looking for. Since the formula is true for all the Q̄-points of ShGL2(K(N)), it

is true globally:

cgα,β = i∗
α,β (cθE ) = ∏

α ′,β ′
i∗
α ′,β ′(cθE ).

Similarly, one gets the formula for gα,β .

We now describe the norm relations of the elements cg0, 1
N
∈ O(ShGL2(U1(N)))∗, where the
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integer c is chosen to be coprime with 6N; recall that, for any N | N′, we have a natural projection

πN : ShGL2(U1(N′))→ ShGL2(U1(N)), (E,e1) 7→ (E,
N′

N
e1).

The morphism πN induces a norm map NπN : O(ShGL2(U1(N′)))∗→O(ShGL2(U1(N)))∗, which can

be described as follows. For any f ∈ O(ShGL2(U1(N′)))∗,

NπN ( f ) = ∏
σ∈S

σ
∗( f ),

where the finite set S consists of a system of coset representatives for U1(N)/U1(N′). We have the

following.

Proposition 3.1.9 ([Kat04], [Sch98]). Let p be prime number. We have

NπN (cg0, 1
N p
) =

cg0, 1
N

if p | N;

cg0, 1
N
−d∗p(cg0, 1

N
) if p - N;

where dp ∈GL2(Ẑ) is any matrix congruent to (1 0
0 p) modulo N.

For a proof, see Proposition 3.4.6 with g = 1.

3.1.2 The étale realisation

Fix a prime ` which is invertible in S. In the following, we recall how to construct étale cohomology

classes from Theorem 3.1.1. There are elements

cθ
ét
E ∈ H1

ét(E rE[c],Z`(1)),

which satisfy the following:

P1. For any r prime to c, cθ ét
E is invariant under trace maps associated to multiplication by r, i.e.

[r]∗(cθ
ét
E ) = cθ

ét
E ;

P2. They are invariant under base-change.

Remark 3.1.10. Recall that the trace map associated to multiplication by r prime to c is the compo-

sition of

[r]∗ : H1
ét(E rE[c],Z`(1))−→ H1

ét(E rE[rc],Z`(1))−→ H1
ét(E rE[c],Z`(1)),

where the first map is just restriction to E rE[rc] and the second is the trace map associated to [r].
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The étale cohomology classes associated to elliptic curves are the étale realisation of the units

of Theorem 3.1.1: using the connecting homomorphism

∂`t : O(E rE[c])∗→ H1
ét(E rE[c],Z/`tZ(1))

of the Kummer exact sequence of étale sheaves

0 // µ`t // Gm
(·)`t // Gm // 0

we get the element ∂`t (cθE) ∈ H1
ét(E rE[c],Z/`tZ(1)).

Proposition 3.1.11. The class cθ ét
E := lim←−t

∂`t (cθE) ∈ H1
ét(E rE[c],Z`(1)) satisfies the properties

P1,P2 listed above.

Proof. It is enough to show the statement at finite levels. The units cθE are invariant under norm

maps Nr associated to multiplication by r, for r coprime to c. Hence, property P1 follows from the

commutativity of the diagram

O(E rE[c])∗
∂`t //

Ñr

��

H1
ét(E rE[c],Z/`tZ(1))

[r]∗
��

O(E rE[c])∗
∂`t // H1

ét(E rE[c],Z/`tZ(1)),

where Ñr is the obtained by composing Nr on the right by the restriction map O(E r E[c])∗ →

O(E rE[rc])∗. Now, let S′/S be any S-scheme and consider g : E ′ = E×S S′→ E. Property P2 is a

direct consequence of Proposition 3.1.3(2) and the commutative diagram

O(E rE[c])∗
∂`t //

g∗

��

H1
ét(E rE[c],Z/`tZ(1))

g∗

��
O(E ′rE ′[c])∗

∂`t // H1
ét(E

′rE ′[c],Z/`tZ(1)).

The étale Eisenstein classes are obtained as pull-back under torsion sections of these étale

cohomology classes associated to the universal elliptic curve of ShGL2(K(N)).

3.1.2.1 The étale Gysin sequence

From what we discussed above, the reader might expect that the étale residue of cθ ét
E coincides

with the étale characteristic class of c2(0)−E[c], and, indeed, this is correct and follows from the

compatibility of the motivic and étale Gysin sequence under the étale regulator map. We explicit

this in the case where E/K is an elliptic curve over an algebraically closed field K; in particular, we
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characterise cθ ét
E as the only class which satisfies the property P1 and with étale residue rét(c2(0)−

E[c]). Note that Theorem 3.1.1 allows us to canonically choose a class in H1
ét(E rE[c],Z`(1)) with

the desired properties; however, it is possible to do some reverse engineering and lift canonically a

suitable multiple of rét(c2(0)−E[c]). This is the approach taken by Faltings in the case of higher

dimensional abelian varieties (see Theorem 3.3.6).

Consider the étale Gysin exact sequence for E[c] ↪→ E←↩ E rE[c]. It gives

0 // 0 // H0
ét(E,Z/`

tZ(1)) v // H0
ét(E rE[c],Z/`tZ(1))

// 0 // H1
ét(E,Z/`

tZ(1)) �
� // H1

ét(E rE[c],Z/`tZ(1))

// H0
ét(E[c],Z/`

tZ) // // H2
ét(E,Z/`

tZ(1)) // 0

Notation 3.1.12. Let resét denote the edge map of the étale Gysin sequence (with Z`-coefficients)

H1
ét(E rE[c],Z`(1))−→ H0

ét(E[c],Z`).

Lemma 3.1.13. The étale cohomology class cθ ét
E is the unique class fixed by [r]∗, for r prime to c,

such that

resét(cθ
ét
E ) = rét(c2(0)−E[c]).

Proof. The étale residue map resét can be explicitly described as follows. Note that the quotient

Qt = H1
ét(E rE[c],Z/`tZ(1))/H1

ét(E,Z/`
tZ(1))

can be seen as the group of degree 0 divisors with coefficients in Z/`tZ and supported on E[c].

Indeed, recall that H1
ét(E,Z/`

tZ(1))' Pic0(E)[`t ], while

H1
ét(E rE[c],Z/`tZ(1))'

{
(L , f )|L ∈ Pic(E rE[c]), f : L ⊗`t ∼−→ OErE[c]

}
/∼=

'
{
(L ,D, f )|L ∈ Pic0(E), f : L ⊗`t ∼−→ O(D)

}
/〈(O(D′), `tD′,1⊗

`t

)〉.

where D and D′ are degree 0 divisors supported on E[c] (e.g. [Sta17, Tag 03RR]). Hence, to each

element of Qt we can associate a divisor with coefficients in Z/`tZ supported on the c-torsion points,

and the étale residue map is described as

resét : H1
ét(E rE[c],Z/`tZ(1))−→ Qt ↪→ H0

ét(E[c],Z/`
tZ), (L ,D, f ) 7→ D.

Passing to the limit, we get a similar description for the quotient with Z`-coefficients. By Theorem

http://stacks.math.columbia.edu/tag/03RR
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3.1.1, as an element of Qt the class ∂`t (cθE) is the one associated to the degree 0 divisor c2(0)−E[c]

(i.e. the associated class in the kernel of H0
ét(E[c],Z/`

tZ)→ H2
ét(E,Z/`

tZ(1)). Thus, we conclude

that

resét(cθ
ét
E ) = rét(c2(0)−E[c]).

To prove uniqueness, we use the fact that the Gysin sequence is equivariant for the action of [r]∗.

Suppose that there is dc ∈H1
ét(ErE[c],Z`(1))[r]∗=1, for an integer r prime to c, such that resét(dc) =

rét(c2(0)−E[c]); then, the difference cθ ét
E − dc is fixed by [r]∗ and lies in H1

ét(E,Z`(1)). Since [r]∗

acts as multiplication by r on H1
ét(E,Z`(1)), we conclude that cθ ét

E −dc = 0.

Remark 3.1.14. As briefly mentioned above, the explicit description in Lemma 3.1.13 of the étale

residue map

resét : H1
ét(E rE[c],Z`(1))−→ H0

ét(E[c],Z`)

builds a direct analogy with the motivic residue map of Notation 3.1.6. Indeed, we have the commu-

tative diagram

H1
mot(E rE[c],Z(1))

lim←−t
∂`t

��

res // H0
mot(E[c],Z)deg=0

rét

��
H1

ét(E rE[c],Z`(1))
resét // H0

ét(E[c],Z`)
deg=0,

where H0
ét(E[c],Z`)

deg=0 := Ker
(
H0

ét(E[c],Z`)→ H2
ét(E,Z`(1))

)
, and rét(D) is the étale characteris-

tic class of D, which is defined by sending the divisor D to itself (now seen as a formal combination

of points in E[c] with coefficients in Z`).

3.1.3 Relation to Eisenstein series

Here, we follow [Kat04, §3]. We explain how to relate the value of the logarithmic derivative of

Siegel units to certain Eisenstein series. This should serve as a motivation for the definition of

Beilinson’s Eisenstein Symbol.

3.1.3.1 Analytic formulae of Siegel units

Let E = C/(Zτ +Z) for τ ∈ h.

Proposition 3.1.15 ([Kat04], Proposition 1.3(3), [Sch98] Theorem 1.2.1 (v)). Let z ∈ C r

c−1 (Zτ +Z), q = e2πiτ , and t = e2πiz. Then, the value of cθτ at z is given by

cθτ(z) = q
c2−1

12 (−t)
c−c2

2 ∏
n≥0

(1−qnt)c2

1−qntc ∏
n≥1

(1−qnt−1)c2

1−qnt−c .

Proof. The proof consists of checking that our candidate has the required properties described in

Theorem 3.1.1, which determine uniquely cθτ .

Proposition 3.1.15 is used to give analytic formulae for Siegel units gα,β . Let Γ(N) ⊂ SL2(Z)
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be the kernel of reduction modulo N; consider the connected component of ShGL2(K(N))

f : Γ(N)\h−→ ShGL2(K(N))(C),

which is given, at the level of moduli, by τ 7→ (C/(Zτ +Z),τ/N,1/N); moreover, the action of

SL2(Z) on h and the one of GL2(Z/NZ) on ShGL2(K(N))(C) are compatible under f . We would

like to consider Siegel units as holomorphic functions on the upper half-plane h. In order to do it, we

need to fix a Nth-root of unity ζN and, consequently, the q-expansion of Siegel units has coefficients

in Q(ζN) and not Q. First, note that the pull-back of cgα,β under f is cθEτ
(ατ +β mod Zτ +Z),

where τ ∈ h and Eτ = C/(Zτ +Z). Using the formula of Proposition 3.1.15, we have the following.

Proposition 3.1.16 ([Kat04] 1.9). Let q := e2πiτ and ζN := e
2πi
N , then

gα,β = q
1

12−
a

2N + a2

2N2 ∏
n≥0

(1−qnq
a
N ζ

b
N)∏

n≥1
(1−qnq−

a
N ζ
−b
N ),

where (α,β ) = ( a
N ,

b
N ) ∈

( 1
N Z/Z

)2 r{0,0}.

3.1.3.2 Eisenstein series

In the following two subsections, we give a brief overview of the realisation of Siegel units in de

Rham cohomology, under the image of the Chern character dlog. Following Section 3 of [Kat04],

one shows that these are Eisenstein series, which can be seen as an additive avatar of the Eisenstein

symbols. This section serves as a motivation for the construction of higher weight Eisenstein classes

in motivic and étale cohomology.

Denote Y = ShGL2(K(N)) and let Ω1
E /Y be the sheaf of relative differentials for the universal elliptic

curve E /Y . We can construct modular forms of weight one and two as follows.

1. Consider the logarithmic derivative of cθE ,

dlogE /Y (cθE ) ∈ Γ(E rE [c],Ω1
E /Y ),

and pull it back by iα,β ; we obtain a weight 1 modular form

i∗
α,β (dlogE /Y (cθE )) ∈ Γ(Y, i∗

α,β Ω
1
E /Y ) = Γ(Y,ωE /Y ),

where the last equality follows from the fact that, since Ω1
E /Y is free on the fibres of π : E →Y ,

ωE /Y := π∗Ω
1
E /Y = 0∗Ω1

E /Y

is isomorphic to x∗Ω1
E /Y , for any section x ∈ E (Y ).
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2. We can take the logarithmic derivative

dlogY/Q(cgα,β ) ∈ Γ(Y,Ω1
Y/Q).

Note that the Kodaira-Spencer map, i.e. the OY -linear morphism

KS : ω
⊗2
E /Y −→Ω

1
Y/Q

is an isomorphism (see [Sch98] 1.1), hence

dlogY/Q(cgα,β ) ∈ Γ(Y,ω⊗2
E /Y )

gives a weight 2 modular form.

Kato explicitly describes these modular forms, using the analytic formulae for cθE and cgα,β .

Definition 3.1.17. Fix an integer k ≥ 1; define the function E(k) on h×C by

E(k)(τ,z) := (−1)k(k−1)!(2πi)−kE(k,τ,z,0),

where

E(k,τ,z,s) = ∑
(m,n)∈Z2

1
(z+mτ +n)k|z+mτ +n|s

.

Furthermore, if (α,β ) = ( a
N ,

b
N ) 6= (0,0) in (Q/Z)2, define E(k)

α,β on h, by

E(k)
α,β (τ) := E(k)(τ,

a
N

τ +
b
N
).

In the case of (α,β ) = (0,0) ∈ (Q/Z)2, define E(k)
0,0 on h, by

E(k)
0,0(τ) := (−1)k(k−1)!(2πi)−kE0,0(k,τ,0),

where

E(k,τ,s) = ∑
(m,n)∈Z2

(m,n)6=(0,0)

1
(mτ +n)k|mτ +n|s

.

In particular, note that for k ≥ 3

E(k,τ,
a
N

τ +
b
N
,0) = ∑

(m,n)∈Z2

1
( a

N τ + b
N +mτ +n)k

= Nk
∑

(m,n)∈Z2

1
((a+Nm)τ +b+Nn)k

= Nk
∑

(m,n)∈Z2

(m,n)≡(a,b) mod N

1
(mτ +n)k ,
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which is a level N Eisenstein series. An account of their properties and the calculation of their

q-expansion can be found in [Kob12], Chapter III, Section 3.

The Eisenstein series defined above are related to the derivatives of dlog(cθτ(z)):

Proposition 3.1.18 ( [Kat04] (3.8.1), [Sch98] §1.3 ). Let k ≥ 1. The (k− 1)-th derivative of

dlog(cθτ(z)) with respect to z is

(2πi)k(c2E(k)(τ,z)− ckE(k)(τ,cz)).

3.1.3.3 De Rham Eisenstein Classes

We briefly introduce the algebraic avatar of the Eisenstein series defined above, following Section 3

of [Kat04]. We keep the notation adopted in §3.1.3.2. For an integer k ≥ 1 and (α,β ) ∈ ( 1
N Z/Z)2,

we define elements

1. E(k)
α,β ∈Mk(Γ(N)), where k ≥ 1, k 6= 2;

2. Ẽ(2)
α,β ∈M2(Γ(N));

3. F(k)
α,β ∈Mk(Γ(N)), where k ≥ 1 and (α,β ) 6= (0,0) if k = 2,

where Γ(N) is the kernel of reduction modulo N of SL2(Z). One has to keep in mind that their

analytic descriptions are given in terms of the functions of Definition 3.1.17. First, we introduce the

following operator.

Definition 3.1.19. For the integer k ≥ 1, define the map

D : ω
⊗k
E /Y −→ ω

⊗(k+1)
E /Y

which locally is

f ⊗ω
⊗k 7→ d f

ω
⊗ω

⊗(k+1),

where f ∈ OE and ω is a local basis of π∗Ω
1
E /Y , so that d f

ω
∈ OE is the function appearing in

d f = d f
ω
·ω.

Consider the following.

Definition 3.1.20. Let N ≥ 3 be an integer such that Nα = Nβ = 0 in Q/Z and write (α,β ) =

( a
N ,

b
N ) ∈ ( 1

N Z/Z)2 r{(0,0)}, for a,b ∈ Z. Then, for c > 1 integer prime to 6N, define

cE(k)
α,β

:= i∗
α,β (D

k−1 dlogE /Y (cθE )) ∈ Γ(Y,ω⊗k
E /Y ).

These forms satisfy similar properties to Siegel units, such as distribution and norm relations
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([Sch98]). Moreover, Proposition 3.1.3 translates into

c2
dE(k)

α,β − ck
dE(k)

α,β = d2
cE(k)

α,β −dk
cE(k)

α,β ,

for integers c,d coprime to 6N. Hence, it makes sense to define E(k)
α,β as follows.

Definition 3.1.21. Let k 6= 2, then define E(k)
α,β := 1

r2−rk rE
(k)
α,β , for an integer r > 1 coprime to 6 such

that r ≡ 1 (mod N).

As in Lemma 3.1.5, for any integer c coprime to 6N and k 6= 2, we have

cE(k)
α,β = c2E(k)

α,β − ckE(k)
cα,cβ

.

Thus, in the case of k = 2, we can opportunely define Ẽ(2)
α,β , with the property that

cE(2)
α,β = c2Ẽ(2)

α,β − c2Ẽ(2)
cα,cβ

.

Finally, starting from E(k)
α,β and Ẽ(2)

α,β , we can define the elements F(k)
α,β ∈Mk(Γ(N)), as described in

[Kat04] 3.6.

Definition 3.1.22. Let (α,β ) = ( a
N ,

b
N ) ∈ ( 1

N Z/Z)2. Then, define

F(k)
α,β = N−k

∑
x,y∈Z/NZ

E(k)
x
N , y

N
ζ

bx−ay
N , for k 6= 2;

F(2)
α,β = N−2

∑
x,y∈Z/NZ

Ẽ(2)
x
N , y

N
ζ

bx−ay
N , for

(
a
N
,

b
N

)
6= (0,0).

We now restrict to the case of (α,β ) = (0,b/N) and give a comparison between

dlogY/Q(g0,b/N) and F(2)
0,b/N ,, which consists in comparing the two q-expansions. First, recall.

Proposition 3.1.23. Let ζN := e2πi/N and q := e2πiτ . For k ≥−1 and b ∈ Z/NZ not zero, then

F(k+2)
0,b/N = ζ (−1− k)+ ∑

n>0
qn

∑
dd′=n

d,d′>0

dk+1(ζ bd′
N +(−1)k

ζ
−bd′
N ).

Proof. The analytic formulae of F(k+2)
0,b/N are extensively studied in [Kat76] Sections 3.2-3.3.

By explicit calculation, we have the following.

Proposition 3.1.24 ([Kat04] 3.11). For any b ∈ Z/NZ non-zero, we have

dlogY/Q(g0, b
N
) =−F(2)

0,b/N · (2πidτ)

dlogY/Q(cg0, b
N
) = (−c2F(2)

0,b/N +F(2)
0,cb/N) · (2πidτ).
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3.1.4 The Eisenstein Symbol of Beilinson

Let H k
Q denote the relative Chow motive over ShGL2(U1(N)) associated to the GL2-representation

Symk(Std)⊗det−k, for k ≥ 0. Given the universal elliptic curve π : E → ShGL2(U1(N)), we denote

by H k
dR = TSymk(HdR) the k-th symmetric tensors of HdR = R1π∗[OE → Ω1

E /ShGL2 (U1(N))]. In

[Beı̆86] Beilinson constructed motivic Eisenstein classes

Eisk
0,b/N ∈ H1

mot(ShGL2(U1(N)),H k
Q(1)),

whose pull-back to the upper half plane of the de Rham realisation rdR(Eisk
0,b/N) is the H k

dR-valued

1-form

−F(k+2)
0,b/N · (2πidz)k(2πidτ).

We do not discuss the construction of Beilinson; we rather prefer to give an account of the

definition of Eisenstein classes as the evaluation at torsion points of the polylogarithm class which

generalises to the case of abelian schemes of arbitrary dimension. This has various advantages; one

of them is that its norm-compatibility relation is radically built in the structure of the construction.

3.2 Eisenstein classes for abelian schemes
In this section and the following, we give a brief introduction to the theory of Eisenstein classes

and we explain how Theorem 3.1.7 generalises to the higher dimensional setting by describing two

constructions, one due to Kings and one due to Faltings, comparing them and hopefully explaining

advantages of the first against the other. For instance, Faltings constructs only trivial coefficients

classes, while Kings’ construction is much more general. Our main references are [KR17], [HK15],

and [Fal05].

Let us briefly summarise the contents of §3.2 and §3.3. Let A/S be an abelian scheme over a

scheme S of relative dimension g and let c be an auxiliary positive integer. In §3.2.1-3, we discuss

the construction of Kings of motivic (and étale) Eisenstein classes in the cohomology of S. We start

by describing the motivic construction of the class with trivial coefficients in the cohomology of

ArA[c], as in [KR17]. This can be achieved directly: by decomposing the motivic cohomology of

the abelian scheme into a direct sum of the eigenspaces for the trace [a]∗, for a prime to c, one can

construct (Definition 3.2.4) an [a]∗-invariant class

cz ∈ H2g−1
mot (ArA[c],Q(g)),

whose residue is the characteristic class of c2g(0)−A[c]. In [KR17], this class is realised as the

κ = 0-part of the system of motivic polylogarithm classes

cpolκmot ∈ H2g−1
mot (ArA[c],Symκ LQ(g)),
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introduced by [Kin99]. From the polylogarithm, Kings constructs Eisenstein classes (Definition

3.2.14)

cEisκ
x ∈ H2g−1

mot (S,Symκ(h1(A)∨)(g)),

depending on the choice of a torsion section x : S→ A, where h1(A)∨ is the dual of the Chow motive

introduced by Proposition 2.2.3.

Fix a prime p invertible in S. In §3.3, we illustrate and compare the two aforementioned p-adic

integral constructions. In §3.3.1-2, we discuss Faltings’ approach, defining (Theorem 3.3.6) and

discussing the properties of

czm ∈ H2g−1
ét (ArA[c],Zp(g)).

This class is characterised by being [a]∗-invariant and having residue the étale characteristic class of

c2g(0)−A[c]. In §3.3.4, we introduce Kings’ construction of the integral p-adic polylogarithm class

(Definition 3.3.20)

cpol ∈ H2g−1
ét (ArA[c],LZp(g)),

where LZp is the p-adic integral avatar of the system of motivic sheaves (Symκ LQ)κ . As in the

motivic case, from the integral polylogarithm Kings defines (Definition 3.3.24) integral avatars of

Eisenstein classes

cEisκ
Zp,x ∈ H2g−1

ét (S,TSymκ(HZp)(g)),

where HZp denotes the p-adic Tate module of A.

Under some hypotheses on S (e.g. of finite type over Z or equal to an algebraically closed field),

in §3.3.3 we construct a class cZm ∈ H2g−1
ét (ArA[c],LZp(g)) from czm (Definition 3.3.15), and

compare it with cpol in §3.3.6: Proposition 3.3.28 asserts that the two integral constructions are

equivalent up to an explicit constant.

