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Abstract
In this article, we study the deformation theory of conically singular Cayley subman-
ifolds. In particular, we prove a result on the expected dimension of a moduli space
of Cayley deformations of a conically singular Cayley submanifold. Moreover, when
the Cayley submanifold is a two-dimensional complex submanifold of a Calabi–Yau
four-fold, we show by comparing Cayley and complex deformations that in this special
case the moduli space is a smooth manifold. We also perform calculations of some of
the quantities discussed for some examples.
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1 Introduction

Cayley submanifolds are calibrated submanifolds that arise naturally inmanifoldswith
exceptional holonomy Spin(7). Introduced byHarvey and Lawson [6], calibrated sub-
manifolds are by construction volume minimising, and hence minimal submanifolds.
Cayley submanifolds exist in abundance, with the simplest examples being any two-
dimensional complex submanifold of a Calabi–Yau four-fold.

The deformation theory of compact calibrated submanifolds in manifolds with
special holonomy was studied by McLean [22]. A major obstruction to generalising
these results to noncompact submanifolds is the failure of an elliptic operator on a
noncompact manifold to be Fredholm. However, by introducing a weighted norm
on spaces of sections of a given vector bundle on a particular type of noncompact
manifold, it is possible to overcome this difficulty, as long as one is careful about the
choice of weight. It is therefore possible to study certain moduli spaces of noncompact
calibrated submanifolds.
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In this article, the noncompact submanifolds that we study are conically singular.
Motivated by the SYZ conjecture, an interesting problem is whether a Spin(7)-
manifold can be fibred by Cayley submanifolds with some singular fibres. Conically
singularCayley submanifolds are natural candidates for these singular fibres.Deforma-
tions of conically singular special Lagrangian submanifolds in Calabi–Yau manifolds
and coassociative submanifolds of G2-manifolds have been studied by Joyce [9] and
Lotay [18], respectively. Deformations of compact Cayley submanifolds with bound-
ary and asymptotically cylindrical Cayley submanifolds have been studied by Ohst
[26,27].

We say that amanifoldwith a singular point is conically singular if a neighbourhood
of the singular point is diffeomorphic to a cone C ∼= L × (0, ε), and moreover the
metric approaches the conemetric like rμ−1 as r → 0, for someμ > 1. A submanifold
with a singular point is conically singular if, in a neighbourhood of the singular point,
we can identify the submanifold with a normal graph over a cone which decays with
rate rμ for μ > 1. We will prove a series of results on the moduli space of Cayley
deformations of a Cayley submanifold, conically singular with coneC and rateμ, that
also have a conical singularity at the same point with cone C and rate μ.

In Theorem 3.8, we prove that the expected dimension of this moduli space is given
by the index of a first-order linear elliptic operator acting on smooth normal vector
fields that decay like rμ close to the singular point. Motivated by other work of the
author [23], we pay special attention to Cayley deformations of a conically singular
complex surface N inside a Calabi–Yau four-fold M . In Theorem 3.12, we will show
that the elliptic operator in Theorem 3.8 is

∂̄ + ∂̄∗ : C∞
μ

(
ν
1,0
M (N ) ⊕ �0,2N ⊗ ν

1,0
M (N )

)
→ C∞

loc

(
�0,1N ⊗ ν

1,0
M (N )

)
. (1.1)

We will then study the moduli space of complex deformations of N in M that
are conically singular at the same point with the same rate and cone as N . We will
show in Theorem 3.14 that this moduli space is a smooth manifold, and moreover that
there are no infinitesimal Cayley deformations of N that are not infinitesimal complex
deformations of N in Corollary 3.16. Note that a calibration argument of Harvey and
Lawson [6, II.4 Thm 4.2] shows that the complex and Cayley deformations of any
compactly supported two-dimensional complex current in a Calabi–Yau four-fold are
the same. Corollary 3.16 gives some geometric intuition for this result by relating the
moduli spaces of complex and Cayley deformations to the operator (1.1).

In the later sections of this article, we will focus on the elliptic operators whose
indices we are interested in. In particular, we will characterise the exceptional weights
for which these operators are not Fredholm. We will also apply the Atiyah–Patodi–
Singer Index Theorem [2] to write down an expression for the index of these operators
in terms of topological and spectral invariants of the manifold.

We will conclude this article by performing a series of calculations, including the
dimension of the space of infinitesimal Cayley and complex deformations of three
complex cones in C

4 motivated by the work of Kawai [13] on deformations of asso-
ciative submanifolds of the seven sphere.
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Layout In Sect. 2, we will discuss some background results which the reader may
find useful onCayley submanifolds, conically singularmanifolds and Fredholm theory
on noncompact manifolds. Section 3 contains the results on the deformation theory of
conically singular Cayley and complex submanifolds. In Sect. 4, we characterise the
set D of exceptional weights for which the operators we discuss in this article, before
deducing a version of the Atiyah–Patodi–Singer theorem for these operators. In Sect.
5, we perform calculations of some of the quantities discussed in this article for some
examples.

Notation When M is a complex manifold, we denote by �p,qM the bundle of
(p, q)-forms �pT ∗1,0M ⊗ �qT ∗0,1M . A Calabi–Yau manifold M will have Kähler
form ω, complex structure J and holomorphic volume form�. If N is a submanifold
of M , we denote the normal bundle of N in M by νM (N ). Moreover, if N is a complex
submanifold of M then we denote by ν

1,0
M (N ) and ν

0,1
M (N ) the holomorphic and

antiholomorphic normal bundles of N in M , respectively. Submanifolds will be taken
to be embedded unless otherwise stated.

2 Preliminaries

2.1 Cayley Submanifolds

We follow Joyce [11, Defn 11.4.2] to define Spin(7)-manifolds.

Definition 2.1 Let (x1, . . . , x8) be coordinates on R8 with the Euclidean metric g0 =
dx21 + · · · + dx28 . Define a four-form on R

8 by

�0 :=dx1234 − dx1256 − dx1278 − dx1357 + dx1368 − dx1458 − dx1467
−dx2358 − dx2367 + dx2457 − dx2468 − dx3456 − dx3478 + dx5678, (2.1)

where dxi jkl := dxi ∧ dx j ∧ dxk ∧ dxl .
Let X be an eight-dimensional oriented manifold. For each p ∈ X define the subset

Ap X ⊆ �4T ∗
p X to be the set of four-forms � for which there exists an oriented

isomorphism TpX → R
8 identifying � and �0 given in (2.1), and define AX to be

the vector bundle with fibre Ap X .
A four-form � on X that satisfies �|p ∈ Ap X for all p ∈ X defines a metric g on

X . We call (�, g) a Spin(7)-structure on X . If ∇ denotes the Levi-Civita connection
of g then say (�, g) is a torsion-free Spin(7)-structure on X if ∇� = 0.

Then (X ,�, g) is a Spin(7)-manifold if X is an eight-dimensional oriented mani-
fold and (�, g) is a torsion-free Spin(7)-structure on X .

Given a Spin(7)-manifold (X ,�, g) then � is a calibration on X , known as the
Cayley calibration. An oriented, four-dimensional submanifold Y of X is said to be
Cayley if

�|Y = volY ,

i.e. Y is calibrated by �.
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Definition 2.2 Let (Mm, J , ω′) be a compact Kähler manifold with trivial canonical
bundle KM := �m,0M , i.e. with nowhere vanishing section α with ∂̄α = 0. Then by
Yau’s proof of the Calabi conjecture, there exists a Ricci-flat Kähler form ω ∈ [ω′].
Choose a holomorphic, nowhere vanishing section � ∈ �m,0(M) so that

ωm

m! =
(
i

2

)m

(−1)m(m−1)/2� ∧ �. (2.2)

Say that (M, J , ω,�) is a Calabi–Yau manifold.

Given a Calabi–Yau four-fold (M, J , ω,�), we can define a Cayley form on M by

� = 1

2
ω ∧ ω + Re �. (2.3)

The choice of constant in (2.2) was to ensure that Re � is a calibration, which
in turn ensures that � is a calibration. Writing down an expression for (2.3) in local
coordinates at any point of M and comparing to expression (2.1) we see that we can
view (M,�, g) as a Spin(7)-manifold, where g is the Riemannian metric defined
using ω and J . Examining expression (2.3) we see that complex surfaces and special
Lagrangians in a Calabi–Yau four-fold are Cayley submanifolds.

We can decompose bundles of forms on Spin(7)-manifolds into irreducible rep-
resentations of Spin(7). The following proposition is taken from [11, Prop 11.4.4].

Proposition 2.1 Let X be a Spin(7)-manifold. Then the bundle of two-forms M admits
the following decomposition into irreducible representations of Spin(7):

�2X ∼= �2
7 ⊕ �2

21,

where�k
l denotes the irreducible representation of Spin(7) on k-forms of dimension l.

Remark If Y is a Cayley submanifold, then we can view�2+Y as a subbundle of�2
7|Y

via the map α → π7(α) [22, p. 741], where π7 : �2M → �2
7 is the projection

map which will be described explicitly in Proposition 2.2. We will denote by E the
orthogonal complement of �2+Y in �2

7|Y , so that

�2
7|Y ∼= �2+Y ⊕ E . (2.4)

The following result allows us to characterise Cayley submanifolds of a Spin(7)-
manifold (X ,�, g) in terms of a four-form that vanishes exactly when restricted to a
Cayley submanifold of X .

Proposition 2.2 [30, Lem10.15]Let X be a eight-dimensionalmanifoldwith Spin(7)-
structure (�, g) and let Y be an oriented four-dimensional submanifold of X. Then
there exists τ ∈ C∞ (�4X ⊗ �2

7

)
so that Y (endowed with the correct choice of

orientation) is a Cayley submanifold of X if, and only if, τ |Y ≡ 0.
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If x, u, v, w are orthogonal, then

τ(x, u, v, w) = π7(�( · , u, v, w) ∧ x�),

where π7(x� ∧ y�) = 1
2

(
x� ∧ y� + �(x, y, ·, ·)) and � denotes the musical isomor-

phism T X → T ∗X. Moreover, if e1, . . . , e8 is an orthonormal frame for T X so that
� and �0 are identified then

τ =
8∑

i=2

[
ei ∧ (e1��) − e1 ∧ (ei��)

]
⊗ π7

(
e1 ∧ ei

)
. (2.5)

2.2 Deformation Theory of Compact Cayley Submanifolds

We begin by studying a compact Cayley submanifold Y of a Spin(7)-manifold X .
The results here are due to McLean [22, §6], although are taken in this form from a
paper of the author [23].We first use the tubular neighbourhood theorem to identify the
moduli space of Cayley deformations of Y in X with the kernel of a partial differential
operator.

Proposition 2.3 [22, Thm 6.3] Let (X , g,�) be a Spin(7)-manifold with compact
Cayley submanifold Y . Let exp denote the exponential map and for a normal vector
field v define Yv := expv(Y ). The moduli space of Cayley deformations of Y in X is
isomorphic near Y to the kernel of the following partial differential operator

F : C∞(V ) → C∞(E),

v → π(∗Y exp∗
v(τ |Yv )), (2.6)

where τ is defined in Proposition 2.2, V is an open neighbourhood of the zero section
in νX (Y ) and E was defined in (2.4), with π : �2

7|Y → E the projection map.
Moreover, we have that the linearisation of F at zero is the operator

D : C∞(νX (Y )) → C∞(E),

v →
4∑

i=1

π7

(
ei ∧ (∇⊥

ei v)
�
)
, (2.7)

where {e1, e2, e3, e4} is a frame for TY with dual coframe
{
e1, e2, e3, e4

}
, ∇⊥ :

TY ⊗ νX (Y ) → νX (Y ) denotes the connection on νX (Y ) induced by the Levi-
Civita connection of X and π7 denotes the projection of two-forms onto �2

7 as in
Proposition 2.2.

Remark Normal vector fields in the kernel of (2.7) are called infinitesimal Cayley
deformations of Y in X .

Proof (partial) We will prove only that the linearisation of F takes the form (2.7),
since this expression is different to that of McLean.
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We have that

dF |0(v) = d

dt
F(tv)|t=0 = ∗YLvτ |Y .

Take a local orthonormal frame {e1, . . . , e8} for T X with TY = {e1, . . . , e4}, and in
this frame

� = e1234 − e1256 − e1278 − e1357 + e1368 − e1458 − e1467

− e2358 − e2367 + e2457 − e2468 − e3456 − e3478 + e5678,

where ei = g(ei , · ) and ei jkl := ei ∧ e j ∧ ek ∧ el . We have that

∗YLvτ |Y = (Lvτ )(e1, e2, e3, e4).

Using a formula such as [8, Eqn (4.3.26)], we find that

(Lvτ )(e1, e2, e3, e4) = (∇vτ )(e1, e2, e3, e4) + τ
(
∇⊥
e1v, e2, e3, e4

)

− τ
(
∇⊥
e2v, e1, e3, e4

)
+ τ

(
∇⊥
e3v, e1, e2, e4

)

− τ
(
∇⊥
e4v, e1, e2, e3

)
,

where we have used that τ vanishes on four tangent vectors to a Cayley submanifold.
By definition of τ given in Proposition 2.2, we have that

(Lvτ )(e1, e2, e3, e4) = (∇vτ )(e1, e2, e3, e4) +
4∑

i=1

π7

(
ei ∧ (∇⊥

ei v)
�
)
,

and so it remains to show that if� is parallel then so is τ . From Eq. (2.5), we see that

∇vτ =
8∑

i=2

∇v

[
ei ∧ (e1��) − e1 ∧ (ei��)

]
⊗ π7

(
e1 ∧ ei

)

+
8∑

i=2

[
ei ∧ (e1��) − e1 ∧ (ei��)

]
⊗ ∇vπ7

(
e1 ∧ ei

)
.

We can see that the second sum in the above expression will vanish when evaluated
on e1, e2, e3, e4, so it remains to compute

∇v

[
ei ∧ (e1��) − e1 ∧ (ei��)

]
,

for i = 2, . . . , 8. Since

∇v

(
e1 ∧ (ei��)

)
= (∇ve

1) ∧ (ei��) + e1 ∧ (∇vei��) + e1 ∧ (ei�∇v�),
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we find that

∇v

(
e1 ∧ (ei��)

)
(e1, e2, e3, e4) = e2(ei )

(∇ve
1)(e2) + e3(ei )

(∇ve
1)(e3)

+ e4(ei )
(∇ve

1)(e4) + �(∇vei , e2, e3, e4)

+ (∇v�)(ei , e2, e3, e4).

Similarly, since i �= 1,

∇v

(
ei ∧ (e1��)

)
(e1, e2, e3, e4) = (∇ve

i )(e1) − ei (e2)�(∇ve1, e1, e3, e4)

+ ei (e3)�(∇ve1, e1, e2, e4)

− ei (e4)�(∇ve1, e1, e2, e3).

Using the explicit expression for �, we have that

(∇vτ )(e1, e2, e3, e4) =
8∑

i=2

[
ei (e2)e

2(∇ve1) − e2(ei )
(∇ve

1)(e2)

+ ei (e3)e
3(∇ve1) − e3(ei )

(∇ve
1)(e3) + ei (e4)e

4(∇ve1)

− e4(ei )
(∇ve

1)(e4) − e1(∇vei ) + (∇ve
i )(e1)

−(∇v�)(ei , e2, e3, e4)
]
⊗ π7

(
e1 ∧ ei

)
.

Finally, note that since the metric g on X is parallel with respect to the Levi-Civita
connection,

(∇ve
j )(ek) = −e j (∇vek) = −g(∇vek, e j ) = g(ek,∇ve j ) = ek(∇ve j )

= −(∇ve
k)(e j ),

and so we find that

(∇vτ )(e1, e2, e3, e4) =
8∑

i=5

−(∇v�)(ei , e2, e3, e4) ⊗ π7
(
e1 ∧ ei

)
,

which vanishes since � is parallel. ��
Now suppose that M is a four-dimensional Calabi–Yau manifold and N is a two-

dimensional complex submanifold of M . We can apply the above results to study the
Cayley deformations of N in M , but we will exploit the complex structure of N and
M to give these results nicer forms. The following results are due to the author, and
proofs can be found in [23].

To begin with, we identify the normal bundle and E with natural vector bundles
on N .
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Proposition 2.4 [23, Prop 3.2 and 3.3] Let N be a two-dimensional submanifold of a
Calabi–Yau four-fold (M, J , ω,�). Then

νM (N ) ⊗ C = ν
1,0
M (N ) ⊕ ν

0,1
M (N ) ∼= ν

1,0
M (N ) ⊕ �0,2N ⊗ ν

1,0
M (N ), (2.8)

with ν0,1M (N ) ∼= �0,2N ⊗ ν
1,0
M (N ) via the map

v → 1

4
(v��),

where  : ν∗0,1
M (N ) → ν

1,0
M (N ), and

E ⊗ C ∼= �0,1N ⊗ ν
1,0
M (N ). (2.9)

With these isomorphisms in place, we can modify Proposition 2.3.

Proposition 2.5 [23, Prop 3.5] Let N be a complex surface in a Calabi–Yau manifold
M. Then the infinitesimal Cayley deformations of N in M can be identified with the
kernel of the operator

∂̄ + ∂̄∗ : C∞ (ν1,0M (N ) ⊕ �0,2N ⊗ ν
1,0
M (N )

)
→ C∞ (�0,1N ⊗ ν

1,0
M (N )

)
. (2.10)

We will now apply McLean’s method to study the complex deformations of N
in M . We begin by finding a form which vanishes exactly when restricted to a two-
dimensional complex submanifold.

Proposition 2.6 [23, Prop 4.2] Let Y an oriented four-dimensional submanifold of a
four-dimensional Calabi–Yau manifold (M, J , ω,�). Then Y is a complex submani-
fold of M if, and only if, for all vector fields u, v, w on Y ,

σ(u, v, w) = 0,

where σ(u, v, w) := Re �(u, v, w, ·).
We can now define a partial differential operator whose kernel can be identified

with the moduli space of complex deformations of N in M .

Proposition 2.7 [23, Prop 4.3] Let N be a compact complex surface inside a four-
dimensional Calabi–Yau manifold M. Then the moduli space of complex deformations
of N is isomorphic near N to the kernel of

G : C∞(V ⊗ C) → C∞(�1N ⊗ T ∗M |N ⊗ C),

v → ∗N exp∗
v(σ |Nv ), (2.11)

where σ was defined in Proposition 2.6 and V is an open neighbourhood of the zero
section in νM (N ).
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We can find the linear part of G.

Proposition 2.8 [23, Prop 4.4] Let N be a compact complex surface in a Calabi–Yau
four-fold M. Let G be the partial differential operator defined in Proposition 2.6. Then
the linearisation of G at zero is equal to the operator

v → −∂∗(v��) − ∂̄∗(v��),

where v ∈ C∞(νM (N ) ⊗ C). Therefore v is an infinitesimal complex deformation of
N if, and only if,

∂∗(v��) = 0 = ∂̄∗(v��).

Moreover, we have that, if v = v1 ⊕ v2 where v1 ∈ ν
1,0
M (N ) and v2 ∈ ν

0,1
M (N )

∂∗(v��) = ∂∗(v1��), ∂̄∗(v��) = ∂̄∗(v2��),

and

∂∗(v1��) = 0 ⇐⇒ ∂̄v1 = 0.

So we can see from this result (in combination with the explicit isomorphism
given in Proposition 2.4) that an infinitesimal Cayley deformation of N , v ⊕ w ∈
C∞(ν

1,0
M (N )⊕�0,2N ⊗ ν

1,0
M (N )) such that ∂̄v+ ∂̄∗w = 0 is a complex deformation

of N if and only if ∂̄v = 0 = ∂̄∗w. Therefore an infinitesimal Cayley deformation
of N in M that is not complex would satisfy ∂̄v = −∂̄∗w. The following theorem
follows from the above results in combination with a local argument reproduced in
Lemma A.1.

Theorem 2.9 [23, Thm 4.9] Let N be a compact complex surface inside a four-
dimensional Calabi–Yau manifold M. Then the moduli space of Cayley deformations
of N in M near N is isomorphic to the moduli space of complex deformations of N in
M, which near N is a smooth manifold of dimension

dimCKer ∂̄ + dimCKer ∂̄
∗ = 2 dimCKer ∂̄,

where

∂̄ : C∞ (ν1,0M (N )
)

→ C∞ (�0,1N ⊗ ν
1,0
M (N )

)
,

∂̄∗ : C∞ (�0,2N ⊗ ν
1,0
M (N )

)
→ C∞ (�0,1N ⊗ ν

1,0
M (N )

)
.

