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ARTICLE INFO ABSTRACT

Background: Periodontitis (PD) and type 2 diabetes (T2D) are characterized by increased mitochondrial oxidative
stress production (mtROS), which has been associated with a greater risk of cardiovascular diseases (CVD). Inten-
sive PD treatment (IPT) can significantly improve endothelial function and metabolic control, although the mech-
anisms remain unclear. We explored whether, in patients with PD and T2D, changes of mtROS are associated
with improvement of endothelial function and metabolic control after IPT.

Methods: 51 patients with T2D and PD were enrolled in a single-blind controlled trial and randomised to either
intensive (n = 27) or standard (CPT, n = 24) PD treatment. Levels of mtROS in peripheral blood mononuclear
cells (PBMC) were measured using a FACS-based assay at baseline and 24 h, 1 week, 2 and 6 months after PD
treatment. Inflammatory cytokines, CVD risk factors, metabolic control and endothelial function were assessed
at baseline and 6 months after intervention.

Results: After 6 months from PD treatment, the IPT group had lower mtROS (in both the whole PBMC and lym-
phocytes), circulating levels of HbA1c, glucose, INF-y, TNF-a (p < 0.05 for all), and improved endothelial function
(p < 0.05) compared to the CPT group. There was an association between higher mtROS and lower endothelial
function at baseline (r = —0.39; p = 0.01) and, in the IPT group, changes of mtROS were associated with changes
of endothelial function (r = 0.41; p < 0.05).

Conclusions: Reduced mtROS is associated with improved endothelial function and accompanied by better met-
abolic control in patients with T2D and PD. mtROS could represent a novel therapeutic target to prevent CVD in
T2D.
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1. Introduction

Chronic inflammatory diseases account for a substantial proportion
of the cardiovascular disease (CVD) morbidity and mortality worldwide.
Among these, type 2 diabetes (T2D) and periodontitis (PD) are highly
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prevalent in the general population and closely interconnected, so that
people with PD are at higher risk of T2D, and vice-versa [1]. The risk of
cardiorenal mortality (ischaemic heart disease and diabetic nephropa-
thy combined) is three times higher when T2D and PD coexist than in
people with T2D alone. While inflammation could account for the in-
creased CVD risk of people with T2D and PD, we have shown that circu-
lating levels of common inflammatory markers are unable to explain
the significant improvement of endothelial function and metabolic con-
trol observed after intensive periodontal treatment [2,3]. This suggests
that there might be more specific and responsive pathways associated
with the activation of the inflammatory response, which could underpin
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the relationship between risk of cardiovascular disease and altered met-
abolic control in people with T2D and PD.

Mitochondria are central regulators of cellular metabolism and
major sources of intracellular reactive oxygen species (mtROS). In-
creased production of mtROS has been described in patients with T2D,
PD and CVD [4-7]. Recently, mtROS production has been identified as
an early step in the activation of the inflammatory response, stimulating
pro-inflammatory cytokines production [8]. Thus, mtROS could act as
potential link between vascular damage and impaired glucometabolic
control in people with T2D and PD, explaining their association with
systemic inflammation, but this has not been investigated. We set up a
randomised clinical trial where we tested whether PD treatment can
modify mtROS and whether changes of mtROS might relate with the im-
proved endothelial function and metabolic control observed after PD
treatment in patients with T2D.

2. Methods
2.1. Study design

We have analysed the relationship between mtROS, endothelial function and inflam-
matory cytokines in the context of a large parallel group, single-blind, randomised, con-
trolled trial (ISCRTN 83229304, http://www.isrctn.com/ISRCTN83229304) which
evaluated the effect of periodontal therapy on metabolic control in patients with T2D. Re-
cruitment and study flowchart are shown in the supplementary data file (Supplemental
Fig. S1).

