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Abstract: Vanadium(IV) oxide thin films were synthesised via Atmospheric Pressure Chemical Vapour 

Deposition by the reaction between vanadium(IV) chloride and ethyl acetate at 550 °C. The substrate 

was varied with films being deposited on glass, SnO2 and F-doped SnO2. The films were characterised 

by X-ray diffraction, X-ray photoelectron spectroscopy, UV/vis spectroscopy, scanning electron 

microscopy and X-ray absorption near-edge structure. The influence of the electronic contribution of 

the substrate on the deposited VO2 film was found to be key to the functional properties observed. 

Highly electron withdrawing substituents, such as fluorine, favoured the formation of V5+ ions in the 

crystal lattice and so reduced the thermochromic properties. By considering both the structural and 

electronic contributions of the substrate, it is possible to establish the best substrate choices for the 

desired functional properties of the VO2 thin films synthesised.  
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1. Introduction: 

Vanadium(IV) oxide materials have received widespread interest for functional applications in solar 

control coatings,1-3 battery materials,4, 5 gas sensing, data storage6 and optical computing.7, 8 The 

reason for such a wide range of functional properties is due in part to the variety of possible phases 

of VO2 such as, monoclinic,9 tetragonal,10 VO2(A)11 and VO2(B).12 In these phases, small crystal lattice 

differences result in large measurable changes to the structural and electronic properties of the 

material.  

For many of the above applications, thin films of VO2 are desirable. Thin films of VO2 have been 

successfully deposited via pulsed laser deposition,13 RF sputtering,14 metal organic chemical vapour 

deposition,15 epitaxial growth,16 aerosol assisted chemical vapour deposition (AACVD)17 and 

atmospheric pressure chemical vapour deposition (APCVD).18 Of these methods, APCVD has the 

desirable qualities of fast growth rates, conformal coatings and ease of delivery- i.e. there is no need 

for any vacuum systems or expensive reaction environments. APCVD, however, has limitations on the 

ability to form the differing polymorphs of VO2.  

One potential method to synthesise the various polymorphs of VO2 is by growing on substrates which 

induce strain in the growing thin film- with the lattice mismatch promoting a particular phase due to 

a reduction in strain. This would allow for APCVD techniques to be expanded beyond the synthesis of 

monoclinic VO2 thin films, to include phases such as VO2(B) so that battery type structures could be 

deposited by this method. Another benefit of inducing strain in the surfaces would be improved 

crystallinity and properties of monoclinic VO2 phases deposited. Additionally, the VO2 metal-insulator 

transition comprises a change from the monoclinic to the rutile structure, during which substrate-

induced electronic and structural effects are inherently involved;19 consequently, control and 

understanding of these effects is a promising avenue of exploration for control over this transition.20, 

21 
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To identify and characterise these effects, it is necessary to be able to probe the local structure, 

coordination environment and electronic structure of the V4+ ions. Since X-ray absorption near-edge 

structure (XANES) allows the determination of both the average oxidation state of and the average 

geometry surrounding a particular species. It is heavily influenced by electronic effects and is ideally 

suited to focus on the vanadium centres in VO2. 

In order to determine the effect of the substrate on the phase, local coordination environment and 

functional properties of film deposited by APCVD, we have combined X-ray diffraction, UV/vis 

spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and XANES to probe 

VO2 thin films deposited on glass, SnO2 and F-doped SnO2 substrates. By combining these powerful 

techniques, it has been possible to determine how the substrate choice affects the formation of the 

vanadium(IV) oxide. Outlined in this paper is an in-depth study of the influence of the substrate on 

the local coordination environment of VO2 thin films.  

2. Experimental: 

Vanadium(IV) chloride (99.9%), butyltin trichloride (95%), ammonium fluoride (98%), methanol (98%) 

and ethyl acetate (98%) were purchased from Sigma Aldrich, UK and used without further purification. 