Remark Comparing this to Kodaira’s theorem [14, Thm 1] on the deformation theory
of compact complex submanifolds, we see that we agree with the infinitesimal defor-
mation space, but in this special case where the ambient manifold is Calabi–Yau we
can integrate all infinitesimal complex deformations to true complex deformations.
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2.3 Conically Singular and Asymptotically Cylindrical Manifolds

We will now give some facts about closely related conically singular and asymptoti-
cally cylindrical manifolds that we will require later.

2.3.1 Conically Singular Manifolds

Heuristically speaking, a conically singular manifold can be thought of as a compact
topological space that is a smooth Riemannian manifold away from a point. If the
manifold near this point is diffeomorphic to a product L× (0, ε), and the metric on the
manifold is close to the cone metric on L × (0, ε), then we call the manifold conically
singular. This idea is made formal in the following definition, taken from [18, Defn
3.1].

Definition 2.3 Let Z be a connected Hausdorff topological space and let ẑ ∈ Z .
Suppose that Ẑ := Z\{ẑ} is a smooth Riemannian manifold with metric g. Then we
say that Z is conically singular at ẑ with cone C and rate λ if there exist ε > 0,
λ > 1, a closed Riemannian manifold (L, gL) of dimension one less than Z , an open
set ẑ ∈ U ⊆ Z and a diffeomorphism

� : (0, ε) × L → U\{ẑ},
such that

|∇ j
C (�

∗g − gC )|gC = O(rλ−1− j ) for j ∈ N ∪ {0} as r → 0, (2.12)

where r is the coordinate on (0,∞) on the cone C = (0,∞) × L , gC = dr2 + r2gL
is the cone metric on C and ∇C is the Levi-Civita connection of gC .

Definition 2.4 Let Z be a conically singular manifold at ẑ with cone (0,∞)× L . Use
the notation of Definition 2.3.We say that a smooth function ρ : Ẑ → (0, 1] is a radius
function for Z if ρ ≡ 1 on Z\U , while on U\{ẑ} there exist constants 0 < c < 1 and
C > 1 such that

cr < �∗ρ < Cr ,

on (0, ε) × L .

We will now define weighted Sobolev spaces for conically singular manifolds. The
definition given here may be deduced from [15, Defn 4.1].

Definition 2.5 Let Z be anm-dimensional conically singularmanifold at x̂ withmetric
g on Ẑ := Z\{ẑ}. Let ρ be a radius function for Z . For a vector bundle F define the
weighted Sobolev space L p

k,μ(F) to be the set of sections σ ∈ L p
k,loc(F) such that

‖σ‖L p
k,μ

:=
⎛
⎝

k∑
j=0

∫

Ẑ
|ρ j−μ∇ jσ |pρ−m volg

⎞
⎠

1/p

, (2.13)

is finite.
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2.3.2 Asymptotically Cylindrical Manifolds

An asymptotically cylindrical manifold is topologically the same as a conically singu-
lar manifold, but metrically they are conformally equivalent. Compare the following
definition to Definition 2.3.

Definition 2.6 Suppose that (Ẑ , g) is a Riemannian manifold. Then we say that Ẑ is
asymptotically cylindrical if there exist δ > 0, a closed Riemannian manifold (L, gL)
of dimension one less than Z , an open set U ⊆ Z and a diffeomorphism

� : (0,∞) × L → U ,

such that for all j ∈ N ∪ {0}

|∇ j∞(�∗g − g∞)|g∞ = O(e−δt ) as t → ∞, (2.14)

where t is the coordinate on (0,∞) on the cylinder C = (0,∞)× L , g∞ = dt2 + gL
is the cylindrical metric on C and ∇∞ is the Levi-Civita connection of g∞.

Notice that if (Ẑ , g) is a conically singular manifold with radius function ρ then
(Ẑ , ρ−2g) is asymptotically cylindrical.

We have the following weighted spaces on an asymptotically cylindrical manifold.

Definition 2.7 Let (Ẑ , g) be an asymptotically cylindrical manifold. For a vector bun-
dle F over Ẑ , define the weighted Sobolev spacesW p

k,δ(F) to be the space of sections

σ ∈ L p
k,loc(F) so that

‖σ‖W p
k,δ

:=
⎛
⎝

k∑
j=0

∫

Ẑ
|ρ−δ∇ jσ |pvolg

⎞
⎠

1/p

< ∞,

where ρ : Ẑ → (0, 1] is a smooth function satisfying ce−t ≤ ρ(t) ≤ Ce−t on the
cylindrical end of Ẑ and is equal to one elsewhere.

We have the following relationship between the weighted spaces W p
k,δ and L p

k,μ.

Lemma 2.10 [15, Prop and Defn 4.4] Let Z be a conically singular manifold at ẑ of
dimension m with metric g on Ẑ := Z\{ẑ}. Let ρ be a radius function for Z. Let T q

s Ẑ
be the vector bundle of (s, q)-tensors on Ẑ . Denote by W p

k,δ(T
q
s Ẑ) the weighted space

of Definition 2.7 with metric ρ−2g and denote by L p
k,μ(T

q
s Ẑ) the weighted space of

Definition 2.5. Then these spaces are isomorphic, with isomorphism given by

L p
k,μ(T

q
s Ẑ) → W p

k,δ(T
q
s Ẑ),

σ → ρδ−μ+s−qσ.
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2.4 FredholmTheory on Noncompact Manifolds

A key part in the argument for proving a result on the moduli space of Cayley defor-
mations of compact manifolds is the observation that an elliptic operator on a compact
manifold is Fredholm. Unfortunately, this result fails in general when the underlying
manifold is not compact, even in the simplest of settings. However, when the noncom-
pact manifold is topologically a compact manifold with a cylindrical end, a theory
was developed for certain types of elliptic operators.

Definition 2.8 Let Ẑ be a manifold with a cylindrical end L × (0,∞). Let

A : C∞
0 (F1) → C∞

0 (F2),

be a differential operator on compactly supported smooth sections of vector bundles.
We say that A is translation invariant if it is invariant under the natural R+-action on
the cylindrical end L × (0,∞) of Ẑ . If Ẑ has an asymptotically cylindrical metric g,
then we say that an operator

A =
m∑
j=0

a j · ∇ j ,

is asymptotically translation invariant if there exists a translation invariant operator

A∞ =
m∑
j=0

a∞
j · ∇ j ,

and δ > 0 such that for all j = 0, . . . ,m and k ∈ N ∪ {0}

|∇k(a j − a∞
j )|g = O(e−δt ) as t → ∞,

where ∇ is the Levi-Civita connection of g. Here a j , a∞
j ∈ C∞(F∗

1 ⊗ F2 ⊗ (T Z)⊗ j )

and ‘·’ denotes tensor product followed by contraction.

The following result may be deduced from the work of Lockhart and McOwen [16,
Thm 6.2] in combination with Lemma 2.10.

Proposition 2.11 Let Z be a conically singular manifold at ẑ, ρ a radius function for
Z and T q

s Ẑ be the vector bundle of (s, q)-tensors on Ẑ := Z\{ẑ}. Let

A : C∞
0

(
T q
s Ẑ
)→ C∞

0

(
T q ′
s′ Ẑ

)
,

be a linear mth-order elliptic differential operator with smooth coefficients such that
there exists λ ∈ R so that

Ã := ρλ+s′−q ′
Aρq−s,
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is asymptotically translation invariant to some translation invariant operator

Ã∞ : W p
k+m,μ

(
T q
s Ẑ
)→ W p

k,μ

(
T q ′
s′ Ẑ

)
. (2.15)

Then
A : L p

k+m,μ

(
T q
s Ẑ
)→ L p

k,μ−λ

(
T q ′
s′ Ẑ

)
, (2.16)

is a bounded map and there exists a discrete setDA ⊆ R such that (2.16) is Fredholm
if, and only if, μ ∈ R\DA. In this case (2.15) and (2.16) are Fredholm for the same
set of weights, and moreover their Fredholm indices differ by a constant independent
of μ.

Proof By Lemma 2.10, the map

L p
k+m,μ

(
T q
s Ẑ
)→ W p

k,μ

(
T q
s Ẑ
)
,

σ → ρs−qσ,

is an isomorphism which restricts to an isomorphism between the kernel of (2.16) and
the kernel of

Ã : W p
k+m,μ

(
T q
s Ẑ
)→ W p

k+m,μ

(
T q ′
s′ Ẑ

)
, (2.17)

since by definition

Ã
(
ρs−qσ

) = ρλ+s′−q ′
A
(
ρq−sρs−qσ

)
.

Similarly, the isomorphism

L p
k,μ−λ

(
T q ′
s′ Ẑ

)→ W p
k,μ

(
T q ′
s′ Ẑ

)
,

σ → ρλ+s′−q ′
σ,

preserves both the images of (2.16) and (2.17) and their cokernels. Therefore, (2.16)
and (2.17) are Fredholm for exactly the same values of μ ∈ R and moreover have
the same Fredholm index. The result follows from applying [16, Thm 6.2] to the
asymptotically translation invariant operator Ã. ��

Wewill characterise the setDA for the operators that feature in this article in Sect. 4.

3 Deformations of Conically Singular Cayley Submanifolds

3.1 Conically Singular Cayley Submanifolds

The following definition gives a preferred choice of coordinates around any given
point of X . This definition is analogous to [10, Defn 3.6] and [18, Defn 3.3], which are
coordinate systems for almost Calabi–Yau manifolds and G2-manifolds, respectively.
We note here that the only difference between the definition of conically singular in
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theseworks is the type of coordinate system chosen near the singular point. In a general
Riemannian manifold, it suffices to choose coordinates around the singular point that
identify the metric at this point with the Euclidean metric on R

d .

Definition 3.1 Let (X , g,�) be a Spin(7)-manifold. Then given x ∈ X , there exist
η > 0, an open set x ∈ V ⊆ X , η > 0 and a diffeomorphism

χ : Bη(0) → V , (3.1)

where Bη(0) denotes the ball of radius η around zero in R
8, with χ(0) = x and so

that dχ |0 : R8 → Tx X is an isomorphism identifying (�|x , g|x ) with (�0, g0). Call
χ a Spin(7) coordinate system for X around x .

Call two Spin(7)-coordinate systems χ, χ̃ for X around x equivalent if

dχ |0 = dχ̃ |0,

as maps R8 → Tx X .

In particular, when the Spin(7)-manifold X is a four-dimensional Calabi–Yauman-
ifold,we can choose a holomorphic volume form� for X so thatχ is a biholomorphism
and dχ |0 identifies the Ricci-flat Kähler formωwithω0 and�with�0, the Euclidean
Kähler form and holomorphic volume form, respectively.

We may now define conically singular submanifolds of Spin(7)-manifolds. This
definition is again analogous to [10, Defn 3.6] and [18, Defn 3.4].

Definition 3.2 Let (X , g,�) be a Spin(7)-manifold and Y ⊆ X compact and con-
nected such that there exists x̂ ∈ Y such that Ŷ := Y\{x̂} is a smooth submanifold of
X . Choose a Spin(7)-coordinate system χ for X around x̂ . We say that Y is conically
singular (CS) at x̂ with rate μ and cone C if there exist 1 < μ < 2, 0 < ε < η,
a compact Riemannian submanifold (L, gL) of S7 of dimension one less than Y , an
open set x̂ ∈ U ⊂ X and a smooth map φ : (0, ε) × L → Bη(0) ⊆ R

8 such that
� = χ ◦ φ : (0, ε) × L → U\{x̂} is a diffeomorphism and φ satisfies

|∇ j (φ − ι)| = O(rμ− j ) for j ∈ N ∪ {0} as r → 0, (3.2)

where ι : (0,∞)× L → R
8 is the inclusion map given by ι(r , l) = rl, ∇ is the Levi-

Civita connection of the cone metric gC = dr2 + r2gL on C , and | · | is computed
using gC .

Remark If the smooth, noncompact submanifold Ŷ is a Cayley (complex) submanifold
of the Spin(7)-manifold (Calabi–Yau four-fold) X then we say that Y is a CS Cayley
(complex) submanifold of X .

Conically singular submanifolds come with a rate 1 < μ < 2. We must have that
μ > 1 to guarantee that a conically singular submanifold is a conically singular
manifold (in the sense of Definition 2.3). The reason for asking that μ < 2 is so that
μ does not depend on the choice of equivalent Spin(7)-coordinate system around the
singular point of the conically singular submanifold.
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Lemma 3.1 Let Y be a conically singular submanifold at x̂ with rate μ and cone C
of a Spin(7)-manifold (X , g,�) with Spin(7)-coordinate system χ around x̂. Then
Definition 3.2 is independent of choice of equivalent Spin(7)-coordinate system.

Proof Let χ̃ be another Spin(7)-coordinate system for X around x̂ equivalent to χ .
Then χ and χ̃ and their differentials agree at zero. Let φ : (0, ε) × L → Bη(0) be
the map from Definition 3.2. We will show that Y is conically singular in X with
Spin(7)-coordinate system χ̃ around x̂ . Taking φ̃ := χ̃−1 ◦ χ ◦ φ, we have that

|∇ j (φ̃ − ι)| = |∇ j (χ̃−1 ◦ χ ◦ φ − ι)| = |∇ j (φ − ι)| + O(r2− j ), (3.3)

since χ̃−1 ◦ χ(x) = x + xT Ax + . . . , and φ(r , l) = rl + O(rμ). So we see that Y
is conically singular at x̂ with cone C in (X , g,�) with Spin(7)-coordinate system
χ̃ , but in order for Y to be CS with rate μ in this case, Eq. (3.3) tells us that we must
have that μ < 2. ��

The following definition is independent of choice of equivalent Spin(7)-coordinate
system. It is analogous to [18, Defn 3.5].

Definition 3.3 Let Y be a conically singular submanifold at x̂ with rate μ and cone
C of a Spin(7)-manifold (X , g,�) with Spin(7)-coordinate system χ . Denote by
ζ := dχ |0 : T0R8 → Tx̂ X . Define the tangent cone of Y at x̂ to be

Ĉ := ζ ◦ ι(C) ⊆ Tx̂ X ,

where ι : C → R
8 is the inclusion map given in Definition 3.2.

On a Calabi–Yau manifold M we are given a Ricci-flat metric ω that we often
have no explicit expression for. The following lemma tells us that Definition 3.2 is
independent of choice of Kähler metric on M .

Lemma 3.2 Let M be a Calabi–Yau four-fold with Ricci-flat Kähler form ω and let N
be a CS submanifold of M as in Definition 3.2. Then if ω′ is any other Kähler form on
M then N is still a conically singular submanifold of M with the same rate μ ∈ (1, 2)
and tangent cone.

Proof Suppose that N is a CS submanifold of M with respect to ω at x̂ . Choose a
Spin(7)-coordinate system for M around x̂ ,

χ : Bη(0) → V ,

for some η > 0 and open V ⊆ M containing x̂ , so that χ(0) = x̂ and dχ |0 :
C
4 → Tx̂ M is an isomorphism identifying the standard Euclidean Kähler form and

holomorphic volume form (ω0,�0) with (ω|x̂ ,�|x̂ ). Let φ, ε, C = (0,∞)× L , ι and
μ be as in Definition 3.2.

Now given any other Kähler form ω′ on M , we can find by [5, p. 107] η′ > 0, an
open set x ∈ V ′ ⊆ M and a biholomorphism

χ ′ : Bη′(0) → V ′,
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with χ ′(0) = x and dχ ′|0 : C4 → Tx̂ M is an isomorphism identifying ω0 with ω′|x̂ .
Then as noted before Definition 3.1, since dχ ′|0 identifies the Euclidean metric g0
with the metric g′|x̂ defined by ω′ and the complex structure, it suffices to check that
Definition 3.2 is satisfied with χ ′ instead of a Spin(7)-coordinate system.

Sinceχ andχ ′ are diffeomorphisms,dχ |0 anddχ ′|0 are isomorphismsC4 → Tx̂ M .
Then A := (dχ ′|0)−1 ◦ dχ |0 is an invertible linear map C4 → C

4. We will show that
N is conically singular in (M, ω′) with cone C ′ = Aι(C) and rate μ.

Firstly note that since A is a linear map, C ′ = Aι(C) = {Av | v ∈ ι(C)} is also a
cone. Denote by L ′ the link of C ′ (considered as a Riemannian submanifold of S7),
and for any ε′ > 0 write ι′ : L ′ × (0, ε′) → C

4 for the inclusion map (r ′, l ′) → r ′l ′.
Define φ′ : (0, ε′) × L ′ → C

4 by φ′ = χ ′−1 ◦ χ ◦ φ ◦ A−1, where ε′ = ε‖A‖.
Then this map is well defined (taking ε′ smaller if necessary) and moreover χ ′ ◦ φ′ is
a diffeomorphism onto its image. Moreover, by a similar argument to Lemma 3.1 we
have that

|∇ j
C ′(φ′(r ′, l ′) − ι′(r ′, l ′))|gC ′ = O((r ′)μ− j ),

since μ < 2, where gC ′ = dr ′2 + (r ′)2gL ′ is the cone metric on C ′ and ∇C ′ is the
Levi-Civita connection of C ′.

Finally, we have that

Ĉ ′ = dχ ′|0(ι′(C ′)) = dχ |0 ◦ (dχ |0)−1 ◦ dχ ′|0(Aι(C)) = dχ |0(A−1Aι(C)) = Ĉ,

and so the tangent cone to N at x̂ is the same in each case. ��
Remark Note that the proof Lemma 3.2 also shows that if N is conically singular with
respect to one Spin(7)-coordinate system, it is conically singular with respect to any
other Spin(7)-coordinate system, although with a different cone in general, but the
same tangent cone.

We can now construct an example of a conically singular complex surface inside a
Calabi–Yau four-fold.

Example We will model our conically singular complex surface on the following
complex cone in C4. Define C to be the set of (z1, z2, z3, z4) ∈ C

4 satisfying

z41 + z42 + z43 + z44 = 0,

z31 + z32 + z33 + z34 = 0.

Clearly, if z ∈ C , then also λz ∈ C for any λ ∈ R\{0}, and so C is a cone.
Checking the rank of the matrix

(
4z31 4z32 4z33 4z34

3z21 3z22 3z23 3z24

)
,

at each point of C , we see that the only singular point of C is zero.
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As we will discuss in more detail in Sect. 4, a complex cone C in C
4 has both a

real link L := S7 ∩ C , and a complex link � := π(L), where π : S7 → CP3 is the
Hopf fibration. We can view the real link of a complex cone as a circle bundle over
the complex link of the cone.

In this case, the complex link � of C is the complex curve in CP3 is given by
[z0 : z1 : z2 : z3] ∈ CP3 satisfying

z40 + z41 + z42 + z43 = 0,

z30 + z31 + z32 + z33 = 0.

We can apply the adjunction formula [7, Prop 2.2.17] to find that the canonical
bundle of � is given by

K� = KCP3 |� ⊗ OCP3(4)|� ⊗ OCP3(3)|�
= OCP3(4 + 3 − 3 − 1)|� = OCP3(3)|�,

where OCP3(k) denotes the −kth (tensor) power of the tautological line bundle over
CP3 if k is a negative integer, the kth power of the dual of the tautological line bundle
if k is a positive integer, and the trivial line bundle if k = 0. Then it follows from the
Hirzebruch–Riemann–Roch theorem [7, Thm 5.1.1] that the genus of � is

g = 2 + deg OCP3(3)|�
2

= 2 + 3 × deg(�)

2
= (2 + 3 × 4 × 3)/2 = 19.

Now consider the Calabi–Yau four-fold M defined by

{
[z0 : z1 : z2 : z3 : z4 : z5] ∈ CP5

∣∣∣ z60 + z61 + z62 + z63 + z64 + z65 = 0
}
.

Consider the singular submanifold N of M defined to be the set of all [z0 : z1 : z2 :
z3 : z4 : z5] ∈ CP5 satisfying

z60 + z61 + z62 + z63 + z64 + z65 = 0,

z41 + z42 + z43 + z44 = 0,

z31 + z32 + z33 + z34 = 0.

The complex Jacobian matrix of the defining equations of N is given by

⎛
⎜⎜⎝
6z50 6z51 6z52 6z53 6z54 6z55

0 4z31 4z32 4z33 4z34 0

0 3z21 3z22 3z23 3z24 0

⎞
⎟⎟⎠ .

It can be calculated that there are six singular points on N of the form [ω : 0 : 0 : 0 :
0 : 1], where ω is a 6th root of −1.
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We will now prove that N satisfies Definition 3.2. We will exploit Lemma 3.2 and
check the definition using the metric on M induced from the Fubini–Study metric on
CP5, denoted by ω.