3.2.1 Notation

Fix a (connected) smooth and quasi-projective scheme S over a characteristic zero field. Let π : A→

S be an abelian scheme of relative dimension g and zero section e : S→ A and let πc : ArA[c]→ S.

Recall that the trace map associated to multiplication by a prime to c is the composition of

[a]∗ : H?
mot(ArA[c],WQ(•))−→ H?

mot(ArA[ac], [a]∗WQ(•))−→ H?
mot(ArA[c],WQ(•)),

where the first map is just restriction to ArA[ac] and the second is the trace map associated to

[a]. Moreover, for B ∈ {A,ArA[c]} and any integer t, denote by H?
mot(B,Q(•))(t) the generalised

eigenspace of [a]∗

{z ∈ H?
mot(B,Q(•)) : ([a]∗−at)rz = 0 for some r ≥ 1}.
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As a consequence of Proposition 2.2.3, we have the following.

Proposition 3.2.1 ([KR17], Proposition 2.2.1). There is a decomposition into [a]∗-eigenspaces

H?
mot(A,Q(•))'

2g⊕
t=0

H?
mot(A,Q(•))(t),

which is independent of a.

This is of fundamental importance in the construction given by Kings of the degree zero part of

the polylogarithm class, which is discussed in §3.2.2 and §3.2.3.

3.2.2 The motivic class with trivial coefficients

Generalising Theorem 3.1.7 to this higher dimension setting boils down to constructing an element

in H2g−1
mot (ArA[c],Q(g))(0), whose image in H0

mot(A[c],Q), under the edge map res of the Gysin

sequence for the triple ArA[c] ↪→ A←↩ A[c]

H2g−1
mot (A,Q(g)) // H2g−1

mot (ArA[c],Q(g)) res // H0
mot(A[c],Q)

deg // H2g
mot(A,Q(g))

is given by the class of c2ge(S)−A[c].

Remark 3.2.2. Note that one can immediately identify Ker(deg) with the space H0
mot(A[c]re(S),Q),

so that the class of c2ge(S)−A[c] corresponds to the fundamental class of A[c]r e(S).

Applying Proposition 3.2.1 and the equivariance of the Gysin sequence for the [a]∗-action, we

get

Proposition 3.2.3 ([KR17], Corollary 2.2.2). Let c≥ 2, then

H2g−1
mot (ArA[c],Q(g))(0) ' H0

mot(A[c]r e(S),Q)(0).

Proof. By [KR17, Lemma 2.1.4], the Gysin sequence is equivariant for the [a]∗-action, thus the

Gysin sequence for ArA[c] ↪→ Ar e(S)←↩ A[c]r e(S), gives the exact sequence

H2g−1
mot (Ar e(S),Q(g))(0) // H2g−1

mot (ArA[c],Q(g))(0) //

// H0
mot(A[c]r e(S),Q)(0) // H2g

mot(Ar e(S),Q(g))(0).

The result follows by noticing that

H?
mot(Ar e(S),Q(g))(0) = 0,

which is a direct consequence of [KR17, Proposition 2.2.1].
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As a consequence, we can “lift” the class of c2ge(S)−A[c]:

Definition 3.2.4. Let cz ∈ H2g−1
mot (ArA[c],Q(g))(0) be the element which maps to the class

c2ge∗(1)−π
∗
|A[c](1) ∈ H0

mot(A[c],Q)(0)

under the isomorphisms of Proposition 3.2.3 and Remark 3.2.2.

Remark 3.2.5. Notice that similarly we could lift the étale realisation of the class of c2ge(S)−A[c]

in p-adic étale cohomology with Qp-coefficients, where p is a prime which does not divide c. This

is not true integrally; we will see that Faltings’ idea is based on overcoming the obstruction and

construct a section of

H2g−1
ét (ArA[c],Zp(g))(0) −→ H0

ét(A[c],Zp)
(0),

after multiplying by a suitable element of Zp.

Finally, we mimic Definition 3.1.4:

Definition 3.2.6. Let x : S→ A be an N-torsion section x : S→ A, for c,N coprime; define

czx := x∗cz ∈ H2g−1
mot (S,Q(g)).

How can we describe the class czx so obtained? In the one dimensional case, this is described

by the image of the Siegel unit of Definition 3.1.4. In the case where g > 1, it does not seem possible

to have a similar presentation of czx. Nevertheless, using the logarithmic (motivic) sheaf LQ and its

symmetric powers, Kings constructs Eisenstein classes

cEisκ
x ∈ H2g−1

mot (S,Symκ(h1(A)∨)(g)),

such that cEis0
x = czx. In §3.2.3 below, we give a very brief introduction to Kings’ construction of

the logarithm sheaf and of cEisκ
x .

3.2.3 The polylogarithm class

We give a very brief account of the construction of the polylogarithm class. Rather than explaining

the motivic construction of the logarithm sheaf and Eisenstein classes, we discuss the p-adic case,

for a prime p, and refer to [Kin99] and [HK15] for further details on the motivic one, which is

morally similar to the p-adic one thanks to the contribution of [HK15]. We keep the notation used

above.

Recall we have fixed an abelian scheme π : A→ S of relative dimension g. We will work with

continuous étale cohomology groups as defined by [Jan88] (see §2.2.1).
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Definition 3.2.7. Let HQp be the dual of the first relative étale cohomology (R1π∗Qp)
∨; denote

H κ
Qp

:= Symκ HQp .

The Leray spectral sequence induces a short exact sequence

0 // Ext1S(Qp,HQp)
π∗ // Ext1A(Qp,π

∗HQp)
// HomS(HQp ,HQp)

// 0,

which splits since we have a section of π given by the zero section e : S→ A.

Definition 3.2.8 ([Kin99], Definition 1.1.2). Let L 1
Qp
∈ Ext1A(Qp,π

∗HQp) be the unique element

that maps to id ∈ HomS(HQp ,HQp) and such that e∗L 1
Qp

splits. As before denote by L κ
Qp

the κ-th

symmetric power Symκ LQp .

As explained in [KR17], we have maps L κ
Qp
→L κ−1

Qp
, with kernel equal π∗H κ

Qp
, induced by

the morphism L 1
Qp
→ Qp given by the very definition of this extension class. The logarithm sheaf

LQp is defined as the pro-system of p-adic sheaves (L κ
Qp

)κ . Crucially, the logarithm sheaf satisfies

the following properties.

Proposition 3.2.9 ([Kin99] Proposition 1.1.3; [KR17] (3.2.1)). We have:

1. Let [a] : A→ A be the multiplication-by-[a] morphism. Then, LQp ' [a]∗LQp ; if t ∈Ker[a](S),

the pullback of L κ
Qp

by t∗ is

t∗L κ
Qp
'

κ

∏
m=0

H m
Qp

.

2. There is a canonical isomorphism

Ri
π∗L

κ
Qp
'

0 if i < 2g

Qp(−g) if i = 2g,

for all κ .

Note that Proposition 3.2.9 (with the help of the Leray spectral sequence for π∗) implies that

H i
ét(A,LQp(g)) := lim←−

κ

H i
ét(A,L

κ
Qp

(g))'

0 if i < 2g

H0
ét(S,Qp) if i = 2g.

This finds an immediate application when we calculate the cohomology group

H2g−1
ét (ArA[c],LQp(g)). Indeed, the Gysin sequence for the triangle ArA[c]

jc
↪−→ A

ic←−↩ A[c] gives

0 = H2g−1
ét (A,LQp(g)) // H2g−1

ét (ArA[c],LQp(g)) // H0
ét(A[c], i

∗
cLQp)

// H0
ét(S,Qp) ,
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which induces, by [KR17, Corollary 3.3.1], the isomorphism

H2g−1
ét (ArA[c],LQp(g))' H0

ét(S,Ker(πA[c],∗i
∗
cLQp →Qp)),

where πA[c] : A[c]→ S is the structure morphism. Notice that Proposition 3.2.9(1) induces the iden-

tification

πA[c],∗i
∗
cLQp '∏

κ

πA[c],∗Symκ i∗cHQp ;

Thus, the kernel of the residue map Ker(H0
ét(A[c],Qp)→ H0

ét(S,Qp)) lies inside

H0
ét(S,Ker(πA[c],∗i∗cLQp →Qp)) and it makes sense to define the following.

Definition 3.2.10. For each D ∈ Ker(H0
ét(A[c],Qp)→ H0

ét(S,Qp)), let

D polQp
∈ H2g−1

ét (ArA[c],LQp(g))

be the class of residue D. In particular, denote by cpolQp
the class whose residue is given by

Dc := c2ge∗(1)−π
∗
A[c](1) ∈ Ker(H0

ét(A[c],Qp)→ H0
ét(S,Qp)).

We have already anticipated that using the logarithm sheaf has the advantage of having the

norm-compatibility built-in; indeed, we have the following.

Proposition 3.2.11 ([KR17], Proposition 3.4.1). Let a be an integer prime to c; then,

[a]∗(cpolQp
) = cpolQp

.

Proof. It follows from the [a]∗-equivariance of the Gysin sequence and the fact that [a]∗(Dc) =

Dc.

Remark 3.2.12. The integral avatar of LQp , whose description is the subject of §3.3.4, satisfies the

same properties.

In [HK15, Proposition 4.6.1], it is shown that L κ
Qp

is the étale realisation of a motivic object

L κ
Q = Symκ L 1

Q (in the triangulated category of étale motives over A without transfer and with

rational coefficients), which satisfies the equivalent properties of L κ
Qp

; thus, one can define ([HK15,

Theorem 5.2.3 ]) a system of motivic polylogarithm classes

cpolκmot ∈ H2g−1
mot (ArA[c],L κ

Q (g)),

characterised by having residue equal to c2ge∗(1)−π∗A[c](1) ∈ Ker(H0
mot(A[c],Q)→ H0

mot(S,Q)).



3.2. Eisenstein classes for abelian schemes 62

As for the étale case, the pullback of L κ
Q by a torsion section x : S→ A splits as

x∗L κ
Q =

κ

∏
m=0

Symm(h1(A)∨),

where h1(A)∨, introduced in Proposition 2.2.3, is the underlying motivic object whose p-adic reali-

sation is HQp .

We can finally come back to the question posed at the end of §3.2.2.

Proposition 3.2.13 ([KR17], Corollary 3.4.2). The degree 0 component of the polylogarithm class

cpol0mot ∈ H2g−1
mot (ArA[c],Q(g)) is the class cz of Definition 3.2.4.

However, thanks to the splitting of L κ
Q under pullback by torsion section x : S→ A of finite

order prime to c, we get maps prκ
x defined as the composition

H2g−1
mot (ArA[c],L κ

Q (g)) x∗ // H2g−1
mot (S,∏κ

m=0 Symm(h1(A)∨)(g)) // H2g−1
mot (S,Symκ(h1(A)∨)(g)).

Similarly, in the étale case, we have maps prκ
x : H2g−1

ét (ArA[c],LQp(g))→ H2g−1
ét (S,H κ

Qp
(g)).

Definition 3.2.14. The motivic and étale Eisenstein classes of weight κ are defined as

cEisκ
x := prκ

x (cpolmot) ∈ H2g−1
mot (S,Symκ(h1(A)∨)(g))

cEisκ
ét,x := prκ

x (cpolQp
) ∈ H2g−1

ét (S,H κ
Qp

(g)).

Remark 3.2.15. As a direct consequence of Proposition 3.2.13, we get that

cEis0
x = czx.

3.2.4 Constructing the class in K1

In [Fal05, §5], Faltings constructs a class cτ ∈ K1(ArA[c])⊗Q, dealing directly with Quillen’s

definition of the K1-group of a scheme as the second homotopy group π2(BQM(ArA[c]),0) of the

geometric realisation of the nerve of the Q-category of M(ArA[c]), which is the category of coherent

sheaves on ArA[c] up to canonical isomorphism. This element in K1(ArA[c])⊗Q, which is shown

to have residue a multiple of the fundamental class Dc of c2ge(S)−A[c], comes from determining an

explicit and canonical homotopy between the loop of Oe(S) and the one of Ot , for a non-trivial [c]-

torsion point t of A, in BQM(ArA[c]). This homotopy gives an element of π1(ΩBQM(ArA[c]), 0̃),

where 0̃ is the constant loop 0̃(t) = 0, which is isomorphic to π2(BQM(ArA[c]),0).

Pulling back by a torsion point x of order coprime to c, it gives a class in cτx ∈ K1(S)⊗Q.

We do not treat this construction in detail and we will not make use of it at any point in this
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thesis; however, its component in

Grg
γ(K1(S))⊗Q' H2g−1

mot (S,Q(g))

is expected to be a multiple of czx, since both elements cτ and cz are fixed by the trace [a]∗, for a

coprime to c, and have residue one the multiple of the other.

3.3 Integral Eisenstein classes

Fix a prime p. The étale realisation of the motivic Eisenstein classes described above defines an

interesting family of étale cohomology classes; however, for arithmetic applications, the integrality

of such elements is often needed. For instance, the Euler system machinery requires Galois coho-

mology classes with values in a lattice of the p-adic Galois representation in question. As the reader

might have noticed, Siegel units are naturally integral. However, they form an isolated case and, due

to a lack of a theory of integral motivic Eisenstein classes, additional work is needed to construct

integral classes.

As in §3.2.2, one can try to directly construct a section of the residue map

H2g−1
ét (ArA[c],Zp(g))−→ Ker

(
H0

ét(A[c],Zp)−→ H2g
ét (A,Zp(g))

)
of the Gysin sequence for A[c] ↪→ A←↩ ArA[c]. This approach has been explored by Faltings.

However, Kings’ integral description of the étale logarithm sheaf and of the polylogarithm provides a

more conceptual construction of integral étale cohomology classes and immediately sheds some light

on their relation with the étale realisation of the motivic Eisenstein classes previously constructed.

We will describe both approaches and explore the connection between the two constructions.

3.3.1 A construction of Faltings

We mainly follow [Fal05, Section 3].

Let π : A −→ S be an abelian scheme of relative dimension g and let p be invertible in S. For any

integer c not divisible by p, let πc : ArA[c]−→ S. Faltings constructs classes

czm ∈ H2g−1
ét (ArA[c],Zp(g)),

depending on the choice of an auxiliary integer m, which satisfy:

P1. For any r prime to c, czm is invariant under trace maps associated to multiplication by r, i.e.

[r]∗(czm) = czm;
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P2. The classes c1·c2zm, c1zm and c2zm are related by

c1·c2zm = [c1]
∗(c2zm)+ c2g

2 c1zm = [c2]
∗(c1zm)+ c2g

1 c2zm.

Furthermore, pulling them back under torsion sections x∈A(S) of order prime to c, we obtain classes

czm,x ∈ H2g−1
ét (S,Zp(g)).

We first recall the construction of these classes and then discuss their properties.

Consider the étale Gysin sequence for A[c] ↪→ A←↩ ArA[c]. It tells us how the direct image

étale sheaves (on S) Riπc,∗(Z/ptZ(g)) are related to Riπ∗(Z/ptZ(g)). Let H j(A[c],F ) denote the

j-th direct image sheaf of the sheaf F on A[c].

Proposition 3.3.1. The sheaf Riπc,∗(Z/ptZ(g)) coincides with Riπ∗(Z/ptZ(g)) for i< 2g−1; more-

over, we have the exact sequence

0−→ R2g−1
π∗(Z/ptZ(g))−→ R2g−1

πc,∗(Z/ptZ(g))−→H 0(A[c],Z/ptZ)−→ Z/ptZ.

Proof. The result can be checked at geometric stalks. Then, it follows from Corollary VI.5.3 and

Remark VI.5.4,(b) of [Mil80].

Remark 3.3.2. By taking inverse limit, this holds for the sheaf Zp.

Recall that the global sections H 0(A[c],Zp)(S) are by the very definition identified with

Zp(A[c]), since π|A[c] : A[c]→ S is a finite étale map. We now define the characteristic class of

c2g(0)−A[c].

Definition 3.3.3. Let e : S→ A[c] be the closed immersion defined by the unit section; it induces

e∗ : Zp(S)−→ Zp(A[c]) = H 0(A[c],Zp)(S).

We define the characteristic class of c2g(0)−A[c] to be the global section

Dc := c2ge∗(1)−π
∗
|A[c](1) ∈H 0(A[c],Zp)(S).

From Proposition 3.3.1, we have that the cokernel of

R2g−1
π∗(Zp(g)) ↪→ R2g−1

πc,∗(Zp(g))

is isomorphic to the kernel of

φ : H 0(A[c],Zp)−→ Zp.
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The next lemma shows that the characteristic class Dc defines a global section of the kernel of φ ,

hence of the cokernel of R2g−1π∗(Zp(g)) ↪→ R2g−1πc,∗(Zp(g)).

Lemma 3.3.4. The global section Dc ∈H 0(A[c],Zp)(S) lies in the kernel of φ(S).

Proof. Since the kernel of φ is a sheaf, we can reduce to show that the restriction of Dc to each

geometric fibre is zero. Thus, suppose that A is an abelian scheme over an algebraically closed field,

then we want to check that Dc lies in the kernel of the Gysin map

ϕ : H0
ét(A[c],Zp)−→ H2g

ét (A,Zp(g)).

Note that H0
ét(A[c],Zp) is isomorphic to Zp

c2g
, while H2g

ét (A,Zp(g)) is isomorphic to Zp. By Poincaré

duality, the Zp-dual of H2g
ét (A,Zp(g)) is H0

ét(A,Zp) which is isomorphic to Zp and the pairing is

induced by the product structure of Zp. On the other hand, H0
ét(A[c],Zp) is dual to itself with respect

to the pairing induced by multiplication of vectors

〈•,•〉 : Zc2g

p = H0
ét(A[c],Zp)×H0

ét(A[c],Zp) = Zc2g

p −→ Zp,


a1

a2
...

ac2g

 ,


b1

b2
...

bc2g

 7→ a1b1 + · · ·ac2gbc2g .

Then, the dual map to ϕ is

Zp = H0
ét(A,Zp)−→ H0

ét(A[c],Zp) = Zc2g

p ,a 7→ (a,a, · · · ,a).

Hence, let v = (a1,a2, · · · ,ac2g) ∈ Zc2g
p and b ∈ Zp, then

〈ϕ(v),b〉= 〈v,
(

b, b, · · · , b
)
〉= b ·∑ai,

which gives us the result claimed.

Unfortunately, we cannot immediately lift Dc to H2g−1
ét (ArA[c],Zp(g)) as we did in §3.2.2.

Faltings overcomes this obstacle, by multiplying for a big enough constant.

Lemma 3.3.5. Let m be an integer prime to p and let [m]∗ denote the trace map associated to

multiplication by m on A, then the product

Fm :=
2g−1

∏
i=0

([m]∗−m2g−i)

annihilates the truncated complex τ≤2g−1(Rπ∗(Zp(g))).
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Proof. This is a direct consequence of the action of [m]∗ in cohomology, which acts on the i-th

degree cohomology as multiplication by m2g−i. Indeed, note that

Ri
π∗(Zp(g))' R2g−i

π∗(Zp)'
2g−i∧

R1
π∗(Zp)'

2g−i∧
(Tp(A))

∨ ,

where Tp(A) denotes the p-adic Tate module of A and (•)∨ denotes its Zp-dual. This follows by

base change to geometric points and a duality statement for abelian varieties (e.g. [Mil08] Theorem

12.1). Thus, the result follows since [m]∗ acts as multiplication by m on Tp(A).

We now have the following result.

Theorem 3.3.6 ([Fal05], Section 3). Let m be an integer coprime to c and a generator of Z∗p and

define Nm := ∏
2g−1
i=0 (1−m2g−i). The class of N2

m(Dc) lifts canonically to H2g−1
ét (ArA[c],Zp(g)).

Proof. Here we give a sketch of the proof given in [Fal05]. We have a surjective map

H2g−1
ét (ArA[c],Zp(g))−→ Ker

(
H0

ét(A[c],Zp)−→ H2g
ét (A,Zp(g))

)
,

which comes from the étale Gysin exact sequence for (A,ArA[c],A[c]); denote by ψ the map

H0
ét(A[c],Zp)−→ H2g

ét (A,Zp(g)).

First, we lift Dc ∈ Ker(φ(S)) to the kernel of ψ to construct the desired class. To do so, Faltings

constructs a map of complexes

φ2g : R2g
π∗Zp(g)[−2g]−→ Rπ∗Zp(g)

which is multiplication by (2g)! in cohomology. Since, by Lemma 3.3.5, the operator

Fm :=
2g−1

∏
i=0

([m]∗−m2g−i)

annihilates the truncated complex τ≤2g−1(Rπ∗(Zp(g))), then

Fm ◦φ2g = Fm ◦ (2g)!

Let γ be the generator of R2gπ∗Zp(g) defined by the zero section of A; since [m]∗ fixes γ , we have

that

Nm ·φ2g(γ) = Nm · (2g)!(γ).

Thus, Fm ◦ψ(Dc) = Nm · (2g)!φ(Dc) = 0, because φ(Dc) = 0 in R2gπ∗Zp(g)(S).

Since [m]∗(Dc) = Dc, Fm acts on Dc as multiplication by Nm. Hence, applying Fm again, we get a
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canonical lift of Fm(NmDc) = N2
mDc in H2g−1

ét (ArA[c],Zp(g)).

Remark 3.3.7. If the prime p is sufficiently large, we can choose m such that Nm is invertible in Zp;

it suffices to assume that p > 2g+1 and choose m to be a generator of (Z/pZ)∗.

Remark 3.3.8. The étale Gysin sequence is equivariant for the action of [r]∗, thus we have a map

H2g−1
ét (ArA[c],Zp(g))[r]∗=1 −→ H0

ét(A[c],Zp)
[r]∗=1.

The dependence of Faltings’ classes on the choice of m arises from the obstruction to construct a

section of this map if g > 1.

Finally, we can define classes over the base of the abelian scheme.

Definition 3.3.9. Denote by czm the canonical lift of N2
m(Dc) to H2g−1

ét (ArA[c],Zp(g)). Moreover,

for any torsion section x ∈ A(S) of order prime to c, we define the étale Eisenstein classes for A/S as

czm,x := x∗czm ∈ H2g−1
ét (S,Zp(g)).

Let resét denote the (residue) map from the étale Gysin sequence

resét : H2g−1
ét (ArA[c],Zp(g))−→ H0

ét(A[c],Zp),

then

resét(czm) = N2
m(Dc).

3.3.2 Properties of Faltings’ classes

In the following, we investigate some of the properties that the Eisenstein classes defined above

satisfy. In particular, we show that they satisfy the two properties P1,P2 we mentioned above.

Proposition 3.3.10. Let r be an integer coprime to c and let [r]∗ be the trace map associated to the

multiplication by r : ArA[rc]−→ ArA[c], then

[r]∗(czm) = czm.