Our aim was to include at least 50 consecutive patients with T2D and moderate to se-
vere PD recruited into the trial mentioned above to additional analyses of mitochondrial
parameters. Participants were recruited among referral to the Eastman Dental Hospital
(London, United Kingdom) and two other local hospitals (St Marys' and Ealing, London)
between December 2011 and September 2012. Inclusion criteria were: aged >18 years, di-
agnosis of T2D (according to the WHO criteria [9] and confirmed in specialist secondary
care diabetes clinic), a minimum of 15 teeth, >20 sites with periodontal pocket depth
(PPD) > 5 mm and radiographic bone loss assessment. Exclusion criteria were: preg-
nancy/lactation, HIV or Hepatitis (B, C), subjects with uncontrolled systemic diseases or
neoplasms, chronic antibiotic therapy or requiring antibiotic coverage for dental proce-
dures, chronic treatment with medications known to affect periodontal status (phenytoin,
cyclosporine). Following a baseline visit, each participant recruited into the trial was ran-
domly allocated (using a computer-generated table) to receive either intensive (IPT) or
control periodontal therapy (CPT). Minimisation was performed in terms of diabetes
onset, smoking status, gender and PD severity. Allocation to treatment was concealed in
an opaque envelope and revealed to the clinician on the day of treatment. During the
trial, T2D was managed in secondary care diabetes clinic by consultant diabetologists ac-
cording to national guidelines from the National Institute for Health and Care Excellence
(NICE) [10]. Blood samples for PBMC isolation and assessment of mtROS were collected
atbaseline and 1 week, 2 months and 6 months after treatment, while levels of inflamma-
tory cytokines, CV risk factors, soluble markers of endothelial cell activation and endothe-
lial function (assessed by flow-mediated dilation, FMD) were measured at baseline and
6 months after treatment. With the exception of the study dental staff delivering the treat-
ment and performing the clinical examinations, the vascular examiner, the nurses
collecting the anthropometric measures and blood samples, the laboratory staff who proc-
essed and analysed the blood samples and other staff involved with the data collection/
analyses was masked to the group allocation. All patients gave written informed consent.
The study was approved by the local ethics committee (Ref 07/H0714/97, Joint UCL/UCLH
Committees on Ethics of Human Research, Committee A).

2.2. Periodontal examination and therapy

Periodontal data were recorded at baseline and 2 months and 6 months after treat-
ment, including PPD and recession of the gingival margin relative to the cement-enamel
junction at six sites per tooth. The presence or absence of supragingival dental plaque
and gingival bleeding on probing was also recorded [11]. The depth and numbers of the
gingival pockets were measured using a millimetre signed probe that was manually
inserted in the area around each tooth. As deepening of the gingival sulcus associated
with greater inflammation and loss of connective tissue is suggestive of more severe active
disease, the number of gingival pockets >4 mm in depth (number of pockets) is considered
a cumulative measure of active gingival inflammation. Oral hygiene instructions were
given to all patients. Teeth were extracted if they were deemed unsalvageable. Patients
in the IPT group received an intensive periodontal treatment protocol consisting of an ini-
tial single session of whole mouth scaling of the root surfaces under local analgesia (no
time limits were enforced for completing the session). Two months later, patients
underwent additional cleaning of the teeth with a similar protocol. Additional periodontal
surgery was performed if there were deeper residual periodontal pockets and had im-
proved dental hygiene (dental plaque scores <20%). CPT patients received supra-gingival
scaling and polishing of all dentition at the same time points as the IPT group (at baseline
and after 2 months). In both groups, T2D was managed according with clinical guidelines

by local specialist diabetes teams, who were unaware of the group assignment throughout
the study.

2.3. Mitochondrial ROS production

Peripheral blood mononuclear cells (PBMC) were isolated following standard proce-
dures by density gradient centrifugation with Ficoll (Ficoll-Paque PLUS, GE, UK) from an
aliquot of heparinised blood collected at each study visit. Mitochondrial oxidative stress
production was assessed by flow cytometry using the mitochondrial probe MitoSOX Red
(Invitrogen, UK). This is highly selective for mitochondrial superoxide detection and is
considered the gold standard probe for fluorescent detection of mtROS in live cells
[12-14], including PMBC [12,13]. We used kit instructions and a previously validated pro-
tocol to assess mtROS production [15] in PBMC. After isolation, an aliquot of 2 x 10% PBMC
were resuspended in 1 ml of phenol red free RPMI and incubated for 20 min at 37 °C, in the
dark and in a 5% CO2 incubator with MitoSOX Red reagent (final concentration of 5 uM).
After three washing steps, cells were resuspended in warm buffer, florescence was read
using CellQuest software version 3.1f (Becton Dickinson) and post-acquisition analysis
was performed using Flow]Jo software (FlowJo LLC, Oregon, USA). Median intensity fluo-
rescence was used to estimate the average amount of the mitochondrial superoxide
production.