Denote the singular points of N by {p1, . . . , p6}, where pk = [ωk : 0 : 0 : 0 : 0 : 1]
for ωk := ei(2k−1)π/6. We must construct maps χk so that there exist ηk > 0 and open
sets pk ∈ Vk ⊆ M and diffeomorphisms

χk : Bηk (0) → Vk,

with χk(0) = pk and so that

χ∗
k ω = ω0 + O(|z|2),

for k = 1, . . . , 6.
For k = 1, . . . 6, define χk : Bηk (0) → M by

χk(w1, w2, w3, w4)

=
[
ωk : √

2w1 : √
2w2 : √

2w3 : √
2w4 :

(
1 − 8

(
w6
1 + w6

2 + w6
3 + w6

4

))1/6]
,

(3.4)

where if a = reiθ for r > 0 and −π < θ ≤ π , we define a1/6 := r1/6eiθ/6. It is clear
that (3.4) is a diffeomorphism onto its image. The induced Fubini–Study metric on M
pulls back under χk to the Euclidean metric onC4 at each pk = [ωk : 0 : 0 : 0 : 0 : 1].
Taking φ = ι, where ι : C → C

4 is the inclusion map, we see that φ ◦ χ is a
diffeomorphismC to N , and so the definition of conically singular is trivially satisfied.

3.2 Tubular Neighbourhood Theorems

In this section, we will prove a tubular neighbourhood theorem for conically singular
submanifolds so that we can identify deformations of conically singular submanifolds
with normal vector fields. We will do this in two steps. Firstly, in Proposition 3.3 we
will construct a tubular neighbourhood of a cone in Rn using the well-known tubular
neighbourhood theorem for compact submanifolds. We will use this to construct a
tubular neighbourhood of a conically singular submanifold in Proposition 3.4. Propo-
sitions 3.3 and 3.4 use ideas of similar results proved by Joyce [10, Thm4.6] for special
Lagrangian cones and Lotay [18, Prop 6.4] for CS coassociative submanifolds.

Proposition 3.3 (Tubular neighbourhood theorem for cones) Let C be a cone in R
n

with link L and let g be a Riemannian metric on R
n (not necessarily the Euclidean

metric). There exists an action of R+ on νRn (C) (defined by g)

t : νRn (C) → νRn (C),

so that
|t · v| = t |v|. (3.5)
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We can construct open sets VC ⊆ νRn (C), invariant under (3.5), containing the zero
section and TC ⊆ R

n, invariant under multiplication by positive scalars, containing
C that grow like r and a dilation equivariant diffeomorphism

�C : VC → TC ,

in the sense that�C (t ·v) = t �C (v) for all v ∈ νRn (C). Moreover,�C maps the zero
section of νRn (C) to C.

Proof We will first address the claim that there exists an R+-action on νRn (C) so that
(3.5) holds. First note that points in νRn (C) take the form

(r , l, v(r , l)),

where r ∈ R+, l ∈ L and v(r , l) ∈ νr ,l(C). Notice that for any r , r ′ ∈ R+ the spaces
νr ,l(C) and νr ′,l(C) are naturally isometric. Define an action of R+ on νR(C) by

t : νRn (C) → νRn (C),

(r , l, v(r , l)) → (tr , l, tv(r , l)). (3.6)

Then |t · v(r , l)|tr ,l = |tv(r , l)|r ,l = t |v(r , l)|r ,l as claimed. Notice that t · (t ′ · v) =
(t t ′) · v and so (3.6) is a group action in the usual sense.

To prove the tubular neighbourhood part of this proposition, we first apply the usual
tubular neighbourhood theorem to the compact submanifold L of Sn−1. (Recall that
we need ametric on Sn−1 to define the exponential map.We take this to be the standard
round metric on Sn−1.) This gives us an open set VL ⊆ νSn−1(L) containing the zero
section and an open set TL ⊆ S7 containing L and a diffeomorphism

�L : VL → TL ,

so that �L maps the zero section of νSn−1(L) to L . Again write points in νRn (C) as
(r , l, v(r , l)), where v ∈ νr ,l(C), and similarly points in νSn−1(L) as (l, v(l)) where
v ∈ νl(L) ∼= νr ,l(C). Then define

VC :=
{
(r , l, v(r , l)) ∈ νRn (C) |

(
l, r−1v(r , l)

)
∈ VL

}
.

It is clear that VC is invariant under the R+-action (3.6) by construction of VC and the
R+-action. We see that VC grows like r in the sense that if v = (r , l, v(r , l)) ∈ VC
then

|v(r , l)|rl ≤ r |VL |,

where |VL | is the diameter of the set VL . Now define

TC := {λt | t ∈ TL , λ ∈ R+}.
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Then it is clear that TC is dilation invariant, in the sense that it is clearly invariant
under multiplication by positive scalars, and that C ⊆ TC . We see that TC grows like
r in the sense that if t ∈ T , l ∈ L and r ∈ R+ then

|r t − rl| ≤ r |TL |,

where |TL | is the diameter of the set TL . Define

�C : VC → TC ,

(r , l, v(r , l)) → r �L(l, r
−1v(r , l)).

It is clear that �C is well-defined, bijective and smooth. It is also clear that

�C (t · (r , l, v(r , l)) = t �C (r , l, v(r , l)).

Finally we have that

�C (r , l, 0) = r �L(l, 0) = rl,

by definition of �L and so �C maps the zero section of νRn (C) to C . ��
We can use this result to prove a tubular neighbourhood theorem for a conically

singular submanifold.

Proposition 3.4 Let W be a conically singular submanifold of Z at x̂ with cone C and
rate μ. Write Ŵ := W\{x̂}. Then there exist open sets V̂ ⊆ νZ (Ŵ ) containing the
zero section and T̂ ⊆ Z containing Ŵ and a diffeomorphism

�̂ : V̂ → T̂ ,

that takes the zero section of νZ (Ŵ ) to Ŵ . Moreover, we can choose V̂ and T̂ to grow
like ρ as ρ → 0.

Proof Notice that K := W\U is a compact submanifold of Z . So by the compact
tubular neighbourhood theorem we can find open sets V̂1 ⊆ νZ (K ) containing the
zero section and T̂1 ⊆ Z containing K and a diffeomorphism

�̂1 : V̂1 → T̂1.

We will construct a tubular neighbourhood for Ŵ near x̂ . Denote Cε := C ∩ Bε(0).
Use the notation of Definition 3.2. Fix a coordinate systemχ : Bη(0) ⊆ R

n → V ⊆ Z
with χ(0) = x̂ and dχ |0 identifying the Euclidean metric with the metric on Tx̂ Z .
Choose φ : Cε → R

n uniquely by asking that

φ(r , l) − ι(r , l) ∈ (Trl ι(C))⊥.
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Then since

|φ − ι| = O(rμ),

for 1 < μ < 2 as r → 0, making ε smaller if necessarily, we can guarantee that φ(r , l)
lies in the tubular neighbourhood of C given by Proposition 3.3. We can therefore
identify φ(Cε) with a normal vector field vφ on C .

Applying Proposition 3.3 gives us VC ⊆ νRn (C), TC ⊆ R
n and a diffeomorphism

�C : VC → TC .

Denote by VCε the restriction of VC to Cε , and define

Vφ := {v ∈ νBε (0)(Cε) | v + vφ ∈ VCε },

with

�φ(v) := �C (v + vφ),

for v ∈ Vφ and

Tφ := �C (Vφ).

Then �C : Vφ → Tφ is a diffeomorphism by construction.
Write Û := U\{x̂}. Define V̂2 := F(Vφ) ⊆ νZ (Û ), where F is the isomorphism

νBε (0)(Cε) → νZ (Û ) induced from � and ι and T̂2 := χ(Tφ). By definition, these
sets grow with order ρ as ρ → 0. Then

χ ◦ �φ ◦ F−1 : V̂2 → T̂2,

is a diffeomorphism taking the zero section of νZ (Û ) to Û . Define V̂ , T̂ and �̂ by
interpolating smoothly between V̂1 and V̂2, T̂1 and T̂2 and �̂1 and �̂2. ��

3.3 Deformation Problem

The moduli space that we will consider will be defined in Definition 3.5 below, and
this moduli space will be identified with the kernel of a nonlinear partial differen-
tial operator in Proposition 3.5. First, we will define a weighted norm on spaces of
differentiable sections of a vector bundle.

3.3.1 Weighted Norms on Spaces of Differentiable Sections

Let Z be an n-dimensional CS manifold with a radius function ρ, F a vector bundle
over Ẑ (the nonsingular part of Z ) with a metric and connection.
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Definition 3.4 Let λ ∈ R and k ∈ N. Define the space Ck
λ(F) to be the space of

sections σ ∈ Ck
loc(F) satisfying

‖σ‖Ck
λ
:=

k∑
j=0

sup
Ẑ

|ρ j−λ∇ jσ | < ∞.

We say that σ ∈ C∞
λ (F) if σ ∈ Ck

λ(F) for all k ∈ N.

The space Ck
λ(F) is a Banach space, but C∞

λ (F) is not in general.

3.3.2 Moduli Space

We will now formally define the moduli space of conically singular Cayley deforma-
tions of a Cayley submanifold that we will be studying in this article.

Definition 3.5 Let Y be a conically singular Cayley submanifold at x̂ with cone C
and rate μ of a Spin(7)-manifold (X , g,�) with respect to some Spin(7)-coordinate
system χ , and denote the tangent cone of Y at x̂ by Ĉ . Write Ŷ := Y\{x̂}. Define the
moduli space of conically singular (CS) Cayley deformations of Y in X , M̂μ(Y ), to be
the set of CS Cayley submanifolds Y ′ at x̂ with cone C , rate μ and tangent cone Ĉ of
X so that there exists a continuous family of topological embeddings ιt : Y → X with
ι0(Y ) = Y and ι1(Y ) = Y ′, so that ιt (x̂) = x̂ for all t ∈ [0, 1] and so that ι̂t := ιt |Ŷ is

a smooth family of embeddings Ŷ → X with ι̂0(Ŷ ) = Ŷ and ι̂1(Ŷ ) = Ŷ ′ := Y ′\{x̂}.
We will now end this section by identifying the moduli space of Cayley CS deforma-
tions of a CSCayley submanifold of a Spin(7)-manifold with the kernel of a nonlinear
partial differential operator.

Proposition 3.5 Let Y be a CS Cayley submanifold at x̂ with cone C and rate μ ∈
(1, 2) of a Spin(7)-manifold (X , g,�). Let τ be the �2

7-valued four-form defined in
Proposition 2.2, π : �2

7 → E be the projection map for the splitting given in (2.4) and
V̂ ⊆ νX (Ŷ ), T̂ ⊆ X and �̂ be the open sets and diffeomorphism from the CS tubular
neighbourhood theorem 3.4. For v ∈ C∞(νX (Ŷ )) taking values in V̂ write �̂v for the
diffeomorphism �̂ ◦ v : Ŷ → Ŷv := �̂v(Ŷ ).

Then we can identify the moduli space of CS Cayley deformations of Y in X near
Y with the kernel of the following differential operator

F̂ : C∞
μ (V̂ ) → C∞

loc(E),

v → π(∗Ŷ �̂∗
v(τ |Ŷv )). (3.7)

Proof The deformation Ŷv is Cayley if, and only if, τ |Ŷv ≡ 0, which since �̂v is a

diffeomorphism is equivalent to ∗Ŷ �̂∗
v(τ |Ŷv ) = 0. By a local argument in [23, Prop

3.4] based on a similar argument of Harvey and Lawson [6, IV.2.C Thm 2.20] this is
equivalent to F̂(v) = 0. Since v, τ, �̂v are all smooth, we see that F̂ takes values in
C∞
loc(E) at claimed.
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It remains to show that Yv := Ŷv ∪ {x̂} is a CS submanifold of X at x̂ with cone C
and rate μ (with respect to the same Spin(7)-coordinate system as Y ) if, and only if,
v ∈ C∞

μ (V̂ ).

Let v be a smooth normal vector field on Ŷ , and let Ŷv := �̂v(Ŷ ). Use the notation
of Definition 3.2. Choose φ : (0, ε) × L → Bε(0) uniquely by requiring that

φ(r , l) − ι(r , l) ∈ (Trl ι(C))⊥.

Now we can use � and ι to identify νX (Û ) with νBε (0)(ι(Cε)), where Û := U\{x̂}
and Cε := (0, ε) × L . Write vC for the section of νBε (0)(ι(Cε)) corresponding to v

under this identification.
Making ε andU smaller if necessary, by the definition of the tubular neighbourhood

map in Proposition 3.4, we can define a map φv : Cε → Bε(0) by

φv(r , l) = �φ(vC (r , l)),

where�φ was defined in the proof of Proposition 3.4, so that χ ◦φv : Cε → �v(Û ) ⊆
Ŷv is a diffeomorphism. So we see that for Yv to be a CS submanifold of X with rate
μ and cone C we must have that

|∇ j (φv(r , l) − ι(r , l))| = O(rμ− j ), (3.8)

for all j ∈ N as r → 0. Now we can write

|∇ j (φv − ι)| ≤ |∇ j (φv − φ)| + |∇ j (φ − ι)|,

and so (3.8) holds if, and only if,

|∇ j (φv − φ)| = O(rμ− j ),

for j ∈ N as r → 0. But examining the definition of φv , we see that we can identify
φv − φ with the graph of vC , and so (3.8) holds if, and only if,

|∇ jvC | = O(rμ− j ),

for j ∈ N as r → 0. But then by definition of vC this is equivalent to

|∇ jv| = O(ρμ− j ),

for j ∈ N as ρ → 0, that is, v ∈ C j
μ(V̂ ) for all j ∈ N. So we see that the moduli space

of CS Cayley deformations of Y in X can be identified with the kernel of (3.7). ��
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3.4 Cayley Deformations of a CS Cayley Submanifold

In this section, we prove Theorem 3.8 on the expected dimension of the moduli space
of CSCayley deformations of a conically singular Cayley submanifold Y in a Spin(7)-
manifold X .

The following lemma is similar to [10, Thm 5.1] and [18, Prop 6.9].

Lemma 3.6 Let Y be a conically singular Cayley submanifold of a Spin(7)-manifold
X. Let F̂ be the operator defined in Proposition 3.5. Then we can write

F̂(v)(x) = Dv(x) + Q̂(x, v(x),∇v(x)), (3.9)

for x ∈ Ŷ , where

Q̂ : {(x, y, z) | (x, y) ∈ V̂ , z ∈ νx (Ŷ ) ⊗ T ∗
x Ŷ } → E,

is smooth, D was defined in Proposition 2.3 and

Q̂(v)(x) := Q̂(x, v(x),∇v(x)),

is a section of E. Let μ > 1. Then for each k ∈ N, for v ∈ Ck+1
μ (V̂ ) with ‖v‖C1

1
sufficiently small, there exist constants Ck > 0 so that

‖Q̂(v)‖Ck
2μ−2

≤ Ck‖v‖2Ck+1
μ

, (3.10)

and if v ∈ L p
k+1,μ(V̂ ) with ‖v‖C1

1
sufficiently small, with k > 1 + 4/p, there exist

constants Dk > 0 such that

‖Q̂(v)‖L p
k,2μ−2

≤ Dk‖v‖2L p
k+1,μ

. (3.11)

Moreover, we may deduce that

F̂ : L p
k+1,μ(V̂ ) → L p

k,μ−1(E), (3.12)

is a smooth map of Banach spaces for any 1 < p < ∞ and k ∈ N with k > 1+ 4/p.

Proof We omit the details of the proof of this result because of similarities to the
above-cited works. For the full proof the reader may consult the author’s PhD thesis
[24, Lem 5.3.1].We briefly describe howwe find the estimate near the singular point of
N , elsewhere it suffices to argue as for compact Cayley submanifolds (see, for example
[23, Lem 3.4]). Close to the singular point, it suffices to estimate the following operator
on the cone C ,

F̂C (v + vφ)(r , l) = F̂(v)(�(r , l)),
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where we use the notation of Proposition 3.4 and Definition 3.2. The estimates follow
by fixing some r0 > 0, performing the estimate on the compact manifold {r0} ×
L , and extending these estimates to (0, ε) × L using the equivariance properties of
F̂C . ��

Now that we have described the behaviour of the operator F̂ close to the singular
point of the conically singular manifold Ŷ , we will prove a weighted elliptic regularity
result for normal vector fields in the kernel of F̂ .

Proposition 3.7 Let Y be a conically singular Cayley submanifold of a Spin(7)-
manifold X. Let F̂ be the map defined in Proposition 3.5. Then

{v ∈ C∞
μ (V̂ ) | F̂(v) = 0} = {v ∈ L p

k+1,μ(V̂ ) | F̂(v) = 0},

for any μ ∈ (1, 2)\D, 1 < p < ∞ and k ∈ N satisfying k > 1 + 4/p. Here D is the
set of exceptional weights given by applying Proposition 2.11 to the linear part of F̂ .

Proof We will first show that if v ∈ C∞
μ (V̂ ) satisfying F̂(v) = 0, then v ∈

L p
k+1,μ. This is a little trickier than it seems, since we have that for any ε > 0,

C∞
μ (V̂ ) ⊆ L p

k,μ−ε(V̂ ), which is weaker than what we require. We will show that if

v ∈ L p
k+1,μ−ε(V̂ ), for ε > 0 sufficiently small, satisfies F̂(v) = 0, then we may

deduce that v ∈ L p
k+1,μ(V̂ ). Recall that in Lemma 3.6, we saw that we could write

F̂(v) = Dv + Q̂(v),

where D was defined in Proposition 2.3, and Q̂ is nonlinear. By Proposition 2.11 there
exists a discrete set D so that

D : L p
k+1,λ(νX (Ŷ )) → L p

k,λ−1(E), (3.13)

is Fredholm as long as λ /∈ D. Take 0 < ε < (μ − 1)/2 small enough so that
[μ − ε, μ] ∩ D = ∅. Let v ∈ L p

k+1,μ−ε(V̂ ) and suppose that F̂(v) = 0. Since (3.13)
is Fredholm when λ = μ − ε, we can write

L p
k,μ−ε−1(E) = D(L p

k+1,μ−ε(νX (Ŷ ))) ⊕ Ôμ−ε,

where Ôμ−ε is finite-dimensional and

Ôμ−ε
∼= Cokerμ−εD,

where CokerλD denotes the cokernel of (3.13). Since [μ − ε, μ] ∩ D = ∅, we know
that (see [16, Lem 7.1])

Cokerμ−εD = CokerμD. (3.14)

Now since F̂(v) = 0, we have that Dv = −Q̂(v), and so Q̂(v) is orthogonal
to Cokerμ−εD. Also Q̂(v) ∈ L p

k,2μ−2−2ε(E) ⊆ L p
k,μ−1(E) by Lemma 3.6 since
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v ∈ L p
k+1,μ−ε(V̂ ) and by our choice of ε. Therefore we have that Dv = Q̂(v) ∈

L p
k,μ−1(V̂ ), and it is orthogonal to CokerμD by (3.14). Therefore there exists v̄ ∈

L p
k+1,μ(V̂ ) with Dv = Dv̄. But then we must have that v− v̄ ∈ Kerμ−εD = KerμD,

since [μ − ε, μ] ∩ D = ∅, and so v ∈ L p
k+1,μ(V̂ ), as required.

Conversely, let v ∈ L p
k+1,μ(V̂ ) satisfy F̂(v) = 0. Here we perform a trick similar

to that in [12, Prop 4.6]. Taylor expanding F̂(v) around zero we can write F̂(v) as a
polynomial in v and ∇v. Differentiating and gathering terms we can write

∇ F̂(v) = L(x, v(x),∇v(x))∇2v + E(x, v(x),∇v(x)).

Consider the second-order elliptic linear operator

Lv : νX (Ŷ ) → E,

w → L(x, v(x),∇v(x))∇2w.

By Sobolev embedding, we know that v ∈ Cl
μ(V̂ ), for l ≥ 2 by choice of p and k,

and therefore the coefficients of the linear operator Lv lie inC
l−1
loc (V̂ ). Local regularity

for linear elliptic operators with coefficients in Hölder spaces (a nice statement is given
in [11, Thm 1.4.2], taken from [25, Thm 6.2.5]) tells us that v ∈ Cl+1

loc (V̂ ) which is
an improvement on the regularity of v, and so bootstrapping we may deduce that
v ∈ C∞

loc(V̂ ). (This is why we must differentiate F̂(v), to ensure that the coefficients
of the linear operator have enough regularity to improve the regularity of v.) Therefore
the coefficients of the operator Lv are smooth and so we may apply an estimate of
Lockhart and McOwen [16, Eq. 2.4] in combination with a change of coordinates
which tells us that

‖v‖L p
k+2,μ

≤ C
(
‖Lvv‖L p

k,μ−2
+ ‖v‖L p

0,μ

)
. (3.15)

Since F̂(v) = 0 = ∇ F̂(v), we have that

Lvv = −E(x, v(x),∇v(x)).