The glass substrate used for depositions was 3.2 mm thick plain float glass with a 50 nm thick 

SiO2 barrier layer (Pilkington/NSG). Depositions were carried out on Pilkington silica-coated barrier 

glass (50 nm SiO2 coated on one side of float glass), with depositions occurring on the atmospheric 

(silica barrier) side of the glass in order to prevent unwanted leaching of ions from the glass into the 

thin film.22 Prior to deposition, the glass substrates were cleaned with soapy water, isopropanol and 

acetone and were then left to air dry. The substrate was then loaded into the reaction chamber along 

with a second piece of float glass suspended 8 mm above (silica barrier layer pointing down) to ensure 

laminar flow during deposition. 

2.1 Thin film synthesis 
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2.1.1 Deposition of SnO2 and F-SnO2 (FTO) substrates 

SnO2 and F-SnO2 thin films were deposited on float glass via AACVD. A precursor solution was formed 

by dissolving butyltin trichloride (0.564 g: 0.002 mol) in 20 mL of methanol. In the case of F-SnO2, 

ammonium fluoride (0.011 g: 3x10-4 mol) was added to the solution under rapid stirring conditions. 

An aerosol mist of the precursor solution was generated using a ‘Liquifog’ piezo ultrasonic atomizer 

from Johnson Matthey, which uses an operating frequency of 1.6 MHz to produce a mode droplet size 

of ca. 3 μm. The mist was transported into the reactor through a baffle, using compressed air (21% 

(±0.5%) O2 in N2) supplied from BOC (UK) as the carrier gas, at a constant flow-rate of 1.0 L min−1. The 

exhaust of the reactor was vented into a fume cupboard. The deposition was carried out at 550 °C. 

These films were subsequently used as substrates for the deposition of VO2 thin films.  

2.1.2 Deposition of VO2 thin films  

VO2 thin films were synthesised using APCVD from reaction between vanadium(IV) chloride (VCl4) and 

ethyl acetate (EtAc), following the procedure outlined by Malarde et al.23  Briefly, the precursors were 

contained in stainless steel bubblers at appropriate temperature so as to generate enough vapour 

pressure through the system. For the synthesis of VO2, the bubblers containing VCl4 and EtAc were set 

to 80 and 40 °C, respectively, while the corresponding flow rates were set at 0.7 and 0.2 L min-1, 

respectively. Nitrogen (oxygen free, 99 .9%, BOC) was used as the carrier gas. The gases were quickly 

mixed in stainless steel mixing chambers at 150 °C before entering the CVD reactor. A plain N2 gas flow 

was set to 20 L min-1 in order to move the gas mixture into the reactor. The reactor was a 320 mm-

long quartz tube containing a heating graphite block with three inserted Whatman heater cartridges. 

The reactor temperature was set to 550 °C. All lines in the system were heated to 200 °C using heating 

tape (Electrothermal 400 W, 230 V) and the temperature controlled using k-type thermocouples with 

Thermotron controllers.   
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In this work, the deposition times of the VO2 films were varied between 30-180 s. For our discussion, 

VO2 films of thicknesses of ca. 50 and 300 nm, deposited on barrier glass (thereafter, VO2 thin and VO2 

thick, respectively), were used as reference samples. The discussion also includes VO2 films of similar 

thicknesses (ca. 100 nm) deposited on SnO2 and F-SnO2 CVD films (thereafter, VO2/TO and VO2/FTO, 

respectively). These values were estimated from side-on scanning electron microscopy images. This 

information is summarised in Table 1 (vide infra).  

