The Journal of Geometric Analysis
https://doi.org/10.1007/s12220-018-0074-7

@ CrossMark

Deformations of Conically Singular Cayley Submanifolds

Kim Moore!

Received: 15 December 2017
© The Author(s) 2018

Abstract

In this article, we study the deformation theory of conically singular Cayley subman-
ifolds. In particular, we prove a result on the expected dimension of a moduli space
of Cayley deformations of a conically singular Cayley submanifold. Moreover, when
the Cayley submanifold is a two-dimensional complex submanifold of a Calabi—Yau
four-fold, we show by comparing Cayley and complex deformations that in this special
case the moduli space is a smooth manifold. We also perform calculations of some of
the quantities discussed for some examples.
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1 Introduction

Cayley submanifolds are calibrated submanifolds that arise naturally in manifolds with
exceptional holonomy Spin (7). Introduced by Harvey and Lawson [6], calibrated sub-
manifolds are by construction volume minimising, and hence minimal submanifolds.
Cayley submanifolds exist in abundance, with the simplest examples being any two-
dimensional complex submanifold of a Calabi—Yau four-fold.

The deformation theory of compact calibrated submanifolds in manifolds with
special holonomy was studied by McLean [22]. A major obstruction to generalising
these results to noncompact submanifolds is the failure of an elliptic operator on a
noncompact manifold to be Fredholm. However, by introducing a weighted norm
on spaces of sections of a given vector bundle on a particular type of noncompact
manifold, it is possible to overcome this difficulty, as long as one is careful about the
choice of weight. It is therefore possible to study certain moduli spaces of noncompact
calibrated submanifolds.
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In this article, the noncompact submanifolds that we study are conically singular.
Motivated by the SYZ conjecture, an interesting problem is whether a Spin(7)-
manifold can be fibred by Cayley submanifolds with some singular fibres. Conically
singular Cayley submanifolds are natural candidates for these singular fibres. Deforma-
tions of conically singular special Lagrangian submanifolds in Calabi—Yau manifolds
and coassociative submanifolds of G;-manifolds have been studied by Joyce [9] and
Lotay [18], respectively. Deformations of compact Cayley submanifolds with bound-
ary and asymptotically cylindrical Cayley submanifolds have been studied by Ohst
[26,27].

We say that a manifold with a singular point is conically singular if a neighbourhood
of the singular point is diffeomorphic to a cone C = L x (0, €), and moreover the
metric approaches the cone metric like 7*~! as» — 0, for some i > 1. A submanifold
with a singular point is conically singular if, in a neighbourhood of the singular point,
we can identify the submanifold with a normal graph over a cone which decays with
rate r* for © > 1. We will prove a series of results on the moduli space of Cayley
deformations of a Cayley submanifold, conically singular with cone C and rate u, that
also have a conical singularity at the same point with cone C and rate u.

In Theorem 3.8, we prove that the expected dimension of this moduli space is given
by the index of a first-order linear elliptic operator acting on smooth normal vector
fields that decay like r* close to the singular point. Motivated by other work of the
author [23], we pay special attention to Cayley deformations of a conically singular
complex surface N inside a Calabi—Yau four-fold M. In Theorem 3.12, we will show
that the elliptic operator in Theorem 3.8 is

b+ CY (UIIV}O(N) ® AN ® ujf(zv)) — X (AO’IN ® u,{f(zv)) )

We will then study the moduli space of complex deformations of N in M that
are conically singular at the same point with the same rate and cone as N. We will
show in Theorem 3.14 that this moduli space is a smooth manifold, and moreover that
there are no infinitesimal Cayley deformations of N that are not infinitesimal complex
deformations of N in Corollary 3.16. Note that a calibration argument of Harvey and
Lawson [6, II.4 Thm 4.2] shows that the complex and Cayley deformations of any
compactly supported two-dimensional complex current in a Calabi—Yau four-fold are
the same. Corollary 3.16 gives some geometric intuition for this result by relating the
moduli spaces of complex and Cayley deformations to the operator (1.1).

In the later sections of this article, we will focus on the elliptic operators whose
indices we are interested in. In particular, we will characterise the exceptional weights
for which these operators are not Fredholm. We will also apply the Atiyah—Patodi—
Singer Index Theorem [2] to write down an expression for the index of these operators
in terms of topological and spectral invariants of the manifold.

We will conclude this article by performing a series of calculations, including the
dimension of the space of infinitesimal Cayley and complex deformations of three
complex cones in C* motivated by the work of Kawai [13] on deformations of asso-
ciative submanifolds of the seven sphere.
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Deformations of Conically Singular Cayley Submanifolds

Layout In Sect. 2, we will discuss some background results which the reader may
find useful on Cayley submanifolds, conically singular manifolds and Fredholm theory
on noncompact manifolds. Section 3 contains the results on the deformation theory of
conically singular Cayley and complex submanifolds. In Sect. 4, we characterise the
set D of exceptional weights for which the operators we discuss in this article, before
deducing a version of the Atiyah—Patodi—Singer theorem for these operators. In Sect.
5, we perform calculations of some of the quantities discussed in this article for some
examples.

Notation When M is a complex manifold, we denote by AP M the bundle of
(p, q)-forms APT*10M @ AYT*O1 M. A Calabi-Yau manifold M will have Kihler
form w, complex structure J and holomorphic volume form 2. If N is a submanifold
of M, we denote the normal bundle of N in M by vy, (N). Moreover, if N is a complex
submanifold of M then we denote by v}v}o(N ) and v;),}l (N) the holomorphic and
antiholomorphic normal bundles of N in M, respectively. Submanifolds will be taken
to be embedded unless otherwise stated.

2 Preliminaries
2.1 Cayley Submanifolds

We follow Joyce [11, Defn 11.4.2] to define Spin(7)-manifolds.

Definition 2.1 Let (xi, ..., x3) be coordinates on R® with the Euclidean metric g0 =
dx12 4+ 4 dx%. Define a four-form on R® by

D¢ :=dx1234 — dx1256 — dx1278 — dX1357 + dx1368 — dX1458 — dX1467
—dx2358 — dx2367 + dx2457 — dx2468 — dx3456 — dx3478 + dxs¢78,  (2.1)

where dx;ji = dx; ANdx; Ndxp Ndx;.

Let X be an eight-dimensional oriented manifold. For each p € X define the subset
ApX C A4T[j‘ X to be the set of four-forms ® for which there exists an oriented
isomorphism 7, X — R3 identifying ® and ® given in (2.1), and define AX to be
the vector bundle with fibre A, X.

A four-form & on X that satisfies ®|, € A, X forall p € X defines a metric g on
X. We call (®, g) a Spin(7)-structure on X. If V denotes the Levi-Civita connection
of g then say (&, g) is a forsion-free Spin(7)-structure on X if V& = 0.

Then (X, @, g) is a Spin(7)-manifold if X is an eight-dimensional oriented mani-
fold and (@, g) is a torsion-free Spin(7)-structure on X.

Given a Spin(7)-manifold (X, ®, g) then ® is a calibration on X, known as the
Cayley calibration. An oriented, four-dimensional submanifold ¥ of X is said to be
Cayley if

®ly = voly,

i.e. Y is calibrated by ®.
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Definition 2.2 Let (M™, J, ') be a compact Kéhler manifold with trivial canonical
bundle Kj; := A"™9M, i.e. with nowhere vanishing section « with da = 0. Then by
Yau’s proof of the Calabi conjecture, there exists a Ricci-flat Kéhler form w € [w/].
Choose a holomorphic, nowhere vanishing section € Q"%(M) so that

o™ i\" —
< - (§> (—)mm=D2Q A Q. (2.2)
m

Say that (M, J, w, 2) is a Calabi—Yau manifold.

Given a Calabi—Yau four-fold (M, J, w, 2), we can define a Cayley form on M by

1
<I>=§a)/\a)+ReQ. 2.3)

The choice of constant in (2.2) was to ensure that Re €2 is a calibration, which
in turn ensures that @ is a calibration. Writing down an expression for (2.3) in local
coordinates at any point of M and comparing to expression (2.1) we see that we can
view (M, ®, g) as a Spin(7)-manifold, where g is the Riemannian metric defined
using w and J. Examining expression (2.3) we see that complex surfaces and special
Lagrangians in a Calabi—Yau four-fold are Cayley submanifolds.

We can decompose bundles of forms on Spin(7)-manifolds into irreducible rep-
resentations of Spin(7). The following proposition is taken from [11, Prop 11.4.4].

Proposition 2.1 Let X be a Spin(7)-manifold. Then the bundle of two-forms M admits
the following decomposition into irreducible representations of Spin(7):

A’X = A2@ A5,
where Af denotes the irreducible representation of Spin(7) on k-forms of dimension L.

Remark 1f Y is a Cayley submanifold, then we can view AiY as a subbundle of A%|y
via the map o > m7(x) [22, p. 741], where 7 : A’M — A2 is the projection
map which will be described explicitly in Proposition 2.2. We will denote by E the
orthogonal complement of AiY in A%|y, so that

Ally = ALY QE. 24)

The following result allows us to characterise Cayley submanifolds of a Spin(7)-
manifold (X, ®, g) in terms of a four-form that vanishes exactly when restricted to a
Cayley submanifold of X.

Proposition 2.2 [30,Lem 10.15] Let X be a eight-dimensional manifold with Spin(7)-
structure (®, g) and let Y be an oriented four-dimensional submanifold of X. Then
there exists T € C™® (A4X ® A%) so that Y (endowed with the correct choice of
orientation) is a Cayley submanifold of X if, and only if, t|y = 0.
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If x,u, v, w are orthogonal, then
T, U, v, w) = w7 (D (-, u, v, w) A X,

where w7(x* A y?) = % (xb AY 4+ D(x,y, -, -)) and b denotes the musical isomor-
phism TX — T*X. Moreover, if ey, ..., eg is an orthonormal frame for T X so that
® and g are identified then

r:Z[el’/\(emb)—e‘ /\(equ))]@Tm (e‘ /\e"). 2.5)

8
i=2
2.2 Deformation Theory of Compact Cayley Submanifolds

We begin by studying a compact Cayley submanifold Y of a Spin(7)-manifold X.
The results here are due to McLean [22, §6], although are taken in this form from a
paper of the author [23]. We first use the tubular neighbourhood theorem to identify the
moduli space of Cayley deformations of ¥ in X with the kernel of a partial differential
operator.

Proposition 2.3 [22, Thm 6.3] Let (X, g, ®) be a Spin(7)-manifold with compact
Cayley submanifold Y. Let exp denote the exponential map and for a normal vector
field v define Y, := exp,(Y). The moduli space of Cayley deformations of Y in X is
isomorphic near Y to the kernel of the following partial differential operator

F:C®(V)— C®(E),
v > 7 (ky expy(tly,)), (2.6)
where T is defined in Proposition 2.2, V is an open neighbourhood of the zero section

invx(Y) and E was defined in (2.4), with i : A%|y — E the projection map.
Moreover, we have that the linearisation of F at zero is the operator

D : C®(vx(Y)) —> C®(E),

4
v Y (ei A (Viv)b) , 2.7

i=1

where {e1, ez, e3, e4} is a frame for TY with dual coframe {el, €2, e, 64}, vl .
TY @ vx(Y) — vx(Y) denotes the connection on vx(Y) induced by the Levi-
Civita connection of X and w7 denotes the projection of two-forms onto A% as in
Proposition 2.2.

Remark Normal vector fields in the kernel of (2.7) are called infinitesimal Cayley
deformations of Y in X.

Proof (partial) We will prove only that the linearisation of F takes the form (2.7),
since this expression is different to that of McLean.
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We have that
d
dF|o(v) = EF(W)b:O =%y LyT|y.
Take a local orthonormal frame {e;, ..., eg} for TX with TY = {ey, ..., e4}, and in
this frame

D — o234 _ L1256 _ L1278 _ 1357 | 1368 _ 1458 _ 1467

_ Q2358 _ 2367 | 2457 | 2468 _ 3456 _ 3478 | S678

where ¢ = g(e;, -) and ekl .= ¢l A el A ek A el. We have that
xy LoTly = (LyT)(e1, €2, €3, €4).

Using a formula such as [8, Eqn (4.3.26)], we find that

1
(LyT)(er, €2, €3, ea) = (VyT)(e1, €2, €3,4) + T (Ve,v, e, e3, 84>
-1 (ijv, el, e3, 64) +1 (Veﬁv, e, e, 64)

1
-1 (Ve4v,el,ez,63),

where we have used that T vanishes on four tangent vectors to a Cayley submanifold.
By definition of 7 given in Proposition 2.2, we have that

4

(LoT)(er, €2, €3, €4) = (VyT)(e1, €2, €3, €4) + Y _ 717 (ei A (Vefv)b) ,
i=1

and so it remains to show that if ® is parallel then so is 7. From Eq. (2.5), we see that

8
Vot ZZV” [ei A(e1a®) —e' Aei CD)] ®7'[7(el A ei)
i=2

+ [ei A (eja®) — el A (e; 1 CID)] ® va(el A ei).

8
i=2

We can see that the second sum in the above expression will vanish when evaluated
on eq, ez, €3, e4, SO it remains to compute

v, [el' Ae1a®) —e' A (eiJcb)],
fori =2,...,8. Since

v, (el INCE q>)) = (Voe') A (ein®) +e' A (Vyers®) + ¢! A (0 V, @),
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we find that

Vu(e' A (ein®@))(er, e2, €3, e4) = e*(e:) (Ve ) (e2) + € (ei) (Vue') (e3)
+e*(e) (Voe')(es) + @ (Vyer, €2, €3, e4)
+ (Vu®@)(ei, €2, €3, e4).

Similarly, since i # 1,

V(e A (e15®)) (e, e2, €3, e4) = (Vye')(e1) — €' (e2) D (Vyer, e1, €3, e4)
+ €' (e3)®(Vyey, e1, €2, ea)

— ¢ (e)@(Vuer, e1. €2, 3).
Using the explicit expression for ®, we have that

8

(Vor)(er ez, e3,e0) = Y [ (en)e? (Vuer) — (e (Vue' ) e2)

i=2

+ e (e3)e} (Vyer) — e3(ei) (Vue' ) (e3) + € (ea)e* (Vyer)
— e (e;) (Ve ) (es) — €' (Vuei) + (Vue ) (er)
—(Vu®)(ei, e2, €3, 64)] ®mr(e' Ae').

Finally, note that since the metric g on X is parallel with respect to the Levi-Civita
connection,

(Voe!)(ex) = —e/ (Vyer) = —g(Vyer, ej) = glex, Voe)) = X (Vye))
= —(Vueb) (e,

and so we find that

8

(Vyt)(er, e2,e3,e4) = Z —(Vy®)(ei, e2,e3,e4) ® JT7(€1 A ei),
i=5

which vanishes since & is parallel. O

Now suppose that M is a four-dimensional Calabi—Yau manifold and N is a two-
dimensional complex submanifold of M. We can apply the above results to study the
Cayley deformations of N in M, but we will exploit the complex structure of N and
M to give these results nicer forms. The following results are due to the author, and
proofs can be found in [23].

To begin with, we identify the normal bundle and E with natural vector bundles
on N.
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Proposition 2.4 [23, Prop 3.2 and 3.3] Let N be a two-dimensional submanifold of a
Calabi-Yau four-fold (M, J, w, 2). Then

(M) @C =v, (M) @ v (V) Z v (V) @ AN v (N),  (2.8)

with vg/}l(N) = APIN ® V}V}O(N) via the map
L@
v —(v
g

where § : v;?’l(N) — v}l,}O(N), and

E®C= AN, (N). (2.9)

With these isomorphisms in place, we can modify Proposition 2.3.

Proposition 2.5 [23, Prop 3.5] Let N be a complex surface in a Calabi—Yau manifold
M. Then the infinitesimal Cayley deformations of N in M can be identified with the
kernel of the operator

549%:C® (vjj’(N) & A"2N ® u}V;O(N)) ™ (A‘”N ® vjj’(zv)) . (2.10)

We will now apply McLean’s method to study the complex deformations of N
in M. We begin by finding a form which vanishes exactly when restricted to a two-
dimensional complex submanifold.

Proposition 2.6 [23, Prop 4.2] Let Y an oriented four-dimensional submanifold of a
four-dimensional Calabi—Yau manifold (M, J, w, Q). Then Y is a complex submani-
fold of M if, and only if; for all vector fields u, v, w on Y,

o(u,v,w) =0,

where o (u, v, w) := Re Q(u, v, w, -).

We can now define a partial differential operator whose kernel can be identified
with the moduli space of complex deformations of N in M.

Proposition 2.7 [23, Prop 4.3] Let N be a compact complex surface inside a four-
dimensional Calabi—Yau manifold M. Then the moduli space of complex deformations
of N is isomorphic near N to the kernel of

G:C®(V®C) - CPA'N®T*"M|y ® C),
v > ky expy (o), (2.11)

where o was defined in Proposition 2.6 and V is an open neighbourhood of the zero
section in vy (N).
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We can find the linear part of G.