Mitochondrial superoxide production was assessed in the whole PBMC population as
well as in the lymphocyte and monocyte subpopulations separately identified by forward
and side scatter characteristics. In each analysis, an unstained sample was used as a control
to exclude cell autofluorescence. For each analysis, a minimum of 1000 events in the
monocyte gate was used to acquire the FACS data.

2.4. Endothelial function

Endothelium-dependent and glyceryl trinitrate (GTN)-induced vasodilatation of the
brachial artery at baseline and 6 months follow-up was assessed by means of ultrasound
imaging (Acuson XP 128/10, Siemens) with the use of a 7-MHz linear probe and auto-
mated vessel diameter measurements (Brachial Tools, version 3.2.6, Medical Imaging Ap-
plications), as previously described [16] and validated by our group in previous clinical
trials with a similar experimental design [3]. A single examiner, blind to the patient treat-
ment allocation, acquired the images of the brachial artery in the morning.

2.5. LPS, inflammatory, metabolic and soluble markers of endothelial activation assays

All assays were performed at baseline and 6 months. Serum and plasma were sepa-
rated within 1 h of collection and stored at —70 °C for future analysis. We measured the
serum levels of several circulating inflammatory and endothelial cell activation/injury
markers using Meso scale multiplex assay (kits Human pro-inflammatory 7-plex and
Human vascular injury Panel I, respectively). HbAlc and insulin levels were assayed on
an automated analyser (Cobas 8000 analyser, Roche Diagnostics Corp). Serum endotoxin
activity was determined by the Limulus amoebocyte lysate test kit with a chromogenic
substrate (Lonza, Walkersville, MD) on diluted (1:5, vol/vol in endotoxin-free water) sam-
ples. Intra- and inter-coefficient of variations for all assays were <5%. To minimise variabil-
ity, all assays were performed at the end of the study, in duplicates and on the same ELISA
plate at both time points by a technician who was blinded to patient treatment allocation.
Homoeostasis Model Assessment (HOMA2) scores were subsequently calculated (https://
www.dtu.ox.ac.uk/homacalculatory/).

2.6. Statistical analysis

As there were no data to enable prediction of changes of mitochondrial function after
anti-inflammatory treatment, we based the sample size calculation on the expected
changes in FMD after dental treatment. We calculated that 44 patients (22 per study
arm) provided 90% power (2 sided, p = 0.05) to detect a 2% difference in FMD between
groups at 6 months after therapy, using an estimated standard deviation of 1.6 (derived
from our previous published data). Thus, we decided to include at least 50 consecutive pa-
tients from our larger randomised trial (anticipating a 10% drop out rate).

All laboratory data were entered into a computer database proofed for entry errors
and loaded in SPSS ver21. Changes in mitochondrial function were evaluated by analysis
of variance for repeated measures between IPT and CPT groups, including data at baseline,
day 1, day 7, 2 months and 6 months. A conservative F-test was used to interpret the
model using the Greenhouse-Geisser correction to account for compound symmetry vio-
lations. Changes in inflammatory biomarkers and vascular function were analysed by
analysis of covariance (with baseline values as a covariate in the model). Correlation anal-
yses were performed by Spearman test. Significance was at p < 0.05.

3. Results

Between December 2011 and September 2012, 51 patients were in-
cluded in the study: 27 allocated to the IPT and 24 to the CPT group. All
participants completed the trial. There were no major adverse events
reported.
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3.1. Patient characteristics

Baseline characteristics in the CPT and IPT groups were comparable,
including age, gender, smoking status, lipid levels, body-mass index,
blood glucose levels (Table 1) and medication use (Supplemental
Table S1).

3.2. Periodontal status and LPS

After 6 months, the IPT group had lower scores of dental plaque (ab-
solute difference 27%; 95% CI, 15-40; p < 0.001) and fewer sites with ac-
tive periodontal inflammation (average difference in the number of
pockets between groups 15; 95% Cl, 3-26; p = 0.014) compared to
the CPT group (Supplemental Table S2). A trend towards an improve-
ment of PPD and gingival recession was also observed, although differ-
ences were not statistically significant. The general improvement of the
oral health was accompanied by lower circulating levels of LPS in the IPT
than the CPT group 6 months from treatment (unadjusted difference of
2.73 EU/ml; 95% CI, 1.15-6.45; p = 0.023) (Supplemental Fig. S2).