Since E(x, v(x),∇v(x)) is a polynomial in v and∇v with coefficients that depend on
the C1

1 -norm of v, and v ∈ C1
μ(V̂ ) and L p

k+1,μ(V̂ ), we have that E(x, v(x),∇v(x)) ∈
L p
k,μ−1(E) ⊆ L p

k,μ−2(E). Therefore Eq. (3.15) tells us that v ∈ L p
k+2,μ(V̂ ), from

which we may deduce that v is in fact in C∞
μ (V̂ ). ��

Wemay finally deduce the main theorem of this section, on the expected dimension
of the moduli space of Cayley CS deformations of a CS Cayley submanifold of a
Spin(7)-manifold X .

Theorem 3.8 Let Y be a CS Cayley submanifold at x̂ with cone C and rate μ ∈
(1, 2)\D of a Spin(7)-manifold X. Let D denote the first-order elliptic differential
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operator defined in (2.7). Then there exist a smooth manifold K̂0, which is an open
neighbourhood of 0 in the kernel of (3.16), and a smooth map ĝ2 from K̂0 into the cok-
ernel of (3.16)with ĝ2(0) = 0 so that an open neighbourhood of Y in the moduli space
of CS Cayley deformations of Y in X, M̂μ(Y ) from Definition 3.5, is homeomorphic
to an open neighbourhood of 0 in Ker ĝ2.

Moreover, the expected dimension of M̂μ(Y ) is given by the index of the linear
elliptic operator

D : L p
k+1,μ(νX (Ŷ )) → L p

k,μ−1(E). (3.16)

If the cokernel of (3.16) is {0} then M̂μ(Y ) is a smooth manifold near Y of the same
dimension as the kernel of (3.16). HereD is the set of weights μ ∈ R for which (3.16)
is not Fredholm from Proposition 2.11.

Proof By Propositions 3.5 and 3.7, we can identify M̂μ(Y ) near Y with the kernel of
the operator

F̂ : L p
k+1,μ(V̂ ) → L p

k,μ−1(E).

The linearisation of F̂ at zero is the operator

D : L p
k+1,μ(νX (Ŷ )) → L p

k,μ−1(E), (3.17)

which is elliptic. Since μ /∈ D, (3.17) is Fredholm. Therefore we may decompose

L p
k+1,μ(νX (Ŷ )) = K̂ ′ ⊕ X̂ ′,

where K̂ ′ is the kernel of (3.17) and X̂ ′ is closed, and

L p
k,μ−1(E) = D(L p

k+1,μ(νX (Ŷ ))) ⊕ Ôμ,

where Ôμ is the finite-dimensional obstruction space and

Ôμ
∼= L p

k,μ−1(E)/D(L p
k+1,μ(νX (Ŷ ))) =: CokerμD.

Then the map

F̂ : L p
k+1,μ(V̂ ) × Ôμ → L p

k,μ−1(E),

(v,w) → F̂(v) + w,

has
dF̂ |(0,0)(v, w) = Dv + w, (3.18)

which is surjective. Write K̂ = K̂ × {0} for the kernel of (3.18). We then have that

L p
k+1,μ(νX (Ŷ )) × Ôμ = K̂ ⊕ (X̂ ′ × Ôμ).
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Now we may apply the Banach space implicit function theorem to find K̂0 ⊆ K̂
containing zero, X̂ ′

0 ⊆ X̂ ′, Ô0 ⊆ Ôμ and a smoothmap ĝ = (ĝ1, ĝ2) : K̂0 → X̂ ′
0×Ô0

so that

F̂−1(0) ∩ (K̂0 × X̂ ′
0 × Ô0) =

{
(x, ĝ1(x), ĝ2(x)) | x ∈ K̂0

}
.

Sowemay identify the kernel of F̂ , and therefore M̂μ(Y )with the kernel of ĝ2 : K̂0 →
Ô0, a smoothmapbetweenfinite-dimensional spaces (since (3.17) is Fredholm). Sard’s
theorem tells us that the expected dimension of the kernel of ĝ2 is given by the index
of the operator (3.17). ��

3.5 Cayley Deformations of a CS Complex Surface

In this section, we prove Theorem 3.12 which gives the expected dimension of the
moduli space of CS Cayley deformations of a two-dimensional conically singular
complex submanifold N of a Calabi–Yau four-fold M in terms of the index of the
operator ∂̄+ ∂̄∗ acting on weighted sections of a vector bundle over N̂ (the nonsingular
part of N ).

3.5.1 Deformation Problem

We would like to study the moduli space given in Definition 3.5 for the CS Cayley
submanifold N that is a complex submanifold of a Calabi–Yau four-fold M . We
will now identify this moduli space with the kernel of a nonlinear partial differential
operator.

Proposition 3.9 Let N be a CS complex surface at x̂ with cone C and rate μ ∈ (1, 2)
inside a Calabi–Yau four-fold M. Write N̂ := N\{x̂}. Then the moduli space of CS
Cayley deformations of N in M, M̂μ(N ), can be identified with the kernel of the
operator

F̂cx : C∞
μ (Û ) → C∞

loc

(
�0,1 N̂ ⊗ ν

1,0
M (N̂ )

)
,

where Û ⊆ ν
1,0
M (N̂ ) ⊕ �0,2 N̂ ⊗ ν

1,0
M (N̂ ) is the image of V̂ ⊗ C from the tubular

neighbourhood theorem under the isomorphism given in Proposition 2.4, and F̂cx is
defined so that the following diagram commutes

C∞(Û ) C∞(�0,1 N̂ ⊗ ν
1,0
M (N̂ ))

C∞(V̂ ⊗ C) C∞(E ⊗ C)

F̂cx

F̂

where F̂ is the operator defined in Proposition 3.5 and we use the isomorphisms given
in Proposition 2.4.
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Moreover, the linearisation of F̂cx at zero is the operator

∂̄ + ∂̄∗ : C∞
μ

(
ν
1,0
M (N̂ ) ⊕ �0,2 N̂ ⊗ ν

1,0
M (N̂ )

)
→ C∞

loc

(
�0,1 N̂ ⊗ ν

1,0
M (N̂ )

)
. (3.19)

Proof By Proposition 3.5 we can identify themoduli space of CSCayley deformations
of N in M with the kernel of F̂ , which is the same as the kernel of F̂cx.

Since the linearisation of the operator of F̂ is given by the operator D defined in
Proposition 2.3, the local argument of Proposition 2.5 still holds, and so we see that
the linearisation of F̂cx at zero is given by the operator (3.19) as claimed. ��

3.5.2 Cayley Deformations of a CS Complex Surface

In this section, wewill give analogies of the results of Sect. 3.4, whichwere on analytic
properties of the operator F̂ defined in Proposition 3.5, for the operator F̂cx defined
in Proposition 3.9. Due to the relation between the operators F̂ and F̂cx noted in the
proof of Proposition 3.9, these results follow immediately from their counterparts.

Lemma 3.10 Let N be a conically singular complex surface inside a Calabi–Yau four-
fold M. Let F̂cx be the operator defined in Proposition 3.9. Then we can write

F̂cx(w)(x) = (∂̄ + ∂̄∗)w(x) + Q̂cx(x, w(x),∇w(x)), (3.20)

for x ∈ N̂ , where

Q̂cx : {(x, y, z) | (x, y) ∈ Û , z ∈
[
ν1,0x (N̂ ) ⊕ �0,2

x N̂ ⊗ ν1,0x (N̂ )
]
⊗ T ∗

x N̂ }
→ �0,1 N̂ ⊗ ν

1,0
M (N̂ ),

is smooth and Q̂cx(w)(x) := Q̂cx(x, w(x),∇w(x)) is a section of�0,1 N̂ ⊗ ν
1,0
M (N̂ ).

Let μ > 1. Then for each k ∈ N, for w ∈ Ck+1
μ (Û ) with ‖w‖C1

1
sufficiently small,

there exist constants Ck > 0 so that

‖Q̂cx(w)‖Ck
2μ−2

≤ Ck‖w‖2
Ck+1
μ

, (3.21)

and if w ∈ L p
k+1,μ(Û ) with ‖w‖C1

1
sufficiently small, there exist constants Dk > 0

such that
‖Q̂cx(w)‖L p

k,2μ−2
≤ Dk‖w‖2

L p
k+1,μ

. (3.22)

Moreover, we may deduce that

F̂cx : L p
k+1,μ(Û ) → L p

k,μ−1(E), (3.23)

is a smooth map of Banach spaces for any 1 < p < ∞ and k ∈ N with k > 1+ 4/p.
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Proof Since F̂cx is defined by composing the operator F̂ defined in Proposition 3.5
with isomorphisms of vector bundles, the estimates (3.21) and (3.22) follow from the
estimates (3.10) and (3.11), respectively, since the isomorphisms defined in Proposi-
tion 2.4 are isometries.

Moreover, since these isomorphisms are smooth, the claim that (3.23) is a
smooth map of Banach spaces follows from the corresponding fact for F̂ from
Lemma 3.6. ��

We may now give a weighted elliptic regularity result for F̂cx.

Proposition 3.11 Let N be a conically singular complex surface inside a Calabi–Yau
four-fold M. Let F̂cx be the map defined in Proposition 3.9. Then

{w ∈ C∞
μ (Û ) | F̂cx(w) = 0} = {w ∈ L p

k+1,μ(Û ) | F̂cx(w) = 0},

for anyμ ∈ (1, 2)\D, 1 < p < ∞ and k ∈ N. HereD is the set of exceptional weights
given by applying Proposition 2.11 to the linear part of F̂cx.

Proof This follows from Proposition 3.7 in combination with the fact that the ker-
nels of F̂ , defined in Proposition 3.5, and F̂cx are isomorphic by definition, and the
isomorphism given in Proposition 2.4 is an isometry. ��

We deduce the following theorem on the moduli space of CS Cayley deformations
of a CS complex surface inside a Calabi–Yau four-fold. This theorem can be proved by
an identical argument to the proof of Theorem 3.8, but we will deduce it as a corollary
of Theorem 3.8.

Theorem 3.12 Let N be a CS complex surface at x̂ with cone C and rateμ ∈ (1, 2)\D
of a Calabi–Yau four-fold M. Then the expected dimension of M̂μ(N ) is given by the
index of the linear elliptic operator

∂̄ + ∂̄∗ : L p
k+1,μ

(
ν
1,0
M (N̂ ) ⊕ �0,2 N̂ ⊗ ν

1,0
M (N̂ )

)
→ L p

k,μ−1

(
�0,1 N̂ ⊗ ν

1,0
M (N̂ )

)
.

(3.24)
Moreover if the cokernel of (3.24) is {0} then M̂μ(N ) is a smooth manifold near N
of the same dimension as the (complex) dimension of the kernel of (3.24). Here D is
the set of weights μ ∈ R for which (3.16) is not Fredholm from Proposition 2.11.

Proof By Theorem 3.8, the expected dimension of M̂μ(N ) is given by the index of
the operator (3.16). Since, by Proposition 2.5 we can consider the operator (3.24) as
the composition of the operator (3.16) with the isomorphisms from Proposition 2.4,
which are isometries, we may deduce that the index of (3.16) and (3.24) are equal.

��

3.6 Complex Deformations of a CS Complex Surface

In this section, we will compare the CS complex and Cayley deformations of a CS
complex surface inside a four-dimensional Calabi–Yau manifold.
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Definition 3.6 Let N be a CS complex surface at x̂ with rate μ and cone C inside
a Calabi–Yau manifold M with respect to some Spin(7)-coordinate system χ , and
denote by Ĉ the tangent cone of N . Write N̂ := N\{x̂}. Define the moduli space of
conically singular (CS) complex deformations of N in M , M̂cx

μ (N ), to be the set of CS

complex surfaces N ′ at x̂ with cone C , rate μ and tangent cone Ĉ of M so that there
exists a continuous family of topological embeddings ιt : N → M with ι0(N ) = N
and ι1(N ) = N ′, so that ιt (x̂) = x̂ for all t ∈ [0, 1] and so that ι̂t := ιt |N̂ is a smooth

family of embeddings N̂ → M with ι̂0(N̂ ) = N̂ and ι̂1(N̂ ) = N̂ ′ := N ′\{x̂}.

We will now identify the moduli space of CS complex deformations of a CS complex
surface in a Calabi–Yau manifold M with the kernel of a nonlinear partial differential
operator.

Proposition 3.13 Let N be a conically singular complex surface at x̂ with rate μ and
cone C inside a Calabi–Yau four-fold M. Write N̂ := N\{x̂}. Let V̂ ⊆ νM (N̂ )⊗C be
the open set and �̂ : V̂ → T̂ the diffeomorphism defined in the tubular neighbourhood
theorem 3.4. For v ∈ C∞

loc(V̂ ) write �v := � ◦ v, and define N̂v := �v(N̂ ). Then the

moduli space of CS complex deformations of N in M, M̂cx
μ (N ), is isomorphic near

N to the kernel of

Ĝ : C∞
μ (V̂ ⊗ C) → C∞

loc(�
1 N̂ ⊗ T ∗M |N̂ ⊗ C),

v → ∗N̂ �∗
v(σ |N̂v

), (3.25)

where σ was defined in Proposition 2.6. Moreover, the kernel of Ĝ is isomorphic to
the kernel of its linear part given by the map

C∞
μ (νM (N̂ ) ⊗ C) → C∞

loc

(
�1,0 N̂ ⊗ ν

∗1,0
M (N̂ ) ⊕ �0,1 N̂ ⊗ ν

∗0,1
M (N̂ )

)
,

v → −∂∗(v��) − ∂̄∗(v��). (3.26)

The kernel of (3.26) is isomorphic to

{
v ⊕ w ∈ C∞

μ (ν
1,0
M (N̂ ) ⊕ �0,2 N̂ ⊗ ν

1,0
M (N̂ ))

∣∣∣ ∂̄v = 0 = ∂̄∗w
}
. (3.27)

Proof By definition of σ we see that normal vector fields in the kernel of Ĝ correspond
to complex deformations of N̂ , and a similar argument to Proposition 3.5 shows that
weighted smooth sections of νM (N̂ ) ⊗ C give conically singular deformations of N̂
as required. The linear part of Ĝ follows from Proposition 2.8, which was a local
argument, and similarly that the kernel of Ĝ is equal to the kernel of its linear part
follows from the local argument reproduce in Lemma A.1. Finally, that the kernel of
(3.26) is equal to (3.27) follows from Proposition 2.8, where we proved that

∂∗(v��) = 0 ⇐⇒ ∂̄(π1,0(v)) = 0,
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where π1,0 : νM (N̂ ) ⊗ C → ν
1,0
M (N̂ ) and the isomorphism of Proposition 2.4.

ν
0,1
M (N̂ ) ∼= �0,2 N̂ ⊗ ν

1,0
M (N̂ ).

��
This proposition allows us to prove that the CS complex deformations of a conically
singular complex surface are unobstructed. This theorem is a generalisation of Theo-
rem 2.9 to conically singular submanifolds.

Theorem 3.14 Let N be a conically singular complex surface at x̂ with rate μ ∈
(1, 2) and cone C inside a Calabi–Yau four-fold M. The moduli space of CS complex
deformations of N in M, M̂cx

μ (N ) given in Definition 3.6, is a smooth manifold of
dimension

dimCKer ∂̄ + dimCKer ∂̄
∗ = 2dimCKer ∂̄, (3.28)

where

∂̄ : C∞
μ

(
ν
1,0
M (N̂ )

)
→ C∞

loc

(
�0,1 N̂ ⊗ ν

1,0
M (N̂ )

)
, (3.29)

∂̄∗ : C∞
μ

(
�0,2 N̂ ⊗ ν

1,0
M (N̂ )

)
→ C∞

loc

(
�0,1 N̂ ⊗ ν

1,0
M (N̂ )

)
. (3.30)

Proof By Proposition 3.13 the moduli space of CS complex deformations of N in M
can be identified with the kernels of the operators (3.29) and (3.30). Equation (3.28)
follows since the kernels of the operators (3.29) and (3.30) are isomorphic [23, Cor
4.6]. ��

To compare CS complex and Cayley deformations of a CS complex surface, we
require the following result.

Proposition 3.15 Let N be a CS complex surface at x̂ with cone C and rate μ ∈ (1, 2)
in a Calabi–Yau four-fold M. Write N̂ := N\{x̂}. Then w ∈ L2

k+1,μ(ν
1,0
M (N̂ ) ⊕

�0,2 N̂ ⊗ ν
1,0
M (N̂ )) is an infinitesimal CS Cayley deformation of N̂ if, and only if, it

is an infinitesimal complex deformation of N̂ . That is, (∂̄ + ∂̄∗)w = 0 if, and only if,
∂̄w = 0 = ∂̄∗w.

Proof Suppose that w ∈ L2
k+1,μ(ν

1,0
M (N̂ )⊕�0,2 N̂ ⊗ ν

1,0
M (N̂ )) satisfies ∂̄w = −∂̄∗w

for μ ∈ (1, 2). Then ∂̄∗∂̄w = 0. We will check whether

∫

N̂
〈∂̄u, v〉 volN̂ =

∫

N̂
〈u, ∂̄∗v〉 volN̂ ,

holds for u ∈ L2
1,μ(ν

1,0
M (N̂ )⊕�0,2 N̂ ⊗ν

1,0
M (N̂ )) and v ∈ L2

1,μ−1(ν
1,0
M (N̂ )⊕�0,2 N̂ ⊗

ν
1,0
M (N̂ )), that is, whether the integrals on both sides converge. Let ρ be a radius

function for N . We have that
∫

N̂
〈∂̄u, v〉 volN̂ =

∫

N̂

〈
ρ1−μ−2∂̄u, ρμ+3−2v

〉
volN̂ ≤ ‖∂̄u‖L2

μ−1
‖v‖L2−μ−3

,
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by Hölder’s inequality. This is finite since

|ρμ+3v| ≤ |ρ1−μv|,

since μ ∈ (1, 2). Similarly,

∫

N̂
〈u, ∂̄∗v〉 volN̂ =

∫

N̂
〈ρ−μ−2u, ρμ+4−2∂̄∗v〉 volN̂ ≤ ‖u‖L2

μ
‖∂̄∗v‖L2−μ−4

,

which again is finite since

|ρμ+4∂̄∗v| ≤ |ρ2−μ∂̄∗v|,

for μ ∈ (1, 2). Therefore

‖∂̄w‖2L2 =
∫

N̂
〈∂̄w, ∂̄w〉 volN̂ =

∫

N̂
〈w, ∂̄∗∂̄w〉 volN̂ = 0,

and so ∂̄w = 0. ��
This allows us to find that CS complex and Cayley deformations of a CS complex
surface in a Calabi–Yau four-fold have the same expected dimension, and therefore
with an application of a result of Harvey and Lawson we may deduce that the moduli
space of Cayley deformations of a CS complex surface is a smooth manifold.

Corollary 3.16 Let N be a CS complex surface inside a Calabi–Yau four-fold M. Then
the moduli space of CS Cayley deformations of N in M is the same as the moduli
space of CS complex deformations of N in M, and is therefore a smooth manifold.

Proof There are no infinitesimal CS Cayley deformations of N by Proposition 3.15,
i.e. no w ∈ C∞

μ (ν
1,0
M (N̂ ) ⊕ �0,2 N̂ ⊗ ν

1,0
M (N̂ )) satisfying

∂̄w = −∂̄∗w,

where ∂̄w �= 0. Comparing the expected dimension of the moduli space of CS Cayley
deformations of N in M , computed in Theorem 3.12, to the dimension of the moduli
space of CS complex deformations of N in M , computed in Theorem 3.14, we see that
these spaces must have the same expected dimension. To deduce that the moduli space
of Cayley deformations is a smooth manifold, we apply [6, II.4 Thm 4.2] which says
that complex and Cayley deformations of a compactly supported complex current are
the same. ��

4 Index Theory

Let Y be a CS Cayley submanifold of a Spin(7)-manifold X with nonsingular part Ŷ
and let N be a CS complex surface inside a four-dimensional Calabi–Yau manifold
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M with nonsingular part N̂ . In this section, we will be interested in the index of the
operators

D : L p
k+1,μ

(
νX (Ŷ )

)→ L p
k,μ−1(E), (4.1)

from Proposition 2.3 on sections with compact support and extended by density to the
above spaces, and

∂̄ + ∂̄∗ : L p
k+1,μ′

(
ν
1,0
M (N̂ ) ⊕ �0,2 N̂ ⊗ ν

1,0
M (N̂ )

)
→ L p

k,μ′−1

(
�0,1 N̂ ⊗ ν

1,0
M (N̂ )

)
.

(4.2)
We will first characterise the set of exceptional weightsD for which (4.1) and (4.2)

are not Fredholm. We will then explain how we can apply the Atiyah–Patodi–Singer
index theorem to operators on conically singular manifolds, before applying this result
to the operator (4.2).