2.2. Film characterisation  

Scanning electron microscope (SEM) images were recorded on a Jeol JSM-6301F SEM instrument at 

an acceleration voltage of 5 kV. X-ray diffraction (XRD) patterns were recorded using a Bruker D8 

Discover X-ray diffractometer using monochromatic Cu Kα1 and Cu Kα2 radiation of wavelengths 

1.54056 and 1.54439 Å, respectively, emitted in an intensity ratio of 2:1 with a voltage of 40 kV and a 

current of 40 mA. The incident beam angle was 1° and data was collected between 5° and 66° (2θ) 

with a step size of 0.05° at 1.0 s/step. All diffraction patterns obtained were compared with database 

standards (ICSD). X-Ray photoelectron spectroscopy (XPS) was conducted on a Thermo Scientific K-

alpha spectrometer with monochromated Al Kα radiation, a dual beam charge compensation system 

and constant pass energy of 50 eV (spot size 400 μm). Survey scans were collected in the binding 

energy range 0–1200 eV. High-resolution peaks were used for the principal peaks of V 2p, Sn 3d, O 1s 

and C 1s. Data was calibrated against C 1s (binding energy, 285.0 eV). Data was fitted using CasaXPS 

software. Transmission spectra were recorded on a Perkin Elmer Lambda 950 UV/vis/NIR 

spectrophotometer in transmission mode. A Labsphere reflectance standard was used as a reference 

for the UV/vis measurements. 

V K-edge XANES measurements were carried out at BM01B, the Swiss-Norwegian beamlines at the 

European Synchrotron Radiation Facility (ESRF),24 using a Si (111) double crystal monochromator 

detuned to 70% for harmonic rejection. Data were collected in fluorescence mode using a 13-element 
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Ge detector.25 Data processing was carried out using Athena 0.9.25;26 first, multiple scans from each 

film were merged to improve signal to noise ratio, then an edge-jump normalisation was performed.  

3. Results and Discussion 

3.1 Physical characterisation of VO2 films 

SEM analysis showed a marked difference in the morphology of the films by both the length of 

deposition and the substrate choice (Figure 1). When glass was used as the substrate, the initial 

deposition showed an island growth mechanism, with round crystallites present in the surface 

morphology (Figure 1a). With a deposition time of 3 mins, the crystallites exhibited large plate-like 

structures (Figure 1b), suggesting preferential orientation as the crystallites grow. The surface 

morphology was further altered when VO2 was deposited on SnO2 substrates. Figure 1c shows a VO2 

layer deposited onto the undoped SnO2 substrate (sample VO2/SnO2), with large flat aggregated 

particles observed in the microstructure. In contrast, the VO2 particles deposited on F-SnO2 (sample 

VO2/F-SnO2) were smaller and the film consisted of several particle types including rod, plate and 

pyramidal like shapes. These morphologies are unquestionably influenced by the substrate, since the 

thicknesses of the VO2 layers in both samples are identical, i.e. 100 nm (Table 1). It is worth noticing 

that typical SnO2 and F-SnO2 CVD films display different morphologies with rod- or pyramidal-like 

particles, respectively.27, 28 Importantly, the difference in morphology could have an impact on the 

functional properties of the VO2 films.29 
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Figure 1: Typical SEM images of a) VO2 Thin, b) VO2 Thick, c) VO2/TO and d) VO2/FTO samples. All images show the surface 

morphology of VO2 thin films deposited by APCVD on glass (a, b), SnO2 (c) and F-SnO2 (d) substrates.  

 

XRD studies of the VO2 films deposited on glass showed broad, weak diffraction peaks consistent with 

monoclinic VO2 (Figure 2).30 These patterns were similar to those obtained from typical VO2 thin films 

deposited by CVD techniques.31-33 No other phase of vanadium oxide was detected in these samples. 

The samples deposited on SnO2–based substrates, however, could not be analysed by XRD due to 

overlap with the strong diffraction features of the substrate (Figure 2). These XRD patterns confirmed 

the presence of SnO2 cassiterite structure (P42/mnm), with a tetragonal unit cell.34 The XRD pattern of 

F-SnO2 showed high relative intensities of diffraction peaks at 34.7 (200) and 52.4° (211), consistent 

with previous studies in the literature.30, 31 Fluorine incorporation into SnO2 has been previously shown 

to increase the intensity of these diffraction peaks.35 This suggests that fluorine incorporation has been 

successful for the F-doped SnO2 sample.  
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Figure 2:  X-ray diffraction patterns of VO2 films deposited on glass (VO2 thin and VO2 thick), SnO2 (VO2/TO) and F-SnO2 

(VO2/FTO) substrates. The diffraction features observed in the former patterns confirmed the presence of monoclinic VO2. 