3.3. Mitochondrial ROS production

The PBMC of the IPT group had a significantly lower mtROS produc-
tion compared to the CPT group at 6 months after dental treatment (Fig.
1A). When subpopulations of PBMC were analysed separately, the re-
duced mtROS generation of PBMC was mainly due to a reduction in ox-
idative stress production in lymphocytes, although a non-statistically
significant trend was also detected in monocytes (Fig. 1B, C).

3.4. Vascular and metabolic parameters

Levels of major cardiovascular risk factors did not differ at baseline
and 6 months between IPT and CPT groups and did not change in both
groups between baseline and 6 months visits (Supplemental
Table S3). There was a significant interaction between treatment and
flow-mediated dilatation (p < 0.001). After 6 months, FMD was higher
in the IPT than in the CPT group (absolute difference of 0.9%; 95% CI,
0.3-1.4; p = 0.002) (Fig. 2A). Conversely, no changes of GTN-
dependent dilatation (endothelial independent) were observed be-
tween IPT and CPT groups at 6 months (Fig. 2B).

Patients in the IPT group had lower levels of HbA1c 6 months after
therapy compared to CPT patients (average between-group difference
of 0.65%, 95%Cl 0.22-1.14, p = 0.003). Also, a statistically significant
reduction in plasma glucose (average difference between group
1.55 mmol/l, 95%Cl 0.25-2.85, p = 0.012) was observed in IPT when
compared to CPT patients. No relevant changes were reported in
HOMA Index (data not shown).

3.5. Markers of inflammation and adhesion

Significant interaction between treatment and time for plasma levels
of tumor necrosis factor-a (p = 0.03), interferon-y (p = 0.04) and sol-
uble E-selectin (p = 0.02) were noted. At 6 months, patients in the IPT
group had lower circulating levels of TNF-a (average between groups
difference of 0.76 pg/ml, 95% CI, 0.08-1.44, p = 0.02), interferon-y (av-
erage between groups difference of 1.38 pg/ml, 95% CI, 0.26-2.49, p =
0.01) and E-Selectin compared to the CPT group (Supplemental
Table S3). No differences were observed in the circulating levels of IL-
6 or CRP between groups (Supplemental Table S4).

3.6. Relationship between mtROS and other outcomes

At baseline, patients with greater lymphocyte mtROS had lower
FMD (r = —0.394; p = 0.008). In the IPT group, there was an inverse
association between changes in FMD and changes of lymphocyte
mtROS, so that the people with a greater recovery of endothelial

Table 1

Baseline characteristics of the patients.
Variable (mean 4 SD) CPT (N = 24) IPT (M = 27)
Age, years 58 + 11 56+ 9
BMI, Kg/m? 32+5 3247
Gender, males 10 (53%) 15 (56%)
Smoking, current 1(5%) 1 (4%)
Systolic BP, mm Hg 134+ 19 136 + 18
Diastolic BP, mm Hg 81+ 11 84 +11
HbA1c, % (mmol/mol) 7.7(61) £ 1.2 7.9(63)+ 1.4
Total cholesterol, mmol/l 434+1.0 434+ 1.1
HDL, mmol/l 1.3+04 134+ 04
LDL, mmol/I 2.0+09 23409
FMD, % 4.18 +£2.28 413 4+ 298
CRP*, mg/1 1.8 (3.1) 2.2 (3.0)
TNF-o*, pg/ml 3.7(1.8) 4.0 (1.7)
s-Eselectin®, pg/ml 24.8 (20.2) 25.8 (11.0)
s-Pselectin*, pg/ml 118.8 (35.8) 103.1 (30.1)
INF-v*, pg/ml 1.1(24) 0.9 (1.9)
mtROS (MitoSOX, MFI) 254 + 125 2344+ 105

Values are expressed as means = SD or *median (interquartile range) for non-normally
distributed variables.