4.1 Finding the ExceptionalWeights for the Operators D and @̄ + @̄∗

In this section, we will find the set D of exceptional weights for which the linear
elliptic operators (4.1) and (4.2) that appeared in Sect. 3 are not Fredholm. To do this,
we will study these operators acting on Cayley and complex cones in R8. We will see
that the exceptional weights are actually eigenvalues for differential operators on the
links of these cones.

4.1.1 Nearly Parallel G2 Structure on S7

We can consider R8 as a cone with link S7. Let (�0, g0) be the Euclidean Spin(7)-
structure (as given in Definition 2.1). Define a three-form ϕ on S7 by the following
relation:

�0|(r ,p) = r3dr ∧ ϕ|p + r4 ∗ ϕ|p. (4.3)

Then (ϕ, g) is aG2-structure on S7 (here g is the standard round metric on S7). Notice
that this G2-structure is not torsion-free, however, since �0 is closed we have that

dϕ = 4 ∗ ϕ. (4.4)

G2-structures (ϕ, g) satisfying (4.4) are called nearly parallel.

4.1.2 Exceptional Weights for the Operator D

Let Y be a CS Cayley submanifold at x̂ with rate μ and cone C of a Spin(7)-manifold
X and write Ŷ := Y\{x̂}. Recall the linear elliptic operator

D : C∞
0 (νX (Ŷ )) → C∞

0 (E),

defined in Proposition 2.3.
We will now describe the set of exceptional weights for D in terms of an eigenvalue

problem on the link of C .
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Proposition 4.1 Let Y be a CS Cayley submanifold at x̂ with cone C = L × (0,∞)

and rate μ of a Spin(7)-manifold X. Let DD denote the set of λ ∈ R for which

D : L p
k+1,λ(νX (Ŷ )) → L p

k,λ−1(E),

is not Fredholm.
Then λ ∈ DD if, and only if, there exists 0 �= v ∈ C∞(νS7(L)) so that

DLv = −λv, (4.5)

where for {e1, e2, e3} an orthonormal frame for T L and ∇⊥ the connection on the
normal bundle of L in S7 induced by the Levi-Civita connection of the round metric
on S7,

DL : C∞(νS7(L)) → C∞(νS7(L)),

v →
3∑

i=1

ei × ∇⊥
ei v, (4.6)

where × is the cross product on S7 induced from the nearly parallel G2-structure
(ϕ, g) defined by

g(u × v,w) = ϕ(u, v, w),

for any vector fields u, v, w on S7.

Remark The operator DL can be defined on any associative submanifold of a G2-
manifold, that is, a manifold with torsion-free G2-structure. Normal vector fields in
its kernel correspond to infinitesimal associative deformations of the associative sub-
manifold. This can be deduced from the work of McLean [22, Thm 5–2], however,
the operator first appears in this form in [1, Eqn 14]. Infinitesimal associative defor-
mations of an associative submanifold of S7 with its nearly parallel G2-structure,
however, satisfy (4.5) with λ = 1 as shown by Kawai [13, Lem 3.5]. Proposition 4.1
can be considered as a different proof of this fact.

Proof We can apply Proposition 2.11 to the operator D. Suppose that ρ is a radius
function for Y . Then since the given Spin(7)-structure on X approaches the Euclidean
Spin(7)-structure as we move close to the singular point of Y ,

ρ−1Dρ−1

is asymptotic to the differential operator

D̃∞ := r−1D0r
−1,
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where D0 is defined similarly to D but using the Euclidean Spin(7)-structure pulled
back to X by a Spin(7)-coordinate system χ for X around x̂ (see Definition 3.1). We
will verify in the subsequent calculation that D̃∞ is indeed translation invariant.

By Proposition 2.11 in combination with the discussion in [16, p. 416], we see that
λ ∈ DD if, and only if, there exists a normal vector field v ∈ C∞(νL(S7)) satisfying

r−1D0(r
λ−1v) = 0,

where since νrl,R8(C) ∼= νl,S7(L) for all r > 0 we can consider (r , l) → (r , rλ−1v(l))
as a normal vector field on the cone. Note also that the induced Euclidean metric on
the normal bundle of C in R8 takes the form r2h, where h is the metric on the normal
bundle of L in S7 induced from the round metric on S7.

Let {e1, e2, e3} denote a local orthonormal frame for T L with dual coframe
{e1, e2, e3}, and denote by �0 the Euclidean Cayley form on R

8 and ϕ the nearly
parallel G2-structure on S7 defined in (4.3). Let ∇ denote the Levi-Civita connection
of the cone metric and∇ denote the Levi-Civita connection of gL (and induced by gS7
on normal vector fields). We compute that

D0(r
λ−1v) = π7

(
dr ∧

(
∇⊥

∂
∂r
rλ−1v

)�
)

+
3∑

i=1

π7

(
rei ∧

(
∇⊥

ei
r
rλ−1v

)�)

= π7

(
(λ − 1)rλ−2dr ∧ v� + rλ−1dr ∧

(
∇⊥

∂
∂r
v

)�
)

+
3∑

i=1

π7

(
rλ−1ei ∧

(
∇⊥

ei v
)�)

= λrλ−2dr ∧ v� + λrλ−2�0

(
∂

∂r
, v, · , ·

)

+
3∑

i=1

(
rλ−1ei ∧

(
∇⊥

ei v
)� + rλ−3�0

(
ei ,∇⊥

ei v, · , ·
))

,

since ∇⊥
∂
∂r
v = r−1v as the metric on the normal bundle is of the form r2h. Using the

definition of ϕ in (4.3), we find that

D0(r
λ−1v) = λrλ−2dr ∧ v� + λrλ+1ϕ(v, · , · )

+
3∑

i=1

(
rλ−1ei ∧ (∇⊥

ei v)
� + rλdr ∧ ϕ

(
ei ,∇⊥

ei v, ·
)

+ rλ+1 ∗ ϕ
(
ei ,∇⊥

ei v, · , ·
))

.

Now we wish to replace the musical isomorphism � : νR8(C) → ν∗
R8(C) with the

musical isomorphism �L : νS7(L) → ν∗
S7
(L). Since the metric on νR8(C) is of the

form r2h, where h is a metric on νS7(L), we find that
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D0(r
λ−1v) = λrλdr ∧ v�L + λrλ+1ϕ(v, · , · )

+
3∑

i=1

(
rλ+1ei ∧

(
∇⊥

ei v
)�L + rλdr ∧ ϕ

(
ei ,∇⊥

ei v, ·
)

+ rλ+1 ∗ ϕ
(
ei ,∇⊥

ei v, · , ·
))

.

At this point, wemay verify that the operator D̃∞ = r−1D0r−1 is translation invariant.
Writing r = e−λt , we see that the expression above implies that

D̃∞(ṽ) = r−1D0(r
−1ṽ) = dt ∧

(
∇̃⊥

∂
∂t
ṽ

)�L
− ϕ

(
∇̃⊥

∂
∂t
ṽ, · , ·

)

+
3∑

i=1

ei ∧
(
∇̃⊥
ei ṽ
)�L − dt ∧ ϕ

(
ei , ∇̃⊥

ei ṽ, ·
)

+ ∗ϕ
(
ei , ∇̃⊥

ei ṽ, · , ·
)
,

where ∇̃ is the Levi-Civita connection of the product metric g̃ = dt2 + gL . This
expression makes it clear that D̃∞ is a translation invariant operator on the cylinder
L × (0,∞).

Notice that E ∼= νS7(L) via the map

α →
(

∂

∂r
�α
)L

,

where L : ν∗
S7
(L) → νS7(L) is the musical isomorphism, with inverse map

v → π7(dr ∧ v�L ).

Therefore we see that

r−1D0(r
λ−1v) = 0 ⇐⇒

(
∂

∂r
� r−1D0(r

λ−1v)

)L
= 0.

We find that

(
∂

∂r
� r−1D0(r

λ−1v)

)L

= rλ−2
(
λv + ϕ

(
ei ,∇⊥

ei v, ·
)L)

.

Since by definition,

DLv = ei × ∇⊥
ei v = ϕ

(
ei ,∇⊥

ei v, ·
)L

,
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we see that λ ∈ DD if, and only if, there exists 0 �= v ∈ C∞(νS7(L)) such that

DLv = −λv.

��

4.1.3 Exceptional Weights for the Operator @̄ + @̄∗

Let N be a CS complex surface with rate μ and cone C inside a Calabi–Yau four-
fold M , and write N̂ for its nonsingular part. In order to prove an analogous result to
Proposition 4.1 for the operator

∂̄ + ∂̄∗ : C∞
0

(
ν
1,0
M (N̂ ) ⊕ �0,2 N̂ ⊗ ν

1,0
M (N̂ )

)
→ C∞

0

(
�0,1 N̂ ⊗ ν

1,0
M (N̂ )

)
, (4.7)

we will need some preliminary facts about complex cones.

Definition 4.1 Let C be a complex cone in C
n+1, with real link L := C ∩ S2n+1.

Consider the Hopf projection p : S2n+1 → CPn . Define the complex link � of C to
be the image of L under the Hopf projection, i.e. � := p(L) ⊆ CPn .

The real link of a complex cone C is a circle bundle over the complex link of C .

Definition 4.2 LetC be a complex cone inCn+1, and denote by J the standard complex
structure on C

n+1. The Reeb vector field is defined to be

ξ := J

(
r
∂

∂r

)
.

Notice that |ξ |L = 1.

If p|L : L → � is the restriction of the Hopf projection to L , then at each l ∈ L ,
ξl spans the kernel of dp|l : Tl L → Tp(l)�.

Definition 4.3 Let C be a complex cone in C
n+1 with real link L . Let α be a p-form

on L . We say that α is horizontal if ξ�α = 0, where ξ is the Reeb vector field. Denote
by�p

h L the vector bundle of horizontal p-forms on L . Denote by dh the projection of
the exterior derivative onto horizontal forms.

By definition of the Reeb vector field, we see if J is the complex structure onCn+1

then J (�1
h L) ⊆ �1

h L . So we have a well-defined splitting�
1
h L = �

1,0
h L ⊕�

0,1
h L of

one-forms into the ±i eigenspaces of J . Define the operator ∂̄h on functions to be the
projection of dh onto horizontal (0, 1)-forms.

With these definitions, we may characterise the set of exceptional weights for the
operator (4.7) in terms of an eigenproblem on the link of a cone.

Proposition 4.2 Let N be a CS complex surface at x̂ with rate μ and cone C inside a
Calabi–Yau four-fold M. Write N̂ := N\{x̂}. LetD denote the set of λ ∈ R for which

∂̄ + ∂̄∗ : L p
k+1,λ(ν

1,0
M (N̂ )⊕�0,2 N̂ ⊗ ν

1,0
M (N̂ )) → L p

k,λ−1(�
0,1 N̂ ⊗ ν

1,0
M (N̂ )), (4.8)
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is not Fredholm. Let L denote the real link of C. Then λ ∈ D if, and only if, there
exists a nontrivial pair v ∈ C∞(ν

1,0
S7

(L)) and w ∈ C∞(�
0,1
h L ⊗ ν

1,0
S7

(L)) so that

∂̄hv = (λ + 1 − i∇ξ )w, (4.9)

∂̄∗
hw = 1

2
(λ + i∇ξ )v, (4.10)

where ξ is the Reeb vector field on L. Here ∇ acts on �
0,1
h L as the Levi-Civita

connection of the metric on L and on ν
1,0
S7

(L) as the normal part of the Levi-Civita

connection on S7.

Proof Similarly to the proof of Proposition 4.1, if ρ is a radius function for N then we
can see that

ρ(∂̄ρ−1 + ∂̄∗ρ),

on N̂ is asymptotic to the operator

Ã∞ := r(∂̄Cr
−1 + ∂̄∗

Cr),

on the cone C , which we will see in the calculation below is translation invariant. If
v ∈ C∞(νS7(L) ⊗ C) we can think of rμv as a complexified normal vector field on
C , and moreover the complex structure J on C

4 induces a splitting

νS7(L) ⊗ C = ν
1,0
S7

(L) ⊕ ν
0,1
S7

(L),

of the complexified normal bundle of L in S7 into holomorphic and antiholomorphic
parts (the i and −i eigenspaces of J , respectively). Also, by definition of the Reeb
vector field, if we take θ ∈ C∞(�1L) to be the dual one-form to ξ we have that
dr − irθ is a (0, 1)-form on C . By definition, �0,2C = �2T ∗0,1C , and T ∗0,1C =
〈dr − irθ〉 ⊕ �

0,1
h L so we can see that a (0, 2)-form on C must be of the form

rμ(dr − irθ) ∧ w,

where w ∈ C∞(�
0,1
h L). By Proposition 2.11 in combination with the discussion in

[16, p. 416], we deduce that λ ∈ D if, and only if, there exists v ∈ C∞(νS7(L)) and
w ∈ C∞(�

0,1
h L ⊗ ν

1,0
S7

(L)) so that

r ∂̄C (r
λ−1v) + r ∂̄∗

C

(
rλ+1

(
dr

r
− iθ

)
∧ w

)
= 0.

Denote by ∇ the Levi-Civita connection of the cone metric and ∇ the Levi-Civita
connection of gL (induced from the Levi-Civita connection of gS7 on normal vector
fields). We can calculate that

dC (r
λ−1v) = (λ − 1)rλ−2dr ⊗ v + rλ−1dr ⊗ ∇ ∂

∂r
v + rλ−1θ ⊗ ∇ξ v + rλ−1dhv,
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and therefore, since ∇ ∂
∂r
v = r−1v,

∂̄C (r
λv) = rλ−1 1

2

(
dr

r
− iθ

)
⊗ (λ + i∇ξ )v + rλ−1∂̄hv. (4.11)

On (0, 2)-forms, the operators ∂̄∗ and d∗ coincide. Therefore, for a local orthonor-
mal frame { ∂

∂r , ξ/r , e1/r , e2/r} for TC with J (r ∂
∂r ) = ξ and Je1 = e2 we have

that

∂̄∗
C

((
dr

r
− iθ

)
∧ rλ+1w

)
= − ∂

∂r
�∇ ∂

∂r

((
dr

r
− iθ

)
∧ rλ+1w

)

− ξ

r
�∇ ξ

r

((
dr

r
− iθ

)
∧ rλ+1w

)

−
2∑

i=1

ei
r

�∇ ei
r

((
dr

r
− iθ

)
∧ rλ+1w

)
.

We calculate that

∇ ∂
∂r

((
dr

r
− iθ

)
∧ rλ+1w

)
= (λ + 1)rλ

(
dr

r
− iθ

)
∧ w

+
[
∇ ∂

∂r

(
dr

r
− iθ

)]
∧ rλ+1w

+ rλ+1
(
dr

r
− iθ

)
∧ ∇ ∂

∂r
w

= λrλ
(
dr

r
− iθ

)
∧ w,

since for the Levi-Civita connection of the cone metric on a one-form α on the link
∇ ∂

∂r
α = −α/r . Moreover,

∇ξ

((
dr

r
− iθ

)
∧ rλ+1w

)
= rλ+1

[
∇ξ

(
dr

r
− iθ

)]
∧ w

+ rλ+1
(
dr

r
− iθ

)
∧ ∇ξw

= irλ+1
(
dr

r
− iθ

)
∧ w

+ rλ+1
(
dr

r
− iθ

)
∧ ∇ξw,
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again using properties of the Levi-Civita connection of the cone metric and recalling
that the complex structure on a Kähler manifold is parallel. Finally, notice that

∇e j

(
dr

r
− iθ

)
= c1(e

1 − ie2), ∇e j (e
1 − ie2) = c2

(
dr

r
− iθ

)
+ ∇(e1 − ie2),

for c1, c2 = ±1 or ±i since ∇Xdr = r X �L and the complex structure J is parallel.
Therefore

∇e j

[(
dr

r
− iθ

)
∧ rλ+1w

]
= rλ+1

(
dr

r
− iθ

)
∧ ∇e jw,

since �0,1L is a rank one vector bundle. We deduce that

∂̄∗
C

((
dr

r
− iθ

)
∧ rλ+1w

)
= −rλ−1(λ + 1 − i∇ξ )w − rλ−1

(
dr

r
− iθ

)
∂̄∗
hw.

(4.12)
Equating (4.11) and minus (4.12), we find that λ ∈ D if, and only if, there exist
v ∈ C∞(ν

1,0
S7

(L)) and w ∈ C∞(�
0,1
h L ⊗ ν

1,0
S7

(L)) satisfying

∂̄hv = (λ + 1 − i∇ξ )w,

∂̄∗
hw = 1

2
(λ + i∇ξ )v,

as claimed.
Finally, we verify that Ã∞ is translation invariant. Using the above calculations,

with a coordinate transformation of the form r = e−t we find that

Ã∞(ṽ ⊕ w̃) = 1

2
(dt + iθ) ⊗

(
∇̃ ∂

∂t
− i∇̃ξ

)
ṽ + ∂̄h ṽ +

(
∇̃ ∂

∂t
+ i∇̃ξ

)
w̃

+ (dt + iθ)∂̄∗
h w̃ − w̃,

where ∇̃ denotes the Levi-Civita of the product metric g̃ = dt2+gL . We can see from
this expression that the operator Ã∞ is translation invariant, as claimed. ��

4.1.4 An Eigenproblem on the Complex Link

In Proposition 4.2 we characterised the set of exceptional weights D for which the
operator (4.8) is not Fredholm in terms of an eigenproblemon the real link of a complex
cone C . In this section, we will introduce a trick used by Lotay [20, §6] to study an
eigenvalue problem on the link of a coassociative cone which is a circle bundle over a
complex curve inCP2. This will allow us to give an equivalent eigenvalue problem to
(4.9)–(4.10) on the real link of C completely in terms of operators and vector bundles
on the complex link of C .
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Let C be a complex cone in C4 with real link L ⊆ S7 and complex link� ⊆ CP3.
Suppose we have a problem of the following form: Find all of the functions f on L
that satisfy

Lξ f = im f , ∂̄h f = 0, (4.13)

for some m ∈ Z, where ξ is the Reeb vector field on C .
We would like to understand the relationship between the operator ∂̄h on the real

link of C and ∂̄� on the complex link C .

Definition 4.4 Call a function, horizontal vector field or horizontal differential form
f on L basic if

Lξ f = 0.

Basic functions, forms and vector fields are special because they are in one-one cor-
respondence with functions, forms and vector fields on �. It follows from [28, Lem
1] that ∂̄h acting on basic functions, forms or vector fields on L is equivalent to ∂̄�
acting on functions, forms or vector fields on �. In Problem (4.13), when m �= 0, f
is not basic. However, a simple trick allows us to pretend that f is basic.

By the definition of the complex link, we may identify the cone C with the vector
bundle OCP3(−1)|� , that is, the tautological line bundle over CP3 restricted to �.
This is then a trivial (real) line bundle over L and therefore has a global section given
by the map x → s(x) = x for x ∈ L . It is easy to see that Lξ s = is, and therefore

f ⊗ s−m,

is a section of the vector bundle OCP3(m)|� satisfying

Lξ ( f ⊗ s−m) = 0,

and therefore pushes down to a well-defined section of the vector bundleOCP3(m)|� .
Since OCP3(m)|� is a trivial line bundle over L , we can still consider f ⊗ s−m as a
function on L . Therefore we can rephrase Problem (4.13) as follows: Find all basic
sections f̃ of OCP3(m)|� → L satisfying

∂̄h f̃ = 0.

This is now equivalent to finding the sections f̃ of OCP3(m)|� → � that satisfy

∂̄� f̃ = 0.

Thereforewe have reduced Problem (4.13) to asking:Howmany holomorphic sections
of the line bundle OCP3(m)|� are there?

This problem is easily solved using the Hirzebruch–Riemann–Roch Theorem [7,
Thm 5.1.1].
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Theorem 4.3 (Hirzebruch–Riemann–Roch) Let� be a Riemann surface and let F be
a holomorphic vector bundle over �. Denote by h0(�, F) the dimension of the space
of holomorphic sections of F. Let K� denote the canonical bundle of �. Then

h0(�, F) = h0(�, F∗ ⊗ K�) + deg(F) + rk(F)(1 − g),

where deg(F) is the degree of the vector bundle F, rk(F) is the rank of the vector
bundle and g is the genus of �.

Wewill now apply the trick thatwe described above to rephrase the eigenvalue problem
(4.9)–(4.10) on the real link of a cone as an eigenvalue problem on the complex link
of the cone.

