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ABSTRACT   

The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the 
Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 
deg² will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope 
will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. A consortium of 
Aix-Marseille University (AMU) and CNRS laboratories (LAM, OHP and CPPM) together with LPNHE (CNRS, 
Universities Pierre et Marie Curie and Paris-Diderot) and the WINLIGHT Systems company based in Pertuis (France), 
are in charge of integrating and validating the performance requirements of the full spectrographs. This includes the 
cryostats, shutters and other mechanisms. The first spectrograph of the series of ten has been fully tested and the 
performance requirements verified for the following items: focus, image quality, straylight, stability, detector properties 
and throughput. We present the experimental setup, the test procedures and the results. 
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1. INTRODUCTION 
The Dark Energy Spectroscopic Instrument (DESI) [1] is being developed for the KPNO Mayall telescope to measure 
the spectra of 35 million galaxies and quasars, to study baryon acoustic oscillations (BAO, [2]) and the growth of 
structure through redshift-space distortions (RSD) with a wide-area galaxy and quasar redshift survey.  
The DESI instrument is a robotically-actuated, massively parallel fiber-fed spectrograph capable of taking up to 5000 
simultaneous spectra in a wavelength range from 360 nm to 980 nm. The fibers feed ten 3-arm spectrographs, with a 
spectral resolution between 2000 and 5000. 
This spectroscopic system will operate at prime focus on the 4-m Mayall telescope at Kitt Peak National Observatory, 
Arizona, providing a 3-degree diameter field of view. It will be a five-year survey designed to cover 14,000 deg² aiming 
at recording 35 million spectra. The targets are luminous red galaxies (LRGs) up to z =1.0, bright [O II] emission line 
galaxies (ELGs) up to z = 1.7 and quasars at higher redshifts (2.1 < z < 3.5), for the Ly-αforest. 
This paper is dedicated to the spectrographs'  validation. After a brief description of the spectrograph in section 2, it 
presents in section 3 the tools developed by our consortium of Aix-Marseille University (AMU), CNRS laboratories 
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(LAM, OHP and CPPM) and LPNHE to perform the tests requested to meet the validation of the full spectrograph 
performance requirements. It gives in section 4 the results obtained on the first spectrograph unit out of ten. 

2. SPECTROGRAPH BRIEF DESCRIPTION 
2.1 Overview 

The DESI spectrographs are fully described in [3]. The optical layout and global implementation is shown in Figure 1. A 
DESI spectrograph receives the light from 500 fibers. Ten spectrographs are used to accommodate the 5000 fibers of the 
DESI instrument. They will be installed inside a temperature-controlled enclosure in the Coudé room at the Mayall 
telescope, with a variation of temperature of less than ±0.5° over 24h. 
In each spectrograph, the 500 fibers are rearranged in the shape of a curved slit. The light is collimated by a spherical 
mirror, then separated by means of two dichroic windows into three channels (blue, red, near infrared) covering the 360 - 
980 nm spectral range. In each channel, volume phase holographic gratings provide light dispersion. The resulting 
spectrum is then focused using a 5-lens camera, on a 4K x 4K, 15 μm pixels CCD detector, actively cooled down to 140 
K (Red and NIR) or 170 K (Blue). A mechanical shutter in front of the slit is used to control the exposure time. LEDs 
mounted onto the shutter and directed to the slit can be switched on to back illuminate the fibers. This feature is used for 
measuring the positions of the fibers in the telescope’s focal plane. In order to avoid strong signal on the near-infrared 
CCD, this latter has its own shutter, which remains closed when this fiber position measurement is being performed. 
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Figure 1. Top: Optical layout of the spectrographs. Bottom: mechanical implementation. The spectrograph is 1.8 m wide × 
1.4 m deep × 0.6 m high. 
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2.2 Spectrograph design performance 

The magnification of each camera is about 0.5, resulting in a fiber spot size onto the detector of about 50μm, 
corresponding to 3 pixels. The cameras have an rms spot radius of less than 12 μm, providing allowance for 
manufacturing and alignment tolerances while keeping the spot size limited by the projected size of the fiber core. Table 
1 below summarizes the performance requirements of the spectrograph. 
 
Table 1.Main spectrograph performance requirements. 