Proof. The trace map [r]∗ commutes with the operator induced by multiplication by Nm, hence the

result follows from noticing that [r]∗ fixes Dc.

Notice that we can extend this result for trace maps associated to isogenies whose degree is

coprime to c. Denote by czA
m the class in the cohomology of ArA[c].

Corollary 3.3.11. Let h : A→ A′ be an isogeny over S of degree prime to c, then

h∗(czA
m) = czA′

m ∈ H2g−1
ét (A′rA′[c],Zp(g)).
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Now, we prove the compatibility property P2 we stated above.

Proposition 3.3.12. Let c1,c2 be integers, then

c1·c2z = [c1]
∗(c2zm)+ c2g

2 (c1zm) = [c2]
∗(c1zm)+ c2g

1 (c2zm) ∈ H2g−1
ét (ArA[c1c2],Zp(g)).

Proof. We are reduced to studying what happens at the level of the characteristic classes of the

0-cycles in H0
ét(A[c1c2],Zp) we are lifting. Indeed, note that

[c1]
∗(c2g

2 e∗(1)−π
∗
|A[c2 ]

(1))+ c2g
2 (c2g

1 e∗(1)−π
∗
|A[c1 ]

(1)) = Dc1c2 + c2g
2 [c1]

∗e∗(1)− c2g
2 π
∗
|A[c1 ]

(1) =

= Dc1c2

hence [c1]
∗(c2z)+ c2g

2 c1zm and c1c2zm have same residue and hence are equal.

In the same fashion of the previous propositions, we can prove that the Eisenstein classes are

invariant under base-change. Recall that for Siegel units and Eisenstein classes, this property is

well-known.

Proposition 3.3.13. For any morphism S′→ S and abelian scheme A/S, then

g∗(czA
m) = czA′

m ,

where g : A′→ A is the base-change of A to S′.

Proof. The result follows from the fact the base change of DA
c by is DA′

c .

We can now discuss the comparison between the image under the étale regulator of Siegel units

and the étale classes defined in the previous section.

Proposition 3.3.14. Let π : E → S be an elliptic curve and let Nm be as above; fix c to be coprime

to 6p. Then, we have that

N2
m(cθ

ét
E ) = czm ∈ H1

ét(E rE[c],Qp(1)),

where cθ ét
E is the class defined in Proposition 3.1.11.

Proof. By the compatibility of étale and motivic Gysin sequences with the étale regulator, we have

that the (étale) characteristic class of res(cθ E) is equal to resét(cθ ét
E ) (see also Lemma 3.1.13). Thus,

N2
m(cθ ét

E ) has residue N2
mDc. It follows that the difference N2

m(cθ ét
E )− czE

m lies in the kernel of the

residue map and comes from an element

tm ∈ H1
ét(E,Zp(1)),



3.3. Integral Eisenstein classes 69

which is fixed by [r]∗, for any r coprime to c. We are left to show that tm is torsion. Indeed, after

tensoring by Qp, the Leray spectral sequence gives an isomorphism

H1
ét(E,Qp(1)) = H1

ét(S,R
0
π∗Qp(1))⊕H0

ét(S,R
1
π∗Qp(1)),

where [r]∗ acts as multiplication by r2 and by r on each summand. Thus tm = 0 in H1
ét(E,Qp(1)).

3.3.3 Faltings’ class as an integral polylogarithm

In the following, we define classes in étale cohomology groups with coefficients in an integral étale

logarithm sheaf starting from Faltings’ class. This is very close in spirit to the construction of Kings

in [Kin15a] and [Kin15c], as we will recall in §3.3.4.

In the remaining part of the section, we fix an abelian scheme A of relative dimension g over a base S

of finite type over Z, and a prime p (p - c). We consider Ar := A as a cover of A under multiplication

for pr and define the inverse system of étale lisse sheaves

LZp := ([pr]∗(Z/prZ))r≥0 ,

with transition map [pr]∗(Z/prZ)→ [pr−1]∗(Z/pr−1Z) given by composition of trace map and re-

duction modulo pr−1. Since S is of finite type over Z,

H2g−1
ét (ArA[c],LZp(g))' lim←−

r
H2g−1

ét (Ar rAr[prc],Z/prZ(g)).

We can construct an element in this inverse limit by using the étale classes czm. Indeed, consider the

image of the element ir(czm) in H2g−1
ét (Ar rAr[prc],Z/prZ(g)) under the natural map

ir : H2g−1
ét (Ar rAr[c],Z/prZ(g))−→ H2g−1

ét (Ar rAr[prc],Z/prZ(g)).

Since the elements czm are trace compatible, i.e. [p]∗(czm) = czm, we can define

Definition 3.3.15. Let cZm := (ir(czm))r ∈ H2g−1
ét (ArA[c],LZp(g)).

3.3.4 The integral polylogarithm of Kings

We now discuss the construction by Kings of the integral étale polylogarithm class

cpol ∈ lim←−
r

H2g−1
ét (Ar rAr[prc],Z/prZ(g)),

which is characterised by having residue Dc. Recall that A is an abelian scheme over a base S of

finite type over Z. Consider a torsion section x : S→ A and let A[pr]〈x〉 be the A[pr]-torsor defined
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by the Cartesian diagram

A[pr]〈x〉 //

pr,x

��

Ar

[pr ]

��
S x // A.

Define the sheaf of Iwasawa modules

Λ(HZp〈x〉) = (Λr(A[pr]〈x〉))r := (pr,x,∗Z/prZ)r .

When x is the unit section e : S→ A, denote Λ(HZp〈e〉) by Λ(HZp).

Remark 3.3.16. The stalk at a geometric point s̄ of Λr(A[pr]〈x〉) is isomorphic to the space of

Z/prZ-valued measures on A[pr]〈x〉s̄, hence the stalk at s̄ of Λ(HZp〈x〉)s̄ is the Iwasawa algebra

lim←−Λr(A[pr]〈x〉s̄), which motivates the chosen notation.

The sheaves Λ(HZp〈x〉) and LZp are simply related by the following.

Lemma 3.3.17 ([Kin15c], Lemma 6.1.2). There is a canonical isomorphism

x∗LZp ' Λ(HZp〈x〉)

Proof. It is sufficient to work at finite level. Thus, the result follows from the Cartesian diagram

above, since we deduce that

x∗[pr]∗Z/prZ' pr,x,∗Z/prZ.

We are now ready to state a result of Kings, which allows to define the integral polylogarithm

class in terms of its residue; this is of fundamental importance in the study of integrality of Eisenstein

classes and makes explicit the relation between polylogarithm classes and Siegel units in the case of

elliptic curves (as in [Kin15a], Theorem 12.4.21), which is of fundamental importance in proving

the p-adic interpolation properties of the push-forward classes in [KLZ17], [LSZ17], and [CRJ18].

Proposition 3.3.18 ([Kin15c], Proposition 6.3.1). We have a short exact sequence

0 // H2g−1
ét (ArA[c],LZp(g))

res // H0
ét(S,π|A[c],∗π

∗
|A[c]

Λ(HZp))
// H0

ét(S,Zp) // 0

Remark 3.3.19. The statement differs from the one of [Kin15c, Proposition 6.3.1], since we have

used that

H2g−1
ét (ArA[c],LZp(g))' H2g−1

ét (S,Rπ∗R jc∗ j∗cLZp(g)),

as explained in [Kin15c, Section 6.5].
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This result should already shed light on the connection between LZp and the étale logarithm

sheaf LQp , which results in Proposition 3.3.21. Let Dc be the étale characteristic class of c2g(0)−

A[c], as defined in Definition 3.3.3. Since

Dc ∈ H0
ét(S,π|A[c],∗π

∗
|A[c]Λ(HZp)),

we can define the integral étale polylogarithm class as follows.

Definition 3.3.20. The integral étale polylogarithm class associated to Dc is

cpol ∈ H2g−1
ét (ArA[c],LZp(g))

such that res(cpol) = Dc.

This construction agrees with the one of Definition 3.2.10:

Proposition 3.3.21 ([Kin15c], Corollary 7.2.2). There exists a map comp : LZp → LQp , which

induces the comparison

comp(cpol) = cpolQp
∈ H2g−1

ét (ArA[c],LQp(g))

3.3.5 The Eisenstein-Iwasawa classes of Kings

We now explain how Kings constructs integral Eisenstein classes from the polylogarithm class of

Definition 3.3.20.

Definition 3.3.22. Let x : S → A be a q-torsion section (for q coprime to c); define the Λ-adic

Eisenstein class cEI(x) to be x∗(cpol) in

H2g−1
ét (S,x∗LZp(g))' lim←−

r
H2g−1

ét (A[pr]〈x〉,Z/prZ(g)) = H2g−1
ét (S,Λ(HZp〈x〉)(g)).

Remark 3.3.23. The class cEI(x) is the Eisenstein-Iwasawa class, which appears in the works

[Kin15a], [Kin15c] and [KLZ17].

Now, let TSymk(HZp) be the sheaf of kth symmetric tensors of the p-adic Tate module

HZp = (R1π∗Zp)
∨ of A. Notice that TSymk(HZp) is not isomorphic to the kth symmetric powers

H k
Zp

(see Definition 3.2.7). The two sheaves become isomorphic after tensoring by Qp. Indeed, by

the universal property of the symmetric algebra, we have a morphism Symk(HZp)→ TSymk(HZp),

which becomes an isomorphism after inverting k!, thus inducing Symk(HQp) ' TSymk(HQp),

where HQp = (R1π∗Qp)
∨.

Kings defines moment maps (e.g. [Kin15c, Definition 5.5.2])

momk : H2g−1
ét (S,Λ(HZp)(g))−→ H2g−1

ét (S,TSymk(HZp)(g)),
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for any integer k ≥ 0, and gives the following:

Definition 3.3.24. Let

cEisk
Zp,x := momk([q]∗cEI(x)) ∈ H2g−1

ét (S,TSymk(HZp)(g)).

The definition depends on the integer q, but we prefer to omit it from the notation. Definition

3.3.24 is again motivated by the following comparison of these integral classes with the ones of

Definition 3.2.14.

Proposition 3.3.25 ([Kin15c], Theorem 7.3.3). We have

cEisk
Zp,x = qk(cEisk

ét,x) ∈ H2g−1
ét (S,H k

Qp
(g)).

Remark 3.3.26. This result answers affirmatively to the question on whether Eisenstein classes can

be interpolated as the weight varies p-adically, and it is the generalisation of the elliptic curve case

treated in [Kin15a]; however, there is a crucial difference between [Kin15a, Theorem 12.4.21] and

[Kin15c, Theorem 7.3.3]: in the former, the integral polylogarithm class is seen to be ”motivic”: if

π : E → S denotes an elliptic curve over a scheme S of finite type over Z, Kings defines cΘ as the

inverse limit of

lim←−
r

∂pr(cθE) ∈ lim←−
r

H1
ét(E rE[prc],Z/prZ(1)) = H1

ét(E rE[c],LZp(1)).

Then, comp(cpol) is equal to cΘ as elements of H1
ét(E rE[c],LQp(1)). A similar description does

not seem possible in the higher dimension case.

Remark 3.3.27. The phenomenon of constructing classes in the cohomology with non-trivial coef-

ficients from trivial coefficients ones appears in various occasions. Indeed, the very construction of

(higher) étale cyclotomic Soulé elements or the Euler system of Kato for modular forms of weight

higher than 2 relies on p-adic deformation techniques (see [Kin15a, Definition 12.3.3], [Kat04,

§8.4]).

3.3.6 Comparison between the two polylogarithm classes

The comparison of the construction of Definition 3.3.20 and the one of Definition 3.3.15 relies on

the very characterisation of the two classes, as the next proposition shows.

Proposition 3.3.28. Let c,m be as in Theorem 3.3.6. We have

N2
m(cpol) = cZm.

Proof. This is a straight-forward consequence of the comparison of the residues at finite levels and
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the injectivity of the residue map by Proposition 3.3.18. Indeed, both N2
m(cpol) and cZm are inverse

system of classes having residues N2
mDc in H0(A[cpr],Z/prZ).

Remark 3.3.29.

• This is the integral counterpart of a comparison between the underlying rational motivic

classes of Faltings and Kings, which follows from the description of the degree 0 part of

the polylogarithm on abelian schemes of [KR17], as it was briefly discussed in §3.2.4.

• There is a clear discrepancy between the construction of Kings and the one of Faltings. The

étale polylogarithm class does not depend on the choice of an auxiliary integer m, because of

the vanishing of the direct image sheaves of LZp in degree less than 2g ([Kin15c, Theorem

6.2.3]).

• Note that the very construction of the moment maps would allow us to define the class

czk
m,q := momk([q]∗x∗cZm),

which, after tensoring with Qp, is in H2g−1
ét (S,H k

Qp
(g)). However, this is a multiple of

cEisk
Zp,x, because, by Proposition 3.3.28, x∗cZm is equal to N2

m(cEI(x)).

3.4 Varying the level
We discuss how the trace compatibilities of GL2-Eisenstein classes generalise to the general GSp2g-

case. We use the method of Scholl in [Sch98], which readily extends to the higher dimensional

setting. Crucially, the trace compatibility follows from a detailed study of variation of level structures

in towers. These compatibility relations play a key role in proving norm relations and in answering

Hida theoretic questions as we will discuss in the next chapters.

3.4.1 Compatibility in the mira-Klingen tower

In the following we study how the Eisenstein classes of symplectic Shimura varieties vary in the

tower of levels U1(N) given in Definition 2.1.20; fix a finite set of primes S coprime to N and p, and

consider any sufficiently small open compact subgroup KS ⊂GSp2g(ZS). Consider the congruence

subgroup

UN :=U1(N)KS ⊂GSp2g(Ẑ).

Since UN is sufficiently small, the Shimura variety ShGSp2g(UN) is the fine moduli space of isomor-

phism classes of quadruples (A,λ ,α,P), where A is an abelian scheme of relative dimension g, λ is

a principal polarisation on A, α is a symplectic level KS-structure and P is a point of exact order N

of A. Its universal abelian scheme A = Ag(UN)
π−→ ShGSp2g(UN) comes equipped with the universal
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N-torsion section eN . We show how the Eisenstein classes behave under the trace prp,∗ of

prp : ShGSp2g(UpN)−→ ShGSp2g(UN), (A,λ ,α,P) 7→ (A,λ ,α, [p]P)

where [p] denotes multiplication by p. We observe that we prove a trace compatibility in the mira-

Klingen tower rather than in the Klingen tower because our Eisenstein classes, which depend on

the choice of a torsion section of the universal abelian scheme of ShGSp2g(UN), naturally live in the

cohomology of ShGSp2g(UN) (Definition 3.4.4).

First, recall the following.

Lemma 3.4.1. The universal abelian scheme A represents the functor

F : Sch/Q −→ Sets, S 7→


isomorphism classes of (A,λ ,α,P,s),

where (A,λ ,α,P) ∈ ShGSp2g(UN)(S)

and s ∈ A(S)

 .

Proof. To ease the notation, denote by Shg the Shimura variety ShGSp2g(UN). Define the natural

transformation η : A (·)−→F , by sending, for any Q-scheme S,

ηS : A (S)→F (S), x 7→ ((A,λ ,α,P),s),

where (A,λ ,αD,P) corresponds to π(x)∈ Shg(S) and s : S
(x,idS)−→ A ×Shg,π(x)S

ψ−→A, where the second

map ψ is an isomorphism which comes from the universal property of A /Shg.

Note that the natural transformation η has a mutual inverse ρ : F −→A (·), defined by sending

ρS : F (S)→A (S), ((A,λ ,α,P),s) 7→ t,

where t : S→A is the composition

S s−→ A
φ−→A ×Shg,y S

pr1−→A ,

where

• y ∈ Shg(S) corresponds to (A,λ ,α,P);

• φ : A−→A ×Shg,y S is the isomorphism, which arises from the universal property of A /Shg.

Indeed, if x ∈A (S),

ρS ◦ηS(x) = ρS(π(x),ψ ◦ (x, idS))) = pr1 ◦ψ
−1 ◦ψ ◦ (x, idS)) = x.
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On the other hand, if ((A,λ ,α,P),s) ∈F (S),

ηS ◦ρS((A,λ ,α,P),s)) = ηS(pr1 ◦φ ◦ s) = (π(pr1 ◦φ ◦ s),φ−1 ◦ (pr1 ◦φ ◦ s, idS)),

which is equal to ((A,λ ,α,P),s) since

• π(pr1 ◦φ ◦ s) = y := (A,λ ,α,P) thanks to the commutativity of the diagram

A
φ // A ×Shg,y S

pr2

��

pr1 // A

π

��
S

s

OO

id // S
y // Shg;

• φ−1 ◦ (pr1 ◦φ ◦ s, idS) = φ−1 ◦φ ◦ s = s.

After much unwinding definitions, we’ll see below that the compatibility under the trace of prp

of the GSp2g-Eisenstein classes basically follows from this simple group theoretic result.

Lemma 3.4.2. Let (G,+) be an abelian group with identity element 0G and let x ∈G be an element

of exact order N, i.e. Nx = 0G and Mx 6= 0G for every integer 0 < M < N. Fix a prime number p

and suppose that y ∈ G satisfies the relation py = x, then the following are true.

1. The element y has exact order either N or N p;

2. Suppose that p - N. If y has exact order N and py = x, then y is necessarily of the form rx, for

r positive integer such that

rp≡ 1 (mod N);

3. Suppose that p|N. If py = x, then y has exact order N p.

Summing all up, we get the following.

Lemma 3.4.3.

1. Suppose that p - N. We have

ShGSp2g(UN)tShGSp2g(UN p)
(reN , f ) //

(id,prp)

��

A

[p]

��
ShGSp2g(UN)

eN // A

(3.2)

is Cartesian, where f = (id×prp)◦ eN p and r is the inverse of p modulo N.
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2. In the case when p | N, the diagram

ShGSp2g(UN p)
(id×prp)◦eN p //

prp

��

A

[p]

��
ShGSp2g(UN)

eN // A

(3.3)

is Cartesian.

Proof. The proof is similar to the one in the case of modular curves, as in [Sch98, Lemma 2.3.1];

note that, by Yoneda lemma, it is enough to check that for every Q-scheme S the diagram evaluated

at S-points is Cartesian in the category of Sets.

By Lemma 3.4.1, for any Q-scheme S, A (S) is the set of pairs (a,P), where a∈ShGSp2g(UN)(S)

and P is a point in the abelian scheme Aa/S defined by a. Denote by •a the base-change of • ∈

A (ShGSp2g(UN)) to Aa(S). We treat the two cases in the statement of the lemma separately.

1. Let p - N. The morphism eN sends a ∈ ShGSp2g(UN)(S) to (a,eN,a) ∈A (S). By Lemma 3.4.2,

the pre-image of eN,a under multiplication by p has either the exact order N or N p. In the first

case, the pre-image of (a,eN,a) is of the form (a,reN,a), with r the inverse of p modulo N,

hence it defines a point in ShGSp2g(UN)(S). In the second, it will be of the form (a,reN,a + y),

for y point of exact order p of Aa, and, using the universal property of epN , we get a S-point of

ShGSp2g(UN p).

2. As above, the morphism eN sends a 7→ (a,eN,a)∈A (S). By Lemma 3.4.2, its pre-image under

multiplication by p has necessarily exact order N p, thus it defines an S-point of ShGSp2g(UN p).

3.4.2 The distribution relations

We now finally state the distribution relations under the trace prp,∗ of the Eisenstein classes for

ShGSp2g(UN):

Definition 3.4.4. Let H κ
Q denote the Chow motive over ShGSp2g(UN) associated to the GSp2g-

representation Symκ(Std)⊗ν−κ and denote by

cEisκ
g,N := cEisκ

eN
∈ H2g−1

mot (ShGSp2g(UN),H
κ

Q (g)),

where cEisκ
eN

is the class introduced in Definition 3.2.14.

Remark 3.4.5. Notice that, by our choice of normalisation of Ancona’s functor in Proposition 2.2.4,

H κ
Q = Symκ(h1(A )∨).
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We start by showing the distribution relations for cEis0
g,N , which, by Proposition 3.2.13, is the

class e∗N(cz).

Proposition 3.4.6. We have

prp,∗(cEis0
g,N p) =

cEis0
g,N if p | N;

cEis0
g,N−d∗p(cEis0

g,N) if p - N;

where dp ∈GSp2g(Ẑ) is any matrix congruent to ( I 0
0 pI ) modulo N.

Proof. The computation follows by using Lemma 3.4.3 and the fact that the Eisenstein classes are

invariant under trace maps [p]∗ (e.g. Proposition 3.2.11) and under base-change (e.g. [Lem16,

Proposition 2.11]). To help the reader follow each passage in the proof, we denote by czAg(UN) the

class of the universal abelian scheme of ShGSp2g(UN). Let p | N; the Cartesianness of diagram (3.3)

gives

prp,∗(cEis0
g,pN) =prp,∗

(
e∗pN

(
czAg(UpN)

))
=prp,∗

(
e∗pN

(
(id×prp)

∗
(

czAg(UN)
)))

=e∗N
(
[p]∗

(
czAg(UN)

))
by (3.3)

=e∗N
(

czAg(UN)
)

= cEis0
g,N ,

where the second equality follows form the compatibility of the class under base-change and the

second last from the invariance of czAg(UN) under [p]∗.

In the case of p and N coprime, we use the Cartesianness of the diagram (3.2) to deduce

(id,prp)∗
(
(reN , f )∗

(
czAg(UN)

))
=e∗N

(
[p]∗

(
czAg(UN)

))
=e∗N

(
czAg(UN)

)
= cEis0

g,N .

Moreover, the left hand side of the equation above is just

(reN)
∗
(

czAg(UN)
)
+prp,∗

(
e∗N p(id×prp)

∗
(

czAg(UN)
))

= (dp)
∗

cEis0
g,N +prp,∗

(
cEis0

g,N p
)
,

where dp is a matrix in GSp2g(Ẑ) whose reduction modulo N is of the form ( I 0
0 pI ).

Remark 3.4.7. This proposition is the higher dimension analogue of the result of Kato for Siegel

units (appearing in the proof of [Kat04, Props 2.3-4]), which was the subject of Proposition 3.1.9.
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By the same method, we get compatibility relations for cEisκ
g,N ∈H2g−1

mot (ShGSp2g(UN),H κ
Q (g)).

According to §2.2.5, we define prp,∗ to be the composition of Trprp with [p]∗ : H κ
Q → pr∗p(H

κ
Q ).

Then, we have the following.

Proposition 3.4.8. We have

prp,∗(cEisκ
g,pN) =

cEisκ
g,N if p | N;

cEisκ
g,N−pκ d∗p(cEisκ

g,N) if p - N;

where dp ∈GSp2g(Ẑ) is any matrix which reduces modulo N to ( I 0
0 pI ) modulo N.