XANES and XPS results will now be discussed. Key to interpreting and rationalising these results is the 

difference in penetration depth of the techniques: XPS is surface sensitive, while XANES probes the 

bulk of the sample. As such, discrepancies between the results of these techniques provide 

information about the cross-section of the films. Additionally, the XPS will be substantially less 

influenced by substrate-film interactions. 

The oxidation states of the elements present at the surface of the VO2 thin films deposited on different 

substrates were probed by XPS analysis (Figure 3). In every spectrum, the V2p3/2 environment could 

be resolved to give two binding energies at 517.1 and 515.7 eV, which are attributed to V5+ and V4+, 

respectively, and within literature values (±0.2 eV).36 Vanadium will readily oxidise in contact with air 

and fully-oxidised V5+ species are commonly found at the surface of vanadium oxide materials. Here, 
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the relative content of V5+ and V4+ species was similar across samples containing large VO2 particles 

(Table 1), with a larger concentration of V5+ species. The opposite case, i.e. higher content of V4+ 

species, was however found in the case of sample VO2 thin, deposited on glass. This can be attributed 

to the larger extent of surface area sampled along large particles, which is particularly clear along the 

plate-like structures in sample VO2 thick (Figure 1b).  

 

 

Figure 3:  Typical XPS spectra in the V2p3/2 environment for a) VO2 Thin, b) VO2 Thick, c) VO2/TO and d) VO2/FTO samples. 

CPS refers to counts per second.   

Table 1: Description and properties of VO2 films deposited onto different substrates by APCVD. Deposition times (s) and film 

thicknesses (nm) correspond to the VO2 layers only. The latter were estimated by side-on SEM images. The relative content 

of different ionic species (%) were estimated from XPS analysis.  

# Substrate Dep. time  Thickness Rel. content 
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(s) (nm) (%) 

V5+ V4+ 

VO2 thin Glass 30 50 26 74 

VO2 thick Glass 180 300 78 22 

VO2/TO SnO2 60 100 77 23 

VO2/FTO F-SnO2 60 100 65 35 

 

Further insight into the different Vn+ ionic species present in the VO2 films was gained from XANES. 

Figure 4a shows XANES spectra of VO2 thin films deposited on glass, SnO2 and F-SnO2 substrates, 

together with standard materials. 

The pre-edge peak (ca. 5465 eV) provides insight into the speciation: the ratio of the pre-edge intensity 

to the edge jump is much, much greater in V2O5 than VO2. From a visual inspection of the spectra, it is 

clear that this ratio indicates that VO2, not V2O5, is the dominant component of the films. Despite the 

lack of structural assignment possible from the diffraction patterns of the SnO2 supported forms, the 

distinctive pre-edge structure of V2O5 precludes it from being a majority component of the bulk of the 

film. This suggests, despite the XPS results, that all the samples are predominantly VO2. Given that XPS 

is a surface sensitive technique, while XANES is a bulk technique, this discrepancy is hardly surprising 

– the XPS results will be influenced by the propensity of the exposed surface species to oxidise.  

Figures 4b and 4c expand the edge region for the glass-supported and (F)TO supported films 

respectively. Interestingly, the edge position, for all the films, is closer to V2O5 than VO2. This is 

probably the result of contributions from the surface V5+ species identified in the XPS and support-

induced structural changes affecting electron energy levels.36 Of particular relevance for the SnO2 

samples, structural changes arising from an RuO2-covered substrate have previously been found to 

alter orbital occupancies.37 This could conceivably affect the Fermi level, and RuO2 has a similar 
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structure to the SnO2 used herein (due to the remoteness of the surface from the interface, substrate-

induced effects are not expected to influence the XPS measurements). 