Proposition 4.4 Let C be a complex cone in C
4 with real link L and complex link

�. Then given λ ∈ R and m ∈ Z, pairs v ∈ C∞
(
ν
1,0
CP3(�) ⊗ OCP3(m)|�

)
and

w ∈ C∞
(
�0,1� ⊗ ν

1,0
CP3(�) ⊗ OCP3(m)|�

)
so that

∂̄�v = (λ + 3 + m)w, (4.14)

∂̄∗
�w = 1

2
(λ − 1 − m)v, (4.15)

are in a one-one correspondence with pairs ṽ ∈ C∞
(
ν
1,0
S7

(L)
)

and w̃ ∈
C∞

(
�

0,1
h L ⊗ ν

1,0
S7

(L)
)
satisfying

Lξ ṽ = imṽ, Lξ w̃ = imw̃,

where ξ is the Reeb vector field, and the eigenvalue problem (4.9)–(4.10).

Proof Wecan pull back v andw to basic sections of ν1,0
S7

(L)⊗OCP3(m)|� and�0,1
h L⊗

ν
1,0
S7

(L) ⊗ OCP3(m)|� over L , respectively. As mentioned above, these sections are

in one-one correspondence with sections ṽ and w̃ of ν1,0
S7

(L) and �
0,1
h L ⊗ ν

1,0
S7

(L),
respectively, satisfying

Lξ ṽ = imṽ, Lξ w̃ = imw̃. (4.16)

So we see that v and w are in one-one correspondence with ṽ and w̃ satisfying (4.16),
and ṽ and w̃ satisfy

∂̄h ṽ = (λ + 3 + m)w̃,

∂̄∗
h w̃ = 1

2
(λ − 1 − m)ṽ.

Let ∇ denote the Levi-Civita connection of gL (induced from gS7 on normal vector
fields). By [28, Lemma 3, §5], we see that any horizontal vector field X on S7 viewed
as a circle bundle over CP3 satisfies

horizontal part(∇Xξ) = J X .
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and so for any vector field of type (1, 0), we have that

Lξ v = ∇ξ v − ∇vξ = ∇ξ v − iv.

Moreover, if α is a (0, 1)-form, then for any (0, 1)-vector field X we have that

(Lξ α)(X) = ξ(α(X)) − α(Lξ X) = ξ(α(X)) − α(∇ξ X) + α(∇Xξ)

= ξ(α(X)) − α(∇ξ X) + α(J X) = (∇ξα)(X) − iα(X).

Therefore (4.16) implies that

∇ξ ṽ = i(m + 1)ṽ, ∇ξ w̃ = i(m + 2)w̃,

and therefore

∂̄h ṽ = (λ + 1 − i∇ξ )w̃,

∂̄∗
h w̃ = 1

2
(λ + i∇ξ )ṽ,

as required. ��

4.2 Dimension of theModuli Space of Complex Deformations of a CS Complex
Surface

In this section, we will deduce a version of the Atiyah–Patodi–Singer index theorem
for operators on conically singular manifolds. We will then apply this result to prove
Theorem 4.8, an index formula for the operator (4.2), which allows us to compare the
dimension of the moduli space of CS complex deformations of a conically singular
complex surface to what we will think of as the dimension of the moduli space of all
complex deformations of a CS complex surface in a Calabi–Yau four-fold based on
Kodaira’s theorem [14, Thm 1] on deformations of complex submanifolds of complex
varieties.

4.2.1 The Atiyah–Patodi–Singer Index Theorem for Conically Singular Manifolds

TheAtiyah–Patodi–Singer index theorem is predominantly for a certain type of elliptic
operator on a manifold with boundary. However, as a corollary to the main theorem,
an index theorem for translation invariant operators on a manifold with a cylindrical
end is also proved, which we quote here.

Theorem 4.5 [2, Thm 3.10 & Cor 3.14] Let

A : C∞(F1) → C∞(F2)
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be a linear elliptic first-order translation invariant differential operator on a manifold
Ẑ with a cylindrical end L × (0,∞) that takes the special form

A = σ

(
∂

∂u
+ B

)
, (4.17)

on L×(0,∞), where u is the inward normal coordinate, σ : F1|L → F2|L is a bundle
isomorphism and B is a self-adjoint elliptic operator on L. Then

indL2 A =
∫

Ẑ
α0(x) dx − h + η(0)

2
+ h∞(F2), (4.18)

where h, η, α0 and h∞(F2) are defined as follows:

(i) α0(x) is the constant term in the asymptotic expansion (as t → 0) of

∑
e−tμ′ |φ′

μ(x)|2 −
∑

e−tμ′′ |φ′′
μ(x)|2,

where μ′, φ′
μ denote the eigenvalues and eigenfunctions of A∗A on the double

of Z (where Z is the compact manifold with boundary L obtained by removing
the cylindrical end of Ẑ ), and μ′′, φ′′

μ are the corresponding objects for AA∗.
(ii) h = dim Ker B = multiplicity of the 0-eigenvalue of B.
(iii) η(s) =∑λ�=0(sign λ)|λ|−s , where λ runs over the eigenvalues of B.
(iv) h∞(F2) is the dimension of the subspace of Ker B consisting of limiting values

of extended L2 sections f of F2 satisfying A∗ f = 0.

Here we call f an extended L2-section of F if f ∈ L2
loc(F) and on the cylindrical

end of Ẑ , for large t, f takes the form

f (y, t) = g(y, t) + f∞(y),

for g ∈ L2(F) and f∞ ∈ Ker B.

We will now explain how we can apply the Atiyah–Patodi–Singer index Theorem
4.5 to elliptic operators on conically singular manifolds.

We first give a technical result that relates the adjoint of a differential operator on
a conically singular manifold to the adjoint of the related asymptotically translation
invariant operator acting on the conformally equivalent manifold with cylindrical end.

Lemma 4.6 Let Z be an m-dimensional conically singular manifold at ẑ and let ρ be
a radius function for Z. Write Ẑ := Z\{ẑ}, and g for the metric on Ẑ . Let

A : C∞
0 (T q

s Ẑ) → C∞
0 (T q ′

s′ Ẑ),

be a linear first-order differential operator on Ẑ and suppose there exists λ ∈ R so
that

Ã := ρλ+s′−q ′
Aρq−s,
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is an asymptotically translation invariant operator. Then the formal adjoint of the
operator Ã (with respect to the metric ρ−2g)

Ã∗ : C∞
0 (T q ′

s′ Ẑ) → C∞
0 (T q

s Ẑ),

is of the form

Ã∗ = ρs−q+m A∗ρλ−s′+q ′−m,

where

A∗ : C∞
0 (T q ′

s′ Ẑ) → C∞
0 (T q

s Ẑ),

is the formal adjoint of A with respect to g.
Moreover, using the notation of Definitions 2.7 and 2.5, the kernel of

Ã∗ : W p
k+1,μ(T

q ′
s′ Ẑ) → W p

k,μ(T
q
s Ẑ), (4.19)

is isomorphic to the kernel of

A∗ : L p
k+1,μ+λ−m(T

q ′
s′ Ẑ) → L p

k,μ−m(T
q
s Ẑ), (4.20)

for any μ ∈ R, k ∈ N and 1 < p < ∞.

Proof Let v ∈ C∞
0 (T q

s Ẑ) and w ∈ C∞
0 (T q ′

s′ Ẑ). Notice that if a, b ∈ C∞
0 (T q

s Ẑ) then

〈a, b〉ρ−2g = ρ2q−2s〈a, b〉g.

Then
∫

Ẑ

〈
Ãv,w

〉
ρ−2g

volρ−2g =
∫

Ẑ

〈
ρλ+s′−q ′

Aρq−sv,w
〉
ρ−2g

volρ−2g

=
∫

Ẑ
ρ2q ′−2s′

〈
ρλ+s′−q ′

Aρq−sv,w
〉
g
ρ−mvolg

=
∫

Ẑ

〈
ρλ−s′+q ′

Aρq−sv,w
〉
g
ρ−mvolg

=
∫

Ẑ

〈
Aρq−sv, ρλ−m−s′+q ′

w
〉
g
volg

=
∫

Ẑ

〈
v, ρq−s A∗ρλ−m−s′+q ′

w
〉
g
volg

=
∫

Ẑ
ρ2q−2s

〈
v, ρs−q+m A∗ρλ−m−s′+q ′

w
〉
g
ρ−mvolg

=
∫

Ẑ

〈
v, ρs−q+m A∗ρλ−m−s′+q ′

w
〉
ρ−2g

volρ−2g,
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where we have used that A∗ is the formal adjoint of A with respect to the metric g,
which shows that

Ã∗ := ρs−q+m A∗ρλ−m−s′+q ′
,

is the formal adjoint of Ã with respect to the metric ρ−2g. By Lemma 2.10

ρλ−m−s′+q ′ : W p
k+1,μ(T

q ′
s′ Ẑ) → L p

k+1,μ+λ−m(T
q ′
s′ Ẑ),

is an isomorphism and so by definition of Ã∗ and A∗ the kernels of (4.19) and (4.20)
are isomorphic. ��

We may now deduce the following proposition from Theorem 4.5 and Lemma 4.6
to give an index theorem for operators on conically singular submanifolds.

Proposition 4.7 Let Z be an m-dimensional conically singular manifold at ẑ with
radius function ρ. Let T q

s Ẑ be the vector bundle of (s, q)-tensors on Ẑ := Z\{ẑ}. Let

A : C∞
0 (T q

s Ẑ) → C∞
0 (T q ′

s′ Ẑ),

be a first-order linear elliptic differential operator so that for some λ ∈ R

Ã := ρλ+s′−q ′
Aρq−s,

is asymptotically translation invariant to a translation invariant operator Ã∞ acting
on sections of T q

s Ẑ , which takes the special form (4.17) on the end of Ẑ . Then for
μ ∈ R\D, given in Proposition 2.11, the index of

A : L2
k+1,μ(T

q
s Ẑ) → L2

k,μ−λ(T
q ′
s′ Ẑ), (4.21)

differs by a constant independent of μ from the index indμA∞ of

A∞ := ρq ′−s′−λ Ã∞ρs−q : L2
k+1,μ(T

q
s Ẑ) → L2

k,μ−λ(T
q ′
s′ Ẑ), (4.22)

which satisfies

indε A∞ =
∫

Ẑ
α0(x)dx − h + η(0)

2
, (4.23)

for ε > 0 chosen so that (0, ε]∩D = ∅ and we use the notation of Theorem 4.5 for the
terms on the right hand side of (4.23) (and these terms are defined for the translation
invariant operator Ã∞).

Proof Aswe saw in the proof of Proposition 2.11, A and Ã have isomorphic kernel and
cokernel when acting on weighted Sobolev spaces L p

k+1,μ(T
q
s Ẑ) and W p

k+1,μ(T
q
s Ẑ),

respectively, and moreover the index of these operators differ from the index of Ã∞
by a constant independent of the weight μ.
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Note that the definition of asymptotically translation invariant only determines the
behaviour of Ã∞ on the cylindrical end of (Ẑ , ρ−2g). We may choose a preferred
operator Ã∞ by interpolating between Ã on the compact piece of Ẑ and any such
operator Ã∞ on the cylindrical end of Ẑ . Since Ã∞ is translation invariant, we can
apply Theorem 4.5 to Ã∞. Let Kerμ Ã∞ and Kerμ Ã∗∞ denote the kernels of

Ã∞ : W 2
k+1,μ(T

q
s Ẑ) → W 2

k,μ(T
q ′
s′ Ẑ),

Ã∗∞ : W 2
k+1,μ(T

q ′
s′ Ẑ) → W 2

k,μ(T
q
s Ẑ),

respectively, where Ã∗∞ is the formal adjoint of Ã∞ with respect to the metric ρ−2g,
where g is the metric on Ẑ . Then Theorem 4.5 yields that

dim Ker0 Ã∞ − dim Ker0 Ã
∗∞ =

∫

Ẑ
α0(x)dx − h + η(0)

2
+ h∞(T q ′

s′ Ẑ). (4.24)

By definition of Ã∞, Ker0 Ã∞ ∼= Ker0 A∞, where Kerμ A∞ denotes the kernel of
(4.22), and by Lemma 4.6, Ker0 Ã∗∞ ∼= Kerλ−m A∗∞, where A∗∞ is the formal adjoint
of A∞ with respect to the metric g and Kerμ A∗∞ denotes the kernel of

A∗∞ : L2
k+1,μ(T

q ′
s′ Ẑ) → L2

k,μ−λ(T
q
s Ẑ).

So we see that

dim Ker0 A∞ − dim Kerλ−m A∗∞ =
∫

Ẑ
α0(x)dx − h + η(0)

2
+ h∞(T q ′

s′ Ẑ). (4.25)

Denote by D the subset of R for which μ ∈ D if, and only if, (4.22) is not Fredholm.
Then since we expect that 0 ∈ D in general, the index of A∞ for the weight 0 may
not be defined. Take ε > 0 so that

(0, ε] ∩ D = ∅.

Then indε A∞ is well-defined. Since ε > 0, we have that

Kerε A∞ ⊆ Ker0 A∞,

where Kerμ A∞ denotes the kernel of (4.22). It is claimed that

Kerε A∞ = Ker0 A∞.

To see this, suppose that α ∈ Ker0A∞. Then by elliptic regularity, α is smooth, and
by definition of weighted norm on L2

k+1,0(T
q
s Ẑ) α must decay to zero as r → 0 and

so we must have that α = O(r ε
′
) for some ε′ > 0. Taking ε′ smaller if necessary we

can guarantee thatD∩ (0, ε′] = ∅. The rate of decay of α allows us to deduce that α ∈
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L2
k+1,ε′′(T

q
s Ẑ)where 0 < ε′′ < ε′. But then we are done, since there is no exceptional

weight between ε and ε′′, and so [16, Lem 7.1] says that Kerε A∞ = Kerε′ A∞. Notice
that this tells us that the functionμ → dim KerμA∞ is upper semi-continuous at zero.

Since ε > 0

Kerλ−m A∗∞ ⊆ Ker−ε+λ−m A∗∞.

The above argument also shows that the function μ → dim KerμA∗∞ is upper semi-
continuous (in particular at μ = λ − m) and so the set

Ker−ε+λ−m A∗∞\Kerλ−m A∗∞,

is nonempty, but its elements are exactly the limiting values of extended L2-sections

f of T q ′
s′ Ẑ satisfying Ã∗∞ f = 0. To see this, recall that Kerλ−m A∗∞ ∼= Ker0 Ã∗∞ and

Ker−ε+λ−m A∗∞ ∼= Ker−ε Ã∗∞. Following Atiyah, Patodi and Singer [2, Prop 3.11], we
can describe any v ∈ Kerδ Ã∗∞ on the end L × (0,∞) of Ẑ as

v =
∑

λ∈SpecB
λ+δ<0

eλtvλφλ. (4.26)

Setting δ = 0,−ε in (4.26) we see that the sections in Ker−ε Ã∗∞\Ker0 Ã∗∞ are exactly
the terms in the above expression corresponding to λ = 0, which are exactly the
limiting values of extended L2 sections in the kernel of Ã∗∞ as claimed.

Therefore

dim Ker−ε+λ−m A∗∞\Kerλ−m A∗∞ = h∞(T q ′
s′ Ẑ),

i.e. exactly the dimension of the space of limiting values of extended L2-sections f

of T q ′
s′ Ẑ satisfying A∗∞ f = 0. This allows us to deduce that

Ker0 A∞ − Kerλ−m A∞ − h∞(T q ′
s′ (Ẑ)) = indε A∞.

Applying this to (4.25) we find that

indε A∞ =
∫

Ẑ
α0(x)dx − h + η(0)

2
, (4.27)

as claimed. ��

4.2.2 An Application of the APS Index Theorem

Having discussed in the previous section the set of exceptional weights D for the
operator (4.7) inmore detail, wewill apply theAtiyah–Patodi–Singer index theorem to
the operator ∂̄+∂̄∗ to compare the dimension of the space of CS complex deformations
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of a CS complex surface in a Calabi–Yau four-fold to what we might expect to be the
dimension of the space of all complex deformations of the complex surface from
Kodaira’s theorem [14, Theorem 1].

Theorem 4.8 Let N be a CS complex surface at x̂ with cone C and rate μ ∈ (1, 2)\D,
whereD is the set of exceptional weights defined in Proposition 2.11, inside a Calabi–
Yau four-fold M. Write N̂ := N\{x̂}. Let, for k > 4/p + 1,

∂̄ + ∂̄∗ : L p
k+1,μ

(
ν
1,0
M (N̂ ) ⊕ �0,2 N̂ ⊗ ν

1,0
M (N̂ )

)
→ L p

k,μ−1

(
�0,1 N̂ ⊗ ν

1,0
M (N̂ )

)
,

(4.28)
and denote the index of this operator by

indμ(∂̄ + ∂̄∗).

Then

χ(N , ν
1,0
M (N )) = indμ(∂̄ + ∂̄∗) +

∑
λ∈(0,μ)∩D

d(λ) + d(0) + η(0)

2
, (4.29)

where χ(N , ν
1,0
M (N )) is the holomorphic Euler characteristic of ν1,0M (N ), D is the

set of λ ∈ R for which (4.14)–(4.15) has a nontrivial solution and then d(λ) is the
dimension of the solution space, η is the η-invariant which we can now define to be

η(s) :=
∑

0 �=λ∈D
d(λ)

sign(λ)

|λ|s . (4.30)

Remark We interpret this as follows. The term χ
(
N , ν

1,0
M (N )

)
is interpreted as the

dimension of the space of all complex deformations of N in M , since this is what we
can expect if Kodaira’s theorem [14, Theorem 1] remains valid for complex varieties.
Theorem 3.12 tells us that indμ(∂̄ + ∂̄∗) is the expected dimension of the space of CS
Cayley deformations of N in M (which by Proposition 3.15 we can interpret as the
expected dimension of the space of CS complex deformations of N in M , although
Theorem 3.14 tells us that in fact this should be equal to just the dimension of the
kernel of (4.28), which is what we expect to happen generically anyway). The term
d(1) represents deformations of N that have a different tangent cone to N at x̂ .

Proof This follows from Proposition 4.7, since in this case

∫

N
α0(x) vol = χ

(
N , ν

1,0
M (N )

)
,

from [29, Thm 1.6]. ��
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5 Calculations

In this section, we will calculate some of the quantities studied in this article for some
examples.

In Sect. 5.1, we will consider deformations of two-dimensional complex cones in
C
4, both as a Cayley submanifold and a complex submanifold ofC4. In particular, we

will consider Cayley deformations of the cone that are themselves cones. The (real)
link of such a complex cone is an associative submanifold of S7 with its nearly parallel
G2-structure inherited from the Euclidean Spin(7)-structure onC4, and so deforming
the cone as a complex or Cayley cone in C

4 is equivalent to deforming the link of
the cone as an associative submanifold. Homogeneous associative submanifolds of S7

were classified by Lotay [19], using the classification of homogeneous submanifolds
of S6 of Mashimo [21]. The deformation theory of these submanifolds was studied by
Kawai [13], who explicitly calculated the dimension of the space of infinitesimal asso-
ciative deformations of these explicit examples using techniques from representation
theory. Motivated by these calculations, in Sect. 5.2, we will apply the analysis of the
earlier sections to compute the dimension of the space of infinitesimal Cayley conical
deformations of the complex cones with these links, and check that these calculations
match. We will be able to see explicitly which infinitesimal deformations correspond
to complex deformations of the cone and which are Cayley but not complex deforma-
tions. In particular, we will see that complex infinitesimal deformations and Cayley
infinitesimal deformations of a two-dimensional complex submanifold of a Calabi–
Yau four-fold are not the same in general. Finally, in Sect. 5.3, we will compute the
η-invariant for a complex cone in C4.

5.1 Cone Deformations

Let C be a two-dimensional complex cone in C4. Let v be a normal vector field on C .
If v is sufficiently small, we can apply the tubular neighbourhood theorem for cones,
Proposition 3.3, to identify v with a deformation of C . Write v = v1 ⊕ v2, where
v1 ∈ C∞(ν

1,0
C4 (C)) and v2 ∈ C∞(ν

0,1
C4 (C)). We know from Proposition 2.5 that v is

an infinitesimal Cayley deformation of C if, and only if,

∂̄v1 + 1

4
∂̄∗ (v2��

0

)
= 0,

where �0 is the standard holomorphic volume form on C4 and  denotes the musical
isomorphism ν

∗0,1
C4 (C) → ν

1,0
C4 (C). Moreover, by Proposition 2.6 v is an infinitesimal

complex deformation of C if, and only if,

∂̄v1 = 0 = ∂̄∗ (v2��

0

)
.

We would like to know what properties v must have in order for the deformation of
C corresponding to v to be a cone itself. By Proposition 3.3, in which we constructed
the tubular neighbourhood of a cone, we constructed a map
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�C : VC → TC ,

where VC ⊆ νR8(C) contains the zero section and TC ⊆ C
4 contains C . We con-

structed an action of R+ on νC4(C) satisfying |t · v| = t |v|, and the map �C satisfies

�C (tr , l, tr · v(r , l)) = t�C (r , l, v(r , l)).

