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Highlights
In principle, WGS can provide highly
relevant information for clinical micro-
biology in near-real-time, from pheno-
type testing to tracking outbreaks.

However, despite this promise, the
uptake of WGS in the clinic has been
limited to date, and future implementa-
tion is likely to be a slow process.

The increasing information provided by
WGS can cause conflict with traditional
microbiological concepts and typing
schemes.
Hospitals worldwide are facing an increasing incidence of hard-to-treat infec-
tions. Limiting infections and providing patients with optimal drug regimens
require timely strain identification as well as virulence and drug-resistance
profiling. Additionally, prophylactic interventions based on the identification
of environmental sources of recurrent infections (e.g., contaminated sinks) and
reconstruction of transmission chains (i.e., who infected whom) could help to
reduce the incidence of nosocomial infections. WGS could hold the key to
solving these issues. However, uptake in the clinic has been slow. Some major
scientific and logistical challenges need to be solved before WGS fulfils its
potential in clinical microbial diagnostics. In this review we identify major
bottlenecks that need to be resolved for WGS to routinely inform clinical
intervention and discuss possible solutions.
Decreasing raw sequencing costs
have not translated into decreasing
total costs for bacterial genomes,
which have stabilised.

Existing research pipelines are not sui-
table for the clinic, and bespoke clinical
pipelines should be developed.
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The Lure of WGS in Clinical Microbiology
Thanks to progress in high-throughput sequencing technologies over the last two decades,
generating microbial genomes is now considered neither particularly challenging nor expen-
sive. As a result, whole-genome sequencing (WGS) (see Glossary) has been championed as
the obvious and inevitable future of diagnostics in multiple reviews and opinion pieces dating
back to 2010 [1–4]. Despite enthusiasm in the community, WGS diagnostics has not yet been
widely adopted in clinical microbiology, which may seem at odds with the current suite of
applications for which WGS has huge potential, and which are already widely used in the
academic literature. Common applications of WGS in diagnostic microbiology include isolate
characterization, antimicrobial resistance (AMR) profiling, and establishing the sources of
recurrent infections and between-patient transmissions. All of these have obvious clinical
relevance and provide case studies where WGS could, in principle, provide additional infor-
mation and even replace the knowledge obtained through standard clinical microbiology
techniques. This review reiterates the potential of WGS for clinical microbiology, but also its
current limitations, and suggests possible solutions to some of the main bottlenecks to routine
implementation. In particular, we argue that applying existing WGS pipelines developed for
fundamental research is unlikely to produce the fast and robust tools required, and that new
dedicated approaches are needed for WGS in the clinic.

Strain Identification through WGS
At the most basic level, WGS can be used to characterize a clinical isolate, informing on the
likely species and/or subtype and allowing phylogenetic placement of a given sequence relative
to an existing set of isolates. WGS-based strain identification gives a far superior resolution
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Glossary
Accessory genome: the variable
genome consisting of genes that are
present only in some strains of a
given species. Many of the
organisms representing the most
severe AMR threats are
characterised by large accessory
genomes containing important
components of clinically relevant
phenotypic diversity.
Antimicrobial resistance (AMR):
the ability of a microorganism to
reproduce in the presence of a
specific antimicrobial compound.
Also referred to as antibiotic
resistance (ABR or AR). The sum of
the detected AMR genes in a
sequenced isolate is sometimes
referred to as the resistome.
Horizontal gene tranfer (HGT): the
transmission of genetic material
laterally between organisms outside
‘vertical’ parent-to-offspring
inheritance, including across species
boundaries. Genetic elements related
to clinically relevant phenotypes such
as AMR and virulence are often
transmitted via HGT.
K-mer: a string of length k
contained within a larger sequence.
For example, the sequence ‘ATTGT’
contains two 4-mers: ‘ATTG’ and
‘TTGT’. The analysis of the k-mer
content of raw sequencing reads
allows for rapid characterization of
the genetic difference between
isolates without the need for genome
assembly.
Multilocus sequence typing
(MLST): a scheme used to assign
types to bacteria based on the
alleles present at a defined set of
chromosome-borne housekeeping
genes. Also referred to as sequence
typing (ST).
Phylogenetic tree: a representation
of inferred evolutionary relationships
based on the genetic differences
between a set of sequences. Also
referred to as a phylogeny.
Transmission chain: the route of
transmission of a pathogen between
hosts during an outbreak. This can
often be characterized using WGS
compared to traditional
epidemiological inference based on,
for example, tracing contacts
between patients.
Virulence: broadly, a pathogen's
ability to cause damage to its host,
for example through invasion,
compared to genetic marker-based approaches such as multilocus sequence typing
(MLST) and can be used when standard techniques such as pulsed-field gel electrophoresis
(PFGE), variable-number tandem repeat (VNTR) profiling, and MALDI-TOF are unable to
accurately distinguish lineages [5]. WGS-informed strain identification could be of particular
significance for bacteria with large accessory genomes, which encompass many of the clinically
most problematic bacteria, where much of the relevant genetic diversity is driven by differences
in the accessory genome on the chromosome and/or plasmid carriage.

Somewhat ironically, the extremely rich information of WGS data, with every genome being
unique, generates problems of its own. Clinical microbiology tends to rely on often largely ad
hoc taxonomical nomenclature, such as biochemical serovars for Salmonella enterica or
mycobacterial interspersed repetitive units (MIRUs) for Mycobacterium tuberculosis. While
the rich information contained in WGS should in principle allow superseding traditional taxo-
nomic classifications [6,7], defining an intuitive, meaningful and rigorous classification for
genome sequences represents a major challenge. For strictly clonal species, which undergo
no horizontal gene transfer (HGT), such as M. tuberculosis, it is possible to devise a ‘natural’
robust phylogenetically based classification [8]. Unfortunately, organisms undergoing regular
HGT, and with a significant accessory genome, do not fall neatly into existing classification
schemes. In fact, it is even questionable whether a completely satisfactory classification
scheme could be devised for such organisms, as classifications based on the core genome,
accessory genome, housekeeping genes (MLST), genotypic markers, plasmid sequence,
virulence factors or AMR profile may all produce incompatible categories (Figure 1).

Predicting Phenotypes from WGS
Beyond species identification and characterization, genome sequences provide a rich resource
that can be exploited to predict the pathogen’s phenotype. The main microbial traits of clinical
relevance are AMR and virulence, but may also include other traits such as the ability to form
biofilms or survival in the environment. Sequence-based drug profiling is one of the pillars of HIV
treatment and has to be credited for the remarkable success of antiretroviral therapy (ART)
regimes. Prediction of AMR from sequence data has also received considerable attention for
bacterial pathogens but has not led to comparable success at this stage.

Resistance against single drugs can be relatively straightforward to predict in some instances.
For example, the presence of the SCCmec cassette is a reliable predictor for broad-spectrum
beta-lactam resistance in Staphylococcus aureus, with strains carrying this element referred to
as methicillin-resistant S. aureus (MRSA). In principle, WGS offers the possibility to predict the
full resistance profile to multiple drugs (the ‘resistome’). Possibly the first real attempt to predict
the resistome from WGS data was a study by Holden et al. in 2013, showing that, for a large
dataset of S. aureus ST22 isolates, 98.8% of all phenotypic resistances could be explained by
at least one previously documented AMR element or mutation in the sequence data [9].

Since then, several tools have been developed for the prediction of resistance profiles from
WGS. These include those designed for prediction of resistance phenotype from acquired AMR
genes, including ResFinder [10] and ABRicate (https://github.com/tseemann/abricate),
together with those also taking into account point mutations in chromosome-borne genes
such as Arg-Annot [11], the Sequence Search Tool for Antimicrobial Resistance (SSTAR) [12],
and the Comprehensive Antibiotic Resistance Database (CARD) [12]. Of these, ResFinder and
CARD can be implemented as online methods that, dependent on user traffic, can be
considerably slower than most other tools that only use the command-line. They are, however,
superior in terms of broad usability and are more intuitive than, for example, the graphical user
2 Trends in Microbiology, Month Year, Vol. xx, No. yy

https://github.com/tseemann/abricate


TIMI 1605 No. of Pages 14

adhesion, immune evasion, and toxin
production. However, virulence is
currently loosely defined by indirect
proxies either phenotypically (e.g.,
through serum-killing assays) or
genetically (e.g., by the presence of
genes involved in capsule synthesis
or hypermucosvisity).
Whole-genome sequencing
(WGS): the process of determining
the complete nucleotide sequence of
an organism’s genome. This is
generally achieved by ‘shotgun’
sequencing of short reads that are
either assembled de novo or
mapped onto a high-quality
reference genome.
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Figure 1. The Challenge of Classifying Organisms with Open Genomes. A hypothetical example of three closely
related isolates (G1–G3) collected from the same hospital outbreak. (A) A simplified representation of their genetic makeup.
The strains share most of their chromosome, but with G2 having acquired one point mutation (small black line) in one of the
genes of the multilocus sequence typing (MLST) typing schemes, and thus being assigned to a different sequence type
(ST); G3 also acquired an insertion on the chromosome. Point mutations on the chromosome are represented by short
black lines. Additionally, all three strains share two plasmids (red and blue) carrying antimicrobial resistance (AMR)
elements (shapes), and G1 has an additional private plasmid (purple). (B) The schematic grouping of these three strains
based on MLST typing, chromosomal genetic distances, plasmid similarity, and AMR profile.
interface of SSTAR. Other tools exist for richer species-specific characterization such as
PhyResSE [13] and PATRIC-RAST [14]. Further tools have been developed to predict phe-
notype directly from unassembled sequencing reads, bypassing genome assembly [15,16].

It has been proposed that WGS-based phenotyping might, in some instances, be equally, if not
more, accurate than traditional phenotyping [16–19]. However, it is probably no coincidence
that the most successful applications to date have primarily been on M. tuberculosis and S.
aureus, which are characterised by essentially no, or very limited, accessory genomes,
respectively. Other successful examples include streptococcal pathogens, where WGS-based
predictions and measured phenotypic resistance show good agreement even in large and
diverse samples of isolates [20,21]. On the whole, however, predicting comprehensive AMR
profiles in organisms with open genomes, such as Escherichia coli, where only 6% of genes are
found in every single strain [22], is challenging and requires extremely extensive and well
curated reference databases.

The transition to WGS might appear relatively straightforward if viewed as merely replacing PCR
panels which are already used when traditional phenotyping can be cumbersome and unreli-
able. However, to put the problem in context, there are over 2000 described b-lactamase gene
sequences responsible for multiresistance to b-lactam antibiotics such as penicillins,
Trends in Microbiology, Month Year, Vol. xx, No. yy 3
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cephalosporins, and carbapenems [23]. Whilst b-lactam resistance in some pathogens,
including S. pneumoniae, can be predicted through, for example, penicillin-binding protein
(PBP) typing and machine-learning-based approaches [24], the general problem of reliably
assigning resistance phenotype based on many described gene sequences is commonplace.

At this stage, many of the AMR reference databases are not well integrated or curated and have
no minimum clinical standard. They often have varying predictive ranges and biases and
produce fairly inaccessible output files with little guidance on how to interpret or utilise this
information for clinical intervention. Perhaps because of these limitations, although of obvious
benefit as part of a diagnostics platform, both awareness and uptake in the clinic has been
limited.

Additionally, with some notable exceptions, such as the pneumococci [24], most AMR
profile predictions from WGS data are qualitative, simply predicting whether an isolate is
expected to be resistant or susceptible against a compound despite AMR generally being a
continuous and often complex trait. The level of resistance of a strain to a drug can be
affected by multiple epistatic AMR elements or mutations [25], the copy number variation of
these elements [26], the function of the genetic background of the strain [27–29], and
modulating effects by the environment [30]. The level of resistance is generally well captured
by the semiquantitative phenotypic measurement minimum inhibitory concentration (MIC),
even if clinicians often use a discrete interpretation of MICs into resistant/susceptible based
on fairly arbitrary cut-off values. Quantitative resistance predictions are not just of academic
interest. In the clinic, low-level resistance strains can still be treated with a given antibiotic
but the standard dose should be increased, which can be the best option at hand,
especially for drugs with low toxicity.

The majority of efforts to predict phenotypes from bacterial genomes have been on AMR
profiling. Yet, some tools have also been developed for multispecies virulence profiling: the
Virulence Factors Database (VFDB) [31] or VirulenceFinder [32] as well as the bespoke
virulence prediction tool for Klebsiella pneumoniae, Kleborate [33]. One major challenge is
that virulence is often a context-dependent trait. For example, in K. pneumoniae various
imperfect proxies for virulence are used. These include capsule type, hypermucovisity,
biofilm and siderophore production, or survival in serum-killing assays. While all of these
traits are quantifiable and reproducible, and could thus in principle be predicted using WGS,
it remains unclear how well they correlate with virulence in the patient. Given that virulence is
one of the most commonly studied phenotypes, yet lacks a clear definition, the general
problem of predicting bacterial phenotype from genotype may be substantially more
complex than the special case of AMR, which is itself far from solved for all clinically
relevant species.

Tracking Outbreaks and Identifying Sources of Recurrent Infections
Beyond phenotype prediction for individual isolates, WGS has allowed reconstructing out-
breaks within hospitals and the community across a diversity of taxa ranging from carbapenem-
resistant K. pneumoniae [34–36] and Acinetobacter baumannii [37] to MRSA [38,39], strepto-
coccal disease [40], and Neisseria gonorrhoea [41], amongst others. WGS can reveal which
isolates are part of an outbreak lineage and, by integrating epidemiological data with phyloge-
netic information, detect direct probable transmission events [42–45]. Timed phylogenies, for
example generated through BEAST [46,47], can provide likely time-windows on inferred
transmissions, as well as dating when an outbreak lineage may have started to expand.
Approaches based on transmission chains can also be used to identify sources of recurrent
4 Trends in Microbiology, Month Year, Vol. xx, No. yy
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infections (so called ‘super-spreaders’), and do not necessarily rely on all isolates within the
outbreak having been sequenced, allowing for partial sampling and analyses of ongoing
outbreaks [48]. In this way WGS-based inference can elucidate patterns of infection which
are impossible to recapitulate from standard sequence typing alone [35].

However, WGS-informed outbreak tracking is usually performed only retrospectively. Typically,
the publication dates of academic literature relating to outbreak reconstruction lag greatly, often
in the order of at least 5 years since the initial identification of an outbreak [49,50]. Even analyses
published more rapidly are generally still too slow to inform on real-time interventions [38]. Some
attempts have been made to show that near-real-time hospital outbreak reconstruction is
feasible retrospectively [51,52] or have performed analyses for ongoing outbreaks in close to
real-time [53,54], but these studies are still in a minority and remain largely within the academic
literature.

Some of this time-lag probably relates to the difficulty of transmission-chain reconstruction at
actionable time-scales. This can be relatively straightforward for viruses with high mutation
rates, small genomes, and fast and constant transmission times, such as Ebola [55] and Zika
virus [56], but conversely, reconstructing outbreaks for bacteria and fungi poses a series of
challenges. Available tools tend to be sophisticated and complex to implement, and the
sequence data needs extremely careful quality control and curation. Unfortunately, in some
cases insufficient genetic variation will have accumulated over the course of an outbreak, and a
transmission chain simply cannot be inferred without this signal [57,58]. Furthermore, extensive
within-host genetic diversity (typical in chronic infections) can render the inference of trans-
mission chains intractable [59]. These complexities mean that a ‘one-size fits all’ bioinformatics
approach to outbreak analyses simply does not exist.

The Bonus of Improved Surveillance
One of the key promises of WGS is in molecular surveillance and real-time tracking of
infectious disease. This relies on transparent and standardized data sharing of the millions
of genomes sequenced each year, together with accompanying metadata on isolation host,
date of sampling, and geographic location. With enough data, surveillance initiatives have the
potential to identify the likely geographic origin of emerging pathogens and AMR genes, group
seemingly unrelated cases into outbreaks, and clearly identify when sequences are divergent
from other circulating strains. In a hospital setting, surveillance can help to detect transmis-
sion within the hospital and inflow from the community, optimize antimicrobial stewardship,
and inform treatment decisions; at national and global scales, it can highlight worldwide
emerging trends for which collated evidence can direct both retrospective but also anticipa-
tory policy decisions.

Amongst the most successful global surveillance initiatives and analytical frameworks are those
relating specifically to the spread of viruses. Influenza surveillance is arguably the most
developed, with large sequencing repositories such as the GISAID database (gisaid.org)
and online data exploration and phylodynamics available through web tools such as NextFlu
[60] and NextStrain (http://nextstrain.org), which also allows examination of other significant
viruses including Zika, Ebola, and avian influenza. Another popular tool for the sharing of data
and visualization of phylogenetic trees and their accompanying meta-data is Microreact
(microreact.org) [61], which also allows for interactive data querying and includes bacteria and
fungi. A further tool, predominately for bacterial data, is WGSA (www.wgsa.net). WGSA allows
the upload of genome assemblies through a drag-and-drop web browser, allowing for a quick
characterization of species, MLST type, resistance profile, and phylogenetic placement in the
Trends in Microbiology, Month Year, Vol. xx, No. yy 5
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context of the existing species database based on core genes. At the time of writing WGSA
comprises 20 649 genomes predominantly from S. aureus, N. gonorrhoeae, and Salmonella
enterica serovar Typhi, together with Ebola and Zika viruses, all with some associated
metadata.

Although an exciting initiative, WGSA and associated platforms are still a reasonably long way
off characterizing all clinically relevant isolates and often rely entirely on the sequences
uploaded already being assembled. More generally, the success of any WGS surveillance
is dependent on the timely and open sharing of information from around the globe. While
sequence data from academic publications is near systematically deposited on public
sequence databases (at least upon publication), such data are near useless if the accompa-
nying metadata (see above) are not also released, as remains the case far too often. Addition-
ally, as more genomes are routinely sequenced in clinical settings as part of standard
procedures, ensuring that the culture of sharing sequence data persists beyond academic
research will become increasingly important.

Cost of WGS in the Clinic
For WGS to be routinely adopted in clinical microbiology, it needs to be cost-effective. It is
commonly accepted that sequencing costs are plummeting with the National Human Genome
Research Institute (NHGRI) estimating the cost per raw megabase (Mb) of DNA sequence to
0.12 USD (www.genome.gov/sequencingcostsdata). This has led to claims that a draft
bacterial genome can currently cost less than 1 USD to generate [62]. This is a misunder-
standing as one cannot simply extrapolate the cost of a bacterial genome by multiplying a high-
throughput per DNA megabase (Mb) sequencing cost by the size of its genome. For microbial
sequencing, multiple samples must be multiplexed for cost efficiency, which is easier to achieve
in large reference laboratories with high sample turnover. Excluding indirect costs such as
salaries for personnel, preparation of sequencing libraries now makes up the major fraction of
microbial sequencing costs (Figure 2).

The precipitous drop in the cost of producing raw DNA sequences in recent years (Figure 2A)
mostly reflects a massive increase in output with new iterations of Illumina production
machines. These numbers ignore all other costs and simply reflect output relative to the cost
of the sequencing kits/cartridges. Realistic cost estimates for a microbial genome including
library preparation on the best available platforms give a different picture (Figure 2B). Since the
introduction of the Illumina MiSeq platform in 2011, new sequencing kits generating higher
output have only marginally affected true microbial genome sequencing costs, as library
preparation makes up a significant portion of the total (60 USD of a total of 74 USD for a
typical bacterial genome in 2018). These costs have remained stable over time and are unlikely
to go down significantly in the near future. Indeed, the market seems to be consolidating in
fewer hands (e.g., represented by the procurement of KAPA by Roche in 2015), which
economic theory predicts will not favor price decrease.

It is also important to keep in mind that these costs are massive underestimates which do not
include indirect costs such as salaries for laboratory personnel and downstream bioinformatics.
Such indirect costs are difficult to estimate precisely in an academic setting but are far from
trivial. Per-genome sequencing and analysis costs are likely to be even higher in a clinical
diagnostics environment due to the need for highly standardised and accredited procedures.
However, a micro-costing analysis covering laboratory and personnel costs estimated the cost
of clinical WGS to £481 per M. tuberculosis isolate versus £518 applying standard methods,
representing relatively marginal cost savings but with significant time savings [63]. WGS does
6 Trends in Microbiology, Month Year, Vol. xx, No. yy
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Figure 2. Raw Sequencing Costs Have Dropped over Time but the True Sequencing Cost Per Bacterial
Genome Has Stabilised. (A) Sequencing cost per raw megabase (Mb) of DNA sequence between 2009 and 2018. Data
from https://www.genome.gov/27541954/dna-sequencing-costs-data/. (B) The evolution of costs for a bacterial genome
of 3 Mb sequenced to 50� depth (Illumina) or 30� depth (Roche 454) between 2009 and 2018. The fraction of the total
cost (red line) made up of library preparation consumables (blue line) indicates that the drop in raw sequencing costs has
had a limited impact on true sequencing costs since 2011, and none after 2013. The cost is based on our calculations for
the output and consumable costs for the 454 GS Jr and Illumina Miseq 2 � 150, Miseq 2 � 250 and Miseq 2 � 300, the
leading microbiology-scale platforms in terms of output/cost ratio in 2009, 2011, 2015, and 2018 respectively. USD, US$.
indeed represent a potentially cost-effective and highly informative tool for clinical diagnostics,
but for microbiology-scale sequencing we seem to be in a post-plummeting-costs age.

Time Scales of WGS-Based diagnostics
One key feature of useful diagnostics tools is their ability to rapidly inform treatment. Most
applications of WGS so far have been for lab-cultured organisms (bacteria and fungi). Tradi-
tional culture methods require long turnaround time, with most bacterial cultures taking 1-5
days, fungal cultures 7-30 days, and mycobacterial cultures up to 14-60 days. In this scenario,
WGS is used as an adjunct technology primarily to provide information on the presence of AMR
and virulence genes, which is particularly useful for mechanisms that are difficult to determine
phenotypically (e.g. carbapenem resistance). This use of WGS, whilst solving some of the
current clinical problems, does not speed up the diagnosis of infection; it is more the case that
new technology is replacing some of the more cumbersome laboratory techniques whilst
providing additional information.

WGS is more appealing as a microbiological fast diagnostics solution when combined with
procedures that circumvent (or shorten) the traditional culture step. This can be achieved
through direct sampling of clinical material (Box 1) or by using a protocol enriching for
sequences of specific organism(s). Such enrichment methods, generally based on the capture
Trends in Microbiology, Month Year, Vol. xx, No. yy 7
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Box 1. WGS beyond Single Genomes

WGS in the strict sense usually refers to sequencing the genome of a single organism, and it is common to distinguish
between the sample (the material that has actually been taken from the patient) and the isolate (an organism that has
been cultured and isolated from that sample). WGS methods traditionally sequence a cultured isolate to reduce
contamination from other organisms, or sometimes rely on enrichment strategies targeting sequences from a specific
organism [66,67]. However, this represents only a small fraction of the total microbial diversity present in a clinical
sample.

In contrast, metagenomic approaches sequence samples in an untargeted way. This approach is particularly relevant
for clinical scenarios where the pathogen of interest cannot be predicted and/or is fastidious (i.e., has complex culturing
requirements). Example applications of clinical metagenomics include: when the disease causing agent is unexpected
[74,75]; investigating the spread of AMR-carrying plasmids across species [35]; and characterizing the natural history of
the microbiome [76]. The removal of the culture requirement can drastically decrease turn-around time from sample to
data and enable identification of both rare and novel pathogens. Different samples however present different challenges.
Easy-to-collect sample sites (e.g., faeces and sputum) typically also have a resident microbiota, so it can be challenging
to distinguish the etiological agent of disease from colonizing microbes. Conversely, sites that are usually sterile (e.g.,
cerebrospinal fluid, pleural fluid) present a much better opportunity for metagenomics to contribute to clinical care.

Metagenomic data are more complex to analyze than single species WGS data and tend to rely on sophisticated
computational tools, such as the Desman software allowing inference of strain-level variation in a metagenomic sample
[77]. Such approaches can be difficult to implement, are computationally very demanding, and are unlikely to be
deployable in clinical microbiology in the near future, although cloud-based platforms may circumvent the need for
computational resources in diagnostic laboratories. Furthermore, some faster approaches for rapid strain character-
ization from raw sequence reads, such as MASH [78] and KmerFinder [10,79], could find a use in diagnostics
microbiology, with the latter having been shown to identify the presence of pathogenic strains even in culture-negative
samples [10].

However, the differences between these methods should not obscure their fundamental similarities. Obtaining single-
species genomes from culture is one end of a continuum of methods that stretches all the way to full-blown
metagenomics of a sample. In principle, all methods produce the same kind of data: strings of bases. Furthermore,
in all cases what is clinically relevant represents only a small fraction of these data. Integrating sequencing data from
different methods into a single diagnostics pipeline is therefore an attractive prospect to quickly identify the genomic
needles in the metagenomic haystack in a species-agnostic manner. For example, the presence of a particular
antibiotic-resistance gene in sequencing data may recommend against the use of that antibiotic; whether the gene
is present in data from a single-species isolate or from metagenomes is irrelevant. As an example, Leggett et al. used
MinION metagenomic profiling to identify pathogen-specific AMR genes present in a faecal sample from a critically ill
infant all within 5 h of taking the initial sample [80].
of known sequences though hybridization, are a particularly tractable approach for viruses due
to their small genome size. For example, the VirCap virome capture method targets all known
viruses and can even enrich for novel sequences [64]. Similar methods targeting specific
organisms have been developed and successfully deployed, representing an attractive option
for unculturable organisms [16,65–68].

Relative to the time required for culture and downstream analysis of the data, variation in the
speed of different sequencing technologies is relatively modest. There is considerable enthu-
siasm for the Oxford Nanopore Technology (ONT) which outputs data in real time, although the
ONT requires a comparable amount of time to the popular Illumina Miseq sequencer to
generate the same volume of sequence data. Sequencing on the MiSeq sequencer takes
between 13 to 56 hours, but as run time correlates with sequence output and read length,
researchers tend to systematically favour runs of longer duration.

Ethical Considerations
In the context of this review, genetic material from the human patient present in clinical samples
represents contamination, a major obstacle to obtaining a high yield of microbial DNA.
Protocols exist to deplete human DNA prior to sequencing [69,70] but these are not completely
8 Trends in Microbiology, Month Year, Vol. xx, No. yy
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problem-free as the depletion protocol is likely to bias estimates of the microbial community,
and some human reads will likely remain. In particular, levels of human DNA are significantly
higher in faecal samples from hospitalized patients compared to healthy controls [71], sug-
gesting that the problem is exacerbated in clinical settings. Therefore, the ethical and legal
issues raised by introducing human WGS into routine healthcare [72] cannot be avoided by
microbially focused clinical metagenomics. Dismissing these concerns as minor may be an
option for academic researchers uninterested in these human data, but it is naive to think that
hospital ethics committees will share this view. Even in the absence of human DNA, meta-
genomic samples from multiple body sites can be used to identify individuals in datasets of
hundreds of people [73]. Managing clinical metagenomics data in light of these concerns
should be taken seriously, not only as a barrier to implementation but because of the real risks
to patient privacy.

Bespoke Pipelines for Genomics in Clinical Microbiology
A major problem in the analysis of WGS data is that there are currently very few (if any) accepted
gold standards. The fundamental steps of WGS analyses in microbial genomics tend to be
similar across applications and usually consist of the following steps: sequence data quality
control; identification/confirmation of the sequenced biological material; characterization of the
sequenced isolate (including typing efforts as well as characterization of virulence factors and
putative AMR elements/mutations); epidemiologic analysis; and finally, storage of the results
(Figure 3). However, how these analyses are implemented varies widely, both between
microbial species and human labs. Despite some commercial attempts at one-stop analysis
suites such as Ridom Seqsphere+ (http://www.ridom.com/seqsphere/), most laboratories use
a collection of open-source tools to perform particular subanalyses. Typically, these tools are
then woven together into a patchwork of software (a ‘pipeline’). The idea of a pipeline is to allow
within-laboratory standardized analysis of batches of isolates with relatively little manual
bioinformatics work. Such pipelines can be highly customizable for a wide range of questions.
There are also some communal efforts at streamlining workflows across laboratories. As an
example, Galaxy (https://usegalaxy.org) is a framework that allows nonbioinformaticians to use
a wide array of bioinformatics tools through a web interface.

One major limitation to rapidly attaining useful information in a clinical setting is that analysis
pipelines for microbial genomics have generally been developed for fundamental research or
public health epidemiology [81]. This usually means that the pipeline permits a very thorough
and sophisticated workflow with a large number of options and moving parts. For example, at
the time of writing (May, 2018), the ‘QC and manipulation’ step in Galaxy alone consists of 35
different tools, tests, and workflows that can be applied to an input sequence. While this is
desirable from a researcher’s perspective, it is clearly prohibitive for real-time analysis in a
clinical setting. A user requires in-depth knowledge about the purpose each tool serves, the
relative strengths and weaknesses of each approach, and a functional understanding of the
important parameters. Furthermore, most analysis pipelines require proficiency in Linux sys-
tems and navigating the command line, something clinical microbiologists are rarely trained for.

The road to stringent, exhaustive analysis of WGS data is long and paved with good intentions.
In order to move towards real-time interpretable results for clinics it will be necessary to take
certain shortcuts. The focus should be on rapid, automated analysis and clear, unambiguous
results. Some steps in the pipeline can simply be omitted for clinical purposes. As an example,
genome assembly might appear to be a bottleneck for real-time WGS diagnostics, but is
probably rarely required; sufficient characterization of an isolate can be made by analysis of the
k-mers in the raw sequence data, which is orders of magnitude faster. Accurate identification
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Figure 3. The Standard WGS Research Bioinformatics Pipeline Can Be Modified for Clinical Use. This
schematic shows common steps used in public health and/or research together with suggested modifications and
omissions for clinical real-time implementation. Steps on the right marked with an asterisk represent simplified versions
optimised for speed. cgMLST, core genome multilocus sequence typing; SNP, single-nucleotide polymorphism;
wgMLST, whole genome multilocus sequence typing.
of an isolate can be made rapidly with MinHash-based k-mer matching methods such as Mash
[78], and AMR elements can be identified from k-mers alone [14]. Another example of a
computationally intensive step that could be omitted from a default pipeline is sophisticated
phylogenetic inference. Best practice for the creation of phylogenetic trees may involve
evaluating the individual likelihood of a very wide range of possible trees given a sequence
alignment or other distance metric, repeated for thousands of bootstrapped replicates, giving a
tree with high confidence but with extreme computational time costs. A clinical pipeline could
use much faster approaches and still provide an informative phylogenetic tree [82].

In Figure 3 we outline our schematic vision of a computational pipeline specific to diagnostics in
clinical microbiology. The clinical pipeline would only encompass a small subset of the research
pipeline aimed at generating rapid and interpretable output. For epidemiological inference,
pairwise distances between strains would be computed as a matrix of Jaccard distances on the
10 Trends in Microbiology, Month Year, Vol. xx, No. yy



TIMI 1605 No. of Pages 14

Outstanding Questions
Can WGS be used to develop robust
classification schemes that account for
the genetic diversity of organisms with
open genomes?

Which clinically relevant phenotypes
can be reliably predicted using WGS,
and for which organisms?

How can phylogenetic analyses of out-
breaks be speeded up to meaningfully
contribute to infection control at
actionable time scales?

How can publicly available databases
be reliably maintained to the required
clinical accreditation standards over
long time periods?

Will the true cost of generating a bac-
terial genome remain stable as the
sequencing market consolidates in
fewer hands?

How can clinical metagenomic data be
managed safely in line with the ethical
considerations applicable to identifi-
able human DNA?

How can unwieldy bioinformatics pipe-
lines developed with academic
research in mind be adapted for a clin-
ical setting?

Can current expertise in traditional clin-
ical microbiology be maintained in the
transition to WGS?
shared proportion of k-mers as outputted by Mash [78]. This matrix could be used to generate a
phylogenetic tree using a computationally inexpensive method (e.g., neighbor-joining). Addi-
tionally, a correlation between pairwise genetic distance and sampling date could be performed
to test for evidence of temporal signal in the data (i.e., accumulation of a sufficient number of
mutations over the sampling period). In the presence of temporal signal, the user would be
provided with a transmission chain based on a fast algorithm such as Seqtrack [83].

Any bespoke pipeline for clinical diagnostics would need to be linked with regularly updated
multispecies databases containing information about the latest developments in typing
schemes, as well as clinically important factors such as AMR determinants. Results would
have to be continuously validated, and international accreditation standards met at regular
intervals. At a national level, accreditation bodies (e.g., UKAS in the UK) may lack the expertise
required. In our experience, many promising databases have collapsed after funding expired or
the responsible postdoc left for another job. If WGS is ever to make it into the clinic it will be
necessary to secure indefinite funding of both infrastructure and personnel for such databases.

The lack of uptake of WGS-based diagnostics may also be in part due to an understandable
desire to maintain the ‘status quo’ in a busy hospital environment with already established
treatment and intervention systems. Additionally, and perhaps significantly, it also highlights the
difficulty to communicate the potential benefits of WGS to the day-to-day life of a clinic. The
main proponents of WGS tend to be based in the public health/research environment and are
rarely actively involved in clinical decision-making. This in itself can present something of a
language barrier, challenging meaningful dialogue over how adoption of new approaches can
lead to quantifiable improvements in existing systems. Further, the physical planning, imple-
mentation and integration of WGS diagnostics may be unlikely to succeed without carefully
planned introduction and continued training of its user base. This is of course challenged by the
already resource-limited infrastructure of many clinical settings.

Concluding Remarks
Despite its immense promise and some early successes, it is difficult to predict if and when
WGS will completely supersede current standards in clinical microbiology. There are several
major bottlenecks to its implementation as a routine approach to diagnose and characterise
microbial infections (see Outstanding Questions). These include, among others: the current
costs of WGS, which remain far from negligible despite a common belief that sequencing costs
have plummeted; a lack of training in, and possible cultural resistance to, bioinformatics among
clinical microbiologists; a lack of the necessary computational infrastructure in most hospitals;
the inadequacy of existing reference microbial genomics databases necessary for reliable AMR
and virulence profiling; and the difficulty of setting up effective, standardized, and accredited
bioinformatics protocols.

Focusing in the near future on WGS applications that fulfil unmet diagnostic needs and
demonstrate clear benefits to patients and healthcare professionals will help to drive the
cultural changes required for the transition to WGS in clinical microbiology. However, irre-
spective of how this transition occurs and how complete it is, it is likely to feel highly disruptive
for many clinical microbiologists. There is also a genuine risk that precious knowledge in basic
microbiology will be lost after the transition to WGS, particularly if investment prioritises new
technology at the expense of older expertise. More positively, irrespective of the future
implementation of WGS in clinical microbiology, we should not forget that the availability of
extensive genomic data has been instrumental in the development of a multitude of routine non-
WGS typing schemes.
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Efforts to develop WGS-based microbial diagnostics have unsurprisingly focused on high-
resource settings. Though, we can see an opportunity for low-/medium-income countries to
get up to speed with the latest WGS-based developments in real-time clinical diagnostics,
rather than adopting classical microbiological phenotyping which might eventually be largely
phased out in high-income countries. One precedent for the successful adoption of a tech-
nology without transitions through its acknowledged historical predecessors is the widespread
use of mobile phones in Africa. This has greatly increased communication and allowed access
to e-banking, despite the fact that many people previously had no traditional bank account and
only limited access to landlines. Most hospitals in the developing world do not currently benefit
from a clinical microbiology laboratory. The installation of a molecular laboratory based around
a standard sequencer, such as a benchtop Miseq, might constitute an ideal investment, as it is
neither far more expensive nor more complex than setting up a standard clinical microbiology
laboratory.
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