In the glass-supported films, VO2 thick displays a pre-edge intensity (normalised µ(E) = 0.35) higher 

than that of VO2 thin (normalised µ(E) = 0.24). These results are consistent with the XPS data, which 

shows VO2 thick to contain more V5+ than VO2 thin (78 % vs. 26 %, table 1). 

This is, perhaps, a counter-intuitive observation – a thinner film would normally be expected to be the 

most susceptible to oxidation; or the surface to contribute more to the overall composition, at least – 

and suggests the possibility that the substrate has some kind of stabilising effect on the film. This can 

be corroborated by examination of the white-line (unoccupied p-states) and immediately post-edge 

regions: for VO2 thin, these are substantially more intense than those for VO2 thick (normalised µ(E) 

1.31 vs 1.16 for the post-edge feature at 5489.5 eV) and the standards – indicating electron 

withdrawal. (To verify that this wasn’t a consequence of increased self-absorption in the thicker film, 

the absorption length of VO2 at 5515 eV was calculated, using Hephaestus26 and XAFSMass,38 and 

found to be ca. 6 µm – well above the thickness of these films (max ca. 300 nm).) This suggests that 

substrate-film electronic interactions may be present, as previously observed.36 The relatively high 

strength of these interactions in VO2 thin is easily explainable in terms of the proportion of atoms in 

the vicinity of the interface; for VO2 thick, a greater proportion of the film is in the bulk, away from 

the interface, dampening this effect.  

Electron withdrawal from the vanadium would also shift the edge to higher energy, as observed in 

figure 4b. 

To summarise, in the region surrounding the film-substrate interface, the V4+ is stabilised against 

oxidation (possibly by electron transfer towards the substrate). This means that the thin film, of which 

a larger proportion is stabilised, experiences much less oxidation than the thicker one, which will have 
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greatest oxidation on the surface and greater oxidation than the thinner film in its bulk region as well 

as the stabilised interfacial region. This leads to the thicker film experiencing greater overall oxidation.  
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Figure 4: (a) Normalised XANES spectra for VO2 thin films; (b) Expanded plot of edge region for films on glass; (c) Expanded 

plot of the edge region for films on TO/FTO 

The relative intensities of the pre-edge peaks in the TO/FTO-supported samples are interesting: VO2/F-

SnO2 displays a pre-edge intensity (normalised µ(E) = 0.36) higher than VO2/SnO2 (normalised µ(E) = 

0.29), despite the XPS showing a slightly higher V5+ contribution in VO2/SnO2. Given the different 

penetration depths of the two techniques, this suggests that the oxidation-state ratio is not 

homogeneous throughout the film. Obviously, oxidation would be expected at the surface in both 

samples; however, in the F-doped film the vanadium species at the film-substrate interface will be in 

the vicinity of highly electronegative fluorine species. This could lead to substantial oxidation of the 

vanadium species in that region, accounting for the increased pre-edge intensity in the XANES.  

Further evidence for the effect of fluorine is found by comparing the XPS with the XANES for the FTO-

supported and thick, glass-supported films. These both show a similar V5+ contribution in the XANES 

pre-edge (normalised μ(E) = 0.36 and 0.35, respectively), however the FTO-supported film shows a 

reduced V5+ contribution in the XPS (65 % vs. 78%, respectively) – this indicates that, compared to the 

thick, glass-supported film, the V5+ in the FTO must be away from the surface. This difference in 
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distribution, strongly suggests that the additional V5+ in the FTO-supported film is likely to be near the 

substrate-film interface.  

VO2/SnO2, VO2/F-SnO2 and the standards display the same basic post-edge structure: a small peak 

(V2O5) or shoulder (VO2) at ca. 5484 eV followed by peaks at ca. 5490 eV and 5503 eV, followed by a 

broad minimum ca. 5517-5535 eV. The signal:noise ratio of the film spectra does not allow for a 

reliable distinction between peak and shoulder, however the feature at ca. 5484 eV is certainly more 

prominent in VO2/SnO2. The relative intensities of the two peaks in VO2/SnO2 are more consistent with 

the VO2 standard (first peak more intense) than the V2O5 standard (both peaks equal). In VO2/F-SnO2, 

the difference in peak intensities is reduced, suggesting a greater V5+ contribution in this film – again 

consistent with increased oxidation.  