Therefore, to guarantee that�C ◦v is a cone inC4, wemust have that v(r , l) = r · v̂(l),
for some v̂ ∈ C∞(νS7(L)). In this case,

�C (r , l, v(r , l)) = r�C (1, l, v̂(l)),

for all r ∈ R+. Choosing a metric on νC4(C) that is independent of r , we see that
r · v̂(l) = r v̂(l).

Therefore the dimension of the space of infinitesimal conical Cayley deformations
of C is equal to the dimensions of the spaces of solutions to the eigenproblems (4.5)
and (4.9)–(4.10) with λ = 1. As remarked after the statement of Proposition 4.1,
this particular eigenspace can be identified with the space of infinitesimal associative
deformations of the link of the cone in S7 with its nearly parallel G2-structure. This
problem was studied by Kawai [13], who computed the dimension of these spaces
for a range of examples. In terms of the work done here, this is equivalent to solving
the eigenproblem (4.5) when λ = 1. We will study the eigenproblem (4.9)–(4.10) for
the three examples of complex cones that were studied by Kawai in his paper. Our
analysis will allow us to see directly the difference between the infinitesimal conical
Cayley and complex deformations of a cone, and we hope that the complex geometry
will make these calculations simpler.

5.1.1 Example 1: L1 = S3

The first example is the simplest, being just a vector subspace (with the zero vector
removed). We take

C1 := C
2\{0}, L1 := S3, �1 := CP1,

where C1 is the complex cone, L1 is the real link of C1 and �1 is the complex link of
C1.

Proposition 5.1 [13, §6.4.1] The space of infinitesimal associative deformations of L1
in S7 has dimension twelve.

5.1.2 Example 2: L2 ∼= SU(2)/Z2

Our second example is a little less trivial. Take

C2 :=
{
(z1, z2, z3, z4) ∈ C

4
∣∣∣ z4 = 0, z21 + z22 + z23 = 0

}
.
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Then it can be shown [13, Ex 6.6] that the link of C2, L2, is isomorphic to the quotient
group SU (2)/Z2.

The complex link of C2 is

�2 := {[z0 : z1 : z2 : z3] ∈ CP3 | z0 = 0, z21 + z22 + z23 = 0}.

Proposition 5.2 ([20, Cor 5.12], [13, Prop 6.26]) The space of infinitesimal associative
deformations of L2 in S7 has dimension twenty-two.

5.1.3 Example 3: L3 ∼= SU(2)/Z3

Our third example is themost complicated to state, but is certainly themost interesting.
Define the cone C3 to be the cone over the submanifold L3 of S7 which is defined

as follows: consider the following action of SU (2) on C
4

⎛
⎜⎜⎝
z1
z2
z3
z4

⎞
⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎝

a3z1 + √
3a2bz2 + √

3ab2z3 + b3z4

−√
3a2b̄z1 + a(|a|2 − 2|b|2)z2 + b(2|a|2 − |b|2)z3 + √

3āb2z4√
3ab̄2z1 − b̄(2|a|2 − |b|2)z2 + ā(|a|2 − 2|b|2)z3 + √

3ā2bz4

−b̄3z1 + √
3āb̄2z2 − √

3ā2b̄z3 + ā3z4

⎞
⎟⎟⎟⎟⎠
,

where a, b ∈ C satisfy |a|2 + |b|2 = 1. We define L3 to be the orbit of the above
action around the point (1, 0, 0, 0)T , that is,

L3 :=

⎛
⎜⎜⎝

a3

−√
3a2b̄√
3ab̄2

−b̄3

⎞
⎟⎟⎠ ,

where a, b ∈ C satisfy |a|2 + |b|2 = 1. We see that for

Z3 :=
{(

ζ 0
0 ζ̄

)
∈ SU (2) | ζ 3 = 1

}
,

L3 is invariant under the action of Z3, therefore L3 ∼= SU (2)/Z3. The complex link
of the cone C3 over L3 is

�3 := {[x3 : √
3x2y : √

3xy2 : y3] ∈ CP3 | [x : y] ∈ CP1},

which is known as the twisted cubic in CP3.
This is a particularly interesting example for the following reason [19, Ex

5.8]. Define L3(θ) to be the orbit of the above group action around the point
(cos θ, 0, 0, sin θ)T . Then L3(θ) is associative for θ ∈ [0, π

4 ]. As noted above,
L3(0) = L3 is the real link of a complex cone, however, L3(

π
4 ) is the link of a special

123



K. Moore

Lagrangian cone. Therefore there exists a family of Cayley cones in C
4, including

both a complex cone and a special Lagrangian cone, that are related by a group action.

Proposition 5.3 [13, §6.3.2] The space of infinitesimal associative deformations of
L3(

π
4 ) in S7 has dimension thirty.

5.2 Calculations

We will now study the eigenvalue problem (4.9)–(4.10) with λ = 1 for C1, C2 and C3
defined above. Recall that by Proposition 4.4 we can study the eigenproblem (4.14)–
(4.15) with λ = 1 on the complex link instead to make our calculations easier. We first
explain how to count infinitesimal conical complex deformations and infinitesimal
conical Cayley but noncomplex deformations of a complex cone.

Proposition 5.4 Let C be a complex cone in C
4 with real link L and complex link

�. Infinitesimal complex conical deformations of C in C
4 are given by holomorphic

sections of ν1,0
CP3(�). Infinitesimal Cayley conical deformations of C that are not

complex are given by v ∈ C∞(ν
1,0
CP3(�) ⊗ OCP3(m)|�) satisfying

�∂̄�
v = −1

2
m(4 + m)v, (5.1)

where −4 < m < 0.

Proof We know that infinitesimal complex deformations C will lie in the kernel of ∂̄C
or ∂̄∗

C . Recall that these spaces are isomorphic and so we expect them to have the same
dimension. Examining the proof of Proposition 4.2 and comparing to Proposition 4.4,
we see that infinitesimal complex deformations ofC are given by holomorphic sections
of ν1,0

CP3(�)⊗OCP3(λ− 1)|� , and antiholomorphic sections of�0,1� ⊗ ν
1,0
CP3(�)⊗

OCP3(−3 − λ). Since infinitesimal conical deformations of C will correspond to
λ = 1 here, we see that infinitesimal complex conical deformations of C correspond
to holomorphic sections of

ν
1,0
CP3(�),

and antiholomorphic sections of

�0,1� ⊗ ν
1,0
CP3(�) ⊗ OCP3(−4)|� ∼= ν

∗1,0
CP3(�),

by the adjunction formula [7, Prop 2.2.17] since KCP3 |� = OCP3(−4)|� . So we see
that infinitesimal conical complex deformations ofC arise from holomorphic sections
of the holomorphic normal bundle of the complex link in CP3. The dimension of the
space of infinitesimal conical complex deformations of C is then equal to the real
dimension (or twice the complex dimension) of the space of holomorphic sections of
the holomorphic normal bundle of the complex link.

Finally, we see that any remaining infinitesimal conical Cayley deformations of C
must satisfy the eigenproblem (4.14)–(4.15) with λ = 1 and m �= 0,−4. Applying
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∂̄∗
� to (4.14) and using (4.15), we see that the remaining infinitesimal conical Cayley

deformations of C are given by v ∈ C∞(ν
1,0
CP3(�) ⊗ OCP3(m)|�) satisfying

�∂̄�
v = −1

2
m(4 + m)v.

��
While we can apply the Hirzebruch–Riemann–Roch theorem 4.3 to count holomor-

phic sections of holomorphic vector bundles, solving eigenproblems for the Laplacian
acting sections of vector bundles such as (5.1) is somewhat more difficult, especially
since the degree of the line bundle we consider appears in the eigenvalue itself. Such
problems have been studied, however, and we will make use of the following result
of López Almorox and Tejero Prieto on eigenvalues of the ∂̄�-Laplacian acting on
sections of holomorphic line bundles over CP1 equipped with a metric of constant
scalar curvature.

Theorem 5.5 [17, Thm 5.1] Let K be a Hermitian line bundle over �, where � is
CP1 with metric of constant scalar curvature κ equipped with a unitary harmonic
connection ∇K of curvature F∇K = −i Bω� for some B ∈ R. Then the spectrum of
the operator

2∂̄∗
�∂̄� : C∞(K ) → C∞(K ),

is the set
{
λq = κ

2

[
(q + a)2 + (q + a)|deg K + 1|

]
| q ∈ N ∪ {0}

}
,

where a = 0 if deg K ≥ 0, a = 1 otherwise.
The space of eigensections of 2∂̄∗

�∂̄� with eigenvalue λq is identified with the space
of holomorphic sections of

K−q
� ⊗ K ,

when deg K ≥ 0, or of holomorphic sections of

K−q
� ⊗ K−1,

when deg K < 0. Therefore the multiplicity of λq is

m(λq) = 1 + |deg K | + 2q.

5.2.1 Example 1: L1 = S3

To calculate the dimension of the space of infinitesimal conical Cayley deformations
of the coneC1 = C

2, which as real link L1 = S3 and complex link�1 = CP1, wewill
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apply Proposition 5.4. We first calculate the dimension of the space of holomorphic
sections of

ν
1,0
CP3(�1) = OCP3(1)|�1 ⊕ OCP3(1)|�1 ,

which by the Hirzebruch–Riemann–Roch theorem 4.3 has dimension four. Therefore,
the dimension of the space of infinitesimal conical complex deformations of C1 is
eight.

Now we study the eigenproblem

�∂̄�1
v = −1

2
m(4 + m), (5.2)

for v ∈ C∞(ν
1,0
CP3(�1)⊗OCP3(m)|�1) = C∞(OCP3(m + 1)|�1 ⊕OCP3(m + 1)|�1)

and −4 < m < 0. We can apply Theorem 5.5 to solve (5.2) as long as the connection
on OCP3(m + 1)|�1 ⊕ OCP3(m + 1)|�1 takes the form

(∇1 0
0 ∇2

)
, (5.3)

where ∇i are connections on OCP3(m + 1)|�1 . This is the case here, as can be seen
from the relation between the connection on the normal bundle of �1 in CP3 and the
connection on the normal bundle of L1 in S7 (see [28, Lem 1]) and the fact that the
normal bundle of L1 in S7 is trivial.

Therefore, by Theorem 5.5, solving (5.2) reduces to solving the algebraic equation

−m(4 + m) = 4((q + a)2 + (q + a)|m + 2|),

for m ∈ Z and q ∈ N ∪ {0} (since the scalar curvature of �1 = CP1 = S2(1/2) is
eight) with a = 0 if m ≥ −1 and a = 1 if m ≤ −2. It can be checked that this has
solution (q, a,m) = (0, 1,−2), and so byTheorem5.5 the dimension of eigensections
of (5.2) has dimension 2 × 2 = 4. So we have a total of twelve infinitesimal conical
Cayley deformations of C in C4.

We sum this up in a proposition.

Proposition 5.6 The real dimension of the space of infinitesimal conical Cayley defor-
mations of C1 in C4 is twelve. The real dimension of the space of infinitesimal conical
complex deformations of C1 in C4 is eight.

Remark Recall that the stabiliser of a Cayley plane in R
8 is isomorphic to (SU (2) ×

SU (2) × SU (2))/Z2 and that the dimension of Spin(7)/((SU (2) × SU (2) ×
SU (2))/Z2) is twelve. The stabiliser of a two-dimensional complex plane in C

4 is
isomorphic to U (2) × U (2), and the dimension of U (4)/(U (2) × U (2)) is equal to
eight.

123



Deformations of Conically Singular Cayley Submanifolds

5.2.2 Example 2: L2 ∼= SU(2)/Z2

We now use Proposition 5.4 to calculate the dimension of the space of infinitesimal
conical Cayley deformations of the cone C2 in C

4 with link L2 ∼= SU (2)/Z2 and
complex link �2 as defined in Sect. 5.1.2. Since �2 is a complete intersection of
irreducible polynomials of degree 1 and 2 in CP3, its normal bundle is given by

ν
1,0
CP3(�2) = OCP3(1)|�2 ⊕ OCP3(2)|�2 .

The dimension of the space of holomorphic sections of ν1,0
CP3(�2), by the Hirzebruch–

Riemann–Roch theorem 4.3, has dimension eight, and so we deduce that the space of
infinitesimal conical complex deformations of C2 has dimension sixteen.

Since �2 ⊆ CP2, we see that the Levi-Civita connection on ν1,0
CP3(�2) must be of

the form (5.3), so that we may apply Theorem 5.5 to solve the eigenproblem

�∂̄�2
v = −1

2
m(m + 4), (5.4)

for v ∈ C∞(OCP3(m + 1)|�2 ⊕ OCP3(m + 2)|�2) with −4 < m < 0. This reduces
again to solving the equations for m ∈ Z and q ∈ N ∪ {0}

−m(m + 4) = 2((q + a)2 + (q + a)|2m + 3|),

with a = 0 for m ≥ −1 and a = 1 otherwise, which has solution (q, a,m) =
(0, 1,−2) and

−m(m + 4) = 2((q + a)2 + (q + a)|2m + 5|),

with a = 0 for m ≥ −2 and a = 1 otherwise, which has solution (q, a,m) =
(1, 0,−2). Therefore by Theorem 5.5 the dimension of the space of solutions to (5.4)
has dimension 3+3 = 6. Therefore, the dimension of the space of infinitesimal conical
Cayley deformations of C2 in C4 is twenty-two.

Proposition 5.7 The real dimension of the space of infinitesimal conical Cayley defor-
mations of C2 in C

4 is twenty-two. The real dimension of the space of infinitesimal
conical complex deformations of C2 in C4 is sixteen.

Remark The dimension of Spin(7)/SU (4) is six, which implies that the sixCayley but
not complex infinitesimal conical deformations of C2 are just rigid motions induced
by the action of Spin(7) on R

8.

5.2.3 Example 3: L3 ∼= SU(2)/Z3

Finally, we compute the dimension of the space of infinitesimal conical Cayley defor-
mations of C3 in C

4, which has real link L3 ∼= SU (2)/Z3 and complex link �3 as
defined in Sect. 5.1.3.
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The normal bundle of �3 in CP3 is [4, Prop 6]

ν
1,0
CP3(�3) = O�3(5) ⊕ O�3(5),

whereO�3(n) denotes the line bundle of degree n over�3. By Hirzebruch–Riemann–
Roch, Theorem 4.3, the space of holomorphic sections of ν1,0

CP3(�3) has dimension
twelve, and so the dimension of the space of infinitesimal conical complex deforma-
tions of C3 in C4 has dimension twenty-four.

So it remains to find v ∈ C∞(O�3(3m + 5) ⊕ O�3(3m + 5)) satisfying

�∂̄�3
v = −1

2
m(4 + m)v. (5.5)

Unfortunately, for this example, we cannot directly apply Theorem 5.5 to this problem,
sowemust find a different way to solve (5.5).Wewill do this by constructing amoving
frame for L3.

Proposition 5.8 [13, §6.3.2] There exists an orthonormal frame of L3, denoted
{e1, e2, e3}, where Je2 = e3 and e1 is the Reeb vector field. We have that

[e1, e2] = −2

3
e3, [e1, e3] = 2

3
e2, [e2, e3] = −2e1.

We extend this to a frame of S7 as follows.

Lemma 5.9 There exist orthonormal frames {e1, e2, e3} of L3 and { f4, f5, f6, f7} of
νS7(L3) such that the structure equations of Proposition B.2 take the following form:

dx = e1ω1 + e2ω2 + e3ω3 + f4η4 + f5η5 + f6η6 + f7η7,

de1 = −ω1x − ω3e2 + ω2e3 − η5 f4 + η4 f5 − η7 f6 + η6 f7,

de2 = −ω2x + ω3e1 + ω1

3
e3 + 2√

3
ω2 f4 + 2√

3
ω3 f5,

de3 = −ω3x − ω2e1 − ω1

3
e2 − 2√

3
ω3 f4 + 2√

3
ω2 f5,

d f4 = −xη4 + η5e1 − 2√
3
ω2e2 + 2√

3
ω3e3 − ω1

3
f5 + ω2 f6 + ω3 f7,

d f5 = −xη5 − η4e1 − 2√
3
ω3e2 − 2√

3
ω2e3 + ω1

3
f4 − ω3 f6 + ω2 f7,

d f6 = −xη6 + η7e1 − ω2 f4 + ω3 f5 − ω1 f7,

d f7 = −xη7 − η6e1 − ω3 f4 − ω2 f5 + ω1 f6,

where x : L3 → S7, J e2 = e3, J f4 = f5, J f6 = f7, {ω1, ω2, ω3} is an orthonormal
coframe of L3 (ωi (e j ) = δi j ) and {η4, η5, η6, η7} is an orthonormal coframe of the
normal bundle of L3 in S7 (ηa( fb) = δab). Further, the second structure equations of
Proposition B.3 are also satisfied.
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Proof Let∇ denote the Levi-Civita connection of L3.We use the notation ofAppendix
B. Again we take α2 = ω2 and α3 = ω3 as we may by Proposition B.4. We see that
since, using the structure equations given in B.2,

−α1(e1)e3 − e3 = ∇e1e2 − ∇e2e1 = [e1, e2] = −2

3
e3,

we must have that α1 = −ω1
3 . We check that

−1

3
e2 + e2 = ∇e1e3 − ∇e3e1 = [e1, e3] = 2

3
e2,

and

−e1 − e1 = ∇e2e3 − ∇e3e2 = [e2, e3] = −2e1.

Now Eq. (B.3) tells us that we must have that

−2(β4
2 ∧ β5

2 + β6
2 ∧ β7

2 ) = −8

3
ω2 ∧ ω3.

So we take β4
2 = 2√

3
ω2 and β5

2 = 2√
3
ω3, β6

2 = β7
2 = 0 and this is satisfied. To ensure

that Eq. (B.4) is satisfied, we seek γ so that

dβ4
2 = 2√

3
dω2 = − 4

3
√
3
ω1 ∧ ω3 = − 2√

3
ω1 ∧ ω3 + 1√

3
γ1 ∧ ω3,

dβ5
2 = 2√

3
dω3 = 4

3
√
3
ω1 ∧ ω2 = 2√

3
ω1 ∧ ω2 − 1√

3
γ1 ∧ ω2,

dβ6
2 = 0 = 1√

3
γ3 ∧ ω3 − 1√

3
γ2 ∧ ω2,

dβ7
2 = 0 = − 1√

3
γ3 ∧ ω2 − 1√

3
γ2 ∧ ω2.

From this we see that we must have that γ1 = 2
3ω1, and γ2 = aω2 and γ3 = aω3. To

determine a, we check Equation (B.5), which tells us that we must have

−1

3
dω1 = −2

3
ω2 ∧ ω3 = a2

2
ω2 ∧ ω3 − 8

3
ω2 ∧ ω3,

and therefore we must have a = 2. It can be checked that the remaining parts of Eq.
(B.5) are satisfied with γ = ( 23ω1, 2ω2, 2ω3). Therefore we choose { f4, f5, f6, f7}
so that the above choices of γ, β and α hold, and so the equations claimed hold. ��

We have that { f4 − i f5, f6 − i f7} is a frame for the holomorphic tangent bundle of
L3 in S7. We have that
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∇e1( f4 − i f5) = −1

3
f5 − i

3
f4 = − i

3
( f4 − i f5),

∇e1( f6 − i f7) = − f7 − i f6 = −i( f6 − i f7).

However,

(∇⊥
e2 + i∇⊥

e3)( f4 − i f5) = 0,

(∇⊥
e2 + i∇⊥

e3)( f6 − i f7) = −2( f4 − i f5),

(∇⊥
e2 − i∇⊥

e3)( f4 − i f5) = 2( f6 − i f7),

(∇⊥
e2 − i∇⊥

e3)( f6 − i f7) = 0,

and so we see explicitly that the connection on the normal bundle of L3 in S7 is not
in a nice diagonal form as we had before. Since we have a moving frame of S7, we
will return to considering the eigenvalue problem (4.9)–(4.10). Writing a section of
ν
1,0
S7

(L3) as

g1( f4 − i f5) + g2( f6 − i f7),

where g1, g2 are functions on L3 and sections of �0,1
h L ⊗ ν

1,0
S7

(L3) as

α1 ⊗ ( f4 − i f5) + α2 ⊗ ( f6 − i f7),

where α1, α2 are sections of �
0,1
h L , we seek g1, g2 ∈ C∞(L3) and α1, α2 ∈

C∞(�
0,1
h L) satisfying

∂̄hg1 − g2(ω2 − iω3) =
(
8

3
− i∇e1

)
α1,

∂̄∗
hα1 = 1

2

(
4

3
+ i∇e1

)
g1,

and

∂̄hg2 = (2 − i∇e1)α2,

∂̄∗
hα2 + 2(e2�α1) = 1

2
(2 + i∇e1)g2.