CPT = Control periodontal therapy; IPT = Intensive Periodontal Therapy; BP = blood
pressure; CRP = C-reactive protein; TNF-oc = Tumor Necrosis Factor-o; INF-y = Inter-
feron-y; FMD = Flow Medicated Dilation; mtROS = Mitochondrial oxidative stress
production.

function also had greater improvement of lymphocyte mtROS (r =
409; p = 0.042) (Fig. 3). Among baseline variables, only lymphocyte
mtROS predicted FMD at 6 months (r = —0.368; p = 0.014). In a mul-
tivariable regression model including all CVD risk factors (age, BMI,
smoking history, gender, systolic blood pressure, total cholesterol,
glycaemia, CRP), the association of mtROS with FMD at 6 months
remained significant (r = —0.393; p = 0.013). No associations were ob-
served between baseline or 6 months lymphocyte mtROS and both
baseline or 6 months levels of fasting plasma glucose, HbA1c, circulating
levels of inflammatory markers.

4. Discussion

This trial shows, for the first time, that a reduced mtROS production
of immuno-inflammatory cells is associated with an improved endothe-
lial function in patients with T2D and PD. Also, an improved mtROS pro-
duction is accompanied by a significant improvement of the metabolic
control in the same study population. These effects were not predicted
by circulating levels of common inflammatory markers. Our results sug-
gest mtROS may underpin the relationship between systemic inflam-
mation and both increased risk of CVD and altered metabolic control
in patients with type 2 diabetes and PD.

Previous reports have documented elevated mtROS and a dysregu-
lated immune-inflammatory response in patients with PD and T2D
[4,7]. Increased production of mtROS is an essential step in the activa-
tion of lymphocytes and is a potent trigger of pro-inflammatory cyto-
kine production [8,12,14,17,18]. As activated lymphocytes produce
IFN-+y, the reduced intracellular concentration of mtROS detected in
these cells might account for the lower circulating levels of this cytokine
observed in the IPT group. IFN-y has an essential role in the regulation of
the innate as well as adaptive immunity [19-21]. During viral or bacte-
rial infections, this cytokine is at the top of the inflammatory cascade, as
it is produced primarily by activated lymphocytes and can subsequently
activate macrophages, resulting in the secretion of other pro-
inflammatory mediators (e.g. TNF-at) [22]. In keeping with these func-
tional characteristics, impaired IFN-y-dependent inflammatory re-
sponses are thought to be involved in the pathogenesis of several
inflammatory and autoimmune diseases [23]. Conversely, secretion of
CRP and IL-6 are late events in the activation of the inflammatory cas-
cade, making their circulating levels more subject to multiple influences
and confounding factors. Therefore, our data suggests that mtROS and
lower levels of IFN-y may represent better markers to characterise the
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Fig. 1. Changes in mitochondrial reactive oxygen species production (mtROS) production during the study period in A) PBMC, B) Lymphocytes, C) Monocytes. I bars represent SE. mtROS
production was significantly lower in PBMC (p < 0.01) and lymphocytes (p < 0.05) at 6 months in the IPT compared to the CPT group.

dysregulated immune-inflammatory response commonly detected in
people with PD and T2D.

We have previously documented that IPT induces a significant im-
provement of systemic endothelial function at 6 months after PD treat-
ment in patients with and without T2D [2,3]. However, the underlying
biological pathways accounting for these results remained unclear, as
changes in circulating levels of inflammatory markers were not associ-
ated with changes in FMD. We have now shown that mtROS could ac-
count for the improved endothelial function observed after IPT. At
least two mechanisms could account for these findings. Firstly, inflam-
matory cytokines could act as transducers between activated inflamma-
tory cells and endothelial cells. For example, IFN-vy is known to induce
expression of endothelial cell adhesion molecules, such as vascular cell
adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1
(ICAM-1). These are involved early in atherogenesis and are crucial for
leukocyte recruitment to the plaque [24]. Hernandez-Mijares et al.
showed that increased levels of mtROS in patients with diabetes is asso-
ciated, cross-sectionally, with higher expression of adhesion molecules
on endothelial cells, resulting in a higher rolling and adhesion of these
cells to the vascular wall [25]. Importantly, Sikorski et al. documented
that the expression of cell adhesion molecules on endothelial cells
after incubation with IFN-y can be further intensified by LPS [26].
Based on this previous evidence, the reduced bacteremia achieved by
better oral health, combined with reduced mtROS production and levels
of IFN-y following IPT may explain the reduced expression of soluble
markers of endothelial cell activation and the improved endothelial
function observed in the IPT group at the end of the trial. Secondly,
the measure of mtROS in circulating inflammatory cells could reflect a
more generalised state of increased mtROS production in other vascular
compartments. In patients with T2D, the up-regulation of mtROS