Proposition 2.8 [23, Prop 4.4] Let N be a compact complex surface in a Calabi—Yau
four-fold M. Let G be the partial differential operator defined in Proposition 2.6. Then
the linearisation of G at zero is equal to the operator

Vi —3* (v Q) — 3F (v Q),

where v € C®(vy(N) ® C). Therefore v is an infinitesimal complex deformation of
N if, and only if,

Wi =0=09"v1Q).
Moreover, we have that, if v = v @ vy where v] € v}v}o(N) and vy € v;),}l (N)
(1) =0*(W1uQ), 0*(WaQ) =" (1o Q),
and
3*(v12Q) =0 < 0v =0.

So we can see from this result (in combination with the explicit isomorphism
given in Proposition 2.4) that an infinitesimal Cayley deformation of N, v @ w €
Cm(v}t,}o(N) ® AN ® vi,}O(N)) such that dv + 8*w = 0 is a complex deformation
of N if and only if v = 0 = 3*w. Therefore an infinitesimal Cayley deformation
of N in M that is not complex would satisfy v = —3*w. The following theorem
follows from the above results in combination with a local argument reproduced in
Lemma A.1.

Theorem 2.9 [23, Thm 4.9] Let N be a compact complex surface inside a four-
dimensional Calabi—Yau manifold M. Then the moduli space of Cayley deformations
of N in M near N is isomorphic to the moduli space of complex deformations of N in
M, which near N is a smooth manifold of dimension

dimcKer 9 4+ dimcKer 3* = 2 dimcKer 9,
where

51 (n") > ¢ (A% N @ v V),

5% ™ (AO’ZN ® v]{f(zv)) - ™ (AO’IN ® VIIV}O(N)> .

Remark Comparing this to Kodaira’s theorem [14, Thm 1] on the deformation theory
of compact complex submanifolds, we see that we agree with the infinitesimal defor-
mation space, but in this special case where the ambient manifold is Calabi—Yau we
can integrate all infinitesimal complex deformations to true complex deformations.
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2.3 Conically Singular and Asymptotically Cylindrical Manifolds

We will now give some facts about closely related conically singular and asymptoti-
cally cylindrical manifolds that we will require later.

2.3.1 Conically Singular Manifolds

Heuristically speaking, a conically singular manifold can be thought of as a compact
topological space that is a smooth Riemannian manifold away from a point. If the
manifold near this point is diffeomorphic to a product L x (0, €), and the metric on the
manifold is close to the cone metric on L x (0, €), then we call the manifold conically
singular. This idea is made formal in the following definition, taken from [18, Defn
3.1].

Definition 2.3 Let Z be a connected Hausdorff topological space and let Z € Z.
Suppose that Z:=2Z \{z} is a smooth Riemannian manifold with metric g. Then we
say that Z is conically singular at Z with cone C and rate X if there exist € > 0,
A > 1, a closed Riemannian manifold (L, g7 ) of dimension one less than Z, an open
set z € U C Z and a diffeomorphism

W :(0,¢) x L — U\{z},
such that
IVL(W*g — g0)lge = OG*177) for j e NU {0} as r — 0, (2.12)

where r is the coordinate on (0, oo) on the cone C = (0, 00) X L, g¢c = dr? + rsz
is the cone metric on C and V¢ is the Levi-Civita connection of gc.

Definition 2.4 Let Z be a conically singular manifold at z with cone (0, co) x L. Use
the notation of Definition 2.3. We say that a smooth function p : 7 — (0, 1]is aradius
function for Z if p = 1 on Z\U, while on U\{Zz} there exist constants 0 < ¢ < 1 and
C > 1 such that

cr < W*p < Cr,

on (0,¢) x L.

We will now define weighted Sobolev spaces for conically singular manifolds. The
definition given here may be deduced from [15, Defn 4.1].

Deﬁnil:ion 2.5 Let Z be an m-dimensional conically singular manifold at x with metric
gon Z := Z\{z}. Let p be a radius function for Z. For a vector bundle F define the
weighted Sobolev space L,f M(F) to be the set of sections o € L,fleC(F) such that

k 1/p
lolly =1{> f|pf‘“vfo|Pp—’"volg : (2.13)

is finite.
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2.3.2 Asymptotically Cylindrical Manifolds

An asymptotically cylindrical manifold is topologically the same as a conically singu-
lar manifold, but metrically they are conformally equivalent. Compare the following
definition to Definition 2.3.

Definition 2.6 Suppose that (Z, g) is a Riemannian manifold. Then we say that 7 is
asymptotically cylindrical if there exist § > 0, a closed Riemannian manifold (L, gr)
of dimension one less than Z, an open set U € Z and a diffeomorphism

Y (0,00) x L— U,
such that for all j € N U {0}
VL (W8 — goo)lgo, = O(e™) st — o0, (2.14)
where ¢ is the coordinate on (0, co) on the cylinder C = (0, 00) X L, goo = dr* + gL

is the cylindrical metric on C and V is the Levi-Civita connection of go.

Notice that if (Z, g) is a conically singular manifold with radius function p then
(Z, p~2g) is asymptotically cylindrical.
We have the following weighted spaces on an asymptotically cylindrical manifold.

Definition 2.7 Let (Z, g) be an asymptotically cylindrical manifold. For a vector bun-
dle F over Z, define the weighted Sobolev spaces W,f’ s (F) to be the space of sections

oS Liloc(F) so that

1/p

k
. —5gj
lollyp, = E [|p V/o|Pvol, < 00,
: =)z

where p : 7 — (Q, 1] is a smooth function satisfying ce™" < p(t) < Ce™" on the
cylindrical end of Z and is equal to one elsewhere.

We have the following relationship between the weighted spaces Wkp 5 and L,’: u

Lemma 2.10 [15, Prop and Defn 4.4] Let Z be a conically singular manifold at Z of
dimension m with metric g on Z := Z\{EA}. Let p be a radiusfulzctionfor Z. LetT]Z
be the vector bundle of (s, q)-tensors on Z. Denote by W,f 5 (TS Z) the weighted space

of Definition 2.7 with metric p~2g and denote by Lf‘M(TSq Z) the weighted space of
Definition 2.5. Then these spaces are isomorphic, with isomorphism given by

Ly (T{2) — W (11 2),

o> pd I,
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2.4 Fredholm Theory on Noncompact Manifolds

A key part in the argument for proving a result on the moduli space of Cayley defor-
mations of compact manifolds is the observation that an elliptic operator on a compact
manifold is Fredholm. Unfortunately, this result fails in general when the underlying
manifold is not compact, even in the simplest of settings. However, when the noncom-
pact manifold is topologically a compact manifold with a cylindrical end, a theory
was developed for certain types of elliptic operators.

Definition 2.8 Let Z be a manifold with a cylindrical end L x (0, 0co). Let

A CP(F) — CC(Fa),
be a differential operator on compactly supported smooth sections of vector bundles.
We say that A is translation invariant if it is invariant under the natural R -action on

the cylindrical end L x (0, oo) of Z.1f Z has an asymptotically cylindrical metric g,
then we say that an operator

m
A:Zaj~vj,
j=0

is asymptotically translation invariant if there exists a translation invariant operator
m
— © | v/
A=) a VI,
Jj=0

and § > O such thatforall j =0,...,mand k € NU {0}
IVE(@; —a)ly = 0(e™") ast — oo,

where V is the Levi-Civita connection of g. Here a;, a;’o € C°°(F1* ® F, Q(TZ)%))
and ‘> denotes tensor product followed by contraction.

The following result may be deduced from the work of Lockhart and McOwen [16,
Thm 6.2] in combination with Lemma 2.10.

Proposition 2.11 Let Z be a conically singular manifold at Z, p a radius function for
Z and T,' Z be the vector bundle of (s, q)-tensors on Z := Z\{%}. Let

AL CR(TV2) > CF (T 2).

be a linear mth-order elliptic differential operator with smooth coefficients such that
there exists ). € R so that

A= phtd g pts,
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is asymptotically translation invariant to some translation invariant operator

Aoo : Wkp+m,lt(TSq2) - W,([TM(T;{,Z). (2.15)
Then R -
ALy, (T 2) = LY, (T 2). (2.16)

is a bounded map and there exists a discrete set Dy C R such that (2.16) is Fredholm
if, and only if, u € R\Dy. In this case (2.15) and (2.16) are Fredholm for the same
set of weights, and moreover their Fredholm indices differ by a constant independent

of .

Proof By Lemma 2.10, the map

LP

k+m,u(TSq 2) - W/fu(Tqu)’

o+ p' o,

is an isomorphism which restricts to an isomorphism between the kernel of (2.16) and
the kernel of ~ )
A: Wlf—t-m,u(TYqZ) - Wkp—&-m,u(’l—g Z)’ (217)

since by definition
A(prqa) — p)»+s’fq/A(quspsfq0).
Similarly, the isomorphism

Ly (T Z) - wl (1] 2),

N

S
o p)»+s q o,

preserves both the images of (2.16) and (2.17) and their cokernels. Therefore, (2.16)
and (2.17) are Fredholm for exactly the same values of 4 € R and moreover have
the same Fredholm index. The result follows from applying [16, Thm 6.2] to the
asymptotically translation invariant operator A. O

We will characterise the set D4 for the operators that feature in this article in Sect. 4.

3 Deformations of Conically Singular Cayley Submanifolds

3.1 Conically Singular Cayley Submanifolds

The following definition gives a preferred choice of coordinates around any given
point of X. This definition is analogous to [10, Defn 3.6] and [18, Defn 3.3], which are

coordinate systems for almost Calabi—Yau manifolds and G,-manifolds, respectively.
We note here that the only difference between the definition of conically singular in
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these works is the type of coordinate system chosen near the singular point. In a general
Riemannian manifold, it suffices to choose coordinates around the singular point that
identify the metric at this point with the Euclidean metric on R?.

Definition 3.1 Let (X, g, ®) be a Spin(7)-manifold. Then given x € X, there exist
n > 0,anopensetx € V C X, n > 0 and a diffeomorphism

x 1 By(0) =V, 3.

where B;,(0) denotes the ball of radius » around zero in R®, with x(0) = x and so
that dx|o : R® — T, X is an isomorphism identifying (®|,, g|x) with (Pg, go). Call
x a Spin(7) coordinate system for X around x.

Call two Spin(7)-coordinate systems yx, x for X around x equivalent if

dxlo=dxlo,

as maps R® — T, X.

In particular, when the Spin(7)-manifold X is a four-dimensional Calabi—Yau man-
ifold, we can choose a holomorphic volume form €2 for X so that x is abiholomorphism
and d x | identifies the Ricci-flat Kdhler form w with wg and 2 with ¢, the Euclidean
Kéhler form and holomorphic volume form, respectively.

We may now define conically singular submanifolds of Spin(7)-manifolds. This
definition is again analogous to [10, Defn 3.6] and [18, Defn 3.4].

Definition 3.2 Let (X, g, ®) be a Spin(7)-manifold and ¥ € X compact and con-
nected such that there exists £ € Y such that ¥ := Y\{x} is a smooth submanifold of
X. Choose a Spin(7)-coordinate system x for X around x. We say that Y is conically
singular (CS) at X with rate u and cone C if thereexist 1 < u < 2,0 <€ < n,
a compact Riemannian submanifold (L, g;) of S7 of dimension one less than Y, an
open set ¥ € U C X and a smooth map ¢ : (0,€) x L — B,(0) C R8 such that
WU =yxo¢:(0,¢) x L > U\{x}is a diffecomorphism and ¢ satisfies

IV/(p—0)| = O0@" /) for j e NU{0}asr — 0, (3.2)
where ¢ : (0, 00) x L — R3 is the inclusion map given by «(r, ) = rl, V is the Levi-
Civita connection of the cone metric g¢ = dr? + rg; on C, and | - | is computed
using gc.

Remark If the smooth, noncompact submanifold Yisa Cayley (complex) submanifold
of the Spin(7)-manifold (Calabi—Yau four-fold) X then we say that Y is a CS Cayley
(complex) submanifold of X.

Conically singular submanifolds come with a rate 1 < u < 2. We must have that
@ > 1 to guarantee that a conically singular submanifold is a conically singular
manifold (in the sense of Definition 2.3). The reason for asking that u < 2 is so that
u does not depend on the choice of equivalent Spin(7)-coordinate system around the
singular point of the conically singular submanifold.

@ Springer



Deformations of Conically Singular Cayley Submanifolds

Lemma3.1 Let Y be a conically singular submanifold at x with rate . and cone C
of a Spin(7)-manifold (X, g, ®) with Spin(7)-coordinate system x around X. Then
Definition 3.2 is independent of choice of equivalent Spin(7)-coordinate system.

Proof Let x be another Spin(7)-coordinate system for X around % equivalent to x.
Then x and x and their differentials agree at zero. Let ¢ : (0,€) x L — B, (0) be
the map from Definition 3.2. We will show that Y is conically singular in X with
Spin(7)-coordinate system jy around x. Taking & := %' o x o ¢, we have that

Vi -0l =IVI(Z oxop—0l=IVig—0l+00* ), (33)

since Mo x(x) = x +xTAx +...,and ¢(r,1) = rl + O(r"). So we see that ¥
is conically singular at X with cone C in (X, g, ®) with Spin(7)-coordinate system
X, but in order for Y to be CS with rate w in this case, Eq. (3.3) tells us that we must
have that u < 2. ]

The following definition is independent of choice of equivalent Spin(7)-coordinate
system. It is analogous to [18, Defn 3.5].

Definition 3.3 Let Y be a conically singular submanifold at X with rate x and cone
C of a Spin(7)-manifold (X, g, ®) with Spin(7)-coordinate system x. Denote by
¢:=dyxlo: ToR® — T;X. Define the tangent cone of Y at % to be

C:=¢0u(C)CT;X,

where ¢ : C — R¥ is the inclusion map given in Definition 3.2.

On a Calabi—Yau manifold M we are given a Ricci-flat metric @ that we often
have no explicit expression for. The following lemma tells us that Definition 3.2 is
independent of choice of Kihler metric on M.

Lemma 3.2 Let M be a Calabi—Yau four-fold with Ricci-flat Kahler form w and let N
be a CS submanifold of M as in Definition 3.2. Then if ' is any other Kiihler form on
M then N is still a conically singular submanifold of M with the same rate u € (1, 2)
and tangent cone.

Proof Suppose that N is a CS submanifold of M with respect to @ at x. Choose a
Spin(7)-coordinate system for M around X,

X By(0) =V,

for some n > 0 and open V C M containing %, so that x(0) = x and dx|o :
C* — T;M is an isomorphism identifying the standard Euclidean Kihler form and
holomorphic volume form (wy, 20) with (w|;, |;). Let ¢, €, C = (0, 00) x L, and
1 be as in Definition 3.2.

Now given any other Kihler form o’ on M, we can find by [5, p. 107] n’ > 0, an
open set x € V' C M and a biholomorphism

x' By (0) — V',
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with x/(0) = x and dx'|o : C* — T¢M is an isomorphism identifying wo with o' ;.
Then as noted before Definition 3.1, since d x|y identifies the Euclidean metric g
with the metric g’|; defined by o’ and the complex structure, it suffices to check that
Definition 3.2 is satisfied with x’ instead of a Spin(7)-coordinate system.

Since y and x' are diffeomorphisms, d x | and d x'|o are isomorphisms C* — T; M.
Then A := (dx’|o)~" odx|o is an invertible linear map C* — C*. We will show that
N is conically singular in (M, ') with cone C’ = A¢(C) and rate .

Firstly note that since A is a linear map, C’ = A((C) = {Av|v € ((C)}is also a
cone. Denote by L’ the link of C’ (considered as a Riemannian submanifold of S7),
and for any € > 0 write /' : L’ x (0, €’) — C* for the inclusion map (', ") +> r'l'.

Define ¢’ : (0,€') x L' — C*by ¢’ = x' ' oxo¢poA™!, where ¢ = €| A].
Then this map is well defined (taking €” smaller if necessary) and moreover x’ o ¢’ is
a diffeomorphism onto its image. Moreover, by a similar argument to Lemma 3.1 we
have that

VL@ G 1) = LG 1) = O ),

since < 2, where g = dr’> + (+')2gy is the cone metric on C’ and V- is the
Levi-Civita connection of C’.
Finally, we have that

C'=dx'|o((C) =dxloo (dxlo) " odx'lo(AL(C)) = dxlo(A™1 Au(C)) = C,

and so the tangent cone to N at X is the same in each case. O

Remark Note that the proof Lemma 3.2 also shows that if N is conically singular with
respect to one Spin(7)-coordinate system, it is conically singular with respect to any
other Spin(7)-coordinate system, although with a different cone in general, but the
same tangent cone.

We can now construct an example of a conically singular complex surface inside a
Calabi—Yau four-fold.

Example We will model our conically singular complex surface on the following
complex cone in C*. Define C to be the set of (21, 22,23,24) € ct satisfying

ﬁ+é+é+ﬁ=&

a+zn+3+z=0.

Clearly, if z € C, then also Az € C for any A € R\{0}, and so C is a cone.
Checking the rank of the matrix

4z? 4z3 4z§ 4z431
373323 31% 322

at each point of C, we see that the only singular point of C is zero.
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As we will discuss in more detail in Sect. 4, a complex cone C in C* has both a
real link L := $7 N C, and a complex link ¥ := 7 (L), where 7 : S7 — CP3 is the
Hopf fibration. We can view the real link of a complex cone as a circle bundle over
the complex link of the cone.

In this case, the complex link ¥ of C is the complex curve in CP? is given by
[20: 21 : 22 : 23] € CP? satisfying

4, 4 4, 4
g+ +2,+2z3=0,

ZS~I—Z?+Z%+Z§=O.

We can apply the adjunction formula [7, Prop 2.2.17] to find that the canonical
bundle of ¥ is given by

Ky = Kcpsls ® Ocps@)|s ® Ocps(3)ls
=Ocps@+3-3—-1D|s =Ocp33)l|s,

where O¢p3 (k) denotes the —kth (tensor) power of the tautological line bundle over
CP3 if k is a negative integer, the kth power of the dual of the tautological line bundle
if k is a positive integer, and the trivial line bundle if k = 0. Then it follows from the
Hirzebruch—-Riemann—Roch theorem [7, Thm 5.1.1] that the genus of X is

2 +deg Ocp3(3)|s 243 x deg(X)
g: =

5 5 =24+3x4x%x3)/2=19.

Now consider the Calabi—Yau four-fold M defined by
{[zo:m t22:23:24:25] € CP? z8+z?+zg+zg+zg+zg=0}.

Consider the singular submanifold N of M defined to be the set of all [z : z1 : z2 :
23 1 24 1 25) € CP? satisfying

z8+z?+zg+zg+zg+zg =0,
d+B++24=0,
z%+z%+z%+zi =0.
The complex Jacobian matrix of the defining equations of N is given by
623 623 623 623 623 623
0 4z 423423 423 0

0 32% 3z% 3z§ 3z‘21 0

It can be calculated that there are six singular points on N of the form [w : 0: 0: 0 :
0 : 1], where w is a 6th root of —1.
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We will now prove that N satisfies Definition 3.2. We will exploit Lemma 3.2 and
check the definition using the metric on M induced from the Fubini—Study metric on
CP3, denoted by w.

Denote the singular points of N by {p1, ..., pe}, where py = [w; :0:0:0:0:1]
for wy := ¢! @=D7/6 We must construct maps y so that there exist n; > 0 and open
sets px € Vy € M and diffeomorphisms

Xk Bp (0) — Vg,
with xx(0) = p and so that
Xiw=wo+ 0(z),

fork=1,...,6.
Fork =1,...6, define x; : By, (0) — M by

Xk (wi, w2, w3, wa)
1/6
= [mk : \/Eun :ﬁwz : \/Ew3 : \/zw4 : (1—8(w16+wg+wg+w2)) i|
3.4

where if a = re'® forr > 0and —7 < 0 < 7, we define a!/0 := r1/6¢9/6 1tis clear
that (3.4) is a diffeomorphism onto its image. The induced Fubini—Study metric on M
pulls back under yx; to the Euclidean metric on C* ateach Pr=[wr:0:0:0:0:1].
Taking ¢ = t, where « : C — C? is the inclusion map, we see that ¢ o x is a
diffeomorphism C to N, and so the definition of conically singular is trivially satisfied.

3.2 Tubular Neighbourhood Theorems

In this section, we will prove a tubular neighbourhood theorem for conically singular
submanifolds so that we can identify deformations of conically singular submanifolds
with normal vector fields. We will do this in two steps. Firstly, in Proposition 3.3 we
will construct a tubular neighbourhood of a cone in R” using the well-known tubular
neighbourhood theorem for compact submanifolds. We will use this to construct a
tubular neighbourhood of a conically singular submanifold in Proposition 3.4. Propo-
sitions 3.3 and 3.4 use ideas of similar results proved by Joyce [10, Thm 4.6] for special
Lagrangian cones and Lotay [18, Prop 6.4] for CS coassociative submanifolds.

Proposition 3.3 (Tubular neighbourhood theorem for cones) Let C be a cone in R"
with link L and let g be a Riemannian metric on R" (not necessarily the Euclidean
metric). There exists an action of Ry on vrn (C) (defined by g)

12 vRe (C) = vgn(C),

so that
[t -v| =t|v]. (3.5)
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We can construct open sets Ve C vrn (C), invariant under (3.5), containing the zero
section and T¢ C R”, invariant under multiplication by positive scalars, containing
C that grow like r and a dilation equivariant diffeomorphism

c: Ve — Tc,

in the sense that Ec(t-v) =t Ec(v) forallv € vrn (C). Moreover, Ec maps the zero
section of vrn (C) to C.

Proof We will first address the claim that there exists an R -action on vg: (C) so that
(3.5) holds. First note that points in vg» (C) take the form

(r,1,v(r, 1)),

where r € Ry,l € L and v(r, ) € v, ;(C). Notice that for any r, r’ € R the spaces
vr,1(C) and v, ;(C) are naturally isometric. Define an action of Ry on vg(C) by

1 vRn (C) = vga (C),
(r,Lv(r,D)) — (@r,l, tv(r,1)). (3.6)
Then |t - v(r, Dy = [tv@, D|ry = tlv(r, D)|r; as claimed. Notice thatz - (¢ - v) =
(tt") - v and so (3.6) is a group action in the usual sense.
To prove the tubular neighbourhood part of this proposition, we first apply the usual
tubular neighbourhood theorem to the compact submanifold L of §”~!. (Recall that
we need a metric on "~ ! to define the exponential map. We take this to be the standard

round metric on $”~!.) This gives us an open set V; C vgn—1(L) containing the zero
section and an open set T, C S’ containing L and a diffeomorphism

8V — T,
so that E7 maps the zero section of vg.—1 (L) to L. Again write points in vg:(C) as

(r,l,v(r,1)), where v € v, ;(C), and similarly points in vg.—1 (L) as (I, v(l)) where
v € v(L) = v, ;(C). Then define

Ve = {(r,l, v(r. 1)) € vpr (C) | (l,r_lv(r,l)) c VL}.
It is clear that V(¢ is invariant under the R -action (3.6) by construction of V¢ and the
R -action. We see that V¢ grows like r in the sense that if v = (r, [, v(r,1)) € V¢
then
lv(r, Dlr < rlVLl,
where |V} | is the diameter of the set V. Now define

Tc:={ |t eTp, A € Ry},
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Then it is clear that T¢ is dilation invariant, in the sense that it is clearly invariant
under multiplication by positive scalars, and that C C T¢. We see that T¢ grows like
r in the sense thatift € T,/ € L and r € R then

lrt —rl] < r|TL|,

where |77 | is the diameter of the set 77 . Define

EC . VC — Tc,
r Lo, D) rBrd, r o, D).

It is clear that E¢ is well-defined, bijective and smooth. It is also clear that
Bc(t-(r,l,v@, 1) =tEc(r,l,v(r,1)).
Finally we have that
Ec(r,1,0)=rEr(,0)=rl,

by definition of E;, and so E¢ maps the zero section of vg»(C) to C. O

We can use this result to prove a tubular neighbourhood theorem for a conically
singular submanifold.

Proposition 3.4 Let W be a conically singular submanifold of Z at x with cone C and
rate . Write W= = W\{x}. Then there exist open sets V C vz(W) containing the
zero sectionand T C Z containing W and a diffeomorphism

VT,

arp

that takes the zero section of vZ(W) toW. Moreover, we can choose VandT to grow
like p as p — 0.

Proof Notice that K := W\U is a compact submanifold of Z. So by the compact
tubular neighbourhood theorem we can find open sets Vi € vz(K) containing the
zero section and 77 € Z containing K and a diffeomorphism

A

él Vi — fl.
We will construct a tubular neighbourhood for W near £. Denote Cc := C N B(0).
Use the notation of Definition 3.2. Fix a coordinate system x : B,(0) CR" — V C Z
with x(0) = X and dx|o identifying the Euclidean metric with the metric on T; Z.
Choose ¢ : Cc — R”" uniquely by asking that
¢, 1) —u(r, 1) € (Ty(C)*.
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Then since
lp — il =0@"),
forl < u < 2asr — 0, making € smaller if necessarily, we can guarantee that ¢ (r, /)
lies in the tubular neighbourhood of C given by Proposition 3.3. We can therefore
identify ¢ (C¢) with a normal vector field vy on C.
Applying Proposition 3.3 gives us V¢ C vre (C), Tc € R” and a diffeomorphism
Bc: Ve — Tc.
Denote by V¢, the restriction of V¢ to C¢, and define
Vs :=1{v e vp (0)(Ce) |v+vy € V. ],
with
B¢ (v) := Ec(v + vg),
for v € Vy and
Ty := Ec(Vp).

Then Ec¢ : Vy — Ty is a diffeomorphism by construction.

Write U := U\{x}. Define ‘72 = F(Vy) C vz(l}), where F is the isomorphism
V. 0)(Ce) — vZ(U) induced from ¥ and ¢ and f“z := x(Ty). By definition, these
sets grow with order p as p — 0. Then

XOE¢0F_1:‘72—>'IA"2,

is a diffeomorphism taking the zero section of vz (U ) to 0 - Define V,T and 2 by
interpolating smoothly between V1 and Vz, T1 and T2 and E; and &». O

3.3 Deformation Problem
The moduli space that we will consider will be defined in Definition 3.5 below, and
this moduli space will be identified with the kernel of a nonlinear partial differen-

tial operator in Proposition 3.5. First, we will define a weighted norm on spaces of
differentiable sections of a vector bundle.

3.3.1 Weighted Norms on Spaces of Differentiable Sections

Let Z be an n-dimensional CS manifold with a radius function p, F a vector bundle
over Z (the nonsingular part of Z) with a metric and connection.
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Definition3.4 Let A € R and k € N. Define the space CI)\‘(F) to be the space of
sections o € Cﬁ)C(F) satisfying

k

) iAo
lollcr == sup |[p! T*V/o| < o0.
s A
j=0 Z

We say that 0 € C;°(F) ifo e C])f(F) for all k € N.

The space C]){(F) is a Banach space, but C{°(F) is not in general.

3.3.2 Moduli Space

We will now formally define the moduli space of conically singular Cayley deforma-
tions of a Cayley submanifold that we will be studying in this article.

Definition 3.5 Let Y be a conically singular Cayley submanifold at x with cone C
and rate u of a Spin(7)-manifold (X, g, ) with respect to some Spin(7)-coordinate
system x, and denote the tangent cone of Y at x by C.Write ¥ :=Y \{x} Define the
moduli space of conically singular (CS) Cayley deformations of Y in X, M w(Y),tobe
the set of CS Cayley submanifolds Y’ at X with cone C, rate u and tangent cone C of
X so that there exists a continuous family of topological embeddings ¢; : ¥ — X with
t(Y) =Y and (;(Y) = Y’', so that ;,(X) = X forall 7 € [0, 1] and so that i; := ¢} is
a smooth family of embeddings ¥ — X withio(¥Y) = ¥ and i (¥) = ¥/ := Y'\{R}.

We will now end this section by identifying the moduli space of Cayley CS deforma-
tions of a CS Cayley submanifold of a Spin(7)-manifold with the kernel of a nonlinear
partial differential operator.

Proposition 3.5 Let Y be a CS Cayley submanifold at X with cone C and rate . €
(1,2) of a Spin(7)-manifold (X, g, ®). Let T be the A%-valuedfour-form defined in
Proposition 22, m: A2 — E be the projection map for the splitting given in (2.4) and
= vX(Y) T C X and E be the open sets and diffeomorphism from the CS tubular
neighbourhood theorem 3 4. For v e COO(VX(Y)) taking values in V write uvaV the
diffeomorphism o v : Y — YU = uU(Y)

Then we can identify the moduli space of CS Cayley deformations of Y in X near
Y with the kernel of the following differential operator

F: CEO(\A/) — C(E),
v (o E3(tl5)) 3.7

Proof The deformation Y, is Cayley if, and only if, 7| p, = 0, which since &, is a

diffeomorphism is equivalent to *(1:|Y ) = 0. By a local argument in [23, Prop
3.4] based on a similar argument of Harvey and Lawson [6, IV.2.C Thm 2.20] this is
equivalent to F (v) = 0. Since v, T, @U are all smooth, we see that F takes values in
Cie(E) at claimed.
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It remains to show that Y, := ¥, U {£} is a CS submanifold of X at £ with cone C
and rate I3 (with respect to the same Spin(7)-coordinate system as Y) if, and only if,
v E Cl‘jo(V).

Let v be a smooth normal vector field on ¥, and let I}U = ’E‘v(?). Use the notation
of Definition 3.2. Choose ¢ : (0, €) x L — B(0) uniquely by requiring that

o, 1) —u(r, 1) € (T ()™ .

Now we can use W and ¢ to identify vx(ﬁ) with vp_ ) (¢t(Ce)), where U= U\{x}
and C¢ := (0, €) x L. Write vc for the section of vp_(0)(¢(C¢)) corresponding to v
under this identification.

Making € and U smaller if necessary, by the definition of the tubular neighbourhood
map in Proposition 3.4, we can define a map ¢, : Cc — B¢(0) by

¢U(r7 l) = E¢(UC(”7 l))’

where Ey was defined in the proof of Proposition 3.4, so that x o¢, : Cc — Ev(lj ) C

Y v 1s a diffeomorphism. So we see that for Y, to be a CS submanifold of X with rate
u and cone C we must have that

IV (o (r, 1) — 1(r, )] = O, (3.8)
forall j € Nasr — 0. Now we can write
IV (@y — )] < IV ¢y — §)| + [V/ (¢ — 0.
and so (3.8) holds if, and only if,
IV/ (¢ — @) = O+ 7),

for j € Nasr — 0. But examining the definition of ¢,, we see that we can identify
¢, — ¢ with the graph of vc, and so (3.8) holds if, and only if,

Vvl = 0¢"7),
for j € Nasr — 0. But then by definition of v¢ this is equivalent to
Vvl = 0(p" ™),

for j € Nas p — 0, thatis, v € C,j;(f/) for all j € N. So we see that the moduli space
of CS Cayley deformations of Y in X can be identified with the kernel of (3.7). O
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3.4 Cayley Deformations of a CS Cayley Submanifold

In this section, we prove Theorem 3.8 on the expected dimension of the moduli space
of CS Cayley deformations of a conically singular Cayley submanifold Y ina Spin(7)-
manifold X.

The following lemma is similar to [10, Thm 5.1] and [18, Prop 6.9].

Lemma 3.6 Let Y be a conically singular Cayley submanifold of a Spin(7)-manifold
X. Let F be the operator defined in Proposition 3.5. Then we can write

F)(x) = Du(x) + Q(x, v(x), Vo(x)), 3.9)
forx e Y, where
O:{,y, 0l eV, zen@)® Tx*f/} — E,
is smooth, D was defined in Proposition 2.3 and

O()(x) == O(x, v(x), Vu(x)),

is a section of E. Let @ > 1. Then for each k € N, for v € CZJFI(‘A/) with ||v||C11
sufficiently small, there exist constants Cy > 0 so that

10y, , = Crllvlgun (3.10)

and if v € L/I<)+1 M(\A/) with ||v||C11 sufficiently small, with k > 1 4+ 4/p, there exist
constants Dy > 0 such that

A 2
10y, , < Delvliy . (3.11)
Moreover, we may deduce that

F:L"

b (V) > LY (B), (3.12)

k,u—1
is a smooth map of Banach spaces forany 1 < p < ooandk € Nwithk > 1+44/p.

Proof We omit the details of the proof of this result because of similarities to the
above-cited works. For the full proof the reader may consult the author’s PhD thesis
[24,Lem 5.3.1]. We briefly describe how we find the estimate near the singular point of
N, elsewhere it suffices to argue as for compact Cayley submanifolds (see, for example
[23, Lem 3.4]). Close to the singular point, it suffices to estimate the following operator
on the cone C,

Fe( +vp)(r, ) = F)(¥(r, 1),
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where we use the notation of Proposition 3.4 and Definition 3.2. The estimates follow
by fixing some ry > 0, performing the estimate on the compact manifold {ro} x
L, and extending these estimates to (0, €) x L using the equivariance properties of
Fc. O

Now that we have described the behaviour of the operator F close to the singular
point of the conically singular manifold ¥, we will prove a weighted elliptic regularity
result for normal vector fields in the kernel of F'.

Proposition 3.7 Let Y be a conically singular Cayley submanifold of a Spin(7)-
manifold X. Let F be the map defined in Proposition 3.5. Then

eCX(V)|F)=0y={vell,, (V)|F@) =0}

k+1,u

forany p € (1,2)\D, 1 < p < oo and k € N satisfying k > 1 +4/p. Here D is the
set of exceptional weights given by applying Proposition 2.11 to the linear part of F.
Proof We will first show that if v € C°(V) satisfying F(v) = 0, then v €
L,f Tl This is a little trickier than it seems, since we have that for any € > O,

(V) - Lk e
v € Lk+1 - 6(V) for € > 0 sufficiently small, satisfies ﬁ(v) = 0, then we may
deduce that v € L?

(V), which is weaker than what we require. We will show that if

k1, M(V). Recall that in Lemma 3.6, we saw that we could write

F(v) = Dv+ O(v),

where D was defined in Proposition 2.3, and Q is nonlinear. By Proposition 2.11 there
exists a discrete set D so that

D:Ly  ,wx(Y) —> LY, |(E), (3.13)
is Fredholm as long as A ¢ D. Take 0 < € < (u — 1) /2 small enough so that

[u—€,u]lND=@.Letv € Lk+1 - 6(V) and suppose that F(v) = 0. Since (3.13)
is Fredholm when A = u — €, we can write

LY ey (E) = D(LY,, ,_ (vx(Y) ® Oy,
where @u—e is finite-dimensional and
Oy—e = Cokery,_D,
where Coker; D denotes the cokernel of (3.13). Since [u — €, u] N D = @, we know

that (see [16, Lem 7.1])
Coker;,_cD = Coker, D. (3.14)

Now since I:“(v) = 0 we have that Dv = —Q(v), and so Q(v) is orthogonal
to Coker,_D. Also Q(v) € Lk 22— 2 (E) € L,f’u_l(E) by Lemma 3.6 since
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vell (V) and by our choice of €. Therefore we have that Dv = Q(v) €

k+l n—e
L,’: i 1(V) and it is orthogonal to Coker,, D by (3.14). Therefore there exists v €

k+1 M(V) with Dv = Dv. But then we must have that v — v € Ker,,_D = Ker, D,

since [ — e, u]ND =@, andsov € LY (V), as required.

k1.

Conversely, let v € L? (V) satisfy F (v) = 0. Here we perform a trick similar

k41,1
to that in [12, Prop 4.6]. Taylor expanding F (v) around zero we can write F(v) as a
polynomial in v and V. Differentiating and gathering terms we can write

VI:"(U) = L(x,v(x), Vv(x))Vzv + E(x,v(x), Vv(x)).
Consider the second-order elliptic linear operator

Ly: vX(V) — E,
w — L(x, v(x), Vu(x))Vw

By Sobolev embedding, we know that v € CL(V), for I > 2 by choice of p and k,

and therefore the coefficients of the linear operator L, liein C ll O_Cl (V). Local regularity
for linear elliptic operators with coefficients in Holder spaces (a nice statement is given
in [11, Thm 1.4.2], taken from [25, Thm 6.2.5]) tells us that v € CL_'(V) which is
an improvement on the regularity of v, and so bootstrapping we may deduce that
v E CI?C(V). (This is why we must differentiate F (v), to ensure that the coefficients
of the linear operator have enough regularity to improve the regularity of v.) Therefore
the coefficients of the operator L, are smooth and so we may apply an estimate of
Lockhart and McOwen [16, Eq. 2.4] in combination with a change of coordinates

which tells us that

iy, =€ (1Ll + vl ). (3.15)

Since ﬁ(v) =0= Vﬁ(l)), we have that
Lyv=—E(x,v(x), Vu(x)).

Since E(x, v(x), Vv(x))isa polynomlal inv and Vv with coefficients that depend on
the C -norm of v, and v € C (V) and LkJrl M(V) we have that E(x, v(x), Vv(x)) €

Ly ;kl(E) Lp 72(E) Therefore Eq. (3.15) tells us that v € L 2 (V) from
which we may deduce that v is in fact in Cl‘jO(V). O
We may finally deduce the main theorem of this section, on the expected dimension

of the moduli space of Cayley CS deformations of a CS Cayley submanifold of a
Spin(7)-manifold X.

Theorem 3.8 Let Y be a CS Cayley submanifold at X with cone C and rate u €
(1, 2\D of a Spin(7)-manifold X. Let D denote the first-order elliptic differential
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operator defined in (2.7). Then there exist a smooth manifold Ko, which is an open
neighbourhood of 0 in the kernel of (3.16), and a smooth map g from Ko into the cok-
ernel of (3.16) with g,(0) = 0 so that an open neighbourhood of Y in the moduli space
of CS Cayley deformations of Y in X, ./\;lﬂ(Y) Jfrom Definition 3.5, is homeomorphic
to an open neighbourhood of 0 in Ker g».

Moreover, the expected dimension of M w(Y) is given by the index of the linear
elliptic operator

D: Llf—&-l n

If the cokernel of (3.16) is {0} then MM(Y) is a smooth manifold near Y of the same
dimension as the kernel of (3.16). Here D is the set of weights u € R for which (3.16)
is not Fredholm from Proposition 2.11.

(wx(¥)) — Ly, (E). (3.16)

Proof By Propositions 3.5 and 3.7, we can identify MM(Y) near Y with the kernel of
the operator

14
FiLy,, n

V) - L,f’ﬂ_l(E).
The linearisation of F at zero is the operator

D:Ly,, ﬂ(vX(Y)) — LW [(E), (3.17)
which is elliptic. Since u ¢ D, (3.17) is Fredholm. Therefore we may decompose

Ly, ox(M =K eX,

where K’ is the kernel of (3.17) and X’ is closed, and
Ly, (E) = D(LY,, ,(vx(¥)) ® Oy,
where @u is the finite-dimensional obstruction space and

Oup =LY, _((E)/D(LL,, , (vx(¥))) =: Coker, D.

k+1,u1
Then the map
F Lk+1 M(V) X O - Lku 1(B),
(v, w) = F(v) +w,
has

dF0,0)(v, w) = Dv + w, (3.18)

which is surjective. Write K=K x {0} for the kernel of (3.18). We then have that

k+1 u(vx(Y)) X OM = KEB (X X Ou)
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Now we may apply the Banach space implicit function theorem to find KQ c K
containing zero, X c X, Oo C O and asmoothmap ¢ = (g1, £2) : Ko — X x(’)o
so that

F710) N (Ko x X x O0) = {(x. &1(6). 200) | x € Ko} -

So we may identify the kernel of F, and therefore M . (Y) with the kernel of g, : K 0 —>
@0, asmooth map between finite-dimensional spaces (since (3.17) is Fredholm). Sard’s
theorem tells us that the expected dimension of the kernel of g, is given by the index
of the operator (3.17). ]

3.5 Cayley Deformations of a CS Complex Surface

In this section, we prove Theorem 3.12 which gives the expected dimension of the
moduli space of CS Cayley deformations of a two-dimensional conically singular
complex submanifold N of a Calabi—Yau four-fold M in terms of the index of the
operator d +9* acting on weighted sections of a vector bundle over N (the nonsingular
part of N).

3.5.1 Deformation Problem

We would like to study the moduli space given in Definition 3.5 for the CS Cayley
submanifold N that is a complex submanifold of a Calabi—Yau four-fold M. We
will now identify this moduli space with the kernel of a nonlinear partial differential
operator.

Proposition 3.9 Let N be a CS complex surface at X with cone C and rate 1 € (1, 2)
inside a Calabi-Yau four-fold M. Write N = N\{x}. Then the moduli space of CS
Cayley deformations of N in M, M, (N), can be identified with the kernel of the
operator

L CR0) > 2 (AO'IN ® v}‘,}o(ﬁ)) ,

where U C UM (N) ® AN ® v (N) is the image of Ve C from the tubular

neighbourhood theorem under the lsomorphlsm given in Proposition 2.4, and F™ s
defined so that the following diagram commutes

Cx(0) 2 ¢ K @ vy, (1)

L

C®V®C) —E 5 C®E®C)

where F is the operator defined in Proposition 3.5 and we use the isomorphisms given
in Proposition 2.4.
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Moreover, the linearisation of F at zero is the operator
b+ (v ( Oy @ A®2N @ vl (N)) ~ (AOJN ® u}f(i\?)) . (3.19)

Proof By Proposition 3.5 we can identify the moduli space of CS Cayley deformations
of N in M with the kernel of £, which is the same as the kernel of FX.

Since the linearisation of the operator of F is given by the operator D defined in
Proposition 2.3, the local argument of Proposition 2.5 still holds, and so we see that
the linearisation of F<* at zero is given by the operator (3.19) as claimed. O

3.5.2 Cayley Deformations of a CS Complex Surface

In this section, we will give analogies of the results of Sect. 3.4, which were on analytic
properties of the operator F defined in Proposition 3.5, for the operator F* defined
in Proposition 3.9. Due to the relation between the operators F and F°* noted in the
proof of Proposition 3.9, these results follow immediately from their counterparts.

Lemma3.10 Let N be a conically singular complex surface inside a Calabi-Yau four-
fold M. Let F* be the operator defined in Proposition 3.9. Then we can write

Fw)(x) = @ + 0)w(x) + 0% (x, w(x), Vw(x)), (3.20)
forx € 1\7, where
QCX &, y, 2 (x,y) € 0 z € [v;’O(Z\A/) ® AQ»ZN Q v;’O(I\A/)] ® TX*N}
- A%V @ (),

is smooth and ch(w)(x) = ch(x, w(x), Vw(x)) is a section ofAO’IN ® v}l,}o(]\Al).
Let @ > 1. Then for each k € N, for w € Cﬁ“(ﬁ) with ||w||C11 sufficiently small,
there exist constants C, > 0 so that

10 Wl , = CellwlZya. (3.21)

and if w € Lk+1 M(U) with ||w||C11 sufficiently small, there exist constants Dy > 0
such that
AcX 2
105y, < Dilwllyy (3.22)
Moreover, we may deduce that
F&:LP, ,(O) = LY, _(E), (3.23)

is a smooth map of Banach spaces forany 1 < p <ooandk € Nwithk > 1+4/p.

@ Springer



K. Moore

Proof Since F°* is defined by composing the operator F defined in Proposition 3.5
with isomorphisms of vector bundles, the estimates (3.21) and (3.22) follow from the
estimates (3.10) and (3.11), respectively, since the isomorphisms defined in Proposi-
tion 2.4 are isometries.

Moreover, since these isomorphisms are smooth, the claim that (3.23) is a
smooth map of Banach spaces follows from the corresponding fact for F from
Lemma 3.6. O

We may now give a weighted elliptic regularity result for Fex,

Proposition 3.11 Let N be a conically singular complex surface inside a Calabi-Yau
Sfour-fold M. Let F* be the map defined in Proposition 3.9. Then
{we CPW0) | F¥w) =0} = {we Ly, ,0)] F*w) =0},

forany p € (1,2)\D, 1 < p < ocoandk € N. Here D is the set of exceptional weights
given by applying Proposition 2.11 to the linear part of F*.

Proof This follows from Proposition 3.7 in combination with the fact that the ker-
nels of F, defined in Proposition 3.5, and F* are isomorphic by definition, and the
isomorphism given in Proposition 2.4 is an isometry. O

We deduce the following theorem on the moduli space of CS Cayley deformations
of a CS complex surface inside a Calabi—Yau four-fold. This theorem can be proved by
an identical argument to the proof of Theorem 3.8, but we will deduce it as a corollary
of Theorem 3.8.

Theorem 3.12 Let N be a CS complex surface at X with cone C and rate i € (1,2)\D
of a Calabi-Yau four-fold M. Then the expected dimension of M (N) is given by the
index of the linear elliptic operator

40" Ly, (') @ A2 @ vl () > Lf, (A%'N @ v (D)
(3.24)
Moreover if the cokernel of (3.24) is {0} then M w(N) is a smooth manifold near N
of the same dimension as the (complex) dimension of the kernel of (3.24). Here D is
the set of weights . € R for which (3.16) is not Fredholm from Proposition 2.11.

Proof By Theorem 3.8, the expected dimension of M (V) is given by the index of
the operator (3.16). Since, by Proposition 2.5 we can consider the operator (3.24) as
the composition of the operator (3.16) with the isomorphisms from Proposition 2.4,
which are isometries, we may deduce that the index of (3.16) and (3.24) are equal.

O

3.6 Complex Deformations of a CS Complex Surface

In this section, we will compare the CS complex and Cayley deformations of a CS
complex surface inside a four-dimensional Calabi—Yau manifold.
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Definition 3.6 Let N be a CS complex surface at X with rate u and cone C inside
a Calabi—Yau manifold M with respect to some Spin(7)-coordinate system x, and
denote by C the tangent cone of N. Write N := N\{x}. Define the moduli space of
conically singular (CS) complex deformations of N in M, MZ" (N), to be the set of CS
complex surfaces N’ at X with cone C, rate u and tangent cone C of M so that there
exists a continuous family of topological embeddings ¢; : N — M with (¢(N) =
and (1 (N) = N’, so that (;(¥) = X for all # € [0, 1] and so that {; := t| 5 is a smooth
family of embeddings N — M with io(N) = N and i;(N) = N := N'\{%}.

We will now identify the moduli space of CS complex deformations of a CS complex
surface in a Calabi—Yau manifold M with the kernel of a nonlinear partial differential
operator.

Proposition 3.13 Let N be a conically singular complex surface at X with rate 1 and
cone C inside a Calabl—Yaufourfold M. Write N = N\{x}. Let vV C Vm (1\7) ® C be
the open setand & : V= T the dlﬁ‘eomorphlsm defined in the tubular neighbourhood
theorem 3.4. For v € C%), (V) write 8, := B o v, and deﬁne NU = uU(N) Then the

moduli space of CS complex deformations of N in M, MZ"(N), is isomorphic near
N to the kernel of
G:CP(VRC) — CRAN'N®T*M|;®0),
Vb kg *(0|N ), (3.25)

where o was defined in Proposition 2.6. Moreover, the kernel of G is isomorphic to
the kernel of its linear part given by the map

Cem () @ C) — i (AN @ v ' @ A W v (1)),
v —3*(vaQ) — ¥ (v Q). (3.26)

The kernel of (3.26) is isomorphic to

[rowecrol@®e N ev’d) lv=0=wv]. @327

Proof By definition of o we see that normal vector fields in the kernel of G correspond
to complex deformations of N, and a similar argument to Proposition 3.5 shows that
weighted smooth sections of vy, (N ) ® C give conically singular deformations of N
as required. The linear part of G follows from Proposition 2.8, which was a local
argument, and similarly that the kernel of G is equal to the kernel of its linear part
follows from the local argument reproduce in Lemma A.1. Finally, that the kernel of
(3.26) is equal to (3.27) follows from Proposition 2.8, where we proved that

*(wiQ) =0 = d(m1,0() =0,
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where 710 : vy (1\7 )QC — v 11”,0(]\7 ) and the isomorphism of Proposition 2.4.
VL) = A22R @ 0.
O

This proposition allows us to prove that the CS complex deformations of a conically
singular complex surface are unobstructed. This theorem is a generalisation of Theo-
rem 2.9 to conically singular submanifolds.

Theorem 3.14 Let N be a conically singular complex surface at X with rate i €
(1, 2) and cone C inside a Calabi—Yau four-fold M. The moduli space of CS complex
deformations of N in M, M;X(N ) given in Definition 3.6, is a smooth manifold of
dimension

dimcKer 3 + dimcKer 3* = 2dimcKer a, (3.28)

where
5 (vjf(ﬁ)) ~ (AO’]N ® v}f(]\?)) : (3.29)
e (AO’21\7 ® v}f’(z\?)) - (AO’IN ® v;j’(z\?)) . (3.30)

Proof By Proposition 3.13 the moduli space of CS complex deformations of N in M
can be identified with the kernels of the operators (3.29) and (3.30). Equation (3.28)
follows since the kernels of the operators (3.29) and (3.30) are isomorphic [23, Cor
4.6]. O

To compare CS complex and Cayley deformations of a CS complex surface, we
require the following result.

Proposition 3.15 Let N be a CS complex surface at X with cone C and rate ,u e (1,2)
ina Calabl—Yau four-fold M. Write N = = N\{x}. Then w € Lk+1 M(VM (N) @

AO2N ® v (N)) is an infinitesimal CS Cayley deformation ofN if, and only if, it

is an znﬁnlteszmal complex deformation ofN That is, (3 + 0*)w = 0 if, and only if,
ow=0=0d"w

Proof Suppose that w € LkJrl M(vM (N) ® A"2N ® v (N)) satisfies dw = —9*w
for € (1, 2). Then 3*dw = 0. We will check whether

[(éu, v) volgy = / (u, 3*v) volg,
N N

holds foru € L3 , (v’ (M) @ A*2N @vy,"(N)) andv € L2 (v’ (N) & A*2N ®

v}v}o(ﬁ )), that is, whether the integrals on both sides converge. Let p be a radius
function for N. We have that

= _ 1—p—25 +3-2 A 2
[ oy votig = [ (o120, 2] voly < Hwlz_ Bz
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by Holder’s inequality. This is finite since
" 0] < 1! ],

since u € (1, 2). Similarly,

/(u, 9*v) vol y = / (o™ 2u, p"H728%0) volg < flull 2 18%0ll2
N N —pn—4

which again is finite since
o 45 0] < |p* 5],

for u € (1, 2). Therefore

||5w||iz = /}\7<éw’ ow) voly = A(w, *dw) volg =0,

and so dw = 0. O

This allows us to find that CS complex and Cayley deformations of a CS complex
surface in a Calabi—Yau four-fold have the same expected dimension, and therefore
with an application of a result of Harvey and Lawson we may deduce that the moduli
space of Cayley deformations of a CS complex surface is a smooth manifold.

Corollary 3.16 Let N be a CS complex surface inside a Calabi—Yau four-fold M. Then
the moduli space of CS Cayley deformations of N in M is the same as the moduli
space of CS complex deformations of N in M, and is therefore a smooth manifold.

Proof There are no infinitesimal CS Cayley deformations of N by Proposition 3.15,

i.e.now € Cfio(v}do(l\?) ® AN ® vjl‘,}O(Z\A/)) satisfying

ow = —9*w,

where dw # 0. Comparing the expected dimension of the moduli space of CS Cayley
deformations of N in M, computed in Theorem 3.12, to the dimension of the moduli
space of CS complex deformations of N in M, computed in Theorem 3.14, we see that
these spaces must have the same expected dimension. To deduce that the moduli space
of Cayley deformations is a smooth manifold, we apply [6, I1.4 Thm 4.2] which says
that complex and Cayley deformations of a compactly supported complex current are
the same. O

4 Index Theory

Let Y be a CS Cayley submanifold of a Spin(7)-manifold X with nonsingular part Y
and let N be a CS complex surface inside a four-dimensional Calabi—Yau manifold
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M with nonsingular part N. In this section, we will be interested in the index of the
operators R
D: L1€+l,u(vX(Y)) g L][;,,L_l(E), “.1)

from Proposition 2.3 on sections with compact support and extended by density to the
above spaces, and

b407 Ly, (D @ AR @) - L, (A% R e v (D).
4.2)
We will first characterise the set of exceptional weights D for which (4.1) and (4.2)
are not Fredholm. We will then explain how we can apply the Atiyah—Patodi—Singer
index theorem to operators on conically singular manifolds, before applying this result
to the operator (4.2).

4.1 Finding the Exceptional Weights for the Operators D and 6 + 3*

In this section, we will find the set D of exceptional weights for which the linear
elliptic operators (4.1) and (4.2) that appeared in Sect. 3 are not Fredholm. To do this,
we will study these operators acting on Cayley and complex cones in R®. We will see
that the exceptional weights are actually eigenvalues for differential operators on the
links of these cones.

4.1.1 Nearly Parallel G, Structure on S”

We can consider R® as a cone with link S7. Let (®g, go) be the Euclidean Spin(7)-
structure (as given in Definition 2.1). Define a three-form ¢ on S7 by the following
relation:

Dolr.py = r3dr Apl, +14 %0l (4.3)

Then (¢, g) is a Go-structure on S” (here g is the standard round metric on S7). Notice
that this G-structure is not torsion-free, however, since ® is closed we have that

dp=4x¢. “4.4)
G»-structures (¢, g) satisfying (4.4) are called nearly parallel.
4.1.2 Exceptional Weights for the Operator D

LetY bea CS Cayley submanifold at x with rate x and cone C of a Spin(7)-manifold
X and write Y := Y\{x}. Recall the linear elliptic operator

D: CP(wx(Y)) — CE(E),
defined in Proposition 2.3.

We will now describe the set of exceptional weights for D in terms of an eigenvalue
problem on the link of C.
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Proposition 4.1 Let Y be a CS Cayley submanifold at x with cone C = L x (0, 00)
and rate | of a Spin(7)-manifold X. Let Dp denote the set of A € R for which

D:Ly ,x(Y) —> LY, (),

is not Fredholm.
Then A € Dp if, and only if; there exists 0 # v € C*(vg7(L)) so that

Drv = —hv, (4.5)

where for {e1, ez, e3} an orthonormal frame for T L and V= the connection on the

normal bundle of L in S” induced by the Levi-Civita connection of the round metric
7

on S’,

Dy : C®(vg1(L)) = C®(vgi(L)),

3
v Y e x Vv, (4.6)
i=1

where X is the cross product on S induced from the nearly parallel G,-structure
(¢, g) defined by

gluxv,w)=¢U,v,w),

for any vector fields u, v, w on S”.

Remark The operator D; can be defined on any associative submanifold of a G-
manifold, that is, a manifold with torsion-free G,-structure. Normal vector fields in
its kernel correspond to infinitesimal associative deformations of the associative sub-
manifold. This can be deduced from the work of McLean [22, Thm 5-2], however,
the operator first appears in this form in [1, Eqn 14]. Infinitesimal associative defor-
mations of an associative submanifold of S7 with its nearly parallel G,-structure,
however, satisfy (4.5) with A = 1 as shown by Kawai [13, Lem 3.5]. Proposition 4.1
can be considered as a different proof of this fact.

Proof We can apply Proposition 2.11 to the operator D. Suppose that p is a radius
function for Y. Then since the given Spin(7)-structure on X approaches the Euclidean
Spin(7)-structure as we move close to the singular point of Y,

p'Dp!
is asymptotic to the differential operator
Doo :=r'Dor7 !,
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where Dy is defined similarly to D but using the Euclidean Spin(7)-structure pulled
back to X by a Spin(7)-coordinate system x for X around x (see Definition 3.1). We
will verify in the subsequent calculation that Do, is indeed translation invariant.

By Proposition 2.11 in combination with the discussion in [16, p. 416], we see that
, € Dp if, and only if, there exists a normal vector field v € C*® (v (S7)) satisfying

r_lDo(r}‘_lv) =0,

where since v,y ps (C) = v; g7(L) forall » > 0 we can consider (r, ) — (r, Ly
as a normal vector field on the cone. Note also that the induced Euclidean metric on
the normal bundle of C in R8 takes the form r2h, where h is the metric on the normal
bundle of L in S7 induced from the round metric on S”.

Let {e1, e3, e3} denote a local orthonormal frame for 7L with dual coframe
{e!, %, 3}, and denote by ®¢ the Euclidean Cayley form on R® and ¢ the nearly
parallel G;-structure on S” defined in (4.3). Let V denote the Levi-Civita connection
of the cone metric and V denote the Levi-Civita connection of g; (and induced by g 57

on normal vector fields). We compute that

b , b
Do(r* ') = 7 (dr A (V%rk_lv) ) + Zm (re’ A (ngir)‘_lv) >

ar

b
=7 ((A — l)r}‘_2dr A + P dr A <VJ5 v) )

3
. — b
#Ym (e (Tho))
i=1

0
= 2dr A+ T2y <_8 U, )
r

3
N _
+ Z (rkle’ A (Viv) +r* 3, (ei, Viv, Y )) ,
i=1

1y as the metric on the normal bundle is of the form r2A. Using the

definition of  in (4.3), we find that

since VE v =r~

Do(r* ') = art2dr AV + 1t g, -, )
: 1 1
+ Z (r)‘_le’ A (ﬁei V)’ +ridr A g (e,-, Veiu, )
i=1
+rlx g (e,-,Vj;v, ° )) .
Now we wish to replace the musical isomorphism b : vps(C) — vﬂ’%8 (C) with the
musical isomorphism by, : v¢7(L) — v§7(L). Since the metric on vgs(C) is of the

form r2h, where A is a metric on vg7(L), we find that
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Do(r* ') = artdr AVt + (v, -, )
: L \’L L
+ Z <rk+le’ A (Ve[_v> +ridr Ao (e,-,geiv, )
i=1
—i—r“‘l * @ (e,-,vjl'_v, B )) .

At this point, we may verify that the operator Do, = r~! Dor ! is translation invariant.
Writing » = e~*', we see that the expression above implies that

v, -,
t

3
. B b - -
+Ze’ A (Véﬁ) - —thgo(e,-,Vjiﬁ, ) + %@ (e,-,Vjif), . -),
i=1

ste

~ ~ bL ~
Doo () = r~'Do(r~'9) = dr A (V%f)) —(p(V
at

where V is the Levi-Civita connection of the product metric § = dt> + g;. This
expression makes it clear that Do, is a translation invariant operator on the cylinder
L x (0, 00).

Notice that E = v¢7(L) via the map

9 193
a—> | —la ,
(572)
where fif : v§7 (L) — vg7(L) is the musical isomorphism, with inverse map

v m7(dr A va).

Therefore we see that
9 gr
r Do) =0 = (a—JrlDo(r)‘lv)> =0.
r
We find that
0 1 A—1 i 12 ot i
<8—Jr_ Do(r"™ v)) =r"" (Av+<p(e,~,ve_v, ) )
r 1
Since by definition,

—1 —1 193
Drv=¢; x Veiv :w(e,-,Ve,_v, ) ,
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we see that & € Dp if, and only if, there exists 0 # v € C*°(v¢7(L)) such that

Dipv=—Av.

4.1.3 Exceptional Weights for the Operator o +0*

Let N be a CS complex surface with rate 1 and cone C inside a Calabi—Yau four-
fold M, and write N for its nonsingular part. In order to prove an analogous result to
Proposition 4.1 for the operator

5+5%:C° (u}@o(z\?) o AN ® vjf(z\?)) - C (A0’1]\7 ® v}f(]\?)) . 47

we will need some preliminary facts about complex cones.

Definition 4.1 Let C be a complex cone in C"*!, with real link L := C N §2'*1,
Consider the Hopf projection p : §2"*! — CP". Define the complex link ¥ of C to
be the image of L under the Hopf projection, i.e. ¥ := p(L) € CP".

The real link of a complex cone C is a circle bundle over the complex link of C.

Definition 4.2 Let C be acomplex cone in C"*!, and denote by J the standard complex
structure on C"*!. The Reeb vector field is defined to be

0

If p|r : L — X is the restriction of the Hopf projection to L, then at each / € L,
& spans the kernel of dpl; : TIL — Ty X.

Notice that ||, = 1.

Definition 4.3 Let C be a complex cone in C"*! with real link L. Let « be a p-form
on L. We say that « is horizontal if £ 1« = 0, where £ is the Reeb vector field. Denote
by Ag L the vector bundle of horizontal p-forms on L. Denote by d), the projection of
the exterior derivative onto horizontal forms.

By definition of the Reeb vector field, we see if J is the complex structure on C"*!
then J(ALL) C A} L. So we have a well-defined splitting A} L = Ay°L @& A)' L of
one-forms into the +i eigenspaces of J. Define the operator d;, on functions to be the
projection of dj, onto horizontal (0, 1)-forms.

With these definitions, we may characterise the set of exceptional weights for the
operator (4.7) in terms of an eigenproblem on the link of a cone.

Proposition 4.2 Let N be a CS complex surface at X with rate i and cone C inside a
Calabi—Yau four-fold M. Write N := N\{x}. Let D denote the set of A € R for which

D+ LY, 0 (N @ AN @y (N) - LY, (A N v, (N), 4.8)
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is not Fredholm. Let L denote the real link of C. Then A € D if, and only if, there
exists a nontrivial pair v € C‘X’(v;;O(L)) and w € C°°(A2’1L ® vé}O(L)) so that

v =0+ 1—iVe)w, (4.9)

_ 1 —

hw= 5()» +iVe)v, (4.10)
where & is the Reeb vector field on L. Here NV acts on Ag’lL as the Levi-Civita

connection of the metric on L and on v;;o (L) as the normal part of the Levi-Civita
connection on S’.

Proof Similarly to the proof of Proposition 4.1, if p is a radius function for N then we
can see that

p@p~" +3%p),
on N is asymptotic to the operator
Ao i=r@cr™" + 851,

on the cone C, which we will see in the calculation below is translation invariant. If
v € C®(vg7(L) ® C) we can think of r*v as a complexified normal vector field on
C, and moreover the complex structure J on C* induces a splitting

vs7 (L) ® C = v’ (L) @ vy;' (L),

of the complexified normal bundle of L in S” into holomorphic and antiholomorphic
parts (the i and —i eigenspaces of J, respectively). Also, by definition of the Reeb
vector field, if we take & € C®°(A'L) to be the dual one-form to £ we have that
dr — ir@ is a (0, 1)-form on C. By definition, A%?>C = A2T*01C, and T**!C =
(dr —irf) & Ag’lL so we can see that a (0, 2)-form on C must be of the form

r(dr —irf) A w,

where w € C <>O(Ag’lL). By Proposition 2.11 in combination with the discussion in
[16, p. 416], we deduce that A € D if, and only if, there exists v € C*(v¢7(L)) and
w e C¥(A)'L @ v’ (L)) so that

_ _ d
rdc(r*'v) + ra; (r“‘ (—r - ie) A w) =0.
r

Denote by V the Levi-Civita connection of the cone metric and V the Levi-Civita
connection of g7, (induced from the Levi-Civita connection of gg7 on normal vector
fields). We can calculate that

de(* ')y == Dr*2dr@v+r*ldre Va@v + 1o ® Vev + *Ldyv,
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and therefore, since Vi v = r~ 1y,

ar
- 1 (dr
dc(r*v) = r*” 12 <— —19> ® (A +iVe)v +r* 1. (4.11)
r

On (0, 2)-forms, the operators 8* and d* coincide. Therefore, for a local orthonor-
mal frame {%,é/r,el/r,ez/r} for TC with ](ra%) = & and Je; = ep we have
that

We calculate that

d d
Vi ((—r - ie) /\r)‘+1w> =+ Dr* (—r - ie) AW
ar r r
d
+ [Va (_r — i0>j| Aty
ar r

dr
+ At ( 19) AVaw
r or

dr
=t (— — 16>
r

since for the Levi-Civita connection of the cone metric on a one-form « on the link
Vs o = —a/r. Moreover,
ar

d d
Ve ((_r — 19) 'Hw) e [Vg <_r - i9>] AW
r r
dr _
+r A+l ( —l@)/\VSw
.
d
= it <—r _ i@) Aw
r
d _
+ A+1( : i9>Avsw,
p
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again using properties of the Levi-Civita connection of the cone metric and recalling
that the complex structure on a Kéhler manifold is parallel. Finally, notice that

d d _
Ve, (Tr - i@) =ci(e' —ie?), V(' —ie®)=c (Tr - iG) + V(e —ie?),

for ¢1, co = +1 or +i since Vydr = r X and the complex structure J is parallel.

Therefore
d d _
v., [(-r - ie) A r)‘+1w:| = (—r = ie) AV, w,
r r
since A%1L is a rank one vector bundle. We deduce that

_ d — d _
¢ ((Tr — i@) A r)‘Hw) =41 - iVe)w — P (Tr - i@) pw.

4.12)
Equating (4.11) and minus (4.12), we find that A € D if, and only if, there exist
ve C®wi (L) and w € C¥(A)'L @ v, (L)) satisfying

hv=NG+1-iVew,

_ 1 _
w = E(A +iVe)v,

as claimed.
Finally, we verify that Ay is translation invariant. Using the above calculations,
with a coordinate transformation of the form r = ¢™' we find that

~ 1 - - _ -~ -
Ac@@®) = 3 @ +i0)® (Vy =iV ) 1+ 80+ (Vo +iV) @

at

+ (dt +i0)d;w — W,

where V denotes the Levi-Civita of the product metric § = dt”> + g . We can see from
this expression that the operator A is translation invariant, as claimed. O

4.1.4 An Eigenproblem on the Complex Link

In Proposition 4.2 we characterised the set of exceptional weights D for which the
operator (4.8) is not Fredholm in terms of an eigenproblem on the real link of a complex
cone C. In this section, we will introduce a trick used by Lotay [20, §6] to study an
eigenvalue problem on the link of a coassociative cone which is a circle bundle over a
complex curve in CP2. This will allow us to give an equivalent eigenvalue problem to
(4.9)—(4.10) on the real link of C completely in terms of operators and vector bundles
on the complex link of C.
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Let C be a complex cone in C* with real link L € S7 and complex link ¥ € CcP3.
Suppose we have a problem of the following form: Find all of the functions f on L
that satisfy

Lef =imf, of =0, (4.13)

for some m € Z, where & is the Reeb vector field on C. B
We would like to understand the relationship between the operator d, on the real
link of C and dx on the complex link C.

Definition 4.4 Call a function, horizontal vector field or horizontal differential form
f on L basic if

Lef =0.

Basic functions, forms and vector fields are special because they are in one-one cor-
respondence with functions, forms and vector fields on X. It follows from [28, Lem
1] that 9, acting on basic functions, forms or vector fields on L is equivalent to dx,
acting on functions, forms or vector fields on X. In Problem (4.13), when m # 0O, f
is not basic. However, a simple trick allows us to pretend that f is basic.

By the definition of the complex link, we may identify the cone C with the vector
bundle O¢p3(—1)|x, that is, the tautological line bundle over CP3 restricted to X.
This is then a trivial (real) line bundle over L and therefore has a global section given
by the map x = s(x) = x for x € L. Itis easy to see that Lg¢s = is, and therefore

fes™,
is a section of the vector bundle O p3 (m)|x satisfying
Le(fQs™™)=0,
and therefore pushes down to a well-defined section of the vector bundle O¢ p3 (m)|x.
Since O¢p3(m)|x is a trivial line bundle over L, we can still consider f @ s~ as a

function on L. Therefore we can rephrase Problem (4.13) as follows: Find all basic
sections f of O¢p3(m)|s — L satisfying

onf=0.
This is now equivalent to finding the sections f of O¢ps(m)|s — X that satisty

dn f =0.
Therefore we have reduced Problem (4.13) to asking: How many holomorphic sections
of the line bundle O¢p3(m)|x are there?

This problem is easily solved using the Hirzebruch-Riemann—Roch Theorem [7,
Thm 5.1.1].
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Theorem 4.3 (Hirzebruch—-Riemann—Roch) Let X be a Riemann surface and let F be
a holomorphic vector bundle over . Denote by h°(X, F) the dimension of the space
of holomorphic sections of F. Let Ky, denote the canonical bundle of . Then

W2, F) = h(Z, F* ® Kx) + deg(F) + tk(F)(1 — g),

where deg(F) is the degree of the vector bundle F, tk(F) is the rank of the vector
bundle and g is the genus of X.

We will now apply the trick that we described above to rephrase the eigenvalue problem
(4.9)—(4.10) on the real link of a cone as an eigenvalue problem on the complex link
of the cone.

Proposition 4.4 Let C be a complex cone in C* with real link L and complex link
Y. Then given A € R and m € Z, pairs v € C*® (v((l:’g3(2) ® O(Cps(m)|z) and

we C® (AOJE ® u(lc’23(2) ® O(CPS(m)|Z> so that

dsv=M+3+muw, (4.14)

. 1
Bw=Z(k—1—mp, (4.15)

are in a one-one correspondence with pairs v € C* (vé;O(L)> and w €
Cc*® (Ag’lL ® v;;O(L)) satisfying
Lev=imv, Lew =imw,

where & is the Reeb vector field, and the eigenvalue problem (4.9)—(4.10).

Proof We can pull back v and w to basic sections of v ;’70 (LY®O¢p3(m)|x and A?l’ 'L®
v ;'70 (L) ® O¢ps(m)|s over L, respectively. As mentioned above, these sections are

in one-one correspondence with sections v and w of v;;O(L) and Ag’lL ® vél,;o(L),
respectively, satisfying
Lev=1imv, Lz =imw. (4.16)

So we see that v and w are in one-one correspondence with v and w satisfying (4.16),
and v and w satisfy

= (A +3+mw,
e 1 _
oow=-(A—1-m)v.
2
Let V denote the Levi-Civita connection of g; (induced from gg7 on normal vector
fields). By [28, Lemma 3, §5], we see that any horizontal vector field X on S7 viewed

as a circle bundle over C P3 satisfies

horizontal part(Vx&) = J X.

@ Springer



K. Moore

and so for any vector field of type (1, 0), we have that
Lev = Vev — Vy& = Vev —iv.
Moreover, if « is a (0, 1)-form, then for any (0, 1)-vector field X we have that

(Lea)(X) = §(@(X)) — a(Lg X) = §(@(X)) —a(VeX) +a(VxE)
=E(@(X)) — a(VeX) + a(JX) = (Vea)(X) — ia(X).

Therefore (4.16) implies that
Vev =i(m+1)v, Vew =i(m+2)w,
and therefore

W= A+ 1—iVe)w,

- 1
Rw = E(A +iVe)v,
as required. O

4.2 Dimension of the Moduli Space of Complex Deformations of a CS Complex
Surface

In this section, we will deduce a version of the Atiyah—Patodi—Singer index theorem
for operators on conically singular manifolds. We will then apply this result to prove
Theorem 4.8, an index formula for the operator (4.2), which allows us to compare the
dimension of the moduli space of CS complex deformations of a conically singular
complex surface to what we will think of as the dimension of the moduli space of all
complex deformations of a CS complex surface in a Calabi—Yau four-fold based on
Kodaira’s theorem [14, Thm 1] on deformations of complex submanifolds of complex
varieties.

4.2.1 The Atiyah-Patodi-Singer Index Theorem for Conically Singular Manifolds
The Atiyah—Patodi—Singer index theorem is predominantly for a certain type of elliptic
operator on a manifold with boundary. However, as a corollary to the main theorem,

an index theorem for translation invariant operators on a manifold with a cylindrical
end is also proved, which we quote here.

Theorem 4.5 [2, Thm 3.10 & Cor 3.14] Let
A:C®(F) = C®(F)
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be a linear elliptic first-order translation invariant differential operator on a manifold
Z with a cylindrical end L x (0, 00) that takes the special form

A=c <i+B> , 4.17)
ou

on L x (0, 00), where u is the inward normal coordinate, o : F\|; — F»|r is a bundle
isomorphism and B is a self-adjoint elliptic operator on L. Then

ind;2A = / ap(x)dx — w + hoo(F2), (4.18)
z

where h, n, ag and hoo (F2) are defined as follows:

(1) ag(x) is the constant term in the asymptotic expansion (ast — 0) of

Y e g = e gl (),

where |/, ¢//L denote the eigenvalues and eigenfunctions of A*A on the double
of Z (where Z is the compact manifold with boundary L obtained by removing
the cylindrical end of Z), and 11", ¢,, are the corresponding objects for AA*.

(i) h = dim Ker B = multiplicity of the 0-eigenvalue of B.

>iii) n(s) = ZA#O(sign M)A TS, where A runs over the eigenvalues of B.

(iv) hoo(F?>) is the dimension of the subspace of Ker B consisting of limiting values
of extended L? sections f of F; satisfying A* f = 0.

Here we call f an extended L?-section of F if f € L?

end of Z, for large t, f takes the form

(F) and on the cylindrical

loc

fO, 0 =8, 1)+ foo(¥),

for g € L>(F) and f~ € Ker B.

We will now explain how we can apply the Atiyah—Patodi—Singer index Theorem
4.5 to elliptic operators on conically singular manifolds.

We first give a technical result that relates the adjoint of a differential operator on
a conically singular manifold to the adjoint of the related asymptotically translation
invariant operator acting on the conformally equivalent manifold with cylindrical end.

Lemma 4.6 Let Z be an m-dimensional conically singular manifold at Z and let p be
a radius function for Z. Write Z:= Z\{z}, and g for the metric on Z. Let

A1 CRTIZ) — (T ),

be a linear first-order differential operator on Z and suppose there exists . € R so
that

A= prt g pts,
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is an asymptotically translation mvarlant operator. Then the formal adjoint of the
operator A (with respect to the metric p~2g)

LTI 2) - CR(TE ),
is of the form

¥ = pb—atm g ph=s+q'=m
where

ORI 2) - CR(TY ),

is the formal adjoint of A with respect to g.
Moreover, using the notation of Definitions 2.7 and 2.5, the kernel of

AWl (T8 2) - Wl (1Y 2), (4.19)
is isomorphic to the kernel of
ALl @82 > L], (T 2), (4.20)

foranyp e R, ke Nand 1 < p < oo.

Proof Letv € C*(Ty! Z) and w € CSO(T;?/i). Notice that if a, b € CJ°(Ty! Z) then

<a’ b)pfzg = pzq_zs (as b)g

b
o
Il

h
—_—
o
=
S
=
>
N
oo
<
=5

<pk+s’_q/qu—Sv’ w> VOIP*Z
p—2

p ~2g 8

p2q/_25/ <p),+s/_q/qu_sU’ w> IO_mVOIg
8

pk s'+q’ qu Sv w>g p_’"Volg

8

<qu Sv, p*~ mﬂ%q/w) vol,

v, pq sA* A—m S+qw> VOlg
4

!/ ’
p2q72s <U, psfq+mA*p)wm7s +q w> p*mvolg
8

<v’ ps—q+mA*pA—m—s’+q/w> vol

Il

72 3
p2g P8
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where we have used that A* is the formal adjoint of A with respect to the metric g,
which shows that

A* = px7q+mA*p)wmfs’+q’
is the formal adjoint of A with respect to the metric p~2g. By Lemma 2.10

A—m—s'"+q" .y P q % p q' 5
P : Wk+1,u(Ts/ Z) —> Lk+1’#+k_m(Ts, Z),

is an isomorphism and so by definition of A* and A* the kernels of (4.19) and (4.20)
are isomorphic. O

We may now deduce the following proposition from Theorem 4.5 and Lemma 4.6
to give an index theorem for operators on conically singular submanifolds.

Proposition 4.7 Let Z be an m-dimensional conically singular manifold at Z with
radius function p. Let T{ Z be the vector bundle of (s, q)-tensors on Z := Z\{Z}. Let

A1 CR(TIZ) — (T ),

be a first-order linear elliptic differential operator so that for some A € R

A= pA+s’—q’qu—s,

is asymptotically translation invariant to a translation invariant operator Ao, acting
on sections of Ty Z, which takes the special form (4.17) on the end of Z. Then for
u € R\D, given in Proposition 2.11, the index of

A:Li, (T02) — L}, (T8 2), 4.21)

differs by a constant independent of | from the index ind, A, of

Ao 1= 1 hoop™ L2, (T7) — L%’M%(Tj,Z), (4.22)
which satisfies
()
inde Ano = / ao(x)dx — +T’7() (4.23)
VA

fore€ > 0 chosen so that (0, €]N'D = @ and we use the notation of Theorem 4.5 for the
terms on the right hand side of (4.23) (and these terms are defined for the translation
invariant operator Aso).

Proof As we saw in the proof of Proposition 2.11, A and A have isomorphic kernel and
cokernel when acting on weighted Sobolev spaces L/f 11 M(qu Z) and W,f 11 M(qu Z),

respectively, and moreover the index of these operators differ from the index of Aso
by a constant independent of the weight .
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Note that the definition of asymptotically translation invariant only determines the
behaviour of A, on the cylindrical end of (Z, p~2g). We may choose a preferred
operator Aso by interpolating between A on the compact piece of Z and any such
operator Ao on the cylindrical end of Z. Since Aoo is translation invariant, we can
apply Theorem 4.5 to Aso. Let Ker, Ao and Kery A:o denote the kernels of

Ao : WE (T8 Z) - W (TE 2),

ALy W (TS 2) - W2 (T 2),
respectively, where A’go is the formal adjoint of Aso with respect to the metric p~2g,
where g is the metric on Z. Then Theorem 4.5 yields that

- - h 0 /A
dim Kerg As — dim Kerg A%, = / ao(x)dx — +T"() +heo(TY 2).  (424)
VA

By definition of Aoo, Kerg Ans = Kerg Ao, Where Ker, As denotes the kernel of
(4.22), and by Lemma 4.6, Kerg ~§O = Kery—pm A}, where A% is the formal adjoint
of Ay with respect to the metric g and Ker,, A% denotes the kernel of

Al Ly (TS 7) — Lz’M_A(TSqZ).

So we see that

h + n(0)

. +hoo(T9 2). (4.25)

dim Kerg Aoe — dim Kery_,, A%, = / ao(x)dx —
Z

Denote by D the subset of R for which i € D if, and only if, (4.22) is not Fredholm.
Then since we expect that 0 € D in general, the index of A, for the weight 0 may
not be defined. Take € > 0 so that
©0,e]ND =0.
Then ind. A is well-defined. Since € > 0, we have that
Kere Axo C Kerg Ao,
where Ker,, Ay, denotes the kernel of (4.22). It is claimed that

Kere Axo = Kerg Ao

To see this, suppose that « € Kervoo Then by elliptic regularity, « is smooth, and
by definition of weighted norm on L? . 0(T Z) o must decay to zero as r — 0 and

so we must have that o = O(r¢') for some ¢’ > 0. Taking €’ smaller if necessary we
can guarantee that DN (0, €'T = @. The rate of decay of a allows us to deduce that a €
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Li len (T{! Z) where 0 < €” < €'. But then we are done, since there is no exceptional

weight between € and €”, and so [16, Lem 7.1] says that Ker, Ao, = Kery' Ao. Notice
that this tells us that the function ¢ + dim Ker;, Ao is upper semi-continuous at zero.
Since € > 0

Ker)_pm A%, C Ker_cyym Ak.

The above argument also shows that the function u — dim Ker,, A% is upper semi-
continuous (in particular at w = A — m) and so the set

% k
Ker_cia—m A \Kery—n AL,

is nonempty, but its elements are exactly the limiting values of extended L>-sections
f of T;{/Z satisfying A%, f = 0. To see this, recall that Ker; _,, A%, = KergA?, and
Ker_cia—mAL, = Ker,eﬁfw. Following Atiyah, Patodi and Singer [2, Prop 3.11], we
can describe any v € Ker; A’;O on the end L x (0, 0o) of 7 as

v=Y_ Mo (4.26)

reSpecB
A+8<0

Setting § = 0, —e in (4.26) we see that the sections in Ker_, A%, \Kerg A%, are exactly
the terms in the above expression corresponding to A = 0, which are exactly the
limiting values of extended L? sections in the kernel of Azo as claimed.

Therefore

dim Ker_c—m A% \Kery_m A% = hoo(T 2),

i.e. exactly the dimension of the space of limiting values of extended L2-sections f
of T;{ Z satisfying A% f = 0. This allows us to deduce that

Kerg Aoo — Ketym Aoo — hoo(T4 (2)) = inde Ace.
Applying this to (4.25) we find that

h 4+ n(0)

inde Ago = / ao(x)dx — , 4.27)
7 2

as claimed. O

4.2.2 An Application of the APS Index Theorem
Having discussed in the previous section the set of exceptional weights D for the
operator (4.7) in more detail, we will apply the Atiyah—Patodi—Singer index theorem to

the operator d +9* to compare the dimension of the space of CS complex deformations
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of a CS complex surface in a Calabi—Yau four-fold to what we might expect to be the
dimension of the space of all complex deformations of the complex surface from
Kodaira’s theorem [14, Theorem 1].

Theorem 4.8 Let N be a CS complex surface at x with cone C and rate i € (1, 2)\D,
where D is the set of exceptional weights defined in Proposition 2.11, inside a Calabi—
Yau four-fold M. Write N := N\{x}. Let, fork > 4/p + 1,

040 Ly, (') @ AR @ vt (D) > Lf, (A%'N @ v (D)),

k+1,u
(4.28)
and denote the index of this operator by
ind,, (3 + 8%).
Then
. - - d0) +n(
XV ) =ind, G4 5+ Y doy+ TOEID @)

A€(0,)ND

where x (N, v}V}O(N)) is the holomorphic Euler characteristic of v}‘,}o(N), D is the
set of A € R for which (4.14)—(4.15) has a nontrivial solution and then d()\) is the
dimension of the solution space, 1 is the n-invariant which we can now define to be

sign(})

n(s):= Y d@) T

0#£1eD

(4.30)

Remark We interpret this as follows. The term x (N , vll‘,;o (N )) is interpreted as the

dimension of the space of all complex deformations of N in M, since this is what we
can expect if Kodaira’s theorem [14, Theorem 1] remains valid for complex varieties.
Theorem 3.12 tells us that indﬂ(f_) + 9*) is the expected dimension of the space of CS
Cayley deformations of N in M (which by Proposition 3.15 we can interpret as the
expected dimension of the space of CS complex deformations of N in M, although
Theorem 3.14 tells us that in fact this should be equal to just the dimension of the
kernel of (4.28), which is what we expect to happen generically anyway). The term
d(1) represents deformations of N that have a different tangent cone to N at X.

Proof This follows from Proposition 4.7, since in this case

/ ag(x) vol = x (N, v}‘,}o(N)) )
N

from [29, Thm 1.6]. O
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5 Calculations

In this section, we will calculate some of the quantities studied in this article for some
examples.

In Sect. 5.1, we will consider deformations of two-dimensional complex cones in
C*, both as a Cayley submanifold and a complex submanifold of C*. In particular, we
will consider Cayley deformations of the cone that are themselves cones. The (real)
link of such a complex cone is an associative submanifold of S7 with its nearly parallel
G-structure inherited from the Euclidean Spin(7)-structure on C*, and so deforming
the cone as a complex or Cayley cone in C* is equivalent to deforming the link of
the cone as an associative submanifold. Homogeneous associative submanifolds of S’
were classified by Lotay [19], using the classification of homogeneous submanifolds
of §° of Mashimo [21]. The deformation theory of these submanifolds was studied by
Kawai [13], who explicitly calculated the dimension of the space of infinitesimal asso-
ciative deformations of these explicit examples using techniques from representation
theory. Motivated by these calculations, in Sect. 5.2, we will apply the analysis of the
earlier sections to compute the dimension of the space of infinitesimal Cayley conical
deformations of the complex cones with these links, and check that these calculations
match. We will be able to see explicitly which infinitesimal deformations correspond
to complex deformations of the cone and which are Cayley but not complex deforma-
tions. In particular, we will see that complex infinitesimal deformations and Cayley
infinitesimal deformations of a two-dimensional complex submanifold of a Calabi—
Yau four-fold are not the same in general. Finally, in Sect. 5.3, we will compute the
n-invariant for a complex cone in C*.

5.1 Cone Deformations

Let C be a two-dimensional complex cone in C*. Let v be a normal vector field on C.
If v is sufficiently small, we can apply the tubular neighbourhood theorem for cones,
Proposition 3.3, to identify v with a deformation of C. Write v = v; @ va, where
v € C®(v (0)) and vy € C®(v/(C)). We know from Proposition 2.5 that v is
an infinitesimal Cayley deformation of C if, and only if,

51)1 + %5* (UzJﬁ%) =0,

where € is the standard holomorphic volume form on C* and # denotes the musical
isomorphism vé(i’l ) — v((]:go(C ). Moreover, by Proposition 2.6 v is an infinitesimal

complex deformation of C if, and only if,
3 A% oy
vy =0=29 (UQJQ()).

We would like to know what properties v must have in order for the deformation of
C corresponding to v to be a cone itself. By Proposition 3.3, in which we constructed
the tubular neighbourhood of a cone, we constructed a map
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EC : VC—> Tc,

where Ve C vps(C) contains the zero section and T¢ C C* contains C. We con-
structed an action of Ry on vc4 (C) satisfying | - v| = ¢|v], and the map Ec satisfies

Bclr,l,tr-v(r,1)) =tEc(,I,v(r,1)).

Therefore, to guarantee that E¢ ov is a cone in C*, we must have that v(r, ) =r-o(),
for some 0 € C*°(vg7(L)). In this case,

Ec(r,l,v(r,1)) =r&c(l,1,0(1)),

for all r € R4. Choosing a metric on vc4(C) that is independent of r, we see that
r-o() =ro(l).

Therefore the dimension of the space of infinitesimal conical Cayley deformations
of C is equal to the dimensions of the spaces of solutions to the eigenproblems (4.5)
and (4.9)-(4.10) with A = 1. As remarked after the statement of Proposition 4.1,
this particular eigenspace can be identified with the space of infinitesimal associative
deformations of the link of the cone in S7 with its nearly parallel G-structure. This
problem was studied by Kawai [13], who computed the dimension of these spaces
for a range of examples. In terms of the work done here, this is equivalent to solving
the eigenproblem (4.5) when A = 1. We will study the eigenproblem (4.9)—(4.10) for
the three examples of complex cones that were studied by Kawai in his paper. Our
analysis will allow us to see directly the difference between the infinitesimal conical
Cayley and complex deformations of a cone, and we hope that the complex geometry
will make these calculations simpler.

5.1.1 Example 1:L; = §3

The first example is the simplest, being just a vector subspace (with the zero vector
removed). We take

Cp:=C2\{0}, L =8 % :=CP,

where C is the complex cone, L is the real link of C and X is the complex link of
Ci.

Proposition 5.1 [13, §6.4.1] The space of infinitesimal associative deformations of L1
in 87 has dimension twelve.

5.1.2 Example 2: L, = SU(2)/Z,
Our second example is a little less trivial. Take
Cy:= {(Z1,zz,z3,14) eC* zy= O,Z% +z§+z§ = O} .
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Then it can be shown [13, Ex 6.6] that the link of C3, L1, is isomorphic to the quotient
group SU (2)/Z;.
The complex link of C5 is

Yy :={lz0:21:22: 23] ECP3|Z0=O,Z%+Z%+Z§=0}.

Proposition 5.2 ([20, Cor 5.12], [13, Prop 6.26]) The space of infinitesimal associative
deformations of Ly in S™ has dimension twenty-two.

5.1.3 Example 3: L3 = SU(2) /Z3
Our third example is the most complicated to state, but is certainly the most interesting.
Define the cone C3 to be the cone over the submanifold L3 of S7 which is defined

as follows: consider the following action of SU(2) on C*

a’z + \/gazbzz + «/gabza + b3z

21 _

2| —V/3a%bhz1 +a(la* = 2b})z2 + b(2lal* — |b1*)z3 + 3ab*za
23 V3ab*zy — b2lal* — 1b})z2 + a(lal* — 21b1*)z3 + v/3a%bza
<4 —b3z1 + Bab*z — 3a%bzz + @z

where a, b € C satisfy la|> + |b|?> = 1. We define L3 to be the orbit of the above
action around the point (1, 0, O, 0)7, that is,

3

a
_ 25
Lyi= 3a%b 7

V3ab?
_p?

where a, b € C satisfy |a|? + |b|?> = 1. We see that for

Z3 :={<g 2) eSU(2)|§3=1},

L3 is invariant under the action of Zj3, therefore L3 = SU(2)/Z3. The complex link
of the cone C3 over L3 is

3= {[x° : V3x%y : V/3xy? 1 ¥} € CP¥|[x : y] e CP'},

which is known as the twisted cubic in CP3.

This is a particularly interesting example for the following reason [19, Ex
5.8]. Define L3(f) to be the orbit of the above group action around the point
(cos8,0,0,sin0)”. Then L3(0) is associative for 6 € [0, %]. As noted above,
L3(0) = L3 is the real link of a complex cone, however, Lg(%) is the link of a special
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Lagrangian cone. Therefore there exists a family of Cayley cones in C*, including
both a complex cone and a special Lagrangian cone, that are related by a group action.

Proposition 5.3 [13, §6.3.2] The space of infinitesimal associative deformations of
L3(%) in S7 has dimension thirty.

5.2 Calculations

We will now study the eigenvalue problem (4.9)—(4.10) with A = 1 for Cy, C; and C3
defined above. Recall that by Proposition 4.4 we can study the eigenproblem (4.14)—
(4.15) with A = 1 on the complex link instead to make our calculations easier. We first
explain how to count infinitesimal conical complex deformations and infinitesimal
conical Cayley but noncomplex deformations of a complex cone.

Proposition 5.4 Let C be a complex cone in C* with real link L and complex link
Y. Infinitesimal complex conical deformations of C in C* are given by holomorphic
sections of v(é’g}(E). Infinitesimal Cayley conical deformations of C that are not

complex are given by v € Cm(v(g:’loﬁ(il) ® Oc¢p3(m)|x) satisfying

1
Ay v= —Em(4+m)v, 5.1

=

where —4 <m < Q.

Proof We know that infinitesimal complex deformations C will lie in the kernel of 3¢
or 5;. Recall that these spaces are isomorphic and so we expect them to have the same
dimension. Examining the proof of Proposition 4.2 and comparing to Proposition 4.4,
we see that infinitesimal complex deformations of C are given by holomorphic sections
of v(lc’23 (2) ® Ocp3 (2 — 1)|s, and antiholomorphic sections of AVE ® v(lc’& )
Ocp3(—3 — 1). Since infinitesimal conical deformations of C will correspond to
A = 1 here, we see that infinitesimal complex conical deformations of C correspond
to holomorphic sections of

1,0
U(CP3 (2)1
and antiholomorphic sections of

AP'E @001 (2) ® Ocpa(—4)ls = vEA(D),

by the adjunction formula [7, Prop 2.2.17] since K¢p3lx = Ocp3(—4)|x. So we see
that infinitesimal conical complex deformations of C arise from holomorphic sections
of the holomorphic normal bundle of the complex link in CP3. The dimension of the
space of infinitesimal conical complex deformations of C is then equal to the real
dimension (or twice the complex dimension) of the space of holomorphic sections of
the holomorphic normal bundle of the complex link.

Finally, we see that any remaining infinitesimal conical Cayley deformations of C
must satisfy the eigenproblem (4.14)—(4.15) with A = 1 and m # 0, —4. Applying
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5; to (4.14) and using (4.15), we see that the remaining infinitesimal conical Cayley
deformations of C are given by v € C °°(v(lc’23(2) ® O¢p3(m)|x) satisfying

1
Ay v = —Em(4 + m)v.

=
O

While we can apply the Hirzebruch—Riemann—Roch theorem 4.3 to count holomor-
phic sections of holomorphic vector bundles, solving eigenproblems for the Laplacian
acting sections of vector bundles such as (5.1) is somewhat more difficult, especially
since the degree of the line bundle we consider appears in the eigenvalue itself. Such
problems have been studied, however, and we will make use of the following result
of Lépez Almorox and Tejero Prieto on eigenvalues of the dx-Laplacian acting on
sections of holomorphic line bundles over C P! equipped with a metric of constant
scalar curvature.

Theorem 5.5 [17, Thm 5.1] Let K be a Hermitian line bundle over %, where X is
CP" with metric of constant scalar curvature k equipped with a unitary harmonic
connection Vi of curvature F¥¥ = —i Bws, for some B € R. Then the spectrum of
the operator

2053y : CP(K) — C™(K),
is the set

{ro=3 @+ +@+alee k +1]] 1g e NU0}},

wherea = 0ifdeg K > 0,a = 1_otf£erwise.
The space of eigensections of 205, ds, with eigenvalue X, is identified with the space
of holomorphic sections of
K’ ®K,

when deg K > 0, or of holomorphic sections of

K};q QK
when deg K < 0. Therefore the multiplicity of Ay is

m(lg) =1+ |deg K|+ 2q.

5.2.1 Example 1:L; = 3

To calculate the dimension of the space of infinitesimal conical Cayley deformations
of the cone C; = C?, which asreal link L; = $3 and complex link £; = CP!, we will
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apply Proposition 5.4. We first calculate the dimension of the space of holomorphic
sections of

VEds(21) = Ocps(Dls, ® Ocps (D,

which by the Hirzebruch—Riemann—Roch theorem 4.3 has dimension four. Therefore,
the dimension of the space of infinitesimal conical complex deformations of Cj is
eight.

Now we study the eigenproblem

A;_ v = —%m(4 + m), 5.2)

0%,

forv € CPWLD,(21) ® Opps(m)lz,) = C(Ocps(m+ Dz, & Ogps(m+Dlx,)
and —4 < m < 0. We can apply Theorem 5.5 to solve (5.2) as long as the connection

on Ocps(m + 1)|x, ® Ocp3z(m + 1)|x, takes the form

Vi 0
( 0 Vz) , (5.3)

where V; are connections on O¢p3(m + 1)|x,. This is the case here, as can be seen
from the relation between the connection on the normal bundle of £; in CP3 and the
connection on the normal bundle of L; in S (see [28, Lem 1]) and the fact that the
normal bundle of L; in S7 is trivial.

Therefore, by Theorem 5.5, solving (5.2) reduces to solving the algebraic equation

—m(@+m) =4((q +a)* + (g + a)lm +2)),

form € Z and ¢ € N U {0} (since the scalar curvature of £; = CP! = §2(1/2) is
eight) witha = 0if m > —1 anda = 1 if m < —2. It can be checked that this has
solution (g, a, m) = (0, 1, —2), and so by Theorem 5.5 the dimension of eigensections
of (5.2) has dimension 2 x 2 = 4. So we have a total of twelve infinitesimal conical
Cayley deformations of C in C*.

We sum this up in a proposition.

Proposition 5.6 The real dimension of the space of infinitesimal conical Cayley defor-
mations of Cy in C* is twelve. The real dimension of the space of infinitesimal conical
complex deformations of Cy in C* is eight.

Remark Recall that the stabiliser of a Cayley plane in R® is isomorphic to (SU(2) x
SUR2) x SU(2))/Z, and that the dimension of Spin(7)/((SUQ2) x SU2) x
SU(2))/Zy) is twelve. The stabiliser of a two-dimensional complex plane in C* is
isomorphic to U(2) x U (2), and the dimension of U (4)/(U (2) x U(2)) is equal to
eight.
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5.2.2 Example 2: L, = SU(2)/Z,

We now use Proposition 5.4 to calculate the dimension of the space of infinitesimal
conical Cayley deformations of the cone C, in C* with link L, = SU(2)/Z> and
complex link ¥, as defined in Sect. 5.1.2. Since X; is a complete intersection of
irreducible polynomials of degree 1 and 2 in C P3, its normal bundle is given by

VEps(£2) = Ocps(Dls, ® Ogps s,

The dimension of the space of holomorphic sections of v(lc’g3 (X2), by the Hirzebruch—
Riemann—Roch theorem 4.3, has dimension eight, and so we deduce that the space of
infinitesimal conical complex deformations of C, has dimension sixteen.

Since ¥, € CP2, we see that the Levi-Civita connection on v((lz‘23 (X5) must be of
the form (5.3), so that we may apply Theorem 5.5 to solve the eigenproblem

1
Aézzv = —Em(m +4), 5.4

forv € C®(Ocps(m + )]s, ® Ocps(m + 2)|x,) with —4 < m < 0. This reduces
again to solving the equations for m € Z and g € N U {0}

—m(m +4) =2((q + a)* + (g + @)|2m + 3)),

with a = 0 for m > —1 and a = 1 otherwise, which has solution (¢, a,m) =
0,1, —2) and

—m(m +4) =2((q +a)> + (q + a)|2m + 5)),

with a = 0 for m > —2 and a = 1 otherwise, which has solution (g, a,m) =
(1, 0, —2). Therefore by Theorem 5.5 the dimension of the space of solutions to (5.4)
has dimension 3+3 = 6. Therefore, the dimension of the space of infinitesimal conical
Cayley deformations of C» in C* is twenty-two.

Proposition 5.7 The real dimension of the space of infinitesimal conical Cayley defor-
mations of Co in C* is twenty-two. The real dimension of the space of infinitesimal
conical complex deformations of Ca in C* is sixteen.

Remark The dimension of Spin(7)/SU (4) is six, which implies that the six Cayley but
not complex infinitesimal conical deformations of C, are just rigid motions induced
by the action of Spin(7) on RS.

5.2.3 Example 3: L3 = SU(2) /Z3
Finally, we compute the dimension of the space of infinitesimal conical Cayley defor-

mations of Cz in C*, which has real link L3 = SU (2)/Z3 and complex link X3 as
defined in Sect. 5.1.3.
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The normal bundle of X3 in CP3 is [4, Prop 6]
VL0 (33) = 05, (5) @ Ox,(5),

where Oy, (n) denotes the line bundle of degree n over 3. By Hirzebruch-Riemann-—
Roch, Theorem 4.3, the space of holomorphic sections of v(lc’23(23) has dimension
twelve, and so the dimension of the space of infinitesimal conical complex deforma-
tions of C3 in C* has dimension twenty-four.

So it remains to find v € C*°(Ox,(3m + 5) & Ox,(3m + 5)) satisfying

1
Ay v= —Em(4 + m)v. (5.5)

3

Unfortunately, for this example, we cannot directly apply Theorem 5.5 to this problem,
so we must find a different way to solve (5.5). We will do this by constructing a moving
frame for L3.

Proposition 5.8 [13, §6.3.2] There exists an orthonormal frame of L3, denoted
{e1, ez, e3}, where Jey = e3 and ey is the Reeb vector field. We have that

2 2
[e1, e2] = 3 [e1, e3] = 32 [e2, e3] = —2ey.

We extend this to a frame of 7 as follows.
Lemma 5.9 There exist orthonormal frames {e1, e2, e3} of L3 and { f1, fs, fe, f1} Of
v¢7(L3) such that the structure equations of Proposition B.2 take the following form:

dx = ejw1 + exwy + e3w3 + fana + fsns + fene + fin7,
dey = —w1x — w3ex + wre3 — 05 fa +nafs — n7fe + N6 f7,

w1 2 2
dey = — — — — ,
e wrx + w3eq + 3 + ﬁw2f4 + ﬁw3f5
w1 2 2
des = —w3x —wpe] — —ey — —w3 f4 + —wa f5,
-3 7 3 - 7 /s

2 2 w]
d = — —_——— _ [ — s
fa xn4 + nseq ﬁwzez + ﬁw3e3 3 s+ fo + w3 fr

2 2 w]
d = — — _— _ — o — y
fs xns — naeq ﬁwzez ﬁwza + 3 fa—w3fe+wfr

dfs = —xne + nre1 — wo fa + w3 fs — w1 f7,
df; = —xn7 — nee1 — w3 fa — wa fs + w1 fo,

where x : Ly — ST Jey = e3, Jfa = f5, Jfe = f1, {w1, w2, w3} is an orthonormal
coframe of L3 (wi(ej) = §;;) and {n4, ns, ne, 17} is an orthonormal coframe of the
normal bundle of L3 in s’ (Ma(fp) = Sap)- Further, the second structure equations of
Proposition B.3 are also satisfied.
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Proof Let V denote the Levi-Civita connection of L3. We use the notation of Appendix
B. Again we take oy = wj and o3 = w3 as we may by Proposition B.4. We see that
since, using the structure equations given in B.2,

—ay(e1)es —e3 = Ve ea — Ve,e1 = [e1, 2] = —263,
we must have that ¢; = — % We check that
1
—3@ +e2=Vee3 = Vee = e, e3] = 362
and
—e| —e] = Vg,e3 — Veeo = [e2, e3] = —2e;.

Now Eq. (B.3) tells us that we must have that

8
285 ABS+BSABY) = —3@2 A .

So we take ,35‘ = %wz and ﬂg = %wg, ﬂzﬁ = ,BZ = 0 and this is satisfied. To ensure

that Eq. (B.4) is satisfied, we seek y so that

4 2 1
d 4:—da)2=——a) Aw3 =——=w] Aw3 + —=y1 A w3,
B, 7 33 1 7 1 ﬁyl
2 4 2 1
d,Bé5 = —dwy=——=w] AW = —w] AW — —Y] A w2,
V3 3V3 V3 V3

1 1
dﬁ26=0=ﬁ7/3 /\0)3—%)/2/\602,

; 1 1
d,32 =0= ———=V3Nwy — —=Y2 Nw).

V3 V3

From this we see that we must have that y; = %wl, and y» = aw; and y3 = aws. To
determine a, we check Equation (B.5), which tells us that we must have

1d 2 A a’ A A

——dw) = —=w Aw3 = —wr Aw3 — —wy A w3,

3 1 3 2 3 ) 2 3 3 2 3

and therefore we must have a = 2. It can be checked that the remaining parts of Eq.
(B.5) are satisfied with y = (%a)l, 2wy, 2w3). Therefore we choose { f1, fs, f6, f7}
so that the above choices of y, 8 and « hold, and so the equations claimed hold. O

We have that { f1 — i fs, fo —if7} is a frame for the holomorphic tangent bundle of
L3 in S7. We have that
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| . .
Valfs—ifs) = —3fs= 3 fa=—5(fa—ifs).
Ve (fo —if7) = —f1—ife =—i(fe —if7).

However,

(Vo iV (fa—ifs) =0,

(Vo +iV)(fo —if7) = =2(fa — ifs).
(Vay =iV (fa = ifs) = 2(fo — if7),
(V lVL)(fﬁ —if7) =0,

and so we see explicitly that the connection on the normal bundle of L3 in S” is not
in a nice diagonal form as we had before. Since we have a moving frame of 7, we
w111 return to considering the eigenvalue problem (4.9)—(4.10). Writing a section of

57 (L3) as
g1(fa—ifs) + g2(f6 —if),
where g1, g are functions on L3 and sections of A2’1L & v;;O(L3) as
a1 ® (fa—ifs) +o2® (fo —if7),

where oy, @y are sections of A2’1L, we seek gi,g22 € C®(L3) and aj,ap €
C®(A)' L) satisfying

g1 — ga(wr —iw3) = < lVel)Oél,
5+ 1
o] = =

<3 +lv(,])g17
and

g2 = (2 —iVe)aa,

_ 1
oz +2(e20a1) = 5(2 +iVe)g2.
We must have that

g (wr —iw3) = aay,
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for some a € C (since if @1 = 0 then we find infinitesimal conical complex deforma-
tions of C3), and so we may instead study the eigenvalue problems

- 8

g = (5 — iV +a) ai, (5.6)
N

ooy = 5\3 +iVe ) &1, (5.7

and

g2 =2 —iVe)a, (5.8)
% 1 4
O = 5 + P +iVe | g2- 5.9)

Using the structure equations given in Lemma 5.9, we see that the problem (5.8)—(5.9)
is equivalent to the eigenproblem

_ 8

op(g2(wr —iw3)) = <§ - iVel) ar @ (w2 — iw3), (5.10)
- _ 14 4 .
0 (02 @ (w2 —iw3)) = 3 §+;+1Ve1 g2 (w2 —iw3), (5.11)

where we consider g>(wy — iw3) as a A2’1L—Valued function, which becomes

. 8
adpoy = (5 - iVel) @, (5.12)
a
2

4 4
(2w 613
3 a

where now o is a section of A2’1L ® Ag’lL. Supposing that
»Celgl =1imgy, »CelOll =imay,

for 3m € 7Z we see that in order for the eigenproblem (5.12)—(5.13) to make sense we
must have

Lejor =imay.

Write Oy, (d) for the degree d line bundle over 3. Then as explained in Sect. 4.1.4,
we may replace the eigenvalue problems (5.6)—(5.7)—(5.12)—(5.13) with seeking g| €
C*®(Ox;(3m)), and a1 € C*°(Ox,;(3m + 2)), ap € C®(Ox(3m + 4)) satisfying
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- 8
05381 = (5 +a+m> ai, (5.14)
. 1 /4
I =513 -m)sn (5.15)
and
- 8
ads,oy = 3 +m)an, (5.16)
- a (4 4
8;3052 = 5 (g + ; - m) 1. (517)

We find that o/} must simultaneously satisfy the following two eigenproblems: applying
dx, to (5.15) and using (5.14) we find that

= s 1/8 4
O3 05,001 = 3 §+a+m g—m o1, (5.18)
and applying 5;3 to (5.16) and using (5.17) we have that
33,0 L(Ey e (5.19)
a==\z4+m||z+—-—m)ay. .
=S T \3 374 !

Applying the formula [17, Lem 2.1, 2.2]
a_. % a% 2
32382305 = 3238):305 + 3(31’)’! + 2)0[,

where « is a section of Oy, (3m + 2), we see that

5 5o = (8 4.4
530301 = 3 <3 +m> <3 +a m)al,
=l|:<§+a+m) i—m)+i(3m+2):|a1,
2\3 3 3

for a1 € C*°(Ox,;(3m + 2)). Therefore a € C must satisfy

8 4 4 _(8 4 *Gm+2
<§+m)(§+5—m>—<§+a+m> (g—n/l)_g(m‘f‘ ).

Solving this equation for a, we find that for m # 4/3

4m+ 5 +38

ai - El
23 —m)
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which simplifies to

_6m+16

om0 =
T 3

First considering @ = a4 we apply Theorem 5.5 to see that
1/8 n 4 n 4(4 —3m)
—\z4+m|lz—m+——-],
2\3 3 6m 4+ 16

is aneigenvalue 0f5§3 523 acting on sections of Ox,; 3m+2) if, and only if, m = —2/3.
In this case there are five o) € C*°(Ox,(0)) satisfying

A523a1 = 40(1.

Taking g1 = 5;53051 and ap = 522011 completes this solution to the eigenproblem
(5.14)—(5.15)—(5.16)—(5.17).
Secondly, when a = a_ = —2 Theorem 5.5 tells us that
1/8 + 2
ACEETANERTA
is an eigenvalue of 5;2 5):3 acting on sections of Oy, (3m+-2) if, and only if, m = —2/3,

in which case we seek functions «; on X3 satisfying
A 52361 1 =0.

Since X3 is compact, &1 must be holomorphic and further constant. Taking g = ay =
0 completes our analysis.
Finally, we check the case that m = 4/3. In this case, for the eigenvalues

AV EA T
5(5*3)(5)"5”*

we must have a = —2. However, in this case, the eigenvalue is equal to —4, which is
negative and therefore not a possible eigenvalue of 5;53 dx, on sections of Oy, (6).

We have found a total of six infinitesimal conical Cayley deformations of C3 that
are not complex.

Proposition 5.10 The real dimension of the space of infinitesimal conical Cayley defor-
mations of C3 in C* is thirty. The real dimension of the space of infinitesimal conical
complex deformations of C3 in C* is twenty-four.

Remark Similarly to Proposition 5.7 we have six infinitesimal conical Cayley defor-
mations of C3 which are not complex, which again implies that these deformations
are just rigid motions.
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5.3 Calculating the n-Invariant for an Example

The final calculation in this article is to compute the n-invariant of the Atiyah—Patodi—
Singer index theorem 4.5 for one of the examples we considered in Sect. 5.1. This will
help us to calculate (what we expect to be) the codimension of the space of conically
singular complex CS deformations of a CS complex surface N at C with rate p in
a Calabi—Yau manifold M inside the space of all complex deformations of N, for a
certain cone C in C%, using Theorem 4.8.

We consider our simplest example of a two-dimensional complex cone in C* which
is C; = C2. Denote by X the complex link of Cy,i.e. £ = CP!. Proposition 4.4 told
us that the exceptional weights A € R satisfy an eigenproblem, and to calculate the
n-invariant we must first find the dimension of the space of solutions to (4.14)—(4.15)
for each 1 € R. Setting w = 0 in (4.14)—(4.15), we seek holomorphic sections of

CP?(ZI) ® Ocps(A — Dlg, = Ocps(M)|g, ® Ocp3(M)lx,, for A € NU {0}, which
by the Hirzebruch—Riemann—Roch theorem 4.3 has dimension 2(A + 1). Similarly,
setting v = 0 in (4.14)—(4.15), we seek antiholomorphic sections of O¢p3 (—A)|x, B
Ocp3(—A)|x,, which again have dimension 2(A + 1).

It remains to compute the multiplicity of A as an eigenvalue of

20% dx,0 = (A — 1 —m)(A + 3+ mv, (5.20)

where v is a section of O¢ps(m+1)|s, ® Ocps(m+1)|x, and A # 14+m or =3 —m.
Theorem 5.5 tells us that this is equivalent to solving the algebraic equation

O —1—m)(A+34m) = 4[g°> + q|m + 2|,

where ¢ is a positive integer.

It can be computed that the multiplicity of integer A > 0 as an eigenvalue of (5.20)
is 21(A + 1) and the multiplicity of integer A < —2 as an eigenvalue of (5.20) is
2(A 4+ 2)(A 4+ 1). So we have that

]

U(S)—4Z)L+1 Z:A(A+1) Z k+2)()»+1)

a=1 A=3
— IZZAI_S,
=1

and so
n(0) = 12¢(—-1) = —1,

where ¢ is the Riemann zeta function.
We have that the multiplicity of the zero eigenvalue in this case in four. So we have
found that

n0)+h 3
2 T

@ Springer



Deformations of Conically Singular Cayley Submanifolds

5.4 Concluding Remarks

An ideal result in this area would be to deform a singular calibrated submanifold into a
compact nonsingular calibrated submanifold—this would perhaps give new examples
of compact calibrated submanifolds. However, this problem seems intractable with
the type of analysis applied in this article. One motivation for the complex geometry
viewpoint taken in this article is that techniques from algebraic geometry are ideal
for this kind of problem. If one could generalise the natural techniques for desingu-
larisation from complex geometry to Cayley submanifolds and thus other calibrated
submanifolds this would be a very interesting result. However, whether this is feasible
remains to be seen.

The author chose to study the Atiyah—Patodi—Singer index theorem in the context
of conically singular manifolds, which to the author’s knowledge has not been done
before, and calculate some of the quantities that appear in the index formula for some
examples. In particular, it was hoped that complex geometry would make it easier
to calculate some of these quantities, which as one can see from the length of Sect.
5.2.3 is not necessarily the case in practice. Moreover, an explicit calculation of the
expected dimension of a moduli space using the Atiyah—Patodi—Singer index theorem
will not be accurate since the expression (4.29) will in general differ by a constant
from the index of the operator that gives the expected dimension. However, (4.29) and
in particular the heuristic interpretation of this expression given in the remark after
Theorem 4.8 could be a clue to how one might develop new techniques to study more
general moduli spaces of conically singular calibrated submanifolds.
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Appendix A: Local Argument for Unobstructedness of Complex Defor-
mations

The argument here is taken from the author’s PhD thesis [24, Lem 3.4.6]. A more
general version for any complex submanifold of a Calabi—Yau manifold appears in
[23, Lem 4.7].

Lemma A.1 Let G denote the operator defined in Proposition 2.7, whose kernel con-
tains exactly those normal vector fields that correspond to complex deformations of a
compact complex surface. Then

GWw) =0 < dG|p(v) =0.
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Proof We will write the tangent space to a deformation of a complex surface N in
a Calabi—Yau four-fold M as a graph over the tangent space of N, identified with a
complex subspace of C* and write down the condition equivalent to G (v) = 0.

Choose p € N. Then TyM = T,N @ v,(N). Choose an orthonormal basis
{e1, ..., eg} for T, M with Je; = ej 14 fori =1, ...4 so that

T,N = span{ey, ez, Jey, Jea}.

Let N’ be a small deformation of N with diffeomorphism f : N — N’. Then there
is a natural isometry T, M — T,y M preserving the complex structures J and J' on
these spaces. Denote by {¢], ..., eg} the orthonormal basis of 7',y M where e; maps
to e; under this isometry, with J'e; = ¢;_,. Then

Tr(pyN' = span{vy, va, vs, v},

where without loss of generality since N’ is a small deformation of N we may take

for 2! € R.
We can then evaluate

of(py (Wi, vj, vi) :=Re Qg (v, vj, vk, -) =0,
where {i, j, k} € {1, 2,5, 6}. We have that

Re () = /123 — /1278 4 1368 _ /1467 _ /2358 | 45T _ /3456 4 /5678,

where ¢’/ (e;) = 8% and L NP N LN

We evaluate o (v;, vj, %) = 0 for {i, j, k} = {1,2,5},{1,2,6},{1,5,6} and
{2, 5, 6}. Eliminating duplicate equations, we find that the kj. must satisfy the fol-
lowing linear equations

A=A =0,
A -2 =0,
MEa3=o,
A4+ A5 =0,
A =28 =0,
A — A8 =0,
A +a8=0,
A3 +25=0,
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and the following nonlinear equations

MAT — AA3 — A3+ Al =0,

MAZ — AiAS + 33 —alal =0,

IS — 2328 — 2308 + 2348 =,

S —a2a8 + S - =o,

MO+ A2 29+ 103 -2 — a2 -9 =o,
MG =2 - 103 -2 - Mod+ 1) + 02 +29 =0,
AMOL+2D = A0+ + 2300 -2 - Bl -2 =0,
204 =23 = 2300 =) —RBad + ) A2+ =0,
305 +29 = 205 + 29 + 4305 — 1) — 2305 — 29 =0,
B =2 =303 =29 = B303 4+ + 2313 +29 =0,
M0 423 = A +23) + A5 — A3) — 305 — 43) =0,
A0 =29 =250 =13 = 2S04 + ) + 28 +23) =0

Since the first four equations may be rewritten as

1r
51 g+ 2O+ 1) = —2Hel =)

+ol =)ol A ol + Ag)] _
Sled=2hod+aD - ol Dk -2

— ok =D+ =)ol +13 )] _

(242902 +28 — 02 —2802 - 19
+63 =203 = 2D - A3 +2H0F +29) | =

[(x4 G2 428 — 02 +29H(E - 19

| =

F2 2902+ - W2+ 292 — xg)] —0,

it is easy to see that if the linear equations are satisfied then all of the equations above
are satisfied. O

Appendix B: Structure Equations of Spin(7)

We will here give the structure equations of S7 adapted to an associative submanifold
of S7. To do this, we will consider the sphere S” as the group quotient Spin(7)/G>,
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that is, we can consider Spin(7) as the G, frame bundle over s7. Bryant [3, Prop 1.1]
first wrote down the structure equations of Spin(7), but we will quote them in the
following useful form given by Lotay [19, §4].

Proposition B.1 [19, Prop 4.2] We may write the Lie algebra spin(7) of the Lie group
Spin(7) € Gl(n, R) as

0 _U)T —77T w, A, V € M3X1(R)v
spin) =1{ o [a] BT — Im)" n € Max1(R),
n B+ 300 3le — ol + 5yl p & Mas(®),

B+ B]+BS=0, B} +B5—p] =0,
BS— B3 —Bt=0, Bl — B3+ 55 =0.

’

where
0 z —y
[(-x9 y, Z)T] = —Z 0 X )
y —x 0
0 —x —y %z
T o x 0 Z :by
@y "= T 26 ool
FzFy+tx O
and
—q —r s
T P N r
L q,r, S =
{(p.g.r,9)"} Zs p —q
r —q —p

Now that we have the structure equations for Spin(7), we may construct a moving
frame for S7 adapted to an associative three-fold. If we let g : Spin(7) — GI(8,R)
be the map taking Spin(7) to the identity component of the Lie subgroup of G/ (8, R)
which has Lie algebra spin(7), then we can write g = (x e f), where for p € Spin(7)
we have that x(p) € Mgx1(R),e(p) = (e1(p), e2(p), e3(p)) € Msx3(R) and
F(p) = (fap), f5(p). fo(p), f1(p)) € Mgx4(R). We can choose our frame so
that x represents a point of our associative three-fold L, e is an orthonormal frame for
L and w is an orthonormal coframe for L. Therefore f is an orthonormal frame for the
normal bundle of L in 7, 5 an orthonormal coframe. Then since the Maurer—Cartan
form ¢ = g~ 'dg takes values in spin(7), we can write

0 —(,()T _ nT

¢p:=|o [l " -3
n B+ 3l gla — ol + 5ly1-
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This yields the following results.

Proposition B.2 [19, Prop 4.3] Use the notation above. On the adapted frame bundle

of an associative three-fold L in ST x: L — S"and {e1, ez, e3, fa, f5, fo, f7}isa

local oriented orthonormal basis for T A @ N A, so the first structure equations are
dx = ew;

de = —xo! + ela] + fB;

1
df = —ep’ + S = ol +Iy]).

Proposition B.3 [19, Prop 4.4] Use the notation above. On the adapted frame bundle of
an associative three-fold in S, there exists a local tensor of functions h = h?k = h{ i
forl < j,k <3and4 < a <7, such that the second structure equations are '

do = —[a] A w; (B.1)

B = hw; (B.2)

dla] = —[a] A la]l +o Ao’ + BT AB: (B.3)
1

dp =—p Ale] = S (e = ol +[y1) AB; (B.4)

1 1 1
7dle =0l 41yl = —le —oly Ale = ol = 2yl Alyl-+ B A BT
(B.5)

Notice that [«] is the Levi-Civita connection of L and %([a — w]+ + [y]-) defines

the induced connection on the normal bundle of L in S7. We have that 4 defines the
second fundamental form II; € C®(S2T*L; v(L)) of L in S7, writing

II; .= h?kfa R wjwy.

Since the associative submanifolds of S7 that we are considering are S'-bundles over
complex curves, we may reduce the structure equations of L.

Proposition B.4 [19, Ex 4.9] Let L be the link of complex cone C in C*. Then we can
choose a frame of TS’ | such that

4 7
o) = wy, oc3=w3and,31=,3§:ﬂ36=,33=0.

This implies that ﬂg‘ = —,33, ﬂ§ = ﬂ?, ,336 = —/3; and ,6; = ,BS. Here e defines the
direction of the circle fibres of L over the complex link ¥ of C.

Proof This follows from supposing that the complex structure of C* acts on C as
follows:

Jx=e1; Jer=e3 Jfa=f5; Jfo=fr.

]
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