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Stacking-disordered materials display crystalline order in two dimensions but

are disordered along the direction in which layered structural motifs are stacked.

Countless examples of stacking disorder exist, ranging from close-packed

metals, ice I and diamond to open-framework materials and small-molecule

pharmaceuticals. In general, the presence of stacking disorder can have

profound consequences for the physical and chemical properties of a material.

Traditional analyses of powder diffraction data are often complicated by the

presence of memory effects in the stacking sequences. Here it is shown that

experimental pair distribution functions of stacking-disordered ice I can be used

to determine local information on the fractions of cubic and hexagonal stacking.

Ice is a particularly challenging material in this respect, since both the stacking

disorder and the orientational disorder of the water molecules need to be

described. Memory effects are found to contribute very little to the pair

distribution functions, and consequently, the analysis of pair distribution

functions is the method of choice for characterizing stacking-disordered samples

with complicated and high-order memory effects. In the context of this work, the

limitations of current structure-reconstruction approaches are also discussed.

1. Introduction

Stacking-disordered materials consist of layers of structural

motifs that display periodicity within the plane of the layers.

However, disorder arises because of the different ways the

layers stack on top of one another, which can include rota-

tions, translational displacements and mirror operations.

Naturally, stacking disorder (SDO) is found for a wide range

of layered materials, such as graphite (Li et al., 2009; Warner et

al., 2009), MoS2 (Moser & Lévy, 1994) and mica (Iijama &

Buseck, 1978), where there is stronger chemical bonding

within the layers compared with the chemical interactions

between the layers. An extreme case is turbostratic graphite

where individual graphene sheets are stacked with significant

rotational misalignment (Marchand, 1965). However, SDO

can also be found for materials where the chemical bonding

within the formal layer units is similar or even identical to that

in the direction of stacking. The most fundamental and well

known examples are close-packed metals and alloys, for which

two geometric recipes of stacking exist based on face-centred

cubic and hexagonal close packing (Edwards & Lipson, 1942;

Berliner & Werner, 1986; Roy et al., 2014; Sławiński et al.,

2018).

The ‘ordinary’ ice I consists of layers of hydrogen-bonded

water molecules that form annulated six-membered rings in

the armchair conformation. The thermodynamically stable
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form of ice I is hexagonal (ice Ih), which means that mirror

images of the layers are placed on top of one another in an

alternating fashion as shown in Fig. 1(a). However, cubic

stacking of the layers is also possible, where identical layers

are placed on top of one another but with displacements (see

Fig. 1b). Hexagonal stacking leads to new six-membered rings

between the layers in the boat conformation, whereas the

armchair conformation is found in the case of cubic stacking.

Consequently, a perfect cubic ice I structure (ice Ic) consists of

only six-membered rings in the armchair conformation

whereas ice Ih contains a 50:50 mixture of boat and armchair

rings.

Ice Ic was originally believed to form from low-temperature

vapour deposition (König, 1943). However, more recently it

has been shown that pure ice Ic has so far not been prepared

and the metastable ice I samples contain varying degrees of

cubic and hexagonal stacking, as shown in Fig. 1(c) (Kuhs et al.,

1987, 2012; Hansen, Koza, Kuhs et al., 2008; Hansen, Koza

Lindner et al., 2008; Malkin et al., 2012, 2015). Instead of

calling this material ice Ic, the name stacking-disordered ice

(ice Isd) has been suggested as a more accurate structural

description (Malkin et al., 2012). To date, the most cubic bulk

sample of ice Isd has been prepared by heating the ice II high-

pressure phase of ice at ambient pressure, which gave a

percentage of cubic stacking events (or cubicity) in the ice Isd

of 73.3% (Malkin et al., 2015). Freezing small droplets of liquid

water in a vacuum has recently led to the formation of�20 nm

ice Isd particles with 78% cubicity (Amaya et al., 2017).

Similar SDO phenomena have also been identified in

diamond which is isostructural with ice I. However, here the

fully cubic polytype is the most stable form and it has been

shown that what were believed to be hexagonal diamond

samples (Bundy & Kasper, 1967; Hanneman et al., 1967)

should in fact be described as stacking-disordered diamond

(Németh et al., 2014; Salzmann et al., 2015). The quest for fully

hexagonal diamond is currently underway (Kraus et al., 2016,

Shiell et al., 2016, Turneaure et al., 2017). Countless other

examples of SDO exist across the materials world, including

complex inorganic materials (Zimmermann & Johnsson, 2015;

Ainsworth et al., 2016) as well as zeolites and other open-

framework materials (Willhammar & Zou, 2013). More

recently, SDO has also been found in small-molecule phar-

maceuticals such as aspirin, promethazine hydrochloride and

aprepitant (Bond et al., 2007, Braun et al., 2008, 2017; Borodi et

al., 2012, Price et al., 2016).

Depending on the material in question, the presence and

extent of SDO can have profound consequences for its

physical and chemical properties. In the case of ice, the extent

of SDO has been found to affect its vapour pressure (Shilling

et al., 2006), crystal shape (Murray, Salzmann et al., 2015),

spectroscopic (Carr et al., 2014) and light scattering properties

(Murray, Salzmann et al., 2015), and potentially surface

chemistry (Behr et al., 2006). This may be important for

understanding ice particles in and their impact on the Earth’s

atmosphere (Murray, Salzmann et al., 2015; Murray, Malkin &

Salzmann, 2015). For diamond, the hardness is thought to be

influenced by the SDO, with fully hexagonal diamond poten-

tially being much harder than its cubic counterpart (Pan et al.,

2009; Qingkun et al., 2011). The bandgap and dielectric

properties of diamond are also thought to depend on its

cubicity (Gao, 2014). Furthermore, the solubility and hence

the bioavailability of pharmaceuticals could be affected by the

extent of SDO. In terms of material design, SDO therefore

offers the fascinating prospect of fine-tuning the physical and

chemical properties of materials by controlling the extent of

SDO in a continuous fashion between extreme polytypic cases.

Given the widespread occurrence of SDO and the effect it

can have on the properties of materials, it is highly desirable to

have reliable and accurate methods available for the quanti-

tative analysis of SDO. High-resolution transmission electron

microscopy is widely used (Németh et al., 2014; Willhammar &

Zou, 2013). However, the individual observations in electron

microscopy are not necessarily representative of the bulk

sample and the analysis is dependent on favourable orienta-

tions of the investigated particles. The associated technique of

selected area electron diffraction (SAED) is very powerful in

the sense that it highlights the presence of SDO very clearly in

the form of ‘streaks’ in diffraction images. Yet, again, the

recorded images may not necessarily represent the bulk

sample and the quantification of the extent of SDO can be

difficult. Related to SAED are single-crystal X-ray and

neutron diffraction, where streaking is also an indication of

SDO.

Perfectly crystalline materials show diffraction intensity in

the form of spots in reciprocal space, which are defined by

their hkl Laue indices where h, k and l are integers. The

consequence of SDO is that some of the spots turn into streaks

as one of the Laue indices is no longer required to be an

integer and can take continuous values. For example, for close-
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Figure 1
Stacking of layers in (a) hexagonal, (b) cubic and (c) stacking-disordered
ice I. Red spheres indicate oxygen atoms. Six-membered rings in the boat
and armchair conformations are highlighted in yellow in (a) and (b),
respectively. Hydrogen atoms have been omitted for clarity. Hexagonal or
cubic stacking of layers is indicated by ‘h’ and ‘c’, respectively. Dashed
lines show the mirror planes associated with hexagonal stacking whereas
cubic stacking is highlighted by displacement vectors.



packed metals hkl reflections are affected by SDO when (h �

k)/3 is not an integer (Lele et al., 1967; Prasad & Lele, 1971).

The streaking in reciprocal space caused by SDO leads to

asymmetric broadening, diffuse-scattering components and

shifts of some of the Bragg peaks in X-ray and neutron powder

diffraction. The diffraction patterns of stacking-disordered

materials can be calculated, for example, using the DISCUS

(Proffen & Neder, 1997) and RMCProfile (Tucker et al., 2007)

software packages. A recent update of the software TOPAS

allows the refinement of structural parameters related to SDO

(Coelho et al., 2016; Coelho, 2018). The DIFFaX approach is

particularly elegant since it does not require the construction

of a complete atomistic model representing a stacking-disor-

dered material (Treacy et al., 1991). Instead, the input for

DIFFaX contains information about the structures of the

layers, the geometric recipes for stacking these layers and the

associated stacking probabilities, which can take continuous

values. Various DIFFaX-based software packages, such as

DIFFaX+ (Leoni et al., 2004), FAULTS (Casas-Cabanas et al.,

2016) and MCDIFFaX (Salzmann et al., 2015; Malkin et al.,

2015), that allow for the relevant structural parameters

(including the stacking probabilities) to be refined have been

presented.

In our MCDIFFaX analysis of ice I and diamond diffraction

data, we implemented up to second-order memory effects for

the stacking probabilities, which was necessary in some cases

in order to obtain a good fit to the experimental diffraction

data (Salzmann et al., 2015, Malkin et al., 2015). This means

that independent stacking probabilities were defined which

depend on the two previous stacking events. The four second-

order stacking probabilities for cubic stacking are �ccc, �hcc,

�chc and �hhc, where �hcc, for example, describes the prob-

ability of a cubic stacking event following (hc) stacking. Four

related second-order stacking probabilities exist for hexagonal

stacking: �cch, �hch, �chh and �hhh. However, since the

stacking of layers can only be either cubic or hexagonal, these

can be calculated from the corresponding stacking prob-

abilities for cubic stacking. For example, �cch = 1 � �ccc. The

first-order stacking probabilities, �cc and �hc, can be obtained

from the second-order probabilities using the following

‘switching’ equations:

�cc ¼ 1��ch ¼ 1�
�cch

�cch þ�hcc

; ð1Þ

�hc ¼
�hhc

�hhc þ�chh

: ð2Þ

Finally, the zero-order cubicity, �c, which reflects the overall

fraction of cubic stacking present in a sample, can be calcu-

lated from the first-order stacking probabilities:

�c ¼
�hc

�hc þ�ch

: ð3Þ

The hexagonality, �h, is then simply 1 � �c.

To compare and discuss the extent of SDO in different

samples, we have previously used so-called ‘stackograms’, as

shown in Fig. 2 for ice Isd samples (Salzmann et al., 2015;

Malkin et al., 2015) In a stackogram, the first-order stacking

probabilities are plotted against each other. The bottom left-

hand corner, where both probabilities for cubic stacking are

zero, corresponds to fully hexagonal ice Ih. Consequently, the

fully cubic ice Ic state is located at the top right-hand corner.

The diagonal line connecting the ice Ih and ice Ic corners is the

line of random stacking since �cc = �hc. Along this line, the

probability of cubic stacking does not depend on the previous

stacking event. Moving upwards from this line, ice Isd with

higher probabilities of clustering of the same type of stacking

is found. The extreme case is the top left-hand corner,

describing a physical mixture of pure ice Ih and ice Ic. Below

the random line, there is a higher tendency for switching

between the two kinds of stacking. Ultimately, the most

extreme case in the bottom right-hand corner is the perfectly

alternating (ch)x polytype. Lines of constant cubicity emanate

from the physical mixture corner and are shown as dashed

lines in Fig. 2.

In the ideal case, the analysis of the diffraction data for a

stacking-disordered material provides accurate information

about the zero-order stacking probability (such as the cubi-

city) and also on the higher-order stacking probabilities if this

is relevant for the sample in question. However, problems with

fitting the diffraction data arise when high-order memory

effects are present in the sample but not implemented in the

analysis. This leads to incorrect values for all the determined
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Figure 2
‘Stackogram’ used to describe the structure of stacking-disordered ice
including first-order memory effects. The diagonal solid line indicates
random stacking where �cc = �hc. Lines of constant cubicity (�c) are
shown as dashed grey lines. All stacking probabilities shown in this plot
were determined from the analysis of diffraction data. The ice Isd samples
were obtained by D2O vapour deposition at low temperatures (cyan
diamonds) as well as ambient-pressure heating of D2O ice IX (yellow
right-pointing triangles), D2O ice V (magenta left-pointing triangles),
D2O CO2 clathrate hydrate (orange stars) (Kuhs et al., 2012), H2O ice II
(green circles) (Malkin et al., 2015) and H2O ice VIII (blue up-pointing
triangle) (Shephard et al., 2016). H2O ice Isd obtained from homogenous
and heterogenous freezing of water is indicated by the down-pointing
open triangle and red squares, respectively (Malkin et al., 2012, 2015). The
red pentagon corresponds to �20 nm ice Isd particles for which random
stacking is assumed (Amaya et al., 2017).



stacking probabilities. The inclusion of higher-order memory

effects in the structural analysis is hampered by the fact that,

for both ice I and diamond, the number of independent

stacking probabilities increases exponentially with the order

of the memory effects. In the worst cases, this could mean that

the diffraction data cannot be usefully analysed at all. It is

therefore highly desirable to have analytical tools available

that are able to yield the zero-order stacking probability, such

as the cubicity, in an accurate fashion even in the presence of

complicated higher-order memory effects.

Here, we investigate whether stacking probabilities can be

obtained from experimental pair distribution functions, and

the approach is compared with the traditional analysis based

on diffraction data. Since pair distribution functions represent

real-space pair correlations and are particularly suitable for

analysing short-range structural effects, it is anticipated that

high-order memory effects should only contribute to the data

at large distances and that it may therefore be possible to

obtain accurate values for the zero-order stacking probability

by analysing pair distribution functions at lower distances.

Using this approach, the problems arising from high-order

memory effects could be circumvented. Ice is a particularly

challenging material for such analysis since both the SDO and

the orientational disorder of the water molecules need to be

described.

2. Experimental and computational methods

2.1. Sample preparation and neutron diffraction experiments

D2O ice VI samples were prepared by heating ice Ih

samples at 1.0 GPa to 260 K in a piston-cylinder setup (Whale

et al., 2013; Salzmann et al., 2016). The ice VI samples were

recovered in liquid nitrogen and shipped to the ISIS Neutron

and Muon Source. A fine powder of the ice samples was

prepared using a porcelain pestle and mortar in liquid nitro-

gen and then transferred into a cylindrical 6 mm diameter

vanadium can. The filled can was mounted onto a cryostat

stick and quickly lowered into an AS Scientific ‘Orange’

cryostat precooled to 80 K at the POLARIS beamline. The

identity of ice VI was confirmed by recording a diffraction

pattern and the sample was subsequently heated until

complete conversion to ice Isd was observed at 156 K. After

this, high-quality total scattering data of ice Isd were collected

at 80 K. The ice Isd sample was annealed in the next step by

heating to 201 K, and total scattering data were then again

recorded at 80 K.

For comparison, ice Ih was prepared by freezing droplets of

D2O water in liquid nitrogen. A fine powder of ice Ih was also

transferred into a vanadium can and measured at 80 K. Great

care was taken to avoid overly compacting the ice Ih inside the

can to avoid preferred orientation effects. All three high-

quality data sets were collected for an integrated beam current

of 1500 mA h. Additionally, the empty beamline, an 8 mm

diameter vanadium rod and an empty vanadium can were

measured to normalize the data and subtract the contributions

from the sample environment.

2.2. Data normalization and calculation of the total pair
distribution function from the diffraction data

The POLARIS diffractometer collects scattered neutrons in

the 13–160� angle range, which covers a wavevector transfer

range from 0.2 Å to more than 50 Å�1. The magnitude of the

wavevector transfer (Q) is calculated from the wavelength of

the incident neutrons (�) and the associated scattering angles

(2�) according to

Q ¼
4�

�
sin �: ð4Þ

The raw scattering data were normalized and corrected for

absorption, multiple scattering and inelasticity effects, and the

non-sample background scattering was subtracted using the

GudrunN software package in order to obtain the total scat-

tering structure factor F(Q) (Soper, 2009). The experimental

total pair distribution function G(r) can be obtained from

F(Q) with a Fourier sine transform, where �0 is the atomic

number density and r is the radial distance (Keen, 2001):

GðrÞ ¼
1

2�ð Þ3�0

Z1

0

4�Q2FðQÞ
sin Qr

Qr
dQ: ð5Þ

G(r) represents the sum of the individual partial radial

distribution functions, gij(r), for atom types i and j weighted by

the mole fractions of the atoms, ci, and their neutron scattering

length, bi:

GðrÞ ¼
Pn

i; j¼0

cicjbibj gij rð Þ � 1
� �

: ð6Þ

The gij(r) functions reflect the probabilities of finding an

atom of type j at a radial distance r away from an atom of type

i. In the case of D2O ice, the three partial radial distribution

functions to consider are gDD, gDO and gOO. Considering that

cD is greater than cO, and that the neutron scattering lengths of

deuterium and oxygen are 6.671 and 5.803 fm, respectively,

gDD is expected to make the strongest and gOO the weakest

contribution to G(r). The atomic number density for ice I at

80 K and ambient pressure was calculated from crystal-

lographic data as 0.09365 Å�3 (Röttger et al., 1994).

To highlight structural features in the ‘intermediate’ r range,

we used the experimental differential correlation function,

D(r), in the following analysis. D(r) is related to G(r) by

DðrÞ ¼ 2�r�0GðrÞ: ð7Þ

2.3. Generation of ice Isd structural models

A library of stacking-disordered ice I structures was

generated computationally with the aim of identifying the one

structure whose calculated D(r) gives the best agreement with

the experimental D(r) data. Using the hexagonal unit cell of

ice Ih, a 12 � 12 � 60 supercell was generated with cell

dimensions of a = b = 53.9652 Å and c = 439.3320 Å. Creating

a supercell in the a and b directions is necessary to be able to

describe the hydrogen disorder present in the ice I samples.

The hexagonal unit cell of ice Ih contains two layers, and

hence, there are 120 layers in the 12 � 12 � 60 supercell. This
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large number of layers is required in order to realize a variety

of different stacking regimes along the c axis. An important

side condition is that the various stacking sequences must be

periodic across the boundaries of the supercell, as otherwise

spurious features would be introduced into D(r). To be able to

realize fully hexagonal, fully cubic and strictly alternating

(hc)x stacking, the number of layers must be a multiple of 2, 3

and 4, which is the case for structures with 120 layers.

The geometric reasons for these requirements become

apparent when we consider how the layers must be stacked to

build up an ice I structure. Fig. 3(a) shows two ‘unit cells’ of a

single layer that are related to one another by mirror

symmetry. To achieve hexagonal stacking, these cells are

stacked on top of one another in an alternating fashion as

shown in Fig. 3(b). In the case of cubic stacking, identical cells

are stacked on top of one another, and horizontal shifts equal

to a third of the a and b lattice parameters are performed in a

diagonal fashion. It follows that fully hexagonal sequences

must have an even number of layers, since a second mirror

operation is necessary in order to return to the original

structure. For a fully cubic structure, the number of layers

needs to be a multiple of three to obtain periodic stacking

since the shifts are always a third of the a and b lattice para-

meters. Note that the ‘history’ of hexagonal stacking deter-

mines the direction of the diagonal offsets of the layers upon

subsequent cubic stacking, as shown in Fig. 3(b). This

requirement can also be seen from the displacement vectors in

Fig. 1(c). In this sense, it is now also clear that a strictly

alternating (hc)x structure requires sequences of (hchc) blocks

with four layers in order to be periodic.

Considering the geometric constraints for periodic stacking

across the supercell, our program Stacky produces stacking-

disordered structures with n layers for target numbers of (cc)

and (hc) stacking events, ncc and nhc. Full details of this process

and further discussions are given in Appendix A of the

supporting information. For 120 layers, Stacky identified 1752

periodic stacking sequences, which are indicated in Fig. 4(a).

In Fig. 4(b), these structures are shown on a stackogram.

To obtain valid supercells with respect to the ice rules,

hydrogen-ordered versions of the cells shown in Fig. 3 need to

be used. This means that half of the hydrogen positions are

defined as empty and half as occupied such that only H2O

molecules are found and all hydrogen bonds contain one

occupied and one empty position. In the final step, all 1762

stacking-disordered structures generated by Stacky were

hydrogen disordered using our program RandomIce

(Salzmann et al., 2016).
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Figure 3
Geometric recipes for stacking the ‘unit cells’ of individual layers to
achieve either cubic or hexagonal stacking with correct interlayer
hydrogen bonding. (a) Individual building blocks that are related to
one another by mirror symmetry viewed in the ab plane. (b) Stacking of
the building blocks shown in (a) to give either hexagonal or cubic
stacking. The direction of stacking is towards the reader.

Figure 4
(a) Possible values of the numbers of (cc) and (hc) stacking events, ncc and
nhc, in a stacking sequence with 120 layers. (b) Corresponding stacking
probabilities indicated on the stackogram.



2.4. Calculation of pair distribution functions

The D(r) total distribution functions of the library struc-

tures were calculated using the RMCProfile software suite

(Tucker et al., 2007). Atomic displacements of the O and D

atoms were achieved with the gaussdist subroutine, which

randomly displaces atoms with Gaussian probabilities in line

with a target isotropic atomic displacement parameter Uiso.

The hexagonal symmetry of the 12 � 12 � 60 supercell gives

an rmax of asin(60�)/2 = 23.3676 Å with a = 53.9652 Å. For

distances beyond rmax, the same atoms would be counted more

than once during the calculation of D(r), which is therefore

only defined in the 0 to rmax distance range. Fig. S1 in

Appendix B of the supporting information shows the D(r)

functions for three independently generated hydrogen-disor-

dered structures with �cc = �hc = 0.5. This shows that different

structures located at the same point on the stackogram give

very similar D(r) data for our chosen size of the supercell.

3. Results and discussion

The normalized F(Q) diffraction data of ice Ih as well as of the

two ice Isd samples are shown in Fig. 5(a). The ice Isd sample

obtained immediately after the phase transition from ice VI

(TA = 156 K) shows an absence of some of the Bragg peaks

expected for ice Ih as well as the characteristic diffuse scat-

tering around the cubic 111 peak around 1.7 Å�1. This is

consistent with ice Isd containing significant amounts of cubic

stacking. Annealing the ice Isd sample at 201 K leads to

increased intensities of Bragg peaks related to ice Ih. But, the

intensities do not yet reach the values expected for pure ice Ih,

indicating that cubic stacking is still present in the sample.

The corresponding experimental D(r) total distribution

functions are shown in Fig. 5(b). The low-r regions of the three

samples are very similar as expected, because of the identical

nearest-neighbour environments in the ice I family. The

various low-r peaks are assigned starting from the O—D

distance at 1.0 Å to the hydrogen-bonded O� � �O distance at

2.75 Å. Differences arising from cubic and hexagonal stacking

are expected to manifest at distances above the average layer

separation of 3.7 Å. Yet, the differences in D(r) are quite small

initially up to the negative dip at 6.6 Å. Above this,

pronounced differences between ice Ih and the two ice Isd

samples are found, the most notable being the peak at 8.5 Å

which is most intense for ice Ih. Another peak at around

12.1 Å also seems to be quite responsive to the amount of

cubic/hexagonal stacking and is most intense for the ice Isd

sample expected to contain the most cubic stacking.

The D(r) functions calculated from the various library

structures would yield very sharp peaks since the structures

have been built up from the average crystal structure. To

broaden the features in the calculated D(r) functions, the O

and D atoms were randomly and isotropically displaced in line

with target atomic displacement parameters, Uiso(O) and

Uiso(D), respectively. This approach can only be used across a

relatively limited r range since it does not take into account

the correlations in the displacements that exist between

neighbouring atoms. Since the 7–16 Å range in D(r) seems to

contain several features responsive to the amount of cubic/

hexagonal stacking, the Uiso parameters were systematically

mapped from 0.1 to 0.4 Å2 using the (h)120 library structure

and experimental D(r) data of ice Ih.

Fig. 6 shows a contour plot of the goodness of fit (�2) against

the Uiso parameters of the O and D atoms. The best fit to the

experimental D(r) data is found for Uiso(O) = 0.25 Å2 and

Uiso(D) = 0.35 Å2, and these values will be used in the

following for the ice Isd library structures. A larger atomic

displacement parameter for D compared with O is expected

owing to the smaller mass of D, but it is probably also a

consequence of the greater positional disorder of the

deuterium atoms in the hydrogen-disordered ice.

The fit of the experimental ice Ih D(r) data using the ice Ih

structural model and the optimal Uiso parameters is shown in

Fig. 7(a).
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Figure 5
(a) Experimental F(Q) diffraction data collected at 80 K for ice Ih as well
as two ice Isd samples annealed at 156 and 201 K, respectively. Tickmarks
indicate the expected positions of Bragg peaks for ice Ih (top) and ice Ic
(bottom) for Q < 10 Å�1. (b) Corresponding D(r) data, with the features
in the low-r region assigned to the intra- and intermolecular distances as
indicated. The r range used for fitting is indicated by a grey shaded area
and the arrows indicate the major differences in this range. The red and
blue curves in (a) and (b) are shifted vertically for clarity.



The impact of hydrogen order/disorder, cubicity and first-

order memory effects in the stacking sequence on the calcu-

lated D(r) data is investigated next. Fig. 8(a) shows the

calculated D(r) functions for hydrogen-ordered and

hydrogen-disordered ice Ih. The nearest-neighbour environ-

ments are expected to be very similar, and consequently,

differences between the two functions are only observed

above �4 Å. However, though the differences are overall

relatively small, the influence on the peak intensity, for

example at �12 Å, illustrates the importance of implementing

hydrogen disorder in the library structures. Incidentally, the

calculated D(r) function of the hydrogen-disordered ice Ih

illustrates that the hydrogen disordering with our RandomIce

program was successful. Mistakes with the hydrogen disor-

dering would manifest in a peak at 0.75 Å corresponding to

two occupied hydrogen sites along the same hydrogen bond.

Fig. 8(b) shows the calculated D(r) functions for ice Ih,

randomly stacked ice Isd with a cubicity of 0.5 and ice Ic. So,

this comparison highlights the changes in D(r) along the

random-stacking line in the stackogram and therefore the

influence of the cubicity �c. In line with the experimental data

shown in Fig. 5(b), pronounced differences between the three

functions start to appear above the negative dip at 6.6 Å and

there do not seem to be any systematic increases in the

differences above this value.

The effects of differences in the first-order stacking prob-

abilities on D(r) at a constant cubicity of 0.5 are shown in

Fig. 8(c). The corresponding structures are the ones found

along the 0.5 cubicity line, including the (h)60(c)60 structure

containing two slabs of hexagonal and cubic stacking, a

randomly stacked structure, and the strictly alternating (hc)60

structure. Overall, the differences between the three D(r)

functions are much smaller than those shown in Fig. 8(b).

Small differences only emerge above 9 Å. It is emphasized

that these differences are as pronounced as they can be as a
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Figure 7
Best fits of the D(r) data in the 7–16 Å range of (a) ice Ih, (b) ice Isd
annealed at 201 K and (c) ice Isd annealed at 158 K. The stacking
probabilities of the best-fitting library structures are given in each panel.
The optimal atomic displacement parameters as determined for ice Ih
were also used for fitting the D(r) data of the two ice Isd samples
[Uiso(O) = 0.25 Å2 and Uiso(D) = 0.35 Å2].

Figure 6
Goodness of fit (�2) of the ice Ih D(r) data fitted with an ice Ih structural
model in the 7–16 Å range by varying the isotropic atomic displacement
of the O and D atoms. The open diamond indicates the location of the
best fit at Uiso(O) = 0.25 Å and Uiso(D) = 0.35 Å2.

Figure 8
Influences of structural characteristics on the calculated D(r) data.
Comparisons of (a) hydrogen-ordered/disordered ice Ih, (b) hydrogen-
disordered ice I with cubicities of 0, 0.5 (random stacking) and 1, and (c)
hydrogen-disordered ice I with cubicities of 0.5 but differences in the first-
order memory effects (strictly alternating, random stacking, and two
‘slabs’ of cubic and hexagonal stacking).



consequence of different first-order memory effects. This is

because the most pronounced changes in both first-order

stacking probabilities, �cc and �hc, are observed along the 0.5

cubicity line. In conclusion, these comparisons show that the

zero-order stacking probability, i.e. the cubicity, is much more

robustly encoded in D(r) than the first-order stacking prob-

abilities. This of course makes sense since the cubicity is a

more local structural descriptor than the first-order stacking

probabilities.

The best fits to the experimental D(r) data of the two ice Isd

samples were found by calculating the goodness of fit for all

library structures. The resulting �2 values are shown in the

stackograms in Fig. 9, which also include the �2 values with

respect to fitting the ice Ih D(r) data.

There are clear minima in all three cases, in particular when

considering that the �2 values are shown on a logarithmic scale

in Fig. 9. For the ice Ih sample, the minimum is found at �cc =

0 and �hc = 0.0167, which corresponds to the library structure

immediately next to the fully hexagonal (h)120 structure with a

cubicity of 0.0167. Considering that the ice Ih was made by

rapidly freezing water in liquid nitrogen, the presence of a

small percentage of cubic stacking is possible. However, owing

to the relatively small number of library structures for �c <

0.1, the actual cubicity may well lie below 0.0167. Further-

more, the small cubicity value could potentially be an artefact

arising from a small degree of preferred orientation in the ice

Ih sample. The best fit for the ice Isd sample annealed at 156 K

is found at �cc = 0.4355, �hc = 0.6034 and �c = 0.5167. The ice

Isd sample annealed at 201 K shows, as expected, a decrease in

the cubicity to �c = 0.3333, calculated from �cc = 0.45 and

�hc = 0.275.

In addition to the comparisons shown in Fig. 8, the �2

mapping in Fig. 9 illustrates that the zero-order cubicity

information is more strongly encoded in D(r) than the first-

order memory effects. The best-fit minima are very localized

with respect to cubicity, as illustrated by the fact that the

contour lines run mostly parallel to the lines of constant

cubicity (cf. Fig. 2). Along the lines of constant cubicity, as

indicated by the white-dashed lines in Fig. 9, the minima with

respect to the best fit are much more shallow. This reflects the

fact that the information on the first-order stacking prob-

abilities contributes much less to D(r) than the cubicity, at

least in the r range used by us. In fact, it is questionable if the

sample after annealing at 156 K has first-order stacking

probabilities that are located below the random-stacking line

in the stackogram. So far, such a state of SDO, which would

indicate a preferred tendency for switching between cubic and

hexagonal stacking, has not been identified for ice or diamond

(Malkin et al., 2015, Salzmann et al., 2015).

In summary, we have demonstrated that the cubicity of

stacking-disordered ice I samples can be determined from

experimental total distribution functions. Ice is a particularly

challenging material in this respect since both the SDO and

the orientational disorder of the water molecules have to be

realized in the library structures. The more long-range struc-

tural information associated with first-order stacking prob-

abilities contributes significantly less to D(r) than the cubicity,

and therefore it seems difficult to obtain accurate values for

�cc and �hc. In this context, it is interesting to compare the �2

mapping shown in Fig. 9 with that in Fig. 10 of Malkin et al.

(2015), which was prepared by calculating diffraction patterns
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Figure 9
Goodness of fit (�2) of the library structures with respect to the three
experimental D(r) data in the 7–16 Å range. The open diamonds indicate
the positions of the best fits. Dashed white lines indicate the cubicities of
the best fits, which are (a) 0.0167, (b) 0.3333 and (c) 0.5167.



with DIFFaX. The best fit determined using diffraction data is

less well located with respect to cubicity compared with the

D(r) analysis presented here. The sensitivity for cubicity

compared with the first-order stacking probabilities is only

slightly larger in the case of the diffraction analysis. This

means that the �2 ‘basin’ in the stackogram is more uniform in

all directions in the case of diffraction data, and it is therefore

easier to obtain more accurate values for the first-order

stacking probabilities. On the other hand, the D(r) analysis

holds in principle the prospect of obtaining highly accurate

cubicity values. In the presence of complex high-order

memory effects, the D(r) analysis would certainly be the

method of choice. Furthermore, an additional advantage of

the D(r) analysis is that it circumvents the need for compli-

cated profile functions such as the ones required for time-of-

flight neutron diffraction.

A final aspect of our study is that it highlights the short-

comings of current structure-reconstruction software packages

like RMCProfile, which operate by moving individual atoms or

molecules in real space. Starting from hydrogen-ordered ice

Ih, it would be very difficult if not impossible to arrive at a

structure that successfully describes the SDO as well as

hydrogen disorder of an ice Isd sample. This would require

collective movements of entire layers as well as highly coop-

erative molecular reorientations that obey the ice rules. The

movement of layers and the orientational disorder of the

water molecules are of course highly correlated, since a unique

‘fingerprint’ pattern exists between the layers in terms of the

directionalities of the hydrogen bonds. This would be far

beyond the capabilities of atomistic Monte Carlo based

‘random moves’ and this is the reason why we have chosen to

use a large library of structures to find the best fit to the D(r)

data of ice Isd, rather than attempting a full reverse Monte

Carlo refinement. However, future efforts should be directed

towards developing structure-reconstruction approaches that

are not based on moving individual atoms but treat entire

cooperative structural rearrangements as degrees of freedom.

First steps towards this goal were the use of local distortion

modes for the analysis of pair distribution data of BaTiO3

(Senn et al., 2016) and the implementation of rigid bodies and

symmetry modes in the TOPAS software to reduce the

degrees of freedom in the structural models (Coelho et al.,

2015). The description of stacking disorder with the help of

Markov chains has very recently been reviewed (Hart et al.,

2018).
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G. A. D. (2009). Nano Lett. 9, 102–106.
Whale, T. F., Clark, S. J., Finney, J. L. & Salzmann, C. G. (2013). J.

Raman Spectrosc. 44, 290–298.
Willhammar, T. & Zou, X. (2013). Z. Kristallogr. Cryst. Mater. 228,

11–27.
Zimmermann, I. & Johnsson, M. (2015). Solid State Sci. 40, 67–70.

research papers

1220 Helen Y. Playford et al. � Analysis of stacking disorder in ice I using PDFs J. Appl. Cryst. (2018). 51, 1211–1220

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kc5075&bbid=BB56