Proof. The proof of the statement goes as before, with the only difference, in the case of p - N,

being the action of [p]∗ on our coefficients, which is given by multiplication by pκ . Indeed, by the

Cartesian diagram (3.2), we get

(Trprp ◦[p]∗)
(

cEisκ
g,pN
)
+[p]∗(dp)

∗
cEisκ

g,N = cEisκ
g,N ,

and thus the desired formula since [p]∗ acts by multiplication by p on HQ.

Remark 3.4.9. Let p be any prime. Note that the method of [KLZ17, Theorem 4.3.3] readily applies

to the p-adic realisation of Eisκ
g,N and its integral counterpart: denote by

cEisκ
Zp,g,N := cEisκ

Zp,eN
∈ H2g−1

ét (ShGSp2g(UN),TSymκ(HZp)(g)),

the class of Definition 3.3.24. We have

prp,∗(cEisκ
Zp,g,N p) =

cEisκ
Zp,g,N if p | N;

cEisκ
Zp,g,N−pκ d∗p(cEisκ

Zp,g,N) if p - N;

where dp ∈ GSp2g(Ẑ) is as in Proposition 3.4.8 and prp,∗ denotes the trace map of prp in étale

cohomology.

3.4.3 Consequences of the distribution relations

3.4.3.1 Distribution relations for push-forward classes

Proposition 3.4.6 gives immediately a trace-compatibility relation for the push-forward of Eisenstein

classes. Let H, G be reductive groups over Q and fix Shimura data (G,X) and (Hg := GSp2g�H,Y )

of PEL-type such that there is an embedding

ι : (Hg,Y ) ↪→ (G,X).
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We allow H to be trivial in the sense that with (Hg,Y ) we simply mean the symplectic Shimura

datum for GSp2g introduced in §2.1.3.2. The morphism ι induces morphisms

ιK : ShHg(K∩Hg)−→ ShG(K),

for K ⊂ G(A f ) sufficiently small open compact subgroup.

Now, choose a family of sufficiently small open compact subgroups Kpn ⊂ G(Ẑ), for n ≥ 0,

which satisfies the following:

1. The pull-back of each Kpn ∩Hg =Un
1 �U2 such that its p-component is

U1(pn)�H(Zp).

2. The maps

ιn : ShHg(Kpn ∩Hg)−→ ShG(Kpn)

are closed immersions of codimension d.

Remark 3.4.10. These conditions ensure that we have a diagram

ShGSp2g(U
n
1 ) ShHg(Kpn ∩Hg)

π1,noo � � ιn // ShG(Kpn).

Moreover, if V is an algebraic representation of G such that we have

Dκ,0 := Dκ �W 0 ↪→V|Hg
,

for W 0 the trivial representation of Hg and Dκ the GSp2g-representation Symκ(Std)⊗ν−κ , then we

obtain Gysin morphisms

ι
κ
n,∗ : H2g−1

mot (ShHg(Kpn ∩Hg),D
κ,0
Q (g))−→ H2(g+d)−1

mot (ShG(Kpn),VQ(g+d)),

where Dκ,0
Q , VQ are images under Ancona’s functor of Dκ,0 and V .

We can then define elements

zV,κ
G,n := ι

κ
n,∗ ◦π

∗
1,n
(

cEisκ
x+en

)
∈ H2(g+d)−1

mot (ShG(Kpn),VQ(g+d)),

where x ∈ Ag(ShGSp2g(pr1(K1 ∩Hg))) is a suitable torsion point of order an auxiliary integer M

coprime to p.

Corollary 3.4.11. Let n > 1 and let τn denote the natural degeneracy morphism ShG(Kpn) →
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ShG(Kpn−1); then, we have

τn,∗(z
V,κ
G,n) = zV,κ

G,n−1.

Proof. Note that by the choice of Kpn , we have a Cartesian diagram

ShHg(U
n
1 �U2)

π1,n // //

pr′n
��

ShGSp2g(U
n
1 )

prn

��
ShHg(U

n−1
1 �U2)

π1,n−1// // ShGSp2g(U
n−1
1 ),

where prn and pr′n are the natural degeneracy maps. This allows us to translate the trace com-

patibility relation of
(
Eisκ

g,pn
)

n>0 of Proposition 3.4.8 to a trace compatibility under pr′n,∗ of(
π∗1,n

(
Eisκ

g,pn
))

n>0
. Thus, the result follows from the commutativity of the diagram

ShHg(Kpn ∩Hg)
ιn //

pr′n
��

ShG(Kpn)

τn

��
ShHg(Kpn−1 ∩Hg)

ιn−1 // ShG(Kpn−1).

A similar statement holds for the case of n = 0.

Corollary 3.4.12. Let τ1 denote the natural degeneracy morphism ShG(Kp)→ ShG(K1); then, we

have

τ1,∗(z
V,κ
G,1) = (1− pκ d∗p)z

V,κ
G,0,

where dp ∈ Hg(Ẑ) is any matrix whose GSp2g-component reduces to ( I 0
0 pI ) modulo M.

Proof. The proof is identical to the one of Corollary 3.4.11 and follows from the p - M case of

Proposition 3.4.6.

Remark 3.4.13.

• Corollaries 3.4.11 and 3.4.12 are automatically true in the integral p-adic étale setting;

• Corollaries 3.4.11 and 3.4.12 recover the first norm relation of the Beilinson-Flach elements

([LLZ14, Theorem 3.1.1]). One can treat similarly the case of push-forward of cup-products of

classes, recovering the level trace compatibility of the GSp4-Euler system ([LSZ17, Theorem

8.3.2(i)]).

3.4.3.2 Λ-adic Eisenstein classes for GSp2g

As as second direct application, we show how to use the compatibility of Eisenstein classes in the

mira-Klingen tower to compare Faltings’ classes with Kings’ Eisenstein-Iwasawa classes when the
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base scheme S is an integral model of the GSp2g Shimura variety. This section should be regarded

as a continuation of §3.3.6.

Let Upr be the sufficiently small open compact subgroup U1(pr)KS ⊂ GSp2g(Ẑ); we denote

by ShGSp2g(Upr) the integral model over Z[ 1
d p ], for an auxiliary integer d coprime to p, of the cor-

responding Q-scheme. Denote by A (Upr)/ShGSp2g(Upr) its universal abelian scheme, which is

equipped with the universal pr-torsion section epr . Associated to A (Upr) and epr , we have the étale

class (Definition 3.3.9)

czg
m,pr := e∗pr (czm) ∈ H2g−1

ét (ShGSp2g(Upr),Zp(g)),

Lemma 3.4.14. Let πp,∗ be the trace map of the natural degeneracy map πp : ShGSp2g(Upr+1) −→

ShGSp2g(Upr). If r ≥ 1, then

πp,∗(czg
m,pr+1) = czg

m,pr .

Proof. The proof is identical to the one of Proposition 3.4.6. Indeed, it follows from Lemma 2.1.25

and the Cartesianness of

ShGSp2g(Upr+1)
(id×πp)◦epr+1

//

πp

��

A (Upr)

[p]

��
ShGSp2g(Upr)

epr
// A (Upr).

Remark 3.4.15. By the previous lemma, we have

czg
m,p∞ := (czg

m,pr)r≥1 ∈ lim←−
r≥1

H2g−1
ét (ShGSp2g(Upr),Zp(g)),

where the inverse limit is taken with respect to the trace maps πp,∗.

The class czg
m,p∞ can be directly related to Kings’ Eisenstein-Iwasawa class cEI(ep) := e∗p(cpol)

associated to A (Up). Indeed, we get the following generalisation of [KLZ17, Theorem 4.5.1(1)].

Theorem 3.4.16. There is an isomorphism

H2g−1
ét (ShGSp2g(Up),Λ(HZp〈ep〉)(g))' lim←−

r≥1
H2g−1

ét (ShGSp2g(Upr),Zp(g)),

where the inverse limit is with respect to the trace map of the natural degeneracy map

πp : ShGSp2g(Upr+1)−→ ShGSp2g(Upr).

Moreover, under this isomorphism the Λ-adic class e∗pcZm is mapped to czg
m,p∞ . In particular, we
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have

czg
m,p∞ = N2

m(cEI(ep)).

Proof. The proof is very similar to the one of [KLZ17, Theorem 4.5.1(1)]. Let A := A (Up). Note

that there is an isomorphism of schemes fr : ShGSp2g(Upr+1)'A [pr]〈ep〉 such that

ShGSp2g(Upr+1)
fr //

πr
p

��

A [pr]〈ep〉

prr,ep

��
ShGSp2g(Up) ShGSp2g(Up).

This follows from the very definition of A [pr]〈ep〉. Indeed, a point of A [pr]〈ep〉 over (A,λ ,α,P) ∈

ShGSp2g(Up) is given by a point Q of order pr+1 of A such that [pr]Q = P. Hence, fr is the isomor-

phism defined by sending

(A,λ ,α,Q) 7→ ((A,λ ,α, [pr]Q),Q) .

The isomorphism fr induces

H2g−1
ét (A [pr]〈ep〉,Zp(g))' H2g−1

ét (ShGSp2g(Upr+1),Zp(g)),

for all r ≥ 0, and, passing to the limit, we get the desired isomorphism.

Moreover, under fr, the morphism A [pr]〈ep〉 −→ A corresponds to the universal pr+1 torsion

section epr+1 of ShGSp2g(Upr+1). This shows that czg
m,pr+1 corresponds to the restriction of czm to

A [pr]〈ep〉. Thus,

e∗p(cZm) = czg
m,p∞ .

Finally, the equality

czg
m,p∞ = N2

m(cEI(ep))

follows from Proposition 3.3.28.



Chapter 4

Towards an Euler system for GSp6

In what follows, we describe the joint work with Joaquı́n Rodrigues Jacinto on the construction of

global cohomology classes in the middle degree cohomology of the Shimura variety ShGSp6 of the

symplectic group GSp6 compatible when one varies the level at p. They arise as push-forward of

elements in the first cohomology group of the Shimura variety for GL2×det GL2×det GL2. We show

how these classes satisfy Euler system norm relations in the cyclotomic tower at p, and thus provide

elements in the Iwasawa cohomology of Galois representations appearing in the middle degree co-

homology of the Shimura variety.

The chapter is organised as follows.

In §4.1, we discuss basic properties of the Shimura varieties and establish branching laws for the

restriction of algebraic representations of GSp6 to GL2×det GL2×det GL2, which is needed to con-

struct elements in the cohomology with non-trivial coefficients. In §4.2 and §4.4, we define the

motivic and étale classes in the cohomology of ShGSp6 and prove their norm compatibility relations.

In §4.3, we finally construct the elements in the Iwasawa cohomology of Galois representations

appearing in the middle degree cohomology of ShGSp6 .

4.1 Preliminaries

4.1.1 Groups

Let

H = GL2×det GL2×det GL2 = {(A,B,C) : A,B,C ∈GL2,detA = detB = detC}

be the group scheme over Z obtained by taking the product over the determinant of three copies of

GL2, and denote by G the group scheme GSp6 over Z. Recall that its R-points are

G(R) = GSp6(R) = {A ∈GL6(R) : AtJA = ν(A)J, ν(A) ∈Gm(R)},
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for any commutative ring R with 1, where J is the matrix
( 0 I′3
−I′3 0

)
, for I′3 =

(
1

1
1

)
. In the following,

we will consider H as a subgroup of G through the embedding defined by

∆ :
((a1 b1

c1 d1

)
,
(a2 b2

c2 d2

)
,
(a3 b3

c3 d3

))
∈H 7→


a1 b1

a2 b2
a3 b3
c3 d3

c2 d2
c1 d1

 ∈G

We denote by ZH and ZG the centers of H and G respectively.

4.1.2 Shimura varieties

Recall that the Shimura variety ShGL2 is associated to the Shimura datum (GL2,XGL2), where XGL2

is the set of GL2(R)-conjugacy classes of

hGL2 := S→GL2/R, a+ ib 7→ 1
a2+b2

(
a b
−b a

)
.

The diagonal embedding GL2 → H induces a Shimura datum (H,XH); denote by ShH the corre-

sponding Shimura variety ShH. If U ⊆H(A f ) is a fibre product U1×det U2×det U3 of subgroups of

GL2(A f ), we have

ShH(U) = ShGL2(U1)×Gm ShGL2(U2)×Gm ShGL2(U3),

where×Gm denotes the fibre product over the zero dimensional Shimura variety of level D = det(Ui)

π0(ShGL2)(D) = Ẑ∗/D

given by the connected components of ShGL2 . Finally, let (G,XG) be the Shimura datum defined

in §2.1.3.2; the embedding ∆ induces an inclusion of Shimura data (H,XH) ↪→ (G,XG) with corre-

sponding embedding ShH ↪→ ShG of codimension 3. For any open compact subgroup U of G(A f ),

we have

ιU : ShH(U ∩H)−→ ShG(U).

For sufficiently small level groups, all the Shimura varieties defined above, as well as the morphisms

between them, admit canonical models over Q. The following lemma is an adaptation of [LSZ17,

Lemma 5.3.1].

Lemma 4.1.1. Let U be an open compact subgroup of G(A f ) such that there exists a suffi-

ciently small open compact subgroup U ′ of G(A f ) containing U, w1Uw1 and w2Uw2, where

w1 = diag(−1,1,1,1,1,−1) and w2 = diag(1,−1,1,1,−1,1). Then the morphism (of Q-schemes)

ιU : ShH(U ∩H)−→ ShG(U)
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is a closed immersion.

Proof. We note that it is enough to show it on the complex points of the Shimura varieties. As it

was pointed out before, the map at infinite level ShH(C)−→ ShG(C) is an injection, hence we need

to show that if z,z′ ∈ ShH(C) have the same image in ShG(U)(C), then z = z′u for u ∈U ∩H. This

would follow by showing that for any u ∈U \ (U ∩H), we have ShH(C)∩ShH(C)u = /0 as subsets

of ShG(C).

We show the latter as follows. The quotient W = ZH/(H∩ZG) is generated by the two invo-

lutions w1 and w2. An easy calculation shows that the centraliser CG(A f )({w1,w2}) is H(A f ). Note

that the action of w1 and w2 on ShG(C) fixes ShH(C) pointwise. Thus, if z,zu ∈ ShH(C) for u ∈U ,

the elements v1 = u(w1u−1w1) and v2 = u(w2u−1w2) fix z. By hypothesis v1,v2 ∈U ′, which acts

faithfully on ShG(C), thus we conclude that v1 = v2 = 1. This implies that u centralizes the subgroup

generated by w1 and w2 and hence u ∈U ∩H, which completes the proof.

Remark 4.1.2. Let KG(d) denote the kernel of reduction modulo d of G(Ẑ)→ G(Z/dZ), for G ∈

{GL2,G}. If U ⊆ KG(d) for some d ≥ 3, then the hypotheses of the lemma are satisfied with

U ′ = KG(d).

We recall that both ShGL2 and ShG admit a description as moduli spaces of abelian schemes:

given sufficiently small open compact subgroups V ⊆ GL2(A f ) and U ⊆ G(A f ), ShGL2(V ) is the

moduli of (isomorphism classes of) elliptic curves with V -level structure, while ShG(U) parametrises

(isomorphism classes of) principally polarised abelian schemes of relative dimension 3 and U-level

structure.

Finally, we recall that, for g ∈G(A f ) and U sufficiently small, we have a map of schemes over

Q

g : ShG(U)→ ShG(g−1Ug)

given by g · [(z,h)] = [(z,hg)]. For g ∈G(A f ), we denote by ι
g
U the composition

ShH(gUg−1∩H)
ιgUg−1

// ShG(gUg−1)
g // ShG(U) .

Remark 4.1.3. For U equal to the kernel of reduction modulo d, U-level structures of an abelian

scheme A correspond to bases of the d-torsion points of A. Note that the right-translation action

of g ∈ GL2(Ẑ) (or G(Ẑ)) on the variety corresponds, at the level of moduli spaces, to the map

g : (A,λ ,{ei})→ (A,λ ,{e′i}), where (e′i) = g−1 · (ei), where {ei} forms a basis of the d-torsion

points for A.

4.1.3 Level structures

We introduce next several level structures that we will be using throughout. The reader is urged to

skip this section and come back as the situation demands.
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Definition 4.1.4. Let K(p) ⊂ G(Ẑ(p)) be a compact open subgroup satisfying the hypotheses of

Lemma 4.1.1. For any n ∈ N, let Kn := K(p)U1,G(pn)⊆G(Ẑ), for

U1,G(pn) := {g ∈G(Zp) : R6(g)≡ (0, . . . ,0,1) mod pn},

where R6(g) denotes the sixth row of g.

For any n∈N, we let K1(n) = pr1(Kn∩H)⊂GL2(Ẑ). Observe that its component at p is given

by

U1,GL2(pn) := {g ∈GL2(Zp) | g≡ I mod
[ 1 1

pn pn
]
}.

We will always assume that K1(n) is a sufficiently small compact open subgroup of GL2(Ẑ).

Remark 4.1.5.

• Note that, at p, the level group Kn∩H has component

U1,GL2(pn)�GL2(Zp)�GL2(Zp).

• If K(p) ×G(Zp) = KG(d) for some integer d ≥ 3 coprime to p, then Kn and K1(n) =

(GL2(Ẑ(p))×U1,GL2(pn))∩KGL2(d) are sufficiently small.

• By Lemma 4.1.1, ιKn is a closed immersion and we get

ShGL2(K1(n)) ShH(Kn∩H)
pr1oo ιKn // ShG(Kn).

This diagram will be fundamental in the definition of the motivic classes underlying our Euler

system construction.

The choice of a dominant co-character η of the maximal torus of G determines a parabolic

subgroup Pη of G. In order to define the tower of auxiliary level subgroups, we will force the

reduction of elements of Kn modulo powers of p to lie in Pη , for η as follows. Let η be the co-

character of the maximal torus of G defined by

x 7→

 x3

x2

x2
x

x
1


and let ηp := η(p) ∈ G(Qp) ⊆ G(A f ). We note that the parabolic subgroup Pη is the intersection

of the Siegel parabolic with the Klingen parabolic. The choice of η is motivated by the proof of

Lemma 4.2.1.

Definition 4.1.6. Recall that we note KG(pm) ⊆ G(Ẑ) the kernel of the reduction modulo pm. For

m ∈ N, define subgroups of G(A f )
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• K′n,m(p) := Kn∩ηm+1
p Knη

−(m+1)
p ∩KG(pm);

• K′n,m+1 := K′n,m(p)∩KG(pm+1).

Remark 4.1.7.

• The group K′n,0(p) is the largest subgroup of Kn such that right multiplication by ηp induces a

morphism

ηp : ShG(K′n,0(p))−→ ShG(Kn).

• The definition of these last level groups will be justified by Lemma 4.2.1.

• In other words, for n > m, these subgroups are defined as follows.

K′n,m :=
{

g ∈ K0 | g≡ I mod


pn pm pm p2m p2m p3m

pn pm pm pm pm p2m

pn pm pm pm pm p2m

pn pm pm pm pm pm

pn pm pm pm pm pm

pn pn pn pn pn pn

}.

K′n,m(p) :=
{

g ∈ K0 | g≡ I mod


pn pm+1 pm+1 p2(m+1) p2(m+1) p3(m+1)

pn pm pm pm+1 pm+1 p2(m+1)

pn pm pm pm+1 pm+1 p2(m+1)

pn pm pm pm pm pm+1

pn pm pm pm pm pm+1

pn pn pn pn pn pn


}
.

• Observe that we have a tower of inclusions

Kn = K′n,0 ⊇ K′n,0(p) ⊇ K′n,1 ⊇ K′n,1(p) ⊇ K′n,2 ⊇ . . .

4.1.4 Representations of algebraic groups

We study now the branching laws for the restriction of an irreducible algebraic representation of G

to some of its subgroups.

4.1.4.1 Highest weight representations

Recall that every irreducible algebraic representation of GL2 is of the form Symp⊗ detk for some

p ∈ N,k ∈ Z, where Symp denotes the p-th symmetric power of the standard GL2-representation.

We will next review the highest weight theory for the groups GSp4 and GSp6.

Let T be the diagonal torus of G (which coincides with the diagonal torus of H) and denote

by χi ∈ X•(T ), 1≤ i≤ 6, the characters of T given by projection onto the i-th coordinate. We then

have χiχ7−i = ν , i = 1,2,3, where ν denotes the similitude factor. We see GSp4 inside G and χi,

i ∈ {1,2,5,6}, denote as well the characters of its diagonal torus.

For a,b non-negative integers, let µ = (µ1 ≥ µ2), µ2 = b,µ1 = a + b and denote by V µ

the unique (up to isomorphism) irreducible algebraic representation of GSp4 with highest weight

χ
µ1
1 χ

µ2
2 with central character x 7→ x|µ|, where |µ| = µ1 + µ2, which has dimension 1

6 (a+ 1)(b+
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1)(a + b + 2)(a + 2b + 3). Similarly, given a,b,c positive integers, let λ = (λ1 ≥ λ2 ≥ λ3),

λ3 = c,λ2 = b+ c,λ1 = a+ b+ c and denote by V λ the unique algebraic irreducible representa-

tion of G with highest weight χ
λ1
1 χ

λ2
2 χ

λ3
3 and central character x 7→ x|λ |, where |λ | = λ1 +λ2 +λ3,

which is of dimension 1
720 (a+1)(a+2(b+c)+5)(a+b+2)(a+b+2c+4)(b+1)(b+2c+3)(a+

b+ c+3)(b+ c+2)(c+1).

4.1.4.2 Branching laws

For a fixed k and λ , we are interested in studying how many H-representations of the form

Sym(k,0,0) := Symk � Sym0 � Sym0 appear in the decomposition of the restriction V λ

|H
of V λ to

H. It will be useful to consider the obvious factorisation of our embedding H ⊆ G through

H′ := GSp4 �GL2, this is because any irreducible H′-factor of an irreducible G-representation

will have multiplicity one.

We recall the following branching law result, which will be used to answer the question above.

For λ = (λ1 ≥ λ2 ≥ λ3) and µ = (µ1 ≥ µ2) as above, we say that µ doubly interlaces λ if λ1 ≥ µ1 ≥

λ3 and λ2 ≥ µ2 ≥ 0.

Proposition 4.1.8. Let λ = (λ1 ≥ λ2 ≥ λ3 ≥ 0) and V λ be as above. Then

• We have a decomposition of Sp4�SL2-representations

V λ =
⊕

µ

V µ � (Symr1 ⊗Symr2 ⊗Symr3),

where the sum is over all µ = (µ1 ≥ µ2 ≥ 0) doubly interlacing λ and where ri = xi− yi for

{x1 ≥ y1 ≥ x2 ≥ y2 ≥ x3 ≥ y3} being the decreasing rearrangement of {λ1,λ2,λ3,µ1,µ2,0}.