Channel Spectral range Resolution End-to-end throughput 

Blue 360-593 2000 to 3200 λ=400 nm: 60% 
λ=500 nm: 69% 

Red 566-772 3200 to 4100 λ=600 nm: 69% 
λ=700 nm: 70% 

NIR 747-980 4100 to 5100 λ=800 nm: 78% 
λ=900 nm: 73% 

 

2.3 From engineering model to series units 

The manufacturing rationale for the spectrographs' production was to build an engineering model (EM), and to fully test 
it before starting the production of the remaining 9 spectrographs. From the onset, the plan was to modify and improve 
the mechanical design from the lessons learned on the EM. Once retrofitted with such modifications, the EM would 
become the first spectrograph in the series (Serial Model 01 – SM01). A simplified test plan will subsequently be applied 
to all series units after SM01. 

We carried out the full integration and test plan as described in [4] on the EM between the end of 2016 and the beginning 
of 2017. This test plan encompasses alignment and focus adjustment, and characterization and measurement of the image 
quality, spectral and spatial format, wavelength solution, ghost positions and intensity, second order contamination, 
fiber-to-fiber cross-talk, scattering, stability over time, thermal stability, end-to-end throughput, and dismounting/ 
remounting reproducibility. The modifications implemented on the EM were: modification of the baffling, new CCD 
detectors for the Red and NIR channels, new CCD Front End electronics (FEE) and new FEE supplies, an ICS update 
(Instrument Control System), a modified version of the cryostats and a new version of the Control electronics box. The 
optical elements and mounts were unchanged. We then tested SM01 according to the simplified planned test plan 
intended to be performed on all SM units (see [4]), without the stability, straylight and dismounting/ remounting 
reproducibility tests. The following section presents the tools and procedures that have been specifically developed for 
the tests, and section 4 presents some of the test results. 

3. TEST TOOLS AND PROCEDURES 
3.1 Scope 

We make use of a sparse test slit in place of the 500 fibers slit that will feed the spectrograph at the telescope. This sparse 
slit consists of 21 fibers rearranged in a slit mechanically identical to the final DESI slit [5]. The fibers regularly populate 
the slit, including the center and the edges, therefore covering the whole instrument field of view. The fibers are identical 
to the final DESI fibers, except for their length, which is only 5 m here. For most of the tests, we use a custom-made 
system equipped with different types of lamps for illuminating the slit. This system is described in section 3.2 while a 
specific system developed for the absolute throughput measurement is described in section 3.3. 

We also make use of a flat field test slit, also described in [5], which illuminates the entire instrument pupil and which 
will be used at the telescope for detector flat-fields. 

ICS scripts enable the automation of measurement sequences. The spectral images are analyzed offline with a 
combination of custom Python scripts and prototype DESI pipeline routines. Some tools are based on BOSS experience 
(Preprocessing, Wavelength solution - see [6]), and others were specifically developed. 
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3.2 Fiber illumination tool 

The fiber illumination tool and its requirements are described in [4]. The system reproduces the conditions of 
illumination at the Mayall telescope on a sparse test fiber slit, with the ability to illuminate some fibers individually or all 
at once (21 fibers including the center and the edges of the slit). The set of sources includes four spectral lamps (Kr, 
HgAr, Cd, Ne) providing many lines in each of the three spectrograph channels, a tungsten lamp providing a continuous 
spectrum and 6 LEDs that provide 20 nm wide spectra. The tungsten lamp is further equipped with a colored filter 
reducing the intensity in the red part of the spectrum. See Figure 2 for a picture and a conceptual diagram of the 
illumination system and a map of the tests corresponding to each lamp. Each source can be turned on and off 
independently. The whole system is operated with the DESI Online System (DOS), enabling automation and remote 
operation. 

 

 
Figure 2.Fiber illumination tool. Top: conceptual design and test functions associated with the different lamps. Bottom: 
picture of illumination tool in operations at WINLIGHT and description of the various parts. 
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3.3 Throughput measurement tool 

In order to measure the spectrograph throughput, the LPNHE designed and built a specific device (Figure 3) to perform 
an absolute measurement of the flux at the exit of each fiber of the fiber illumination tool (entrance of the spectrograph) 
and compare it to the absolute flux measured by the spectrograph. The device consists in a calibrated photodiode 
movable along a ~500mm radius curved rail, which keeps the photodiode at an adjustable but constant distance from the 
output of the curved sparse test slit (radius 468.3 mm). The precise positioning of the photodiode perpendicular to the 
optical axis of each fiber is achieved through a motorized linear stage from PI/Micos (Pollux VT80, range 150 mm, 
unidirectional positioning accuracy better than 0.4 µm) coupled with a rotula-based motion of the photodiode in its 
support (bottom of Figure 3). 

The light flux from each fiber is measured using a 10mm x10 mm calibrated photodiode from Gigahertz-Optik 
positioned ~10mm away from the fibers' end on the slit. The beam speed injected in the fibers by the Offner relay is 
f/3.57, ensuring that more than 99% of the energy is encircled in an f/2.5 numerical aperture beam at the fiber exit. The 
photodiode therefore fully collects the light beam at the output of the fibers. The photodiode model is MD-37-SU100 
(S/N 30853), and its provided spectral responsivity S(λ) is certified by Gigahertz-Optik under the control of the DKD 
(the German institute for standards) with a 2 % relative uncertainty over the 250–1100 nm spectral range. We double 
checked the responsivity provided by the manufacturer with a NIST calibrated photodiode with 0.2 % accuracy. 

The photocurrent from the photodiode is measured with a picoammeter from Keithley (model 6514) calibrated by 
Tektronics/Keithley. We also used a second picoammeter from Keithley to monitor the light flux level in the integrating 
sphere to control and monitor the stability of the illumination. 
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Figure 3.Top: Throughput measurement device in its dedicated box integrated on the Fiber Illumination Tool bench and with 
the sparse test slit in place. Bottom left: throughput measurement device with the 10mmx10mm calibrated photodiode. 
Bottom right: throughput measurement device moving in front of the fiber sparse test slit. 

 

4. TEST RESULTS  ON FIRST SPECTROGRAPH UNIT 
We present in the next subsections the main results from the performance tests performed on the EM and SM01. As 
mentioned before, we conducted a number of tests exclusively on the EM. Since all optical elements, including mounts 
remained unchanged between the EM and SM01 (see section 2.3), the optical properties are not expected to have 
changed. 

4.1 Focus  

Focus adjustment 

We manually adjust the focus and tilt of each channel by translating along three axes the corresponding cryostats that 
include the focal plane arrays and field lenses. At each position, we take spectral lamp images and we measure the Point 
Spread Functions (PSF) width in several locations across the field of view (FoV). We take a few seconds exposures with 
the HgAr and Cd lamps in the Blue channel, HgAr and Ne lamps in the Red channel and HgAr and Kr lamps in the NIR 
channel. 

These settings provide well-distributed spectral lines across the different fields of view, enabling the extraction of 80-100 
PSFs in each channel. Each PSF is fitted with a 2D Gaussian, from which we derive FWHMs along the X and Y 
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curves, we further derive a sensitivity curve, measured in pixel of centroid shift per mm of defocus, and a “Hartmann” 
focus position when the two curves cross. 

We find an average sensitivity of 20.7 ± 1.0 pixel/(mm of defocus) for the blue camera. For each spectral line at each 
defocus position, we compute an “estimated” defocus as the distance between the centroids divided by the “sensitivity” 
for the given line (in pixel/mm), and we compare to the distance to the “Hartmann” focus position. The error averaged 
over all the measurements (128 spectral lines x 15 focus positions = 1920 measurements) is 0.0 ± 6 μm rms or ±38 μm 
ptv, demonstrating excellent consistency of the HD-based measurements. Finally, we also compare the results from the 
HD with the full pupil ‘manual’ focus and find excellent consistency within 15μm. This is fully consistent with the 
tolerance of 20-30 μm on the focus position as can be seen on Figure 4, thereby demonstrating that Hartmann doors 
provide for valid measurement of the focus position. 

 
Figure 6.Example of the centroid move as a function of defocus, for images with left and right Hartmann doors successively 
closed (blue camera). A straight line is fitted to the data. The best focus position for this point is at the lines' crossing. 

4.2 Image quality, resolution, spectral trace coordinates 

To assess the spectral format, image quality and spectral resolution, we take continuum lamp spectra for determining the 
trace of the spectra and spectral lamp images as described in section 4.1 for measuring the image quality and determining 
the wavelength solution. See Figure 7 for examples of such images. The initial wavelength solution algorithm is 
determined by matching triplets of lines in pixels as measured and in wavelength from the lamp line list. Once a first 
solution is found, the full solution is determined with more lines and higher polynomial coefficients. Subsequent 
adjustments are determined by cross-correlation with this full solution. To reduce the effect of noise and to reject cosmic 
rays we combine several images of identical settings and we measure the PSF shape modeled from a basis of 
polynomials times Gaussians. We determine the spectral format for each fiber and find excellent agreement with the 
Zemax format, thereby validating the whole assembly, integration, alignment and verification procedure, including the 
positioning of the CCD inside the cryostat. Similarly, the wavelength dispersion (dλ/dpixel) as a function of wavelength 
and fiber in each channel is consistent with expectations from Zemax optical simulations. 

As for the determination of the image quality, we make use of a normalization method to account for the fact that the 
spectral lines have different fluxes along the dispersion direction. We choose the Noise Equivalent Area (NEA), an 
effective PSF area in pixel units. Two PSFs with the same NEA will give the same signal to noise ratio for an emission 
line if the CCD pixel noise is dominated by readout noise. 

The resolution measured from the PSF analysis (in the spectral direction), compared to the design (Zemax simulations) 
and the requirements, is shown on Figure 8. We find that the resolution is slightly lower than expected from the design 
but fully meets the requirements over the full wavelength range. 
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Measuring the integrated flux on each CCD of the spectrograph 

With the sparse test slit installed in the spectrograph, we take images for each LED and for each fiber, in identical 
conditions of illumination. The LED currents and exposure times were chosen so that the intensity remained in the linear 
range of the CCD. We then reduce the images using the DESI pipeline, integrate the spectra over the wavelength range 
and derive the total flux φCCD[ADU] for each LED and fiber. We then divide by the CCD amplifier gains measured 
separately and by the effective exposure time ∆teffective to get: 

φCCD[e-/s](LED, fiber) = gain [e-/ADU] × φCCD[ADU](LED, fiber) / ∆teffective[s] 

Calibration of the effective shutter exposure time 

As per the above equation, the exposure time of the spectrograph has to be properly measured with a percent level 
accuracy to properly compare a light flux measurement (through the photocurrent of the photodiode) and an integrated 
signal (with the 3 spectrograph CCDs). To do so, we take series of exposures (with the LEDs) of increasing exposure 
times, and we repeat these series for the different neutral density filters. We extract the spectra on the preprocessed 
images (a simple sum over 9 pixels centered on the fiber traces) and we integrate their flux. From these data, we derive 
an exposure time offset for each LED and CCD dataset. Quantitatively: 

∆teffective = ∆t[EXPREQ] + 0.662 s ± 0.003 s 

where ∆t[EXPREQ] is the exposure time requested with the Instrument Control System (ICS). This offset is negligible for 
the typical science exposures (15-20 minutes) but should be taken into account for the throughput measurements 
(exposure times of 1 to 10 seconds). 

Results 

By computing the ratio of the flux received by each CCD to the injected flux measured by the photodiode, we get a 
direct estimate of the spectrograph throughput on each arm, at the central wavelength of the 6 LEDs: 

η [e-/γ] (λLED) = QECCD × Toptics(λLED) = φCCD [e-/s] (LED) / φinjected [γ/s] (LED) 

 

Figure 9 shows the measured throughput compared with the estimate from the DESI optical model. 

We initially found a very low throughput in the Blue (B) and the NIR (Z) arms, compared to what was expected from the 
DESI optical model (Figure 9, empty dots). A visual check of the VPHG on the Blue and NIR arms revealed that the low 
throughput in Blue and NIR arms was simply due to the upside-down mounting of their VPHG that resulted in observing 
in the -1 order instead of the +1 order. After proper mounting of the VPHGs, the measured throughput is compatible with 
the requirements (Figure 8, full dots).  
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The stability of the PSF is important for the accuracy of the sky subtraction in the science exposures. A useful indicator 
of the PSF shape variation is the differential variation of an emission line flux resulting from a tiny and undetected 
change in PSF shape. During14 h of the observation sequence, the ambient temperature varied by 0.8 degree C, and the 
variation of PSF shape was correlated with temperature: variations of FWHM of ~0.2%/°C. With a temperature control 
of ±0.5°C during a night, this guarantees a stability of the PSF of better than 0.5% during science observations. 

  
Figure 10.Shifts of trace coordinates along X (fiber number direction) and Y (wavelength dispersion direction) as a function 
of time along with temperature measurements (Blue channel on EM). 

 

4.5 Straylight 

Ghosts 

Ghosts, or Narcissus images, are predictable images formed by undesirable back and forth reflections on the detector and 
optical surfaces. Bright ghosts were prevented by design of the spectrograph. It is however impossible to prevent any 
ghost image by design, and we therefore carried out a systematic search for faint ghosts. To this aim, we illuminated 
selected fibers at the center and edge positions along the slit with strong LED intensities and searched for faint secondary 
images on the images. 

A bright ghost in the blue channel was rapidly identified and traced with Zemax to a reflection on the detector surface, a 
second order dispersion in the Volume Phase Holographic Grating (VPHG), and a back reflection on the dichroic 
reinjecting the beam into the camera (see Figure 11). We subsequently traced the abnormal intensity of this ghost to an 
inverted mounting of the blue VPHG during integration. The ghost has a spectral dispersion 3 times higher than the 
nominal one, and its position is symmetrical to the primary image in the “fiber” direction. The spectral range of the ghost 
is about 400 to 500 nm. After reinstallation of the VPHG in the correct position, the relative brightness of the ghost 
decreased, as expected. 

A ghost of similar behavior was also observed in the red channel, but of insignificant intensity. 
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Figure 11.Optical path of the ghost identified in the Blue channel. Top: along the wavelength direction. Bottom: along the 
fiber direction, illustrating the symmetric position of the primary image and of the ghost around the center. 

 

Second order contamination 

The rejection rate of the dichroics is not sufficient to block entirely the blue part of the gratings' second order in the Red 
and NIR cameras. To evaluate the level of second order contamination in these two channels, we illuminated the 
spectrograph with a strong blue LED signal and looked for the presence of second order spectra in the images 
(specifically, presence of second order spectra at 740 and 930 nm for blue LEDs emitting at 370 and 465 nm 
respectively). We did not find evidence of contamination by the second diffraction order in any of these settings, thereby 
validating the specifications and performance of the dichroics. 

Fiber-to-fiber cross-talk 

Thanks to the sparsely populated test slit, we could evaluate the fiber-to-fiber cross talk by evaluating the residual signal 
7 pixels away from an isolated fiber– corresponding to the location of an adjacent fiber on the science fully populated 
slit. In Figure 12, we show a LED spectrum together with a spectrum extracted 7 pixels away. The flux ratio is of the 
order of 650:1. 
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Figure 12.Cross-talk estimated by extracting isolated spectra (simple average over a 3 pixel window) and 7 pixels away for 
different LED intensities. The flux ratio is of the order of 650:1 

4.6 Detectors characterization 

CCD gains and readout noise 

The readout noise and gains are given in Table 2. The readout noise is measured for each amplifier in the overscan 
regions. We classically measure each amplifier gain with the Photon Transfer Curve (PTC, variance vs flux) method.  
We measure the variance of the signal from a series of images of identical exposure times under stable illumination 
conditions. We repeat this measurement for several illumination conditions sampling the CCD linearity range. The gain 
(in electrons/ADU) is the inverse of the slope of the variance-versus-signal curve (PTC). A higher order polynomial fit is 
used to compensate for CCD non-linearities. Data points with flux variations larger than 5% are discarded. We extend 
the spectrum extraction windows to adjacent pixels to mitigate possible drifts with temperature. 

The gains were first measured during the integration of the CCDs with a dedicated flat field illumination system, and on 
the fully assembled spectrographs. The results are consistent to within less than 10%. 

Table 2.Gains and readout noise for each CCD quadrant/amplifier of the SM01 spectrograph - b1 for Blue, r1 for Red and z1 for NIR. 

Quadrant Gain (e-/ADU) Read noise (e) 

b1-A 1.21 +- 0.04 4.2 

b1-B 1.24 +- 0.03 3.1 

b1-C 1.22 +- 0.05 3.5 

b1-D 1.23 +- 0.03 3.1 

r1-A 1.76 +- 0.06 3.8 

r1-B 1.69 +- 0.06 2.6 

r1-C 1.63 +- 0.06 2.9 

r1-D 1.55 +- 0.06 2.7 

z1-A 1.77 +- 0.11 4.5 

z1-B 1.75 +- 0.09 3.2 

z1-C 1.77 +- 0.05 4.0 

z1-D 1.66 +- 0.10 3.2 

 

Amplifier cross-talk 

The electronic cross-talk between amplifiers is determined by correlating the values of pixels from one quadrant (in a 
given flux range) with pixel values from the other CCD quadrants for images obtained with arc lamps. The correlation 
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