production in circulating leukocytes is associated with higher mtROS
production in arterioles isolated from subcutaneous fat [27,28]. Conse-
quently, mtROS in circulating leukocytes could have considerable po-
tential as a marker of mtROS in endothelial cells, with the advantage
that it can be measured in readily available blood cells.

Together with the reduction of mtROS, the IPT group had a better
glycaemic control and lower levels of TNF-« than the CPT group at the
end of the trial. Previous meta-analyses have documented associations
between PD and risk of T2D or poor glycaemic control [1,29]. Systemic
inflammation has been considered a potential mediator of this associa-
tion, with some cytokines, such as TNF-«, potentially involved in the
regulation of systemic insulin-resistance. However, the underlying mo-
lecular pathways accounting for the relationship between inflammation
and glycaemic control remain unclear. Mitochondria are key regulator
of glucose metabolism. An altered balance between nutrients availabil-
ity and demand for ATP in favour of the former might cause a decrease
in the rate of electron flow, that prolongs the lifespan of reactive inter-
mediates at Complexes I and III, ultimately producing a higher amount
of mtROS [30]. In turn, an increased mtROS has a primary role in wors-
ening insulin-resistance [31-36], potentially establishing a vicious cycle.
As mtROS is also a potent trigger of pro-inflammatory cytokine produc-
tion, a reduced mtROS induced by the IPT could underpin the relation-
ship between the improved gluco-metabolic control and inflammation
observed in our trial.

Our study has several strengths. It is a randomised controlled trial
with vascular and laboratory technicians blinded to the patient treat-
ment allocation. Our group was the first to describe, characterise and
validate the impact of IPT on endothelial function, markers of inflamma-
tion and oxidative stress [3]. We established and validated the use of
FMD to measure endothelial function, optimising its reproducibility
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for large longitudinal studies and clinical trials [3,37]. There are how-
ever limitations. The sample size of this study is relatively small. In ad-
dition, subjects included in the study where recruited from secondary
care specialised diabetic clinics, where patients could have received
greater attention and care for the comorbidities commonly associated
to T2D (e.g. hypertension and dyslipidaemia). This might have led to
the recruitment of a relatively healthy sample of patients affected by
T2D, potentially reducing generalisation of our results. Further research
is required to confirm our findings in a larger population of patients
with diabetes. The FACS analysis is not the most accurate assay to mea-
sure mtROS. However, the gold standard techniques used to measure
mtROS are laborious and expensive, precluding their use in large
human clinical trials. The high specificity and sensitivity of MitoSOX
for mitochondrial superoxide production makes this probe the gold-
standard method for mtROS assessment by fluorescent staining, and
its ability to detect mtROS production in models of T2D and PD has
been confirmed recently [6]. To minimise artefacts and optimise our
assay, we followed several steps: a) we used cell isolation and staining
protocols previously reported and validated, b) we acquired the FACS
results immediately after staining and c) we performed gating using
the physical characteristics of the cell populations rather than
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Fig. 3. Scatter plot reporting the significant association between changes of mitochondrial
reactive oxygen species production (mtROS) in lymphocytes and changes in the flow
mediated dilation (FMD) (r = 0.409; p = 0.042).

fluorescent-labelled antibodies, as staining with other fluorescent
probes is known modify mitochondrial function and influence mtROS.
Although these precautions precluded the opportunity to correlate
mtROS with markers of lymphocytes/monocytes activation, they re-
duced several important sources of variability in our results.

5. Conclusions

Change of mtROS production following IPT is associated with the im-
provement of endothelial function and accompanied by a significant im-
provement of the metabolic control in patients with T2D. mtROS could
represent an important and novel therapeutic target to reduce the risk
of CV disease and other inflammatory complications in patients with
T2D.
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