In both cases, the intensity of the post-edge peaks is higher than in either of the standards, with the 

greatest increase shown by the VO2/SnO2. This is indicative of an increase in available p-states, which, 

as mentioned earlier, can have their occupancy reduced as a consequence of substrate-induced 

structural changes. Aetukuri et al. investigated this using an RuO2 layer,37 due to its structural similarity 

with metallic-phase rutile-VO2; the SnO2 used in this study also adopts a rutile structure, and so a 

similar effect may be causing the increased intensity. This could also explain why VO2/SnO2 displays a 

greater post-edge intensity boost than VO2/F-SnO2: FTO may distort from the “perfect” rutile structure 

and have a reduced level of effect on orbital occupancy. Electron transfer between the film and the 

substrate, as observed in the glass-supported films, could exist and could be responsible for this 

effect;39 however, if that were the case, the more electronegative fluorine in the F-SnO2 would be 

expected to display a more intense post-edge than the undoped SnO2. This suggests that the structural 

effects dominate the electronic ones. The thin, gold-supported film displays the most intense post-

edge – this is attributed to increased dominance of substrate-film interface effects in this film (half the 

thickness of the TO/FTO-supported films). 
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In keeping with this observation, the thicker film displays the distinctive green colour of V5+, while the 

thinner film has a deeper brown hue, in keeping with typical colours for VO2 thin films.  

3.2 Thermochromic properties of VO2 films 

Variable temperature UV/vis spectra were obtained for all the samples prepared, Figure 5. As shown, 

all samples, except VO2/F-SnO2, displayed a thermochromic response when heated past the phase 

transition temperature. The thermochromic properties were fully reversible for samples VO2 Thin, VO2 

Thick and VO2/SnO2 and were repeatable.  

Sample VO2/F-SnO2 did not display any thermochromic behaviour. This supports the evidence found 

from the XANES analysis of this sample, where there was a high proportion of V5+. With a high 

proportion of V5+ the sample would have insufficient VO2 to convert between the monoclinic and 

tetragonal forms, and so would not be able to interact strongly with near IR wavelengths.   

Although the sample on the F-doped SnO2 substrate, VO2/F-SnO2, was not thermochromic, the visible 

light transmission in this sample was much higher than for any of the other samples analysed. This 

shows that the refractive properties of the substrate can affect the visible light transmission of the 

film. This is supports conclusions by Granqvist et al. who have shown that by reducing the change in 

refractive index, through the addition of multilayers, the visible light transmission of vanadium oxide 

thin films can be increased.1, 40   
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Figure 5: Typical variable temperature transmission UV/vis spectra for a) VO2 Thin, b) VO2 Thick, c) VO2/SnO2 and d) VO2/F-

SnO2. Black lines represent %transmission at 25 °C and red lines %transmission at 80 °C. All VO2 films were deposited at 550 

°C by the reaction between vanadium(IV) chloride and ethyl acetate using atmospheric pressure chemical vapour deposition.  

 

4. Conclusions 

The choice of substrate can have a large impact on the properties of thin films of VO2 deposited via 

APCVD techniques. By combining XANES, XPS and thermochromic measurements we have been able 

to successfully model why there is a marked difference in functional properties when depositing VO2 

onto various substrates. We have shown that when depositing onto crystalline substrates, the 

electronic contribution of the underlying substrate is key to understanding the properties observed. 

The electronic properties of the substrate, considering the band alignment and energetics of the 

substrate and VO2, can lead to a destabilisation of V4+ ions and lead to an increase in V5+ and reduction 

in functional properties. Although it is possible to enhance the functional properties of monoclinic VO2 
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by depositing onto substrates that will induce lattice matching, such as tetragonal SnO2, the influence 

of substituents in the substrate must be carefully considered prior to depositions being conducted.  
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