• We have a decomposition of SL2�SL2-representations

V µ =
µ1−µ2⊕

x=0

µ2⊕
y=0

Symµ1−x−y�Symµ2−y+x.

Proof. The first statement is just [WY09, Theorem 3.3]. We sketch a proof of the second points,

which is stated in [LSZ17, Proposition 4.3.1]. For the parametrization of the special case of GSp4,

applying [WY09, Theorem 3.3] we obtain

V µ =⊕µ1
s=0(Symr1 ⊗Symr2)�Syms

=⊕µ1
s=0(Symr1+r2 ⊕Symr1+r2−2⊕ . . .⊕Sym|r1−r2|)�Syms.

Observe that every factor appears with multiplicity one. Dividing the sum for 0≤ s≤ µ2 and µ2 <

s ≤ µ1 we see that r1 = µ1− µ2, r2 = s and r1 = µ1− s,r2 = µ2 respectively. Drawing the points

(x,y) such that the representation Symx� Symy appears in the above sum we see that we get every
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integer pair (x,y) ∈ Z2 with x+ y≡ µ1 +µ2 (mod 2) inside the rectangle with vertices (0,µ1−µ2),

(µ1− µ2,0), (µ2,µ1) and (µ1,µ2). Choosing the right parametrisation of these points (i.e. taking

(µ2,µ1) as the origin) we get the desired expression.

We are ready to prove the following.

Lemma 4.1.9. The sum of all irreducible sub-H′-representations of V λ isomorphic (up to a twist)

to V µ �Sym0 for some µ is given by

⊕
µ∈A (λ )

(V µ �Sym0)⊗ν
|λ |−|µ|

2 ,

where A (λ )⊆ Z2 denotes the region of points (µ1,µ2) ∈ Z2 satisfying |µ| ≡ |λ |(mod 2) and lying

in the rectangle defined by the inequalities



µ1−µ2 ≤ λ1−λ2 +λ3,

µ1−µ2 ≥ |λ1−λ2−λ3|,

µ1 +µ2 ≥ λ1−λ2 +λ3,

µ1 +µ2 ≤ λ1 +λ2−λ3.

Proof. Applying Proposition 4.1.8, we obtain a decomposition as Sp4�SL2-representations

V λ =
⊕

µ

V µ � (Symr1 ⊗Symr2 ⊗Symr3)

=
⊕

µ

min(r1,r2)⊕
i=0

V µ � (Symr1+r2−2i⊗Symr3)

=
⊕

µ

min(r1,r2)⊕
i=0

min(r3,r1+r2−2i)⊕
j=0

V µ � (Symr1+r2+r3−2i−2 j),

where the sum is over all µ = (µ1 ≥ µ2 ≥ 0) doubly interlacing λ and where ri = xi− yi for {x1 ≥

y1 ≥ x2 ≥ y2 ≥ x3 ≥ y3} being the decreasing rearrangement of {λ1,λ2,λ3,µ1,µ2,0}.

We deduce that if V µ �Sym0 appears as a sub-Sp4�SL2-representation then

r1 + r2−2i− j = 0, r3− j = 0,

which implies j = r3 and 2i = r1 + r2− r3 and hence, since 0≤ i≤min(r1,r2),

r1 + r2 ≥ r3 ≥ r1 + r2−2min(r1,r2) = |r1− r2| (4.1)

and r1+r2+r3 ≡ 0(mod 2), which is equivalent to saying that |µ| ≡ |λ |(mod 2). The result follows
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by unfolding the two inequalities of (4.1).

Lemma 4.1.10. The sum of all irreducible sub-H-representations of V λ isomorphic (up to a twist)

to Sym(k,0,0) for some k ≥ 0 is given by

λ1−λ2+λ3⊕
k=|λ1−λ2−λ3|
k≡|λ |(mod 2)

r ·Sym(k,0,0)⊗det
|λ |−k

2 ,

for r = λ2−λ3 +1.

Proof. This follows immediately from Lemma 4.1.9. Indeed observe that, by Proposition 4.1.8, for

any µ , the unique sub-SL2� SL2-representation of V µ of the form Sym(k,0) is Sym(µ1−µ2,0). The

result then follows by analysing the possible values of µ1− µ2 in the region A (λ ) of the above

lemma. The value r is the number of (µ1,µ2) ∈A (λ ) such that µ1−µ2 = k, i.e. the length of one

of the sides of the rectangle. The twist is there so that the central characters of Sym(k,0,0) and V λ and

the inclusion is H-equivariant.

Remark 4.1.11. The values of k and r can be easily deduced by drawing the region A (λ ). For

instance, from Figure 4.1 for λ = (9,6,2), we have that Sym(k,0,0) appears in the decomposition of

the restriction of V λ to H only if k ∈ {1,3,5} with multiplicity r = 5.

µ2

µ1

λ3

λ1

λ2

λ1−λ2 +λ3

λ1−λ2−λ3

λ2λ3

λ1−λ2

Figure 4.1: The region A (λ ) for λ = (9,6,2).

4.1.4.3 Integral structures

Denote by h,g the Lie algebras of H and G respectively, and write U(h),U(g) for their universal

enveloping algebras. For a ∈ {h,g}, denote by UZ(a) the Kostant Z-form in U(a) ([Ste16, Chapter
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2]), which is some subring of U(a) generated over Z by an explicit family of ordered monomials

given in terms of the choice of a Chevalley basis of a (which also forms a PBW -basis of U(a)), so

that U(a) is obtained from UZ(a) by base-change.

For an a-module V , an admissible lattice VZ in V is a Z-lattice which is stable under the action

of UZ(a). By [Ste16, Corollary 1], we know that admissible lattices exist for any representation of

a semi-simple Lie group, and that such a lattice is the direct sum of its weight components. For a

weight λ , fix a highest weight vector vλ of weight λ and consider V λ
Z the maximal admissible lattice

inside V λ whose intersection with the highest weight space is Z · vλ . Observe that V λ
Z is also an

admissible lattice considered as an H-representation (since UZ(h)⊆UZ(g), which can be seen using

[Ste16, Theorem 2] and the fact that a set of simple roots for h can be extended to a set of simple

roots of g and that their Cartan subalgebras coincide). Let 〈e1,e2,e3, f3, f2, f1〉 be a symplectic

basis for the standard G-representation V (1≥0≥0). Denote Sym(k,0,0)
Z ⊆ (Sym(k,0,0)∩V λ

Z ) the minimal

admissible lattice of Sym(k,0,0) such that the intersection Sym(k,0,0) with its highest weight space is

Z · ek
1 (it is isomorphic to the algebra of symmetric tensors T Symk

Z�T Sym0
Z�T Sym0

Z).

By [Ste16, Corollary 1] (cf. also [Kos66, Corollary 1 to Theorem 1]), the restriction to H of the

lattice V λ
Z decomposes as the direct sum of its highest weight components. In particular, for every

µ = (µ1,µ2) ∈A (λ ) and k = µ1−µ2, we have that (Sym(k,0,0)⊗det
|λ |−k

2 )∩V λ
Z ⊆V λ

Z is non empty.

By fixing any H-highest weight vector v[λ ,µ] in this sub-lattice, we can define a homomorphism of

H-representations

br[λ ,µ]Z : Sym(k,0,0)
Z ⊗det

|λ |−k
2 →V λ

Z ,

by sending ek
1 to v[λ ,µ].

4.1.5 Gysin morphisms

In the next section, we will define étale and motivic classes in the cohomology of the G-Shimura

variety with coefficients by taking the image under Gysin morphisms of certain classes in the co-

homology of the H-Shimura variety. To define these maps, we will translate the branching laws

for algebraic representations of H and G described above into a statement for the corresponding

étale sheaves and relative Chow motives on the Shimura varieties, by using Ancona’s construction

(§2.2.3). In particular, recall from Proposition 2.2.6 that we have a commutative diagram of functors

RepQ(G)
µG

//

•|H
��

CHMQ(ShG)
G(A f )

∆∗

��
RepQ(H)

µH
// CHMQ(ShH)

H(A f ),

where ∆∗ denotes pull-back.

Let U ⊆G(A f ) be a sufficiently small open compact subgroup so that ιU is a closed immersion
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(e.g. Lemma 4.1.1), then we have Gysin morphisms

ιU,∗ : H i
mot(ShH(U ∩H),∆∗VQ(m))−→ H i+6

mot (ShG(U),VQ(3+m)).

We want to compose these maps ιU,∗ with the maps in cohomology coming from the branching

laws in RepQ(H) described above. To do this, we let W λ
Q be the relative Chow motive µG(W λ ) over

ShG, where W λ is the algebraic representation of G given by V λ ⊗ν−|λ |; we also let H
(k,0,0)

Q be the

relative Chow motive µH(Sym(k,0,0)⊗det−k) over ShH.

Proposition 4.1.12. Let µ = (µ1 ≥ µ2) ∈A (λ ) and let k = µ1−µ2; we have

ι
[λ ,µ]
U,∗ : H•mot(ShH(U ∩H),H

(k,0,0)
Q (?))−→ H•+6

mot (ShG(U),W λ
Q (?+3+ k−|λ |

2 )).

Proof. Note that by Lemma 4.1.10, we have

Sym(k,0,0)⊗det
|λ |−k

2 ↪→V λ .

After twisting it, this gives a map

Sym(k,0,0)⊗det−k ↪→V λ ⊗ν
−|λ |+ |λ |−k

2 =W λ ⊗ν

|λ |−k
2 .

By Proposition 2.2.6 and Proposition 2.2.4(2), we get a morphism

br[λ ,µ] : H
(k,0,0)

Q −→ ∆
∗W λ

Q (− |λ |−k
2 ).

The composition of the corresponding map in cohomology br[λ ,µ] with ιU,∗ defines the desired map

ι
[λ ,µ]
U,∗ .

Remark 4.1.13. By §4.1.4.3, we have “integral” Gysin morphisms in étale cohomology. Let H
(k,0,0)

Zp

(resp. W λ
Zp

) denote the Zp-sheaf associated to the lattice Sym(k,0,0)
Z ⊗det−k (resp. V λ

Z ⊗ν−|λ |), then

we have

ι
[λ ,µ]
U,∗ : H•ét(ShH(U ∩H),H

(k,0,0)
Zp

(?))−→ H•+6
ét (ShG(U),W λ

Zp
(?+3+ k−|λ |

2 )).

4.2 Definition of the classes

We give the definition of the zeta classes and we study their norm compatibility as we vary the level

of the Shimura variety.
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4.2.1 Notation

Recall that ShGL2(K1(n)) is the moduli of isomomorphism classes of (E,Pn,α), where Pn is an

pn-torsion point of the elliptic curve E and α is a level pr1(K
(p) ∩H)-structure on E. Denote by

(E ,en,α)/ShGL2(K1(n)) the universal object of ShGL2(K1(n)). Moreover, fix a torsion section

x : ShGL2(K1(0))→ E of order an auxiliary integer N coprime to p.

For an auxiliary positive integer c coprime to 6, denote by cgn :=(x+en)
∗(cθE )∈O(ShGL2(K1(n)))∗

the unit of Definition 3.1.4. Similarly, let H k
Q denote the relative Chow motive over ShGL2(K1(n))

associated to the GL2-representation Symk⊗det−k, for k ≥ 0 and consider the motivic Eisenstein

classes

cEisk
n := cEisk

x+en ∈ H1
mot(ShGL2(K1(n)),H k

Q(1)).

We denote by cEisk
ét,n the image of the (motivic) Eisenstein class under the étale regulator.

Recall that Kings has constructed an underlying integral étale Eisenstein class (Definition 3.3.24):

cEisk
Zp,n ∈ H1

ét(ShGL2(K1(n)),H k
Zp
(1)),

where H k
Zp

:= TSymk(HZp) is the Zp-sheaf associated to the lattice TSymk
Z⊗det−k.

4.2.2 The classes at level K′n,m
We first construct classes in the cohomology of the Shimura variety of level K′n,m.

Lemma 4.2.1 below is the key ingredient for proving the vertical norm relations of our classes

(Theorem 4.2.17) and, indeed, it constitutes the main motivation for working with the level K′n,m.

Lemma 4.2.1. Let n,m ≥ 1 be such that n ≥ 3m+3. There exists an element u ∈ G(A f ) such that

the commutative diagram

ShG(K′n,m+1)

pr

��
ShH(uK′n,m+1u−1∩H)

ιu
K′n,m+1

33

pr◦ιu
K′n,m+1 //

πp

��

ShG(K′n,m(p))

π ′p
��

ShH(uK′n,mu−1∩H)
ιu
K′n,m // ShG(K′n,m)

(4.2)

has Cartesian bottom square, where πp,π
′
p, and pr denote the natural projections.

Remark 4.2.2.

1. A proof of Lemma 4.2.1 is a direct and not very pleasant calculation and it is given in §4.4.

2. The choice of u does not depend on either m or n and it is not unique. More precisely, u

has to be the representative of an open H-orbit of the flag variety G/Pη over Zp with trivial
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H-stabiliser. In what follows, we take u ∈G(Ẑ), whose component at p equals to
(

I T
0 I

)
, with

T =
(1 1 0

1 0 1
0 1 1

)
,

and having trivial components elsewhere.

We now define the push-forward classes in the cohomology of the G-Shimura variety of level

K′n,m. Recall that we have étale regulator maps

rét : H j
mot(ShG(U),W λ

Q (?))−→ H j
ét(ShG(U),W λ

Qp
(?)),

where W λ
Qp

is the the p-adic étale sheaf associated to W λ
Qp

. Moreover, notice that we have a projection

pr1,n,m : ShH(uK′n,mu−1 ∩H) −→ ShGL2(K1(n)). To slightly ease the notation, for any g ∈ G(A f ),

we denote by ι
[λ ,µ]
K′n,m,g,∗

the composition g∗ ◦ ι
[λ ,µ]

gK′n,mg−1,∗.

Definition 4.2.3. Let V λ be the irreducible representation of G of highest weight λ = (λ1 ≥ λ2 ≥

λ3), µ = (k+ j ≥ j) ∈A (λ ) and let n,m ∈ N.

• Let Z̃
[λ ,µ]

n,m be the class given by

ι
[λ ,µ]
K′n,m,u,∗

◦pr∗1,n,m(cEisk
n) ∈ H7

mot(ShG(K′n,m),W
λ

Q (4+ k−|λ |
2 )).

• Let z̃[λ ,µ]n,m be the class

rét(cZ̃
[λ ,µ]

n,m ) ∈ H7
ét(ShG(K′n,m),W

λ
Qp

(4+ k−|λ |
2 )).

The motivic classes defined above are not a priori integral, which is due to a lack of theory

of integral motivic Eisenstein classes. Building on the work of Kings (e.g. Proposition 3.3.25), we

give an integral construction of the p-adic étale classes as follows. This is better suited for studying

p-adic interpolation properties.

Definition 4.2.4. Let cz̃[λ ,µ]n,m be the class given by

ι
[λ ,µ]
K′n,m,u,∗

◦pr∗1,n,m(c Eisk
Zp,n) ∈ H7

ét(ShG(K′n,m),W
λ

Zp
(4+ k−|λ |

2 )).

Thanks to Lemma 4.2.1, these classes are proved to be compatible as m varies (cf. Theorem

4.2.17).
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4.2.3 The level groups Kn,m

Let n ∈ N and denote by Kn,0 ⊆G(Ẑ) the subgroup of Kn defined by

Kn,0 := Kn∩
{

g ∈G(Zp) | g≡ I mod


1 p p p p p
p 1 p p p p
p p 1 p p p
1 1 1 p p p
1 1 1 p p p
1 1 1 p p p

}.
Remark 4.2.5. The definition of Kn,0 is motivated by the proof of Theorem 4.2.17.

For m,n ∈ N, we aim to define classes in the cohomology of

ShG(Kn,0)×Spec(Q) Spec(Q(ζpm)).

Definition 4.2.6. Let n,m ∈ N. Define subgroups Kn,m ⊆ Kn,0 by

Kn,m := Kn,0∩ν
−1(1+ pmẐ) = {g ∈ Kn,0 : ν(g)≡ 1 (mod pmẐ)}.

Remark 4.2.7. As explained in [LSZ17, 5.4], if U ⊆G(A f ) is an open compact subgroup such that

ν(U) · (1+ pmẐ) = Ẑ×,

then there is an isomorphism of Q-schemes

ShG(U ∩ν
−1(1+ pmẐ))' ShG(U)×Spec(Q) Spec(Q(ζpm)),

which intertwines the action of g ∈G(A f ) on the left-hand side with the one of (g,σg) on the right-

hand side, where σg = Art(ν(g)−1)|Q(ζpm ). In particular, we have

ShG(Kn,m)' ShG(Kn,0)×Spec(Q) Spec(Q(ζpm)).

4.2.4 The classes at level Kn,m

For two given integers n,m≥ 1, take n′ = n+3m and define the projection

tm : ShG(K′n′,m)→ ShG(Kn,m),

induced by right multiplication by the element ηm
p = diag(p3m, p2m, p2m, pm, pm,1)∈G(Qp) defined

in §4.1.3.

Remark 4.2.8. The map tm is well-defined. Indeed, we need to check that η−m
p K′n′,mηm

p ⊆ Kn,m.

Recall that K′n′,m = Kn′ ∩ ηm
p Kn′η

−m
p ∩ KG(pm) and Kn,m = Kn,0 ∩ ν−1(1 + pmẐ), so we have

η−m
p K′n′,mηm

p = η−m
p Kn′η

m
p ∩ Kn′ ∩ η−m

p KG(pm)ηm
p . This is obviously contained in Kn and in
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ν−1(1+ pmẐ). Finally, if g ∈ Kn′ ∩η−m
p KG(pm)ηm

p , it satisfies the extra conditions modulo p im-

posed in the definition of Kn,0.

Before defining the classes we note that the push-forward by tm,∗ makes sense with our p-adic

integral coefficients.

Lemma 4.2.9. There is a well defined action of η−1
p /pλ2+λ3 on W λ

Zp
defining a morphism of sheaves

tλ

m,[ : W λ
Zp
→ t∗m(W

λ
Zp
).

In particular, we have a map

tλ
m,∗ : H7

ét(ShG(K′n′,m),W
λ

Zp
(4+ k−|λ |

2 ))→ H7
ét(ShG(Kn,m),W

λ
Zp
(4+ k−|λ |

2 )),

defined by composing the map in cohomology induced by tλ

m,[ with the trace of tm in étale cohomology.

Proof. We need to show that the matrix η−1
p = diag(p−3, p−2, p−2, p−1, p−1,1) acts on W λ

Zp
and that

its image is contained in pλ2+λ3W λ
Zp

. Let S be the one dimensional split torus diag(x3,x2,x2,x,x,1)

of G. Then V λ decomposes as the direct sum of its weight spaces relative to S, with weights between

0 and 3λ1 +2λ2 +2λ3. We deduce that S acts on the highest weight subspace of W λ = V λ ⊗ν−|λ |

through the character diag(x3,x2,x2,x,x,1) 7→ x−(λ2+λ3) and, in particular, the action of η−1
p on

every S-weight space (and hence on all W λ ) will be divisible by pλ2+λ3 , thus showing the claim.

Remark 4.2.10. Observe that the normalisation by p−(λ2+λ3) is such that the action of p−(λ2+λ3)η−1
p

on the S-highest weight subspace of W λ is trivial and divisible by p elsewhere. This optimal normal-

isation of the map tλ
m,∗ will be very helpful (in a rather subtle way) when defining our cohomology

classes at integral level and proving their norm relations (cf. Theorem 4.2.17).

We are now ready to define the following.

Definition 4.2.11.

• Let Z
[λ ,µ]

n,m := tλ
m,∗(Z̃

[λ ,µ]
n′,m ) ∈ H7

mot(ShG(Kn,m),W λ
Q (4+ k−|λ |

2 )).

• Let cz[λ ,µ]n,m be the class

tλ
m,∗(cz̃[λ ,µ]n′,m ) ∈ H7

ét(ShG(Kn,m),W
λ

Zp
(4+ k−|λ |

2 )).
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4.2.5 Norm relations at p: varying the level

We now show that the various classes that we constructed are compatible when we vary the variable

n. Denote by

ϕ1,n : ShGL2(K1(n+1))→ ShGL2(K1(n))

φ
′
n : ShG(K′n+1,m)→ ShG(K′n,m)

the natural projection maps. We have the following.

Proposition 4.2.12. We have

φ
′
n,∗(cz̃[λ ,µ]n+1,m) =

cz̃[λ ,µ]n,m if n≥ 1,

(1− pkD∗p)cz̃[λ ,µ]n,m if n = 0,

where Dp ∈ H(Ẑ) ⊆ G(Ẑ) is any matrix whose first GL2-component is congruent to
(1 0

0 p
)

modulo

N.

Proof. This is a particular case of Corollaries 3.4.11, 3.4.12.

This immediately translates into the identical norm relations for the level Kn,m classes.

Corollary 4.2.13. Let φn : ShG(Kn+1,m)→ ShG(Kn,m) be the natural projection map. We have

φn,∗(cz[λ ,µ]n+1,m) =

cz[λ ,µ]n,m if n≥ 1,

(1− pkD∗p)cz[λ ,µ]n,m if n = 0,

where Dp ∈ H(Ẑ) ⊆ G(Ẑ) is any matrix whose first GL2-component is congruent to
(1 0

0 p
)

modulo

N.

Proof. Apply tλ
m,∗ to both sides of Proposition 4.2.12.

4.2.6 Norm relations at p: cyclotomic variation

In this section, we prove our main result stating that our cohomology classes satisfy the Euler system

relations at powers of p.

4.2.6.1 Hecke operators

We now define the Hecke operator which is going to show up in the norm compatibility relations of

our cohomology classes.

Definition 4.2.14. We define the Hecke operator U ′
p acting on H7

ét(ShG(K′n,m),W
λ

Zp
(4+ k−|λ |

2 )) to be

the action of p−(λ2+λ3) ·K′n,mη−1
p K′n,m, where K′n,mη−1

p K′n,m is seen as an element of the Hecke algebra

H (K′n,m\G(A f )/K′n,m)Zp of K′n,m-bi-invariant smooth compactly supported Zp-valued functions on



4.2. Definition of the classes 98

G(A f ). In other words, the action of K′n,mη−1
p K′n,m on cohomology is the one induced from the

following correspondence on ShG:

ShG(K′n,m(p))

π ′p
��

ηp

&&
ShG(K′n,m) // ShG(K′n,m),

where the vertical arrow is the natural projection π ′p and the diagonal one is induced by right multi-

plication by ηp, and hence U ′
p is given by the composition

H7
ét(ShG(K′n,m),W

λ
Zp
(4+ k−|λ |

2 ))
(π ′p)

∗

−−−→H7
ét(ShG(K′n,m(p)),W

λ
Zp
(4+ k−|λ |

2 ))
ηλ

p,∗−−→H7
ét(ShG(K′n,m),W

λ
Zp
(4+ k−|λ |

2 )),

where ηλ
p,∗ is the normalised map defined exactly in the same way as the map tλ

m,∗ of Lemma 4.2.9.

Remark 4.2.15. The notation chosen for the Hecke operator is motivated by the fact that U ′
p is dual

to the Hecke operator associated to ηp.

4.2.6.2 Norm relation for the classes cz̃[λ ,µ]n,m

Recall that the diagonal matrix ηp := (p3, p2, p2, p, p,1) ∈ G(Qp) induces a morphism of Shimura

varieties ηp : ShG(K′n,m(p))→ ShG(K′n,m) and, by Lemma 4.2.9, a map

η
λ
p,∗ : H7

ét(ShG(K′n,m(p)),W
λ

Zp
(4+ k−|λ |

2 ))→ H7
ét(ShG(K′n,m),W

λ
Zp
(4+ k−|λ |

2 )).

Let m ≥ 1, n ≥ 3(m+ 1), and denote by η̃p the composition of the natural projection map pr :

ShG(K′n,m+1)→ ShG(K′n,m(p)) with the map ηp : ShG(K′n,m(p))→ ShG(K′n,m). By the same arguments

as in Lemma 4.2.9, we can once more define a normalised trace

η̃
λ
p,∗ : H7

ét(ShG(K′n,m+1),W
λ

Zp
(4+ k−|λ |

2 ))→ H7
ét(ShG(K′n,m),W

λ
Zp
(4+ k−|λ |

2 )),

as the composition the trace of pr with ηλ
p,∗.

We have the following push-forward compatibility relation.

Theorem 4.2.16. For m≥ 1, n≥ 3(m+1), we have

η̃
λ
p,∗(cz̃[λ ,µ]n,m+1) = U ′

p · cz̃[λ ,µ]n,m ,

where U ′
p is the Hecke operator defined in Definition 4.2.14.

Proof. Denote by czk
H,n,m the class pr∗1,n,m(c Eisk

ét,n). The result follows from Lemma 4.2.1. Indeed,
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by the definition of the class cz̃[λ ,µ]n,m+1 we have

pr∗(cz̃[λ ,µ]n,m+1) = pr∗ ◦ ι
[λ ,µ]

K′n,m+1,u,∗
(czk

H,n,m+1)

= pr∗ ◦ ι
[λ ,µ]

K′n,m+1,u,∗
◦π
∗
p(czk

H,n,m),

where πp is as in Lemma 4.2.1. By the Cartesianness of the square of the diagram of Lemma 4.2.1,

we have that

pr∗ ◦ ι
[λ ,µ]

K′n,m+1,u,∗
◦π
∗
p = (π ′p)

∗ ◦ ι
[λ ,µ]
K′n,m,u,∗

,

so we deduce

pr∗(cz̃[λ ,µ]n,m+1) = (π ′p)
∗ ◦ ι

[λ ,µ]
K′n,m,u,∗

(czk
H,n,m) = (π ′p)

∗(cz̃[λ ,µ]n,m ),

where the last equality follows by definition. Hence, by applying ηλ
p,∗ to both sides, we get

η̃
λ
p,∗(cz̃[λ ,µ]n,m+1) = η

λ
p,∗ ◦ (π ′p)∗(cz̃[λ ,µ]n,m ) = U ′

p · cz̃[λ ,µ]n,m

as desired.

4.2.6.3 Norm relation for the classes cz[λ ,µ]n,m

Call norm
Q(ζpm+1 )

Q(ζpm )
the norm map of the natural projection ShG(Kn,0)/Q(ζpm+1 )→ ShG(Kn,0)/Q(ζpm ).

Moreover, let σp denotes the image of 1
p ∈Q∗p under the Artin reciprocity map.

Theorem 4.2.17. For n,m≥ 1, we have

norm
Q(ζpm+1 )

Q(ζpm )
(cz[λ ,µ]n,m+1) =

U ′p
σ3

p
· cz[λ ,µ]n,m ,

where U ′
p is the Hecke operator associated to p−(λ2+λ3) ·Kn,mη−1

p Kn,m.

Proof. We first deduce the norm relation at levels Kn,m. By Theorem 4.2.16 and the commutative

diagram

ShG(K′n,m+1)
ηm+1

p //

η̃p

��

ShG(Kn,m+1)

��
ShG(K′n,m)

ηm
p // ShG(Kn,m),

where the right vertical arrow is the natural projection map, it suffices to show that the Hecke operator
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U ′
p commutes with tλ

m,∗, i.e. that we have a commutative diagram

H7(ShG(K′n′,m),W
λ

Zp
(4+ k−|λ |

2 ))
tλ
m,∗ //

U ′p
��

H7(ShG(Kn,m),W λ
Zp
(4+ k−|λ |

2 ))

U ′p
��

H7(ShG(K′n′,m),W
λ

Zp
(4+ k−|λ |

2 ))
tλ
m,∗ // H7(ShG(Kn,m),W λ

Zp
(4+ k−|λ |

2 )).

Recall that the Hecke operator U ′
p at level Kn,m is defined as the correspondence pr2,∗ ◦ηλ

p,∗ ◦

pr∗1, where pr1, pr2 are natural projections sitting in the diagram

ShG(Kn,m)
pr1←−− ShG(Kn,m∩ηpKn,mη

−1
p )

ηp−→ ShG(η
−1
p Kn,mηp∩Kn,m)

pr2−−→ ShG(Kn,m).

Then, the two Hecke operators commute if |Kn,m∩η−1
p Kn,mηp\Kn,m|= |K′n′,m∩η−1

p K′n′,mηp\K′n′,m|.

This is indeed the case, since both sizes can be checked to be p12. We are making an essential use

of the extra congruences modulo p satisfied by the elements in Kn,0. Finally, the result follows after

using the isomorphism

ShG(Kn,m)' ShG(Kn,0)×Spec(Q) Spec(Q(ζpm)),

which intertwines the Hecke operator U ′
p on the cohomology ShG(Kn,m) with Art(ν(ηp))|Q(ζpm )U

′
p =

σ−3
p U ′

p .

Remark 4.2.18. For calculating the size of the quotient for Kn,m, one actually crucially uses the

congruences modulo p appearing in the definition of the level group Kn,0, and the result would not

hold if we didn’t impose those congruences.

4.3 Mapping to Galois cohomology
Let π = π f ⊗ π∞ be a cuspidal automorphic representation of G(A) of level U such that U

is sufficiently small and satisfies ν(U) = Ẑ×, π∞ is in the discrete series and π appears in

H6
ét(ShG,Q(U),W λ

L (4 + q)) for some weight λ and finite extension L of Qp, and q = k−|λ |
2 , for

some k ≥ 0 as in Lemma 4.1.10.

Let N ∈ N be the smallest number such that KG(N) ⊆ U (recall that KG(N) denotes the the

principal congruence subgroup of level N), let H denote the Hecke algebra generated over Z by the

standard Hecke operators for primes ` not diving N. Let L be the p-adic completion of the smallest

number field containing the Hecke eigenvalues of π and note OL its ring of integers, kL its residue

field and note HOL = H ⊗Z OL. Finally, we denote m ⊆HOL to be the kernel of the character

HOL → kL defined by π .

The study of the localisation at the Hecke ideal m of the cohomology of Siegel varieties with
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integral coefficients has been carried in [MT02]. Their study relies on the existence of a Galois

representation associated to π , which is now known to exists thanks to the recent work [KS16].

We will assume throughout the hypotheses (GO) (Galois ordinary) and (RLI) (residually large im-

age, i.e. non-Eisenstein-ness) made in [MT02, §1] (where the reader is referred for the appropriate

definitions).

Proposition 4.3.1 ([MT02, Theorem 1]). If p > 5 and p−1 > |λ |+6 then

H•ét(ShG,Q(U),W λ
OL

(?))m = H6
ét(ShG,Q(U),W λ

OL
(?))m

is a free OL-module of finite rank.

Let now Vπ be the Galois representation associated to π (up to the twist for Qp(4+q)), where

π satisfies the hypotheses (St) and (spin-reg) made in [KS16]. When U = Kn,0 for some n ∈ N,

Proposition 4.3.1 and the Hochschild-Serre spectral sequence give a map

H7
ét(ShG(Kn,m),W

λ
OL

(4+q))→H1(Q(ζpm),H6
ét(ShG,Q(Kn,0),W

λ
OL

(4+q))m)

→H1(Q(ζpm),Tπ)

→H1(Qp(ζpm),Tπ),

where Tπ denotes the OL-stable lattice in Vπ given by the π f -isotypic component of the étale coho-

mology with W λ
OL

(4+ q)-coefficients. In the above composition, the last arrow is the restriction to

the decomposition group.

Definition 4.3.2. We let czπ
m be the image of cz[λ ,µ]n,m , for a µ = (k+ j ≥ j) ∈ A (λ ), in any of the

groups appearing in the above composition.

In addition to what previously asked, suppose that π is U ′
p-ordinary, in the sense that U ′

p acts

on Tπ as multiplication by a p-adic unit α . Then, Theorem 4.2.17 immediately gives the following.

Theorem 4.3.3. Let czπ
m,α ∈ H1(Q(ζpm),Tπ) be the class defined as

(
σ3

p
α

)m

· czπ
m.

For m≥ 1, we have

cores
Q(ζpm+1 )

Q(ζpm )
(czπ

m+1,α) = czπ
m,α .

As a consequence, after applying the restriction maps H1(Q(ζpm),Tπ)→H1(Qp(ζpm),Tπ), the

system of elements (czπ
m,α)m≥1 gives a class

czπ
Iw,α ∈ H1

Iw(Qp,Vπ) := lim←−
m

H1(Qp(ζpm),Tπ)⊗OL L.

Remark 4.3.4. Applying Perrin-Riou’s machine to czπ
Iw,α (e.g. [Col00] for references), we construct

a p-adic L-function for Vπ . Some of these aspects are discussed in [CRJ18].
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4.4 Proof of Lemma 4.2.1
We finally give a proof of Lemma 4.2.1. Let u ∈ G(A f ) be the element whose component at p is(

I T
0 I

)
, for T =

(1 1 0
1 0 1
0 1 1

)
, and let n,m≥ 1 be such that n≥ 3m+3. Then, the commutative diagram

ShG(K′n,m+1)

pr

��
ShH(uK′n,m+1u−1∩H)

ιu
K′n,m+1

33

pr◦ιu
K′n,m+1 //

πp

��

ShG(K′n,m(p))

π ′p
��

ShH(uK′n,mu−1∩H)
ιu
K′n,m // ShG(K′n,m)

(4.3)

has Cartesian bottom square.

In order to show the Cartesianness of diagram 4.3, it is enough to check that

1. The map pr ◦ ιu
K′n,m+1

is a closed immersion or, equivalently,

uK′n,m(p)u
−1∩H = uK′n,m+1u−1∩H;

2. [uK′n,mu−1∩H : uK′n,m+1u−1∩H] = [K′n,m : K′n,m(p)].

These two facts are shown in the next two lemmas.

Lemma 4.4.1. We have the equality of subgroups of H(A f )

uK′n,m(p)u
−1∩H = uK′n,m+1u−1∩H.

Proof. It suffices to show that if g =
(

A B
C D

)
∈K′n,m(p) is such that ugu−1 ∈H then g ∈K′n,m+1, i.e that

g≡ I mod pm+1. Writing down the condition ugu−1 ∈H, we get that g is of the form

g =


a1 −c2 −c3 (a1−d3)−c2 (a1−d2)−c3 b1
−c1 a2 −c3 (a2−d3)−c1 b2 (a2−d1)−c3
−c1 −c2 a3 b3 (a3−d2)−c1 (a3−d1)−c2

c3 d3 c3 c3
c2 c2 d2 c2

c1 c1 c1 d1

 .

The congruences of the (1,2) and (1,3) entries give c2 ≡ c3 ≡ 0 mod pm+1. Moreover, taking a look

at the elements off the anti-diagonal of B, we easily deduce that a1 ≡ a2 ≡ a3 ≡ d3 ≡ d2 ≡ d1 ≡

1 mod pm+1.

We are left with showing that the degrees of the two vertical maps of the bottom square of (4.3)

are equal.

Lemma 4.4.2. We have

[uK′n,mu−1∩H : uK′n,m+1u−1∩H] = [K′n,m : K′n,m(p)].
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Proof. Since a system of coset representatives of Q = K′n,m/K′n,m(p) determines one for

uK′n,mu−1/uK′n,m(p)u
−1,

it suffices to prove that we can find {σi}i∈I system of coset representatives for Q such that uσiu−1 ∈H

for all i ∈ I. Consider the following set of elements of K′n,m whose conjugation by u is in H:

σv =


1+pma −pmr′ −pmr p2mt

′′′
p2mt

′′
p3mk

1+pmb −pmr pmc pmk′ p2mt

−pmr′ 1+pmd pmk
′′

pme p2mt ′
pmr 1+pms pmr pmr

pmr′ pmr′ 1+pm f pmr′
1

 ,

where for each vector v ∈ Z/p3Z× (Z/p2Z)4× (Z/pZ)5 =: V we consider one (and only one) lift

(k, t, t ′, t ′′, t ′′′,k′,k′′,r,r′,s) ∈ Ẑ10

so that σv ∈G(A f ), where we have set

a = r′+ s+ pmt
′′
, b = r+ pmt,

c = r− s+ pmt, d = r′+ pmt ′,

e = r− s+ pm(t ′+ t
′′ − t

′′′
), f = r′− r+ s+ pm(t

′′′ − t
′′
).

We claim that {σ−1
v }v∈V (or a subset of it) is a system of coset representatives for the quotient Q. We

only sketch the proof of this, which consists of a very long but straightforward calculation. Given

g =
(

A B
C D

)
∈ K′n,m, we wish to prove that there exists v ∈V such that σvg =

(
E F
G H

)
∈ K′n,m(p).

Writing down carefully the eight equations modulo pm+1, the four modulo p2(m+1) and the

remaining one modulo p3(m+1), we determine v by choosing ten of those equations and showing,

by the use of the symplectic equations, that the other three equations are redundant. Slightly more

precisely, we have, after reducing the equations modulo pm+1

 a12− pmr′a22− pmra32 ≡ 0 [pm+1]

a13− pmr′a23− pmra33 ≡ 0 [pm+1] d13 + pmr ≡ 0 [pm+1]

d23 + pmr′ ≡ 0 [pm+1]

b21 + pm(r− s)d11 + pmk′d21 ≡ 0 [pm+1]

b22 + pm(r− s)d12 + pmk′d22 ≡ 0 [pm+1]

b31 + pmk′′d11 + pm(r− s)d21 ≡ 0 [pm+1]

b32 + pmk′′d12 + pm(r− s)d22 ≡ 0 [pm+1]
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From the second pair of equations we get r and r′ and, after replacing pmr and pmr′, the first

pair becomes redundant by the use of the symplectic equations of g

At I′3D−Ct I′3B = ν(g)I′3.

Indeed, comparing the entries (2,3) gives

a12d33 +a22d23 +a32d13− c12b33 + c22b23 + c32b13 = 0,

which reduces modulo pm+1 to

a12 +a22d23 +a32d13 ≡ 0 [pm+1],

which coincides with the first equation after substituting d12 and d23 with −pmr and −pmr′. Simi-

larly, we get the redundancy of the second equation by comparing the entries (3,3) modulo pm+1.

To solve s,k and k′′ from the third series of equations, one has to show that the rank of the

matrix (d11 d21 0 −b21
d12 d22 0 −b22
d21 0 d11 −b31
d22 0 d12 −b32

)

is three. The fact that its rank is at least three follows by the fact that the determinant of At I′3D is

invertible modulo pm+1 (all entries of B are divisible by p) and so

det(D)≡ d11d22−d21d12 ≡ d11d22 [pm+1]

is invertible as well. Hence, we can find a 3×3 minor with invertible determinant. Finally, the fact

that the big determinant is zero follows from an application of the relation

d12b31 +d22b21 ≡ d11b32 +d21b22 [pm+1],

from the symplectic equations of g

Bt I′3D−Dt I′3B = 0.

Indeed, unfolding the calculation of the determinant we get

d11 [d22(d22b21−d11b32)−d21(d22b22−d12b32)]−d12 [d22(d21b21−d11b31)−d21(d21b22−d12b31)]≡

≡d11d22(d22b21 +d12b31−d11b32−d21b22)+d12d21(d12b32 +d21b22−d22b21−d12b31)≡

≡(d11d22−d12d21)(d22b21 +d12b31−d11b32−d21b22)≡ 0 [pm+1]

The rest of the equations follow more easily.



Chapter 5

Norm compatible elements for GU(2,2)

In what follows, we describe the construction of “push-forward” cohomology classes in the fifth

cohomology group of a unitary Shimura variety associated to the unitary group GU(2,2). We prove

that the resulting classes are trace compatible with respect to a two variable family of level subgroups

of GU(2,2)(Ẑ).

The chapter is organised as follows. In §5.1, we discuss general properties of the GU(2,2)

Shimura variety ShGU(2,2). In §5.2 and §5.3, which are the main core of the chapter, we explain how

to construct a two-variable family of norm compatible elements in the cohomology of ShGU(2,2).

Finally, in §5.4, we describe why we do not get a family of classes which are norm compatible over

the cyclotomic tower at p, and we discuss a few similar cases where the same obstruction occurs.

5.1 The Shimura variety for GU(2,2)

5.1.1 The groups

Let H := GSp4 be the group scheme over Z, which was previously defined as

H(R) = {(g,mg) ∈ (GL4×GL1)(R) : gtJg = mgJ}.

After an auxiliary choice of imaginary quadratic field K with ring of integers OK , define G :=

GU(2,2) the group scheme over Z given by

G(R) := GU(2,2)(R) = {(g,m′g) ∈GL4(R⊗Z OK)×GL1(R) : ḡtJg = m′gJ},

where •̄ denotes the non-trivial automorphism of order 2 of K/Q. We denote by ν : G −→ GL1

the unitary multiplier map given by g 7→ m′g with kernel U(2,2). The derived subgroup of G (and

U(2,2)) is SU(2,2) which is defined as the intersection of U(2,2) and the kernel of the determinant

map det : G→ ResOK/Z(GL1). As easily depicted from the definition, the description of the Qp-

points of G for p finite prime depends on whether p splits, ramifies or is inert in K. Denote Qp⊗Q K

by Kp and Zp ⊗Z OK by OK,p. Recall that Kp is a product of finite extensions of Qp in 1− 1
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correspondence with completions of K under extensions of the p-adic valuation on Q. Hence,

1. If p splits in K there is a Qp-algebra isomorphism ip : Kp −→Qp×Qp. Explicitly, let i1, i2 be

the two distinct embeddings of K into Qp, then

a⊗b 7→ (i1(b)a, i2(b)a).

Under this isomorphism,

ip(a⊗ b̄) = (i2(b)a, i1(b)a);

hence, we can identify G(Qp) with

{
(M,N) ∈GL4(Qp)×GL4(Qp) : NtJM = aJ, for a ∈Q∗p

}
.

Moreover, the map (M,N) 7→ (M,a) defines an isomorphism between G(Qp) and GL4(Qp)×

GL1(Qp).

2. If p is inert or ramified, Kp is an extension of degree 2 over Qp; denoting by a 7→ ā the

non-trivial automorphism of Kp/Qp, we have

G(Qp) =
{

M ∈GL4(Kp) : M̄tJM = aMJ, for aM ∈Q∗p
}
.

Of fundamental importance in this chapter is the embedding ϕ : H ↪→ G, given by the natural

embedding of GL4 inside ResOK/ZGL4.

5.1.2 The Shimura variety

We recall the definition of the Shimura variety attached to G and its moduli interpretation. Let K be

the imaginary quadratic field used to define G and fix an integral basis {1,y} for K. The Shimura

datum for H defines a Shimura datum (G,XG) via the embedding H ↪→G.

Remark 5.1.1. XG is isomorphic to the Hermitian half-space

H= {M ∈M2×2(C) : −i(M− M̄t)> 0}.

For any open compact subgroup U of G(A f ), we can consider the double quotient space

ShG(U)(C) = G(Q)\XG×G(A f )/U.

As discussed in §2.1, if U is sufficiently small, the quotient ShG(U)(C) is the set of complex points

of a smooth quasi-projective variety ShG(U) over the reflex field E(G,XG).

Remark 5.1.2. Note that the reflex field of (G,XG) is Q. This easily follows from the existence of
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the embedding (H,XH) ↪→ (G,XG), which implies that Q⊆ E(G,XG)⊆ E(H,XH) = Q.

We have a description of ShG(U) as a moduli space of abelian schemes of relative dimension

4 with principal polarisation, level U structure with compatible action of OK . Consider the functor

LU from the category of locally Noetherian K-schemes to Sets, which to S assigns isomorphism

classes of (A,λ , ι ,αU ), where

• A/S is an abelian scheme of relative dimension 4;

• λ is a principal polarisation of A;

• ι : OK → EndS(A) is a homomorphism which is compatible with λ , i.e.

ι(a)∨ ◦λ = λ ◦ ι(ā),

for all a ∈ OK , such that there is a splitting

LieS(A) = LieS(A)+⊕LieS(A)−,

where the direct summands are locally free OS-sheaves of ranks 2 and z∈OK acts on LieS(A)+

by f (z) and on LieS(A)− by f (z̄), where f : K→ OS is the structure homomorphism;

• αU is a unitary U-level structure.

Remark 5.1.3.

1. We call the level structure unitary to emphasise the difference with the GSp2g-case and we

recall its definition below;

2. The splitting condition on LieS(A) is equivalent to requiring that

det(T − ι(z)|LieS(A)) = (T − f (z))2(T − f (z̄))2 ∈ OS[T ],

where f : K→ OS is the structure homomorphism coming from the K-structure of S;

3. In the case of sufficiently small level U of G(Ẑ), the functor LU is representable by a quasi-

projective K-scheme (e.g. [Lan13] Theorem 1.4.1.11) which is identified with the base-change

over K of the canonical model ShG(U)/Q.

4. Following (3), the reader might wonder why we do not define an analogous functor, say

L Q
U , over the category of Q-schemes. Note that the condition on LieS(A) does not make

sense anymore. Namely, if we have a Q-vector space V which does not have a K-structure

but an action of OK by Q-linear maps, then the endomorphism corresponding to y (where

{1,y} is the fixed integral basis for K) is only diagonalisable after tensoring by OK and the
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required decomposition would work for the K-vector space V ⊗Z OK . Hence the Q-points

of L Q
U are the empty set. Note that the same idea applies to any Q-scheme S and locally

free OS-sheaf without K-structure. Since LU is representable by ShG(U)×Q Spec(K), then

L Q
U is representable by the scheme ShG(U)×Q Spec(K)→ Spec(K)→ Spec(Q), obtained

by composing with the inclusion Q ↪→ K, which is not isomorphic to the canonical model

ShG(U).

5.1.3 Unitary level structures

We now describe what a unitary level structure for an abelian scheme A/S with OK-action is. Denote

by KG(p) the kernel of reduction modulo p homomorphism G(Ẑ) −→ G(Z/pZ). Consider the

sesquilinear pairing H on O4
K given by y · J and let 〈•,•〉 : O4

K ×O4
K → Z be the skew-symmetric

pairing defined by

H(x1,x2) = 〈x1,y · x2〉+ y〈x1,x2〉.

Note that 〈•,•〉 restricted to Z4 is the pairing defined by the matrix J.

As we previously did for symplectic structures, we can define level U-structures for general

open compact subgroups of U ⊂G(Ẑ), as follows. Let KG(M)⊂G(Ẑ) denote the kernel of reduction

modulo M.

Definition 5.1.4. Let U be an open compact subgroup of G(Ẑ) and for any integer M such that

KG(M) ⊂U denote by UM the quotient U/KG(M). Then, a unitary level U structure of (A,λ , ι)/S

is a collection {αUM}M , where M varies among the integers such that KG(M)⊂U , of elements αUM

such that

1. αUM is a locally étale defined UM-orbit of an OK-equivariant isomorphism

αM : (OK/MOK)
4 −→ A[M],

with the property that there is an isomorphism βM : (Z/MZ)/S −→ µM/S which makes the

diagram

(OK/MOK)
4
/S
×S(OK/MOK)

4
/S

〈•,•〉 //

αM×αM

��

(Z/MZ)/S

βM

��
A[M]×SA[M]

eλ // µM/S

commutative.

2. If L|M, αUL correspond to the reduction modulo L of αUM .

Remark 5.1.5. One could define unitary level structure on the Tate module of the abelian scheme. For

instance, a unitary full level p structure on (A,λ , ι)/S corresponds to a collection {αs̄}s̄ of π1(S, s̄)-
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invariant KG(p)-orbit of an OK-equivariant isomorphism

αs̄ : Ô4
K −→ Ts̄(A)

which respects the two forms eλ and 〈•,•〉 as in Definition 5.1.4, and such that αs̄ and αs̄′ are

canonically identified for any two geometric points s̄, s̄′ in the same connected component. As in the

symplectic case, g ∈G(Ẑ) acts on the isomorphism αs̄ by αs̄ ◦g.

Consider the following subgroups of G(Zp).

Definition 5.1.6. For any integer r ≥ 1, define the subgroup Ũ1(pr)⊂G(Zp) as follows:

Ũ1(pr) := {M ∈G(Zp)|R4(M)≡ (0, · · · ,0,1) mod prOK} (5.1)

where Ri(M) denotes the i-th row of M. If N = ∏ pei
i , then Ũ1(N) ⊂ G(Ẑ) is defined to be the

subgroup of elements (gp)p such that gpi ∈ Ũ1(pei
i ).

Note that Ũ1(pr)∩H(Qp) = U1(pr), which was defined in Definition 2.1.20. As in Remark

2.1.21, Ũ1(pr) is given by matrices whose reduction modulo prOK is in the mirabolic subgroup of

the Klingen parabolic of the form ( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1

)
.

Remark 5.1.7. Similarly to the symplectic case, unitary Ũ1(pr)-level structures correspond to prOK-

points. More precisely, let P be an ideal of OK lying above p and define a Pr-point of an abelian

scheme A/S with OK-action ι : OK −→ EndS(A) to be an OK-linear monomorphism

(OK/P
r)/S ↪→ A[pr].

If p is inert in OK , a prOK-point is just a point of exact order pr. Indeed, if P ∈ A(S) is a point of

exact order pr, it is killed by ι(a) for all a ∈ prOK because prOK = (p)r and ι(a)P = ι(a′pr)P =

ι(a′)[pr]P = 0, for all a = a′pr ∈ prOK . Thus, P defines a monomorphism

(OK/prOK)/S ↪→ A[pr],

defined on each geometric fibres (corresponding to s → S) by sending 1 to Ps and identifying

OK/prOK with 〈i(a)Ps〉a∈OK . On the other hand, any prOK-point is determined by the point of

exact order pr obtained by the image of 1. In the case where p splits in K, say p = PP̄, then a

prOK-point P corresponds to P1 and P2 where

• P1 is a point of exact order pr which is killed by ι(a) for all a ∈Pr,

• P2 is a point of exact order pr which is killed by ι(a) for all a ∈ P̄r.
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We can now state the unitary analogue of Lemma 2.1.22.

Lemma 5.1.8. Let (A,λ , ι) be an abelian scheme of relative dimension 4 over a K-scheme S with

OK-module structure and principal polarisation. There is a bijection between unitary level Ũ1(N)-

structures and NOK-points.

Proof. It is a straightforward modification of the proof of Lemma 2.1.22.

5.1.4 A remark on the embedding at the level of moduli

We note that ϕ : H ↪→ G induces closed immersions φU : ShH(U ∩H) −→ ShG(U), for certain

open compact subgroups U of G(A f ). Due to the moduli space description of these spaces, it

is reasonable to ask whether we have a nice explicit description of the pull-back of the universal

element of ShG(U)K := ShG(U)×Q Spec(K) in terms of the (base-change to K) of the universal

element of ShH(U ∩H).

First, recall the main properties of Serre’s tensor construction for abelian schemes.

Lemma 5.1.9 (Serre’s Tensor Construction). Let R be a ring and M be a finite projective R-module;

for any group scheme A with R-module structure over S, the functor from S-schemes to Sets

F : T → A(T )⊗R M

is representable by a group scheme, which is denoted by

A⊗R M.

Moreover, in the case where A/S is an abelian scheme, then we have:

1. A⊗R M is an abelian scheme over S;

2. There is a canonical isomorphism

T`(A⊗R M)' T`(A)⊗R M;

3. There is a canonical isomorphism of OS-modules

LieS(A⊗R M)' LieS(A)⊗R M.

4. We have

(A⊗R M)∨ ' A∨⊗R M∨,

where A∨ denotes the dual abelian scheme of A and M∨ = HomR(M,R).
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Proof. We only give a sketch of the proof. Note that if M is a free R-module of rank n, F is

representable by An; more generally, take a presentation

Rm g // Rn // M∨ // 0,

and apply HomR(−,A(T )) to get

0 // HomR(M∨,A(T )) // A(T )n gT // A(T )m.

Since A(T )⊗R M ' HomR(M∨,A(T )), we conclude that F is representable by the kernel of (gT )T .

By [Con04] Theorem 7.2 and Theorem 7.5, the tensor construction preserves smoothness, proper-

ness and geometric connectedness of fibres, hence if A is an abelian scheme so is A⊗R M. Property

(2) is a direct consequence of the fact that tensoring by M is left exact (since M is projective), hence

A[`n]⊗R M ' (A⊗R M)[`n]. (3) is proved similarly (see [AK15], Lemma 3); for a proof of (4), we

refer to Proposition 5 of [AK15].

We can now prove the main result of this section. Denote by ShH(U ∩H)K the base-change

to K of ShH(U ∩H) and by (AH,K ,λH,K ,αH,U∩H,K) the base-change to K of the universal object of

ShH(U ∩H).

Proposition 5.1.10. The abelian scheme AH,K ⊗Z OK/ShH(U ∩H)K (and the extra structure) is

identified with the pull-back by φU of the universal object (AG,K ,λG,K , ιK ,αG,U,K)/ShG(U)K .

Proof. Consider the pull-back by φU of AG,K :

? //

��

AG,K

��
ShH(U ∩H)K

φU // ShG(U)K .

We would like to prove it is isomorphic to AH,K⊗Z OK . By Lemma 5.1.9, we have that AH,K⊗Z OK

is an abelian scheme over ShH(U ∩H)K of dimension 4; consider the action

ι : OK −→ EndShH(U∩H)K (AH,K⊗Z OK),

where ι(z) is given by multiplication by z in the second factor (which is a well-defined endomor-

phism by [AK15] Proposition 2 (c)). Moreover, ι induces the required decomposition of

V := LieShH(U∩H)K (AH,K⊗Z OK).

Indeed, V is a OS⊗Z OK-module and one can consider the elements
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x1 = f (y)⊗1−1⊗ ι(y),

x2 = f (ȳ)⊗1−1⊗ ι(y),

where f : K → OS is the structure homomorphism and {1,y} is an integral basis for K. The quo-

tients V /(x1) and V /(x2) are the maximal quotients on which OK acts respectively by the structure

monomorphism and by its conjugate and since the discriminant DK is invertible in OS we have

V = V /(x1)⊕V /(x2).

We would like to show that λH,K and the choice of ι give a OK-linear polarisation on AH,K ⊗Z OK .

This amounts to choose a Z-linear isomorphism g : OK −→ O∨K , such that

λH,K⊗g : AH,K⊗Z OK −→A ∨
H,K⊗Z O∨K ' (AH,K⊗Z OK)

∨

is compatible with ι , in the sense that

(λH,K⊗g)◦ ι(z̄) = ι(z)∨ ◦λH,K⊗g.

The isomorphism g is defined to be the composition on the right of •̄ : OK → OK with the isomor-

phism OK → O∨K determined by the choice of our integral basis of K. Hence, λH,K ⊗ g defines a

polarisation ([AK15], Theorem 17) compatible with the OK-action. Moreover, λH,K ⊗ g is an iso-

morphism. We are left to show that there is a unitary level structure induced from the symplectic

level structure αH,U∩H,K . By part (2) of Lemma 5.1.9, there is an isomorphism

(AH,K⊗Z OK)[`
m]'AH,K [`

m]⊗Z OK ,

hence a symplectic full `m-level structure on AH,K induces a unitary full `m-level structure on

AH,K⊗Z OK .

Indeed, take a geometric point s of ShH(U ∩H)K ; we consider the base-change to s of the symplectic

level structure, so that we get a (symplectic) isomorphism

αs : (Z/`mZ)4 −→AH,K,s[`
m].
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Since the tensor product construction commutes with base-change, we have an isomorphism

αs⊗OK : (OK/`
mOK)

4 −→ (AH,K⊗OK)s[`
m],

which is OK-equivariant and respects the form given by 〈•,•〉 and the form given by composition of

λH,K ⊗ g and Weil pairing, since ι coincide with the OK-module structure of (OK/`
mOK)

4. Thus,

it follows that a U ∩H-level symplectic structure induces a U-level unitary structure. Summing all,

we constructed a point ψ ∈ ShG(U)K(ShH(U ∩H)K). In particular, for any locally Noetherian K-

scheme S, ψ(S) is described by sending the isomorphism class of (A,λ ,ηU∩H)/S to the isomorphism

class of (A⊗Z OK ,λ ⊗g, ι ,ηU )/S.

By Remark 2.1.8, this morphism corresponds uniquely to a Gal(Q̄/K)-equivariant morphism

ψQ̄ : ShH(U ∩H)×K Spec(Q̄)→ ShG(U)×K Spec(Q̄),

which is equal to the descent to Q̄ of φU . This can be checked by evaluating the two morphisms on

the set of special points, which forms a Zariski dense set of ShH(U ∩H)(C). Recall that each special

point of (h,g) ∈ ShH(U ∩H)(C) is associated to a Q-torus T in H with the property that h ∈ XH

factors through T/R (recall that (H,XH) is the Shimura datum of ShH). We denote it by sT . On the

one hand, φ(sT ) is the special point of ShG(U)(C), associated to T , where T is seen inside G via

ϕ : H→ G. On the other hand, sT corresponds to (an isomorphism class of) a CM abelian variety

A = AT with polarisation λ and symplectic level U ∩H structure ηU∩H. Thus,

ψ(sT ) = (A⊗Z OK , ι ,λ ⊗g,ηU ).

This coincides with φ(sT ), which corresponds to the OK-ification of the polarised Hodge structure

corresponding to A. This completes the proof, since the equality ψQ̄ = φU,Q̄ implies that φU and ψ

coincide as morphisms of the models of the Shimura varieties over K.

Corollary 5.1.11. The morphism φU : ShH(U ∩H)/K −→ ShG(U)K is given by sending the S-point

(A,λ ,η)∈ ShH(U ∩H)/K(S) to the S-point (A⊗Z OK ,λ⊗g, ι ,η ′)∈ ShG(U)K(S), where ι : OK −→

EndS(A⊗Z OK), λ ⊗g and η ′ are defined as in the proof of Proposition 5.1.10.

Remark 5.1.12. Proposition 5.1.10 and its proof readily generalise to the case where φ is the mor-

phism of Shimura data (GSp2n,XGSp2n) ↪→ (GU(n,n),XGU(n,n)).

5.2 A family of trace compatible classes
In this section, we explain how to construct cohomology classes for the Shimura variety ShG starting

from Eisenstein classes for H. We prove that the resulting classes are trace compatible with respect

to a two variable family of level subgroups of G(Ẑ).
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5.2.1 Definitions

Associated to the closed immersion φU : ShH(U ∩H) −→ ShG(U), (for good U) there is the Gysin

map

φU,∗ : H3
mot(ShH(U ∩H),Q(2))−→ H5

mot(ShG(U),Q(3)).

What are those good U? For our purposes, the following lemma is enough.

Lemma 5.2.1. Let Uq ⊂ G(Qq) be a sufficiently small open compact subgroup and let T = TqT (q)

be an open compact subgroup of H(A f ) such that Tq =Uq∩H(Qq); then

1. there exists a compact open subgroup U = UqU (q) of G(A f ) with T ⊂ U and such that ϕ

induces a closed immersion

φU : ShH(T ) ↪→ ShG(U);

2. let p 6= q be any prime such that U (q) has trivial component at p; for any open compact

Up ⊂G(Qp) with Tp =Up∩H(Qp), the morphism

ShH(TqTpT (q))−→ ShG(UqUpU (q))

is still a closed immersion.

Proof. (1) is a particular case of [Kis10], Lemma 2.1.2. Now, suppose that z,z′ ∈ ShH have same

image in ShG(UqUpU (q)), i.e. there is u ∈ UqUpU (q) such that z = z′ · u. We claim that u lies in

TqTpT (q).

Indeed, since z,z′ have same image in ShG(UqUpU (q)), they map to the same element in ShG(U).

Thus, by (1), there exists t ∈ T such that z = z′ · t. Hence,

z = z′ · t = z′ ·u

implies that ut−1 fixes z′. Since U acts without fixed points, we have that ut−1 = 1. In particular, we

conclude that u ∈H and, consequently, u ∈ TqTpT (q), which completes the proof of (2).

Let ŨN be the subgroup Ũ1(N)Ũ (N) ⊂G(Ẑ), where Ũ (N) ⊂G(Ẑ(N)) is a sufficiently small open

compact subgroup which satisfies the hypotheses of Lemma 5.2.1 (for a suitable prime q - N).

Remark 5.2.2. Note that the level subgroup ŨN is trivial outside a finite set of primes ΣŨN
3 q.

Denote by φN the closed immersion

ShH(H∩ŨN)−→ ShG(ŨN).

In the next section, we show a trace compatibility relation of the push-forward of the Eisenstein

classes for ShH in the p-direction.
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We will work with the Eisenstein class of trivial weight cEis0
2,N ∈ H3

mot(ShH(ŨN ∩H),Q(g)),

introduced in Definition 3.4.4, and its integral p-adic counterpart cEis0
Zp,2,N ∈ H3

ét(ShH(ŨN ∩

H),Zp(g)), where c is an auxiliary integer coprime to 6N.

Definition 5.2.3.

1. Let ZG,N be the motivic cohomology class defined by

φN,∗(cEis0
2,N) ∈ H5

mot(ShG(ŨN),Q(3)).

2. Let zG,N be the étale class defined by

φN,∗(cEis0
Zp,2,N) ∈ H5

ét(ShG(ŨN),Zp(3)).

Remark 5.2.4.

1. As explained in §2.2.6, we can construct classes for G with non-trivial coefficients by studying

branching formulas for the pair of groups H,G. Branching formulas for these groups can be

deduced as follows. Recall that we have (e.g. [FH13, 20.39-20.40])

Sp4 C' Spin5 C ↪→ Spin6 C' SU(2,2)C,

where the first and last maps are exceptional isomorphisms. Thus, one can use branching

formulas [FH13, (25.34)] for SO5 C ↪→ SO6 C to deduce formulas for Sp4 ↪→ Spin6 and lift

them to formulas for GSp4 ↪→H′ ↪→G, where H′ is the quasi-split form of GSpin6 determined

by K, which sits in the short exact sequence

1 // H′ // G
g7→det(g)/ν(g)2

// ker(NK/Q) // 1.

2. For arithmetic applications, the previous point (together with multiplicity one in branching

formulas [FH13, (25.34)]) suggests it might be better to work with the four dimensional sub-

Shimura variety ShH′ of ShG given by the Shimura datum (H′,XH′), where XH′ is the H′(R)-

conjugacy class of

h′ : S−→H′/R
, a+ ib 7→ 1

a2+b2

( a b
a b
−b a

−b a

)
.

5.2.2 Compatibility in the mira-Klingen tower

In the following, we use Corollary 3.4.11 to deduce compatibility relations with respect to traces of

natural projection maps τp : ShG(ŨN p)→ ShG(ŨN).
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Proposition 5.2.5. Let p 6∈ ΣŨN
. Then,

τp,∗(ZG,N p) =

ZG,N if p | N;(
id−d∗p

)
ZG,N if p - N;

where dp ∈H(Ẑ) is any matrix which reduces to ( I 0
0 pI ) modulo N.

Proof. It follows from Corollaries 3.4.11 and 3.4.12 .

Remark 5.2.6. The étale classes {zG,N}N satisfy identical relations.

While the compatibility of these classes in the tower of level subgroups {ŨN}N is a natural con-

sequence of the trace compatibility relations of the Eisenstein classes, by using a more sophisticated

method, we show in the next sections how to obtain trace compatibility relations in a “two variable”

tower of level subgroups {ŨN,M}.

5.2.3 Perturbing the embedding I: definitions

When p | N, we showed that the push-forward of Eisenstein classes defines an element

ZN p∞ ∈ lim←−
i

H5
mot(ShG(ŨN pi),Q(3)),

where the limit is taken with respect to traces of the natural projection maps ShG(ŨN pi+1) →

ShG(ŨN pi). In order to improve this result, it is necessary to enrich our push-forward classes with

extra structure. This is done by employing the action of G(A f ) on ShG, as we see below in Defi-

nition 5.2.9. This idea has already been successfully used in the constructions of the Euler systems

in [LLZ14], [LLZ16], [LSZ17], and [CRJ18] (or Chapter 4). The method to prove extra trace com-

patibility relations used here is an adaptation to this setting of the method used in the proof of the

vertical norm relation of the Beilinson-Flach Euler system as in [KLZ17, Theorem 5.4.1], and its

generalisation in [LZ18].

In the rest of the section we suppose that p 6∈ ΣŨN
is inert or split in the imaginary quadratic

field K and that N is an integer coprime with p. We now define the tower of level subgroups we are

interested in. Let η be the cocharacter of the maximal torus of G defined by

x 7→

(
x3

x2
x

1

)

Let ηp = η(p) ∈G(Qp). It defines an open compact subgroup of Ũ ′n,0 ⊂ ŨN pn by requiring that Ũ ′n,0

is the largest subgroup such that we have

ηp : ShG(Ũ ′n,0)−→ ShG(ŨN pn).
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Moreover, let Ũn,1 ⊂ Ũ ′n,0 be the subgroup given by the intersection of Ũ ′n,0 with

{g ∈G(Zp) : g≡
(∗

1
∗

1

)
mod p}

Reiterating the procedure, we define subgroups of G(A f )

• Ũ ′n,m := ŨN pn ∩ηm+1
p ŨN pnη

−(m+1)
p ∩{g ∈G(Zp) : g≡

( ∗
1
∗

1

)
mod pm};

• Ũn,m+1 := Ũ ′n,m∩{g ∈G(Zp) : g≡
( ∗

1
∗

1

)
mod pm+1}.

Remark 5.2.7. Concretely, for n > 3m, Ũn,m has component at p

{
g ∈G(Zp) : g≡ I mod

 1 pm p2m p3m

pn pm pm p2m

pn pm 1 pm

pn pn pn pn

OK

}
.

For u ∈G(A f ), let φ u
U be the composition

u◦φuUu−1 : ShH(H∩uUu−1)−→ ShG(uUu−1)−→ ShG(U),

where the second arrow is given by right multiplication by u. In particular, consider u ∈G(A f ) such

that

1. H∩uŨn,mu−1 ⊂UN pn ,

2. φuŨn,mu−1 is a closed immersion.

Remark 5.2.8. The two conditions are satisfied by u ∈ ŨN pn with trivial components at places in

ΣŨN
.

For such u, we denote by φ u
n,m the map φ u

Ũn,m
; moreover, consider pull-backs, which we denote

the same way, of cEis0
2,N pn and cEis0

Zp,2,N pn to the cohomology groups of ShH(H∩uŨn,mu−1).

Definition 5.2.9. For u ∈ G(A f ) satisfying the above conditions, define

Zn,m,u := φ
u
n,m,∗(cEis0

2,N pn) ∈ H5
mot(ShG(Ũn,m),Q(3));

zn,m,u := φ
u
n,m,∗(cEis0

Zp,2,N pn) ∈ H5
ét(ShG(Ũn,m),Zp(3)).

5.2.4 Perturbing the embedding II: a two variable compatible family

Consider the following.
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Definition 5.2.10. Let Up be the Hecke operator defined as the correspondence ηp,∗ ◦ p̄r∗, where

ShG(Ũ ′n,m)

p̄r
��

ηp

&&
ShG(Ũn,m)

Up // ShG(Ũn,m),

with the vertical arrow p̄r is equal to the natural projection.

We can finally state the main theorem of the chapter.

Theorem 5.2.11. Suppose n≥ 3m+3 and let m≥ 1.

1. Let τn : ShG(Ũn+1,m)−→ ShG(Ũn,m) be the natural projection, then

τn,∗(Zn+1,m,u) = Zn,m,u.

2. Let fm,∗ be the trace map associated to fm : ShG(Ũn,m+1) −→ ShG(Ũ ′n,m) −→ ShG(Ũn,m),

where the first arrow is the natural projection and the second is right multiplication by ηp.

There exists u ∈ G(A f ) such that

fm,∗(Zn,m+1,u) = Up ·Zn,m,u.

Remark 5.2.12.

1. The analogous statement for the étale classes {zn,m,u}n,m holds (and its proof is identical to the

one of Theorem 5.2.11). Moreover, after applying the ordinary idempotent eηp := limk→∞ U k!
p

acting on H5
ét(ShG(Ũn,m),Zp(3)), we get a neat compatibility for the étale classes in the second

variable (Definition 5.2.14).

2. The proof of Theorem 5.2.11(1) is Proposition 5.2.5.

3. The choice of u of Theorem 5.2.11(2) does not depend on either n or m and it is not unique

(see §5.4 and the proof of 5.2.13 for further explanations).

Theorem 5.2.11(2) follows from the following.

Proposition 5.2.13. There exists an element u ∈ G(A f ) such that the commutative diagram

ShG(Ũn,m+1)

pr

��
ShH(uŨn,m+1u−1∩H)

φu
n,m+1

33

pr◦φu
n,m+1 //

π

��

ShG(Ũ ′n,m)

p̄r
��

ShH(uŨn,mu−1∩H)
φu

n,m // ShG(Ũn,m)
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has Cartesian bottom square.

Proposition 5.2.13 is proved in §5.3.

Proof of Theorem 5.2.11(2). Let u be the matrix which appears in Proposition 5.2.13. From the

compatibility of pull-backs and push-forwards in Cartesian diagrams, we get

pr∗(Zn,m+1,u) = p̄r∗(Zn,m,u).

Applying the trace of ηp : ShG(Ũ ′n,m)−→ ShG(Ũn,m), we have

ηp,∗(pr∗(Zn,m+1,u)) = ηp,∗(p̄r∗(Zn,m,u))

= Up ·Zn,m,u,

where the last equality follows from the very definition of Up as the correspondence ηp,∗ ◦ p̄r∗; this

is the desired formula since ηp,∗ ◦pr∗ = fm,∗.

5.2.5 Projection to the ordinary part

Using the analogous of Theorem 5.2.11 for zn,m,u, we define a limiting element where both n and

m go to infinity. If we substitute the tower of level subgroups Vn,m := η−m
p Ũn,mηm

p for Ũn,m and the

class

Zn,m,u := (ηm
p )∗(zn,m,u) ∈ H5

ét(ShG(Vn,m),Zp(3))

for zn,m,u, Theorem 5.2.11 gives a trace compatibility relation with respect to the natural projections

for both n and m varying. This follows from having the commutative diagram

ShG(Ũn,m+1)
ηm+1

p //

fp

��

ShG(Vn,m+1)

��
ShG(Ũn,m)

ηm
p // ShG(Vn,m),

where right vertical map is the natural projection. Set

H5
ét(ShG(V∞),Zp(3)) := lim←−

n,m
H5

ét(ShG(Vn,m),Zp(3)).

The ordinary idempotent eηp := limk→∞ U k!
p acts on it.

Proposition 5.2.14. We define

Zord
u := (U −m

p · eηp(Zn,m,u))n,m≥1 ∈ eηp ·H5
ét(ShG(V∞),Zp(3)).
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Proof. The class Zord
u is well-defined, thanks to the trace compatibility relations of Theorem 5.2.11.

5.3 Proof of Proposition 5.2.13
In the following, we show that there exists u ∈ G(A f ) such that the diagram of Proposition 5.2.13

has Cartesian bottom square. This follows from showing that there exists u ∈G(A f ) such that

1. pr◦φ u
n,m+1 is a closed immersion, i.e.

uŨn,m+1u−1∩H = uŨ ′n,mu−1∩H.

2. the degrees of π and p̄r agree, i.e.

[Ũn,m : Ũ ′n,m] = [uŨn,mu−1∩H : uŨn,m+1u−1∩H].

Here n is always assumed to be bigger than 3m+ 3. We treat the cases of split and inert p in K

separately.

5.3.1 The split case

Let p be split in K and denote Zp⊗Z OK by OK,p. As we discussed in §5.1.1, there is an isomorphism

between G(Zp) and GL4(Zp)×Gm(Zp) and H(Zp) embeds into GL4(Zp)×Gm(Zp) via M 7→

(M,µ(M)), where µ denotes the symplectic multiplier.

We claim that

u :=
((1 −1

1
1

1

)
,1
)
∈GL4(Zp)×Gm(Zp)

satisfies the properties (1),(2) listed above.

Lemma 5.3.1. We have uŨn,m+1u−1∩H = uŨ ′n,mu−1∩H.

Proof. We want to show that if g = (gp)p ∈ Ũ ′n,m is such that ugu−1 ∈ H, then g ∈ Ũn,m+1. Since

this is a local statement at p, it is enough to verify that if gp =
((

A B
C D

)
,α
)

satisfies ugpu−1 ∈H(Zp),

then

gp ≡
(( x

1
x

1

)
,x
)

(mod pm+1).

Reducing modulo pm+1, we get ugpu−1 ≡

((
a1 −c a1−d1 0
0 a4 0 0
0 c d1 0
0 0 0 1

)
,α

)
, which is symplectic if

(
0 a1

a4d1 −c

)
=
(

0 α
α 0

)
,(0 a1−d1

0 0

)
=
( 0 0

a1−d1 0
)
.
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Thus, a1−d1 ≡ a4−1≡ c≡ 0 (mod pm+1), which implies that

gp ≡
((a1

1
a1

1

)
,a1

)
(mod pm+1).

We are left to check that

Lemma 5.3.2. We have

[Ũn,m : Ũ ′n,m] = [uŨn,mu−1∩H : uŨ ′n,mu−1∩H].

Proof. Note that [Ũn,m : Ũ ′n,m] = p10, since a left coset of representatives is given by

σv =

((
1 pmk1 p2mr1 p3mr2

1 pmr3 p2mr4
1 pmk2

1

)
,1

)
,

where for each vector v ∈ Z/p3Z× (Z/p2Z)2× (Z/pZ)3 we consider one and only one lift

(r2,r1,r4,k1,r3,k2) ∈ Z10
p .

Now, recall that the p-component of uŨn,mu−1 ∩H is isomorphic to the subgroup of G(Zp)

given by elements (g,α) such that u(g,α)u−1 ∈H and

g≡
(

α
1

α
1

)
mod

 pm pm p2m p3m

pn pm pm p2m

pn pm pm pm

pn pn pn pn

 .
Moreover, from Lemma 5.3.1 we have uŨ ′n,mu−1∩H = uŨn,m+1u−1∩H, hence

[uŨn,mu−1∩H : uŨ ′n,mu−1∩H] = [uŨn,mu−1∩H : uŨn,m+1u−1∩H].

We claim that a system of coset representatives is given by a subset of the set of elements

σ
′
v =

((
1+pms1 pmk1 p2mr1 p3mr2

1+pms2 pmr3 p2mr4
pmt 1 pmk2

1

)
,1+ pms1

)
∈ Ũn,m

where for each vector v ∈ Z/p3Z× (Z/p2Z)2× (Z/pZ)6 =: S we consider one and only one lift

(r2,r1,r4,k1,r3,k2,s1,s2, t) ∈ Z13
p .

More precisely, a system of left coset representatives is {u(σ ′w)−1u−1}w∈W , where W ⊂ S, which

is determined by the symplectic conditions for uσ ′wu−1 modulo (powers of) p, is defined to be the
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subset of cardinality p10 of elements of the form

(r2,r1,r4,k1,r3,k2,0,0,k1 + k2) ∈ S.

To prove our claim we need to show that for any g =

(
a1 a2 b1 b2
0 a4 b3 b4
0 c2 d1 d2
0 0 0 1

)
∈ Ũn,m such that ugu−1 ∈ H,

there exists σ ′v with v ∈W such that

uσ
′
vgu−1 ∈ uŨn,m+1u−1∩H.

This boils down to solving the system of equations

b2 + pmk1b4 + p2mr1d2 + p3mr2 ≡ 0 [p3m+3]

b1 + pmk1b3 + p2mr1d1 ≡ 0 [p2m+2]

b4 + pmr3d2 + p2mr4 ≡ 0 [p2m+2]

a2 + pmk1a4 ≡ 0 [pm+1]

b3 + pmr3 ≡ 0 [pm+1]

pm(k1 + k2)b4 +d2 + pmk2 ≡ 0 [pm+1]
a4 + pmr3c2 ≡ 1 [pm+1]

pm(k1 + k2)a4 + c2 ≡ 0 [pm+1]

pm(k1 + k2)b3 +d1 ≡ a1 [pm+1]

From the first system of equations, we determine the values of r2,r1,r4,k1,r3, and k2 since d1 and

a4 are invertible modulo p. In particular, the fourth and sixth equations give

pm(k1 + k2)≡−a−1
4 a2−d2 [pm+1].

Thus, the second system of equations reduces to
a4 ≡ 1 [pm+1]

−a2−d2 + c2 ≡ 0 [pm+1]

d1 ≡ a1 [pm+1]

and it is redundant. Indeed, unfolding the symplectic conditions of ugu−1 modulo pm+1, we get
a1 ≡ a4d1 [pm+1]

a2− c2 +a4d2 ≡ 0 [pm+1]

d1b4 ≡ b2 +a1−d1 +d2b3 [pm+1]
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which gives 
a4 ≡ 1 [pm+1]

c2 ≡ a2 +d2 [pm+1]

d1 ≡ a1 [pm+1]

since b4,b2,b3d2 ≡ 0 modulo pm+1. Thus, we conclude that

[Ũn,m : Ũ ′n,m] = [uŨn,mu−1∩H : uŨ ′n,mu−1∩H] = p10.

5.3.2 The inert case

Let Kp be the p-adic completion of K at p; it is an extension of degree 2 over Qp and denote by •̄

the non-trivial automorphism in the Galois group. Let e ∈OKp be a generator of OK/(pOK +Z) and

consider

u =

( 1 e
1 ē

1
1

)
∈G(Zp).

We claim that u satisfies (1),(2) listed above.

Lemma 5.3.3. We have uŨn,m+1u−1∩H = uŨ ′n,mu−1∩H.

Proof. As for Lemma 5.3.1, it suffices to show that if g = (gp)p ∈ Ũ ′n,m is such that ugpu−1 ∈ H,

then g ∈ Ũn,m+1. Note that the condition ugpu−1 ∈ H(Zp) is equivalent to asking that ugpu−1 has

entries in Zp. Modulo pm+1OK , we have

ugpu−1 ≡

(
a1 ec2 e(d1−a1) eēc2
0 a4 0 ē(1−a4)
0 c2 d1 ēc2
0 0 0 1

)
.

Thus, ugpu−1 ∈H(Zp) implies

a1−d1 ≡ a4−1≡ c2 ≡ 0 (mod pm+1),

hence g ∈ Ũn,m+1.

Lemma 5.3.4. We have

[Ũn,m : Ũ ′n,m] = [uŨn,mu−1∩H : uŨ ′n,mu−1∩H].

Proof. As in the split case, we have

[Ũn,m : Ũ ′n,m] = p10.
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Indeed, a system of coset representatives is given by

σv =

 1 pmk1 p2mr1 p3mr2
1 pmr3 p2mr4

1 −pm k̄1
1

 :

 r2− k1r4 ∈ Zp,

r4 = r̄1− k̄1r3,

where for each vector v∈Z/p3Z×OK/p2OK×OK/pOK×Z/pZ we consider one and only one lift

(r̃2,r1,k1,r3) ∈ Zp×O2
Kp ×Zp,

so that r2 = r̃2 + k1(r̄1− k̄1r3).

The calculation of [uŨn,mu−1∩H : uŨ ′n,mu−1∩H] = p10 is very similar to the one in Lemma 5.3.2.

Here, a system of left coset representatives is formed by elements uσ ′wu−1 ∈H, where

σ
′
w :=

(
1+pms1 pmk1 p2mr1 p3mr2

1+pms2 pmr3 p2mr4
pmt 1+pms3 pmk2

1

)
∈ Ũn,m

where for each vector

w ∈ (Z/pZ)5×Z/p3Z× (OK/pOK)
2× (OK/p2OK)

2

we consider one and only one lift

(s1,s2,s3,r3, t,r2,k1,k2,r1,r4) ∈ Z6
p×O4

Kp

subject to conditions 

s1 = s2 + s3 + pm(s2s3− tr3),

k̄1 =−k2− pm(k2s2 + pmtr4),

k̄2r4 ∈ Zp,

r̄1 = (1+ pms3)− k2r3,

k2− ēt ∈ Zp,

pmr4 + ēs2 ∈ Zp,

Looking carefully at the system, we can recover s1,s2,k1,k2, and r1 in terms of s3,r3, t,r2, and r4.

Indeed, k2 is obtained from equations 3 and 5, while the values s1,s2,k1, and r1 are determined

respectively by equations 1, 6 , 2, and 4. Thus, a system of left coset representatives is given by

{uσ ′wu−1}w, where w ranges through all the vectors in (Z/pZ)3×Z/p3Z× (OK/p2OK).
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5.4 A few remarks

5.4.1 Cyclotomic Norm relations

In [LLZ14], [LLZ16], [LSZ17], and [CRJ18] (or Chapter 4), the trace compatibility relations ob-

tained by varying level subgroups Ũn,m with respect to m has a primary role in proving the vertical

Euler system norm relations in the p-cyclotomic tower. Theorem 5.2.11 does not give any result in

this direction. In this section, we describe the nature of the obstruction that we encounter when try-

ing to prove cyclotomic norm relations using this method. This informal discussion is much inspired

by the work [LZ18], which treats an axiomatisation of the technique used in op.cit.

Ideally we would have projections

ShG(Ũn,m)−→ ShG(ŨN pn)×Q SpecQ(ζpm)

and we would read the compatibility under fp,∗ of Theorem 5.2.11 as one under the trace map

associated to the natural projection SpecQ(ζpm+1)→ SpecQ(ζpm). Unfortunately,

ν(Ũn,m)⊂ Ẑ∗

has p-part equal to Z∗p, thus ShG(Ũn,m) does not surjects onto ShG(ŨN pn)×Q SpecQ(ζpm) since it

does not have enough connected components at p.

Motivated by the Euler system constructions mentioned above, we could try to modify the tower of

subgroups {Ũn,m} by defining

Ṽn,m := ŨN pn ∩η
m
p ŨN pnη

−m
p ∩{g ∈G(Zp) : ν(g)≡ 1 (mod pm)},

instead of intersecting ŨN pn ∩ηm
p ŨN pnη−m

p with

{g ∈G(Zp) : g≡
(∗

1
∗

1

)
mod pm}.

Then, the corresponding Shimura variety ShG(Ṽn,m) has enough connected components and it is

reasonable to ask if it is possible to find u ∈G(A f ) such that the diagram

ShG(Ṽn,m+1)

pr

��
ShH(uṼn,m+1u−1∩H)

φu
Ṽn,m+1

33

pr◦φu
Ṽn,m+1 //

��

ShG(Ṽ ′n,m)

��
ShH(uṼn,mu−1∩H)

φṼ u
n,m // ShG(Ṽn,m)
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has Cartesian bottom square. Crucially, u ∈G(A f ) has to be chosen so that the morphism pr◦φ u
Ṽn,m+1

is a closed immersion. This boils down to showing that, for any m≥ 1,

uṼn,m+1u−1∩H = uṼ ′n,mu−1∩H. (5.2)

How does one determine u such that equality (5.2) is satisfied? Our choice of the co-character η

determines a parabolic and its opposite of G, which are respectively the upper and lower-triangular

Borels BG and B̄G (indeed, conjugation by powers of ηp induces congruences modulo powers of p

for upper triangular entries of the elements in Ũn,m). The equality (5.2) follows (by reducing modulo

pm+1) from the condition

Klino
H∩uB̄Gu−1 ⊂ Sp4, (5.3)

where Klino
H is the p-part of the stabiliser of the Eisenstein class for H

cEis0
Zp,2,N p∞ ∈ H3

ét(ShH(UN p∞),Zp(2)).

In other words, it denotes the subgroup over Zp of the Klingen parabolic of H of matrices of the

form ( ∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 1

)
.

Remark 5.4.1. Note that Klino
H ∩ uB̄Gu−1 is the stabiliser of the Klino

H(Zp)-orbit uB̄G in the flag

variety G/B̄G.

We cannot find u such that its stabiliser is contained in Sp4. For instance, let p be split in K, so

that G(Qp) is isomorphic to GL4(Qp)×Gm(Qp). The lower-triangular Borel B̄G has co-dimension

6 in G, while Klino
H has dimension 7, thus u satisfies (5.3) if the image under the symplectic multi-

plier of a space of dimension bigger or equal than 1 is trivial. For sufficiently generic u, conjugation

by u rearranges the entries of matrices in B̄G, but the condition that they need to lie in Klino
H does

not give enough equations to force these matrices to have multiplier one.

Remark 5.4.2. This is the reason why we define the tower of subgroups Ũn,m by intersecting it with

{g ∈G(Zp) : g≡
(∗

1
∗

1

)
mod pm}.

Indeed, the calculation underlying Proposition 5.2.13 shows that the stabiliser of the open Klino
H-

orbit uB̄G is one dimensional and it is isomorphic to the one dimensional subgroup

{( x
1

x
1

)}

of the maximal torus of H.
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5.4.2 Similar Constructions

The natural question arising at this point is on whether there is any push-forward construction of

Eisenstein classes for H, where the obstruction described above is not present. Unfortunately, this

phenomenon occurs in several similar push-forward constructions. For instance, an analogous of

Theorem 5.2.11 works in the case where we consider

1. H′1 := H�GL2 ↪→GSp6,
((

A B
C D

)
,
(

a b
c d

))
7→
(A B

a b
c d

C D

)

2. H′2 := H�H ↪→GSp8,
((

A B
C D

)
,
(

A′ B′
C′ D′

))
7→

(
A B

A′ B′
C′ D′

C D

)

and the push-forward of the pull-back of cEis0
2,N pn along the diagram

ShH(UN pn) ShH′i
(LN pn ∩H′i)

pr1oo // ShG(LN pn) ,

for sufficiently nice level subgroup LN pn ⊂ G(Ẑ), where G ∈ {GSp6,GSp8}. In these cases, there

is u ∈ G such that the analogous diagram of Proposition 5.2.13 has Cartesian bottom square. Notice

that

1. the stabiliser of the Klino
H�GL2-orbit uB̄GSp6 in the flag variety GSp6/B̄GSp6 is isomorphic

to the one dimensional subgroup {diag(x,1,x,1,x,1)}. For instance, u can be taken of the

form

u =

 1 2 1 −1 1 1
0 3 2 0 1 −1
0 2 2 1 0 −1
0 1 1 2 −1 0
0 0 0 −1 1 −1
0 0 0 0 0 1

 ;

2. the stabiliser of the Klino
H�H-orbit uB̄GSp8 in the flag variety GSp8/B̄GSp8 is isomorphic to

{diag(x,1,x,1,x,1,x,1)}.

5.4.2.1 Numerology

The reader might wonder which is the connection between the three cases listed above. They obey

the following. Let G ∈ {GSp6,GSp8,GU(2,2)}, then we have an embedding, for some reductive

group H,

GL�2
2 �H ↪→H�H ↪→ G  ShGL�2

2 �H ↪→ ShH�H ↪→ ShG,

such that the corresponding push-forward construction of the pull-back of an Eisenstein class for

GL2 to the cohomology of the Shimura variety for GL�2
2 �H gives a class in the middle degree plus

1 cohomology group of the variety for G and the aforementioned method of [LZ18] applies, giving

a family of norm compatible classes in the cyclotomic tower at p. One of the hypotheses required to

apply the method of loc.cit. is that the dimension, as a Zp-group, of the stabiliser Klino
GL2
�GL2�H
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of the pull-back of the Eisenstein class cEis0
Zp,1,p∞ ∈ H1

ét(ShGL2(Up∞),Zp(1)) is smaller or equal to

the dimension of the unipotent radical of the Borel of G. In these cases, we have that

dim(Klino
GL2
�GL2�H) = dimUBG −1,

thus

dim(Klino
H�H) = dim(Klino

GL2
�GL2�H)+2 = dimUBG +1,

contradicting the same numerology for the push-forward of the pullback of the Eisenstein class

cEis0
Zp,2,p∞ ∈ H3

ét(ShH(Up∞),Zp(2)) to the cohomology of the Shimura variety for H�H. This

simple heuristic suggests that, when the method of proving norm relations at p holds for the push-

forward of a Eisenstein class for GL2, it seems not possible to apply it to the push-forward of an

Eisenstein class for H. The underlying defect of dim(Klino
H�H)− dimUBG is interpreted as the

dimension of the stabiliser of the open Klino
H�H(Zp)-orbit uG/B̄G used to perturb the embedding

of the Shimura variety for H�H into the one for G.

Remark 5.4.3. We could speculate further and ask whether there might exist a case where the nu-

merology for both cases is satisfied. For example, consider an embedding H�H ↪→ G for G either

GSp2n or GU(n,n) such that the push-forward of (the pullback of) an Eisenstein class for H lands

in the middle degree + 1 cohomology group. Then, the push-forward of (the pullback of) a GL2-

Eisenstein class through

GL2�GL2�H ↪→H�H ↪→ G

gives another class in the same cohomology group. We can perturb both two embeddings to get

classes defined over cyclotomic extensions only when

dim(Klino
GL2
�GL2�H)≤ dimUBG −2  dim(H)−1≤ dimUBG −7.

Now, suppose that G = GSp2n and that H is a product of symplectic groups, i.e. H ' �i
j=1GSp2r j

such that ∑r j = n−2; the inequality above becomes

dim(H)−1 = ∑
j

r j(2r j +1)≤ n2−7.

Since

dim(ShG) = 2cod(ShGL�2
2 �H)

we get

2∑r2
j = n2−n−4.

Thus, we are left to study if there exists (r1, . . . ,ri,n)∈Ni+1 with ∑r j = n−2 and 2∑r2
j = n2−n−4
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such that

∑
j

r j(2r j +1)−n2 +7≤ 0←→ n2−n−4+n−2−n2 +7≤ 0,

i.e. 1≤ 0, which is false.

Notice that having imposed the fact that our push-forward class lands in the middle degree

plus 1 cohomology group is fundamental for arithmetic applications. This is because a large family

of Galois representations associated to (cohomological) cuspidal automorphic representations for G

tends to appear in the middle degree geometric étale cohomology group of the Shimura variety (e.g.

[MT02, Theorem 1]).

At present, it seems reasonable to expect that the technique for proving Euler system norm

relations in the tower at p of [LZ18] is suited for infinitely many cases of push-forward constructions

involving GL2-Eisenstein classes, in opposition to what seems to happen for constructions which use

Eisenstein classes for symplectic groups greater than GL2. We will come back to this analysis in

future projects.
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Séminaire Bourbaki, Vol. 1998/99.

[Con04] Brian Conrad. Gross-Zagier revisited. Heegner points and Rankin L-series, 49:67–163,

2004.

[Cor09] Christophe Cornut. Normes p-adiques et extensions quadratiques. In Annales de

l”Institut Fourier, 2009.

[CRJ18] Antonio Cauchi and Joaquin Rodrı́gues Jacinto. Towards an Euler System for GSp(6).

preprint, 2018.

[Del71] Pierre Deligne. Travaux de Shimura. In Séminaire Bourbaki vol. 1970/71 Exposés 382–
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