We must have that

g2(ω2 − iω3) = aα1,
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for some a ∈ C (since if α1 = 0 then we find infinitesimal conical complex deforma-
tions of C3), and so we may instead study the eigenvalue problems

∂̄hg1 =
(
8

3
− i∇e1 + a

)
α1, (5.6)

∂̄∗
hα1 = 1

2

(
4

3
+ i∇e1

)
g1, (5.7)

and

∂̄hg2 = (2 − i∇e1)α2, (5.8)

∂̄∗
hα2 = 1

2

(
2 + 4

a
+ i∇e1

)
g2. (5.9)

Using the structure equations given in Lemma 5.9, we see that the problem (5.8)–(5.9)
is equivalent to the eigenproblem

∂̄h(g2(ω2 − iω3)) =
(
8

3
− i∇e1

)
α2 ⊗ (ω2 − iω3), (5.10)

∂̄∗
h (α2 ⊗ (ω2 − iω3)) = 1

2

(
4

3
+ 4

a
+ i∇e1

)
g2(ω2 − iω3), (5.11)

where we consider g2(ω2 − iω3) as a �
0,1
h L-valued function, which becomes

a∂̄hα1 =
(
8

3
− i∇e1

)
α2, (5.12)

∂̄∗
hα2 = a

2

(
4

3
+ 4

a
+ i∇e1

)
α1, (5.13)

where now α2 is a section of �0,1
h L ⊗ �

0,1
h L . Supposing that

Le1g1 = img1, Le1α1 = imα1,

for 3m ∈ Z we see that in order for the eigenproblem (5.12)–(5.13) to make sense we
must have

Le1α2 = imα2.

Write O�3(d) for the degree d line bundle over �3. Then as explained in Sect. 4.1.4,
we may replace the eigenvalue problems (5.6)–(5.7)–(5.12)–(5.13) with seeking g1 ∈
C∞(O�3(3m)), and α1 ∈ C∞(O�3(3m + 2)), α2 ∈ C∞(O�(3m + 4)) satisfying
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∂̄�3g1 =
(
8

3
+ a + m

)
α1, (5.14)

∂̄∗
�3
α1 = 1

2

(
4

3
− m

)
g1, (5.15)

and

a∂̄�3α1 =
(
8

3
+ m

)
α2, (5.16)

∂̄∗
�3
α2 = a

2

(
4

3
+ 4

a
− m

)
α1. (5.17)

Wefind thatα1 must simultaneously satisfy the following two eigenproblems: applying
∂̄�3 to (5.15) and using (5.14) we find that

∂̄�3 ∂̄
∗
�3
α1 = 1

2

(
8

3
+ a + m

)(
4

3
− m

)
α1, (5.18)

and applying ∂̄∗
�3

to (5.16) and using (5.17) we have that

∂̄∗
�3
∂̄�3α1 = 1

2

(
8

3
+ m

)(
4

3
+ 4

a
− m

)
α1. (5.19)

Applying the formula [17, Lem 2.1, 2.2]

∂̄�3 ∂̄
∗
�3
α = ∂̄∗

�3
∂̄�3α + 2

3
(3m + 2)α,

where α is a section of O�3(3m + 2), we see that

∂̄∗
�3
∂̄�3α1 = 1

2

(
8

3
+ m

)(
4

3
+ 4

a
− m

)
α1,

= 1

2

[(
8

3
+ a + m

)(
4

3
− m

)
+ 4

3
(3m + 2)

]
α1,

for α1 ∈ C∞(O�3(3m + 2)). Therefore a ∈ C must satisfy

(
8

3
+ m

)(
4

3
+ 4

a
− m

)
=
(
8

3
+ a + m

)(
4

3
− m

)
− 4

3
(3m + 2).

Solving this equation for a, we find that for m �= 4/3

a± = 4m + 8
3 ± 8

2( 43 − m)
,

123



Deformations of Conically Singular Cayley Submanifolds

which simplifies to

a+ = 6m + 16

4 − 3m
, a− = −2.

First considering a = a+ we apply Theorem 5.5 to see that

1

2

(
8

3
+ m

)(
4

3
− m + 4(4 − 3m)

6m + 16

)
,

is an eigenvalue of ∂̄∗
�3
∂̄�3 acting on sections ofO�3(3m+2) if, and only if,m = −2/3.

In this case there are five α1 ∈ C∞(O�3(0)) satisfying

�∂̄�3
α1 = 4α1.

Taking g1 = ∂̄∗
�3
α1 and α2 = ∂̄�2α1 completes this solution to the eigenproblem

(5.14)–(5.15)–(5.16)–(5.17).
Secondly, when a = a− = −2 Theorem 5.5 tells us that

1

2

(
8

3
+ m

)(
−2

3
− m

)
,

is an eigenvalue of ∂̄∗
�3
∂̄�3 acting on sections ofO�3(3m+2) if, and only if,m = −2/3,

in which case we seek functions α1 on �3 satisfying

�∂̄�3
α1 = 0.

Since�3 is compact, α1 must be holomorphic and further constant. Taking g1 = α2 =
0 completes our analysis.

Finally, we check the case that m = 4/3. In this case, for the eigenvalues

1

2

(
8

3
+ 4

3

)(
4

a

)
= −4

6
(4 + 2),

we must have a = −2. However, in this case, the eigenvalue is equal to −4, which is
negative and therefore not a possible eigenvalue of ∂̄∗

�3
∂̄�3 on sections of O�3(6).

We have found a total of six infinitesimal conical Cayley deformations of C3 that
are not complex.

Proposition 5.10 The real dimension of the space of infinitesimal conicalCayley defor-
mations of C3 in C4 is thirty. The real dimension of the space of infinitesimal conical
complex deformations of C3 in C4 is twenty-four.

Remark Similarly to Proposition 5.7 we have six infinitesimal conical Cayley defor-
mations of C3 which are not complex, which again implies that these deformations
are just rigid motions.
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5.3 Calculating the�-Invariant for an Example

The final calculation in this article is to compute the η-invariant of the Atiyah–Patodi–
Singer index theorem 4.5 for one of the examples we considered in Sect. 5.1. This will
help us to calculate (what we expect to be) the codimension of the space of conically
singular complex CS deformations of a CS complex surface N at C with rate μ in
a Calabi–Yau manifold M inside the space of all complex deformations of N , for a
certain cone C in C4, using Theorem 4.8.

We consider our simplest example of a two-dimensional complex cone inC4 which
isC1 = C

2. Denote by�1 the complex link ofC1, i.e.�1 = CP1. Proposition 4.4 told
us that the exceptional weights λ ∈ R satisfy an eigenproblem, and to calculate the
η-invariant we must first find the dimension of the space of solutions to (4.14)–(4.15)
for each λ ∈ R. Setting w = 0 in (4.14)–(4.15), we seek holomorphic sections of
ν
1,0
CP3(�1) ⊗ OCP3(λ − 1)|�1 = OCP3(λ)|�1 ⊕ OCP3(λ)|�1 , for λ ∈ N ∪ {0}, which
by the Hirzebruch–Riemann–Roch theorem 4.3 has dimension 2(λ + 1). Similarly,
setting v = 0 in (4.14)–(4.15), we seek antiholomorphic sections of OCP3(−λ)|�1 ⊕
OCP3(−λ)|�1 , which again have dimension 2(λ + 1).

It remains to compute the multiplicity of λ as an eigenvalue of

2∂̄∗
�1
∂̄�1v = (λ − 1 − m)(λ + 3 + m)v, (5.20)

where v is a section ofOCP3(m+1)|�1 ⊕OCP3(m+1)|�1 and λ �= 1+m or−3−m.
Theorem 5.5 tells us that this is equivalent to solving the algebraic equation

(λ − 1 − m)(λ + 3 + m) = 4[q2 + q|m + 2|],
where q is a positive integer.

It can be computed that the multiplicity of integer λ > 0 as an eigenvalue of (5.20)
is 2λ(λ + 1) and the multiplicity of integer λ < −2 as an eigenvalue of (5.20) is
2(λ + 2)(λ + 1). So we have that

η(s) = 4
∞∑
λ=1

λ + 1

λs
+ 2

∞∑
λ=1

λ(λ + 1)

λs
− 2

∞∑
λ=3

(−λ + 2)(−λ + 1)

λs
,

= 12
∞∑
λ=1

λ1−s,

and so

η(0) = 12ζ(−1) = −1,

where ζ is the Riemann zeta function.
We have that the multiplicity of the zero eigenvalue in this case in four. So we have

found that

η(0) + h

2
= 3

2
.
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5.4 Concluding Remarks

An ideal result in this area would be to deform a singular calibrated submanifold into a
compact nonsingular calibrated submanifold—this would perhaps give new examples
of compact calibrated submanifolds. However, this problem seems intractable with
the type of analysis applied in this article. One motivation for the complex geometry
viewpoint taken in this article is that techniques from algebraic geometry are ideal
for this kind of problem. If one could generalise the natural techniques for desingu-
larisation from complex geometry to Cayley submanifolds and thus other calibrated
submanifolds this would be a very interesting result. However, whether this is feasible
remains to be seen.

The author chose to study the Atiyah–Patodi–Singer index theorem in the context
of conically singular manifolds, which to the author’s knowledge has not been done
before, and calculate some of the quantities that appear in the index formula for some
examples. In particular, it was hoped that complex geometry would make it easier
to calculate some of these quantities, which as one can see from the length of Sect.
5.2.3 is not necessarily the case in practice. Moreover, an explicit calculation of the
expected dimension of a moduli space using the Atiyah–Patodi–Singer index theorem
will not be accurate since the expression (4.29) will in general differ by a constant
from the index of the operator that gives the expected dimension. However, (4.29) and
in particular the heuristic interpretation of this expression given in the remark after
Theorem 4.8 could be a clue to how one might develop new techniques to study more
general moduli spaces of conically singular calibrated submanifolds.
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Appendix A: Local Argument for Unobstructedness of Complex Defor-
mations

The argument here is taken from the author’s PhD thesis [24, Lem 3.4.6]. A more
general version for any complex submanifold of a Calabi–Yau manifold appears in
[23, Lem 4.7].

Lemma A.1 Let G denote the operator defined in Proposition 2.7, whose kernel con-
tains exactly those normal vector fields that correspond to complex deformations of a
compact complex surface. Then

G(v) = 0 ⇐⇒ dG|0(v) = 0.
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Proof We will write the tangent space to a deformation of a complex surface N in
a Calabi–Yau four-fold M as a graph over the tangent space of N , identified with a
complex subspace of C4 and write down the condition equivalent to G(v) = 0.

Choose p ∈ N . Then TpM = TpN ⊕ νp(N ). Choose an orthonormal basis
{e1, . . . , e8} for TpM with Jei = ei+4 for i = 1, . . . 4 so that

TpN = span{e1, e2, Je1, Je2}.

Let N ′ be a small deformation of N with diffeomorphism f : N → N ′. Then there
is a natural isometry TpM → T f (p)M preserving the complex structures J and J ′ on
these spaces. Denote by {e′1, . . . , e′8} the orthonormal basis of T f (p)M where ei maps
to e′i under this isometry, with J ′e′i = e′i+4. Then

T f (p)N
′ = span{v1, v2, v5, v6},

where without loss of generality since N ′ is a small deformation of N we may take

v j = e′j +
∑

i=3,4,7,8

λ
j
i e

′
i ,

for λ j
i ∈ R.

We can then evaluate

σ f (p)(vi , v j , vk) := Re � f (p)(vi , v j , vk, ·) = 0,

where {i, j, k} ⊆ {1, 2, 5, 6}. We have that

Re � f (p) = e′1234 − e′1278 + e′1368 − e′1467 − e′2358 + e′2457 − e′3456 + e′5678,

where e′ j (e′k) = δ jk and e′i jkl := e′i ∧ e′ j ∧ e′k ∧ e′l .
We evaluate σ(vi , v j , vk) = 0 for {i, j, k} = {1, 2, 5}, {1, 2, 6}, {1, 5, 6} and

{2, 5, 6}. Eliminating duplicate equations, we find that the λij must satisfy the fol-
lowing linear equations

λ13 − λ57 = 0,

λ14 − λ58 = 0,

λ17 + λ53 = 0,

λ18 + λ54 = 0,

λ23 − λ67 = 0,

λ24 − λ68 = 0,

λ27 + λ63 = 0,

λ28 + λ64 = 0,
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and the following nonlinear equations

λ13λ
5
4 − λ14λ

5
3 − λ17λ

5
8 + λ18λ

5
7 = 0,

λ13λ
5
8 − λ14λ

5
7 + λ17λ

5
4 − λ18λ

5
3 = 0,

λ23λ
6
4 − λ24λ

6
3 − λ27λ

6
8 + λ28λ

6
7 = 0,

λ24λ
6
7 − λ27λ

6
4 + λ28λ

6
3 − λ23λ

6
8 = 0,

λ13(λ
2
8 + λ64) − λ14(λ

2
7 + λ63) + λ17(λ

2
4 − λ68) − λ18(λ

2
3 − λ67) = 0,

λ13(λ
2
4 − λ68) − λ14(λ

2
3 − λ67) − λ17(λ

2
8 + λ64) + λ18(λ

2
7 + λ63) = 0,

λ23(λ
1
8 + λ54) − λ24(λ

1
7 + λ53) + λ27(λ

1
4 − λ58) − λ28(λ

1
3 − λ57) = 0,

λ23(λ
1
4 − λ58) − λ24(λ

1
3 − λ57) − λ27(λ

1
8 + λ54) + λ28(λ

1
7 + λ53) = 0,

λ53(λ
2
8 + λ64) − λ54(λ

2
7 + λ63) + λ57(λ

2
4 − λ68) − λ58(λ

2
3 − λ67) = 0,

λ53(λ
2
4 − λ68) − λ54(λ

2
3 − λ67) − λ57(λ

2
8 + λ64) + λ58(λ

2
7 + λ63) = 0,

λ63(λ
1
8 + λ54) − λ64(λ

1
7 + λ53) + λ67(λ

1
4 − λ58) − λ68(λ

1
3 − λ57) = 0,

λ63(λ
1
4 − λ58) − λ64(λ

1
3 − λ57) − λ67(λ

1
8 + λ54) + λ68(λ

1
7 + λ53) = 0.

Since the first four equations may be rewritten as

1

2

[
(λ18 + λ54)(λ

1
3 + λ57) − (λ18 − λ54)(λ

1
3 − λ57)

+(λ14 − λ58)(λ
1
7 − λ53) − (λ14 + λ58)(λ

1
7 + λ53)

]
= 0,

1

2

[
(λ13 − λ57)(λ

1
4 + λ58) − (λ13 + λ57)(λ

1
4 − λ58)

−(λ17 + λ53)(λ
1
8 − λ54) + (λ17 − λ53)(λ

1
8 + λ54)

]
= 0,

1

2

[
(λ23 + λ67)(λ

2
8 + λ64) − (λ23 − λ67)(λ

2
8 − λ64)

+(λ24 − λ68)(λ
2
7 − λ63) − (λ24 + λ68)(λ

2
7 + λ63)

]
= 0,

1

2

[
(λ24 − λ68)(λ

2
3 + λ67) − (λ24 + λ68)(λ

2
3 − λ67)

+(λ28 − λ64)(λ
2
7 + λ63) − (λ28 + λ64)(λ

2
7 − λ63)

]
= 0,

it is easy to see that if the linear equations are satisfied then all of the equations above
are satisfied. ��

Appendix B: Structure Equations of Spin(7)

We will here give the structure equations of S7 adapted to an associative submanifold
of S7. To do this, we will consider the sphere S7 as the group quotient Spin(7)/G2,
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that is, we can consider Spin(7) as the G2 frame bundle over S7. Bryant [3, Prop 1.1]
first wrote down the structure equations of Spin(7), but we will quote them in the
following useful form given by Lotay [19, §4].

Proposition B.1 [19, Prop 4.2]We may write the Lie algebra spin(7) of the Lie group
Spin(7) ⊆ Gl(n,R) as

spin(7) =
⎧⎨
⎩

⎛
⎝
0 −ωT −ηT

ω [α] −βT − 1
3 {η}T

η β + 1
3 {η} 1

2 [α − ω]+ + 1
2 [γ ]−

⎞
⎠
∣∣∣∣∣∣
ω, α, γ ∈ M3×1(R),

η ∈ M4×1(R),

β ∈ M4×3(R),

β4
1 + β7

2 + β6
3 = 0,

β6
1 − β5

2 − β4
3 = 0,

β5
1 + β6

2 − β7
3 = 0,

β7
1 − β4

2 + β5
3 = 0.

⎫⎬
⎭ ,

where

[(x, y, z)T ] :=
⎛
⎝

0 z −y
−z 0 x
y −x 0

⎞
⎠ ,

[(x, y, z)T ]± :=

⎛
⎜⎜⎝

0 −x −y ±z
x 0 z ±y
y −z 0 ∓x

∓z ∓y ±x 0

⎞
⎟⎟⎠ ,

and

{(p, q, r , s)T } :=

⎛
⎜⎜⎝

−q −r s
p s r

−s p −q
r −q −p

⎞
⎟⎟⎠ .

Now that we have the structure equations for Spin(7), we may construct a moving
frame for S7 adapted to an associative three-fold. If we let g : Spin(7) → Gl(8,R)
be the map taking Spin(7) to the identity component of the Lie subgroup of Gl(8,R)
which has Lie algebra spin(7), then we can write g = (x e f ), where for p ∈ Spin(7)
we have that x(p) ∈ M8×1(R), e(p) = (e1(p), e2(p), e3(p)) ∈ M8×3(R) and
f (p) = ( f4(p), f5(p), f6(p), f7(p)) ∈ M8×4(R). We can choose our frame so
that x represents a point of our associative three-fold L , e is an orthonormal frame for
L and ω is an orthonormal coframe for L . Therefore f is an orthonormal frame for the
normal bundle of L in S7, η an orthonormal coframe. Then since the Maurer–Cartan
form φ = g−1dg takes values in spin(7), we can write

φ :=
⎛
⎝
0 −ωT −ηT

ω [α] −βT − 1
3 {η}T

η β + 1
3 {η} 1

2 [α − ω]+ + 1
2 [γ ]−

⎞
⎠ .
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This yields the following results.

Proposition B.2 [19, Prop 4.3] Use the notation above. On the adapted frame bundle
of an associative three-fold L in S7, x : L → S7 and {e1, e2, e3, f4, f5, f6, f7} is a
local oriented orthonormal basis for T A ⊕ N A, so the first structure equations are

dx = eω;
de = −xωT + e[α] + f β;
d f = −eβT + 1

2
f ([α − ω]+ + [γ ]−).

Proposition B.3 [19, Prop 4.4]Use the notation above. On the adapted frame bundle of
an associative three-fold in S7, there exists a local tensor of functions h = hajk = hak j ,
for 1 ≤ j, k ≤ 3 and 4 ≤ a ≤ 7, such that the second structure equations are

dω = −[α] ∧ ω; (B.1)

β = hω; (B.2)

d[α] = −[α] ∧ [α] + ω ∧ ωT + βT ∧ β; (B.3)

dβ = −β ∧ [α] − 1

2
([α − ω]+ + [γ ]−) ∧ β; (B.4)

1

2
d([α − ω]+ + [γ ]−) = −1

4
[α − ω]+ ∧ [α − ω]+ − 1

4
[γ ]− ∧ [γ ]− + β ∧ βT .

(B.5)

Notice that [α] is the Levi-Civita connection of L and 1
2 ([α − ω]+ + [γ ]−) defines

the induced connection on the normal bundle of L in S7. We have that h defines the
second fundamental form IIL ∈ C∞(S2T ∗L; ν(L)) of L in S7, writing

IIL := hajk fa ⊗ ω jωk .

Since the associative submanifolds of S7 that we are considering are S1-bundles over
complex curves, we may reduce the structure equations of L .

Proposition B.4 [19, Ex 4.9] Let L be the link of complex cone C in C4. Then we can
choose a frame of T S7|L such that

α2 = ω2, α3 = ω3 and β
4
1 = β5

3 = β6
3 = β7

3 = 0.

This implies that β4
3 = −β5

2 , β
5
3 = β4

2 , β
6
3 = −β7

2 and β7
3 = β6

2 . Here e1 defines the
direction of the circle fibres of L over the complex link � of C.

Proof This follows from supposing that the complex structure of C4 acts on C as
follows:

J x = e1; Je2 = e3; J f4 = f5; J f6 = f7